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Outline

I Regular estimands and estimators

I Hájek’s convolution theorem

I Optimality (achieving the local asymptotic minimax bound)
for regular estimands

I Semi (non)-parametric efficiency (quite cursory)

Reading:

I van der Vaart, Asymptotic Statistics, Chapters 8, 25.1–25.3
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Regular estimands

I parametric family {Pθ}θ∈Θ, Θ ⊂ Rd

I estimand ψ(θ), ψ : Rd → Rk of interest

I estimand is regular at θ0 if it is differentiable at θ0, derivative
ψ̇(θ0) ∈ Rk×d

more generality possible: (but we won’t do this)

I sequence of estimands ψn : Rd → Rk

I estimands are regular for rate rn →∞ if

rn(ψn(θ0 + h/rn)− ψn(θ0))→ ψ̇(θ0)h

for any h, where ψ̇(θ0) ∈ Rk×d
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Regular estimator

Definition
An estimator sequence Tn is regular at θ0 for estimating ψ(θ0) if
for each h ∈ Rd ,

√
n
(
Tn − ψ(θ0 + h/

√
n)
) d−→
θ0+h/

√
n
Zθ0

where Zθ0 is a random vector
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Regular estimator examples

Example (Typical asymptotically linear estimators)

Let family {Pθ}θ∈Θ be QMD at θ0 with score ˙̀
θ0 and Fisher

information Iθ0 . If

θ̂n − θ0 = PnI
−1
θ0

˙̀
θ0 + oPθ0

(1/
√
n)

then it is regular (even more)

Example (the delta method and regular estimands)

Let setting be as above. Then ψ(θ̂n) is regular for ψ(θ0).
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Hájek Convolution Theorem

Theorem (Hájek)

Let Tn be a regular estimator sequence for θ0 in an LAN model
{Pθ}θ∈Θ with information Iθ0 . Then

√
n(Tn − θ0)

d−→Zθ0 + Vθ0

where Zθ0 ∼ N (0, Iθ0) and Vθ0 are independent

I almost-everywhere extensions exist (see Theorem 8.9 in van
der Vaart)
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Achieving the local asymptotic minimax bound

Theorem
Let θ̂n be any estimator of θ0 in LAN family with

θ̂n − θ0 = I−1
θ0

Pn
˙̀
θ0 + oPθ0

(1/
√
n).

Then for any bounded continuous L,

lim
c→∞

lim sup
n→∞

sup
‖h‖≤c

Eθ0+h/
√
n

[
L
(√

n(θ̂n − (θ0 + h/
√
n))
)]

= E[L(Z )]

where Z ∼ N (0, I−1
θ0

).
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Lower bounds for functions of parameters

Corollary (to local asymptotic minimax bound)

Let {Pθ}θ∈Θ be LAN at θ0 with Fisher information Iθ0 and
ψ : Rd → Rk be differentiable at θ0. If L : Rk → R is symmetric,
quasiconvex, bounded, and Lipschitz continuous, then there exist
prior πc supported on {h : ‖h‖ ≤ c} such that

lim
c→∞

lim inf
n

inf
ψ̂n

∫
Eθ0+h/

√
n

[
L
(√

n(ψ̂n)− ψ(θ0 + h/
√
n)
)]

dπc(h)

≥ E[L(Z )] for Z ∼ N
(

0, ψ̇(θ0)I−1
θ0
ψ̇(θ0)T

)
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Best-regular estimators and the delta method

I estimator Tn of θ0 satisfying
Tn = θ0 + I−1

θ0
Pn

˙̀
θ0 + oPθ0

(1/
√
n) is best regular

Corollary (Delta-method and best-regular estimators)

If ψ : Rd → Rk is differentiable at θ0 and Tn is best regular, then
ψ(Tn) achieves local asymptotic minimax bound
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Nonparametric efficiency

I family P of distributions on X
I parameter θ : P → Rd

I lower bound based on model subfamilies

Definition
A collection {Ph}h∈Rk ⊂ P (often take ‖h‖ ≤ ε) is a quadratic
mean differentiable subfamily (QMD) at P0 ∈ P if there exists a
score g : X → Rk , g ∈ L2(P0), with∫ (√

dPh −
√
dP0 −

1

2
gTh

√
dP0

)2

= o(‖h‖2)
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Subfamily examples

Example (Parametric families)

If P = {Pθ}θ∈Θ is a (usual) QMD family, we have score ˙̀
θ

Example (Nonparametric families)

Let φ : R→ R+ be bounded, differentiable at 0, with
φ(0) = φ′(0) = 1. For g ∈ L2(P0), g : X → Rk with P0g = 0,
model family {Ph} with

dPh(x) = c(h)φ(hTg(x))dP0(x)

is QMD at P0 with score g
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The “basic” idea

