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Problem 1

(a) For any e > 0, we have that

1=P(X €R) <Y P(X € (ke — ¢ ke +¢)).
kEZ

(1)

In particular, at least one of the terms of the sum must be non-zero, so the result follows

with the corresponding zg = ke.

(b) Let € > 0 and xg such that P(X € (zo —€/2,x 4+ €/2)) > 0. We then have that, since X,Y

are iid,
PX -Y|<e)>P(|X —xo| <€/2,]Y — x| < €/2)
=P(X € (g —¢€/2,20 + 6/2))2
>0
Problem 2

(a) Notice that for any € > 0, since X,, > 0 almost surely, we have that
o oo
Xo N X,
> PS> ) = X P(T>n)
n=1 n=1
oo
< / P(& >t)dt
0 €

= ]E(Xl)/e
< 00.

Thus, by Borel-Cantelli, we have that

X
P(—n > ei.o.) =0.
n

Taking a union of probability-0 events, we thus conclude

P(limsup% > 0) :P(G {% > % i.o.}) =0.

n— 00
r=1



(b) If E(X,,) = oo, we have instead for every K > 0

>op(5r > ) =3P (3 > ) )
z/mP()I({1>t)dt (12)
1
> E(X1)/K -1 (13)
= 00. (14)

Since the X, are mutually independent, the second Borel-Cantelli lemma yields that

X
P(—" > K i.o.) ~ 1. (15)
n
Taking an intersection of probability-1 events, we now have
X ~ (X
P(limsup—":oo):P<ﬂ {—">Ki.o.}):1. (16)
n—oo 1 n

Problem 3 Suppose that v, = vy, and so let C' be the set of continuity points of F,,. The
complement of this set is at most countable, and so in particular has Lebesgue measure 0.

Now, |F,(t) — Fo(t)] < 2 and F,(t) — Fx(t) on C, so the dominated convergence theorem
yields that

(/yﬂm—ﬂgm@_/ﬁmw—gﬁmn%o (17)
(0,1] c

To see the converse, suppose that f(O,l] |Fn(t) — Fso(t)| dt — 0. This means that F,,(t) — Fuo(t)
on a set A with measure 1.

Suppose that F),(tp) doesn’t converge to Fuo(tg) for ¢y a continuity point of Fi,. This means that
there exists an € > 0 such that, either F,,(tg) > Foo(to) + € infinitely often or F,(ty) < Fuoo(to) — €
infinitely often (or both).

We consider this first case, so assume that Fi(tg) < F,(to) — € infinitely often. Since t( is a
continuity point of Fi,, let 6 > 0 be such that, for any t € [to, o + 0], Fo(t) < Fxo(to) + €/2.

Since F), is non-decreasing, we have for any t € [tg, tg + 0] that

Faolt) < Faolto) + (18)
< Fulto) - (19)
< Fa(t) - 5. (20)

But this means that F, fails to converge to F, on the positive-measure set [to, to + d], which is
a contradiction.
The second case is similar, assuming that Fi(t9) > F,(to) + € infinitely often. Since t( is a
continuity point of Fi, let § > 0 be such that, for any t € [tg — d,to], Foo(t) > Foo(to) — €/2
Since F,, is non-decreasing, we have for any ¢ € [tg — 0, to] that
€

Fualt) > Faclto) — & 1)
> Fo(to) + % (22)
> Fu(t) + 5. (23)



But this means that F, fails to converge to Fi, on the positive-measure set [tg — 6, tg], which is
also a contradiction.

Hence, it must be the case that F,(t) — Fuo(t) for any ¢ which is a continuity point of Fi.
Hence, v, = v

Note: A cleaner but less elementary argument is the following;:

Since both integrals denote the same area, we have that

1 1
/ Fult) — Fao(t)| dt = / F 1 (s) — Fol(s)] ds (24)

0 0
= E]Xn — XOO|, (25)

where X,, ~ F,, are the random variables constructed in the proof of the Skorokhod representation
theorem.

In particular, since Lj convergence implies distributional convergence, if E|X,, — Xo| — 0, then
Vp = Veo-

Conversely, by the Skorokhod construction, if v, = Voo, then X,, == X, where both random
variables are bounded by 1. The dominated convergence theorem thus yields that E|X,, — Xo| — 0.

Problem 4

(a) We have that, for any € > 0,

P(‘an(g) — an(g)| > 6) < P(‘an(g) — Zoo’ > 6/2) + P(‘an(ﬁ) — Zoo’ > 6/2) — 0. (26)

(b) Notice that

2n n
1 1
Son—Sn=—=> Xi——F> X 27
2 /f2ni:1 \/ﬁj:1 J ( )

1-v2 1 & 11 &
2 v N 2

Jj=n+1

Since the X; are independent, the central limit theorem yields the joint convergence in
distribution of (31", X;//n, Z?Znﬂ X;/v/n) to (G,G"), a pair of independent standard
normals. In particular,

a 1—+2

S — Sy G+ 12(;' ~ N(0,2 — V3), (29)

NN

In particular, So, —S,, does not converge in probability to 0, and so by part (a), S, cannot
converge in probability.

Problem 5
(a) The Portmanteau theorem yields that if v, = v, then v, (A) = voo(A) for all veo-continuity
sets, and so in particular for all v.-continuity rectangles.

Conversely, suppose v,(A) — vso(A) for all rectangles A € Ry, which are vo-continuity
sets. To show v, = v, we need to show that for all bounded continuous functions f : R™ —



R, we have v,(f) — voo(f). It suffices to assume