I Look at parameter differentiable relative to submodel with
score g ,

θ(Ph) = θ(P0) + θ̇P0(g)h + o(‖h‖)

where θ̇P0(g) ∈ Rd×k

I corollary on page 15–8 suggests asymptotic lower bound

E
[
L
(√

n(θ̂n − θ(P))
)]
≥ E[L(Z )],

Z ∼ N
(

0, θ̇P0(g)(P0gg
T )−1θ̇P0(g)T

)
I choose “worst” sub-model g
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Tangent sets

Definition
The tangent set ṖP to P at P is the collection of score functions
g : X → Rd as we vary QMD subfamilies

I often just one-dimensional subfamilies (higher-dimensional
easier for us)

I always a subset of L2(P0) = {g : X → Rd |
∫
‖g‖2

2 dP0 <∞}
I often linear, so becomes a tangent space
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Influence functions and derivatives

I interested in “appropriately smooth” functions of distribution

Definition
A parameter θ : P → Rd is differentiable at P0 relative to tangent
set ṖP0 if for each QMD submodel {Ph} with score g ∈ ṖP0 ,
g : X → Rk , if tn → 0 and hn → h ∈ Rd imply

θ(Ptnhn)− θ(P0)

tn
→ DP0(gTh)

for a continuous linear mapping DP0 : L2(P0)→ Rd

Achieving Local Asymptotic Bounds and Extensions 15–14



Influence functions

Observation
There exists a mean-zero influence function θ̇0 : X → Rd ,
θ̇0 ∈ L2(P0), such that

DP0(f ) =

∫
θ̇0(x)f (x)dP0(x)

for each f : X → R with P0f
2 <∞
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Influence function examples

Example (Parametric families)

For parametric family {Pθ}θ∈Θ, influence function is I−1
θ0

˙̀
θ0

Example (Nonparametric mean estimation)

For θ(P) = PX , influence function is θ̇0(x) = x − P0X .
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Influence function examples (continued)

Example (M-estimation)

Let ` : Rd ×X → R be convex, sufficiently smooth and integrable.
Let L(θ) = P`(θ,X ). For θ(P) := argminθ P`(θ,X ), influence is

θ̇0(x) = −(∇2L(θ0))−1∇`(θ0, x)

Achieving Local Asymptotic Bounds and Extensions 15–17



Local asymptotic minimax bound

Theorem
Let L : Rd → R be bounded, quasiconvex, symmetric, and
Lipschitz and ṖP0 ⊂ L2(P0) ⊂ X → Rk be a tangent space.
Assume θ is differentiable relative to ṖP0 . Then there exist priors
πc supported on {h ∈ Rk : ‖h‖ ≤ c} such that

lim
c→∞

lim inf
n→∞

inf
θ̂n

∫
Eh/
√
n

[
L
(√

n(θ̂n − θ(Ph/
√
n))
)]

dπc(h)

≥ E[L(Z )] for Z ∼ N
(

0,Cov0(θ̇0, g
T )(P0gg

T )−1Cov0(g , θ̇T0 )
)
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Comments on nonparametric local minimax bound

I often consider only 1-dimensional submodels, look at

lim
t↓0

θ(Ptg )− θ(P0)

t
= DP0(g)

I equivalent if ψ(h) := θ(PgTh) locally Lipschitz in h for

g : X → Rd
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Types of differentiability: Gateaux, Hadamard, and Fréchet

Let f : X → V for Banach spaces X ,V . Then f is

I Gateaux differentiable at x if directional derivatives exist:

f ′(x ; v) := lim
t↓0

f (x + tv)− f (x)

t

I Hadamard (compactly) differentiable if the directional
derivative is linear, f ′(x ; v) = Dxv , and for all vt → v ,

lim
t↓0

f (x + tvt)− f (x)

t
= Dxv

I Fréchet differentiable if

f (x + v)− f (x)− Dxv = o(‖v‖) as ‖v‖ → 0.
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Finite dimensional equivalence differentiability

Proposition

Let f : Rn → Rk , i.e., in finite dimensions and assume its Gateaux
derivative at x exists and is linear. Then

I If f is locally Lipschitz, it is Hadamard differentiable at x

I Hadamard and Fréchet differentiability coincide.
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The largest lower bound

Corollary

Assume conditions of Theorem on page 15–18. Then g = θ̇0

maximizes the lower bound, yielding asymptotic lower bound

E
[
L
(
N (0,P0θ̇0θ̇

T
0 )
)]
.
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Achieving the bound

I regular estimator with efficient influence function

θ̂n − θ0 = Pnθ̇0 + oP0(1/
√
n) (1)

Corollary

Any regular estimator of the form (1) achieves the local asymptotic
minimax lower bound.
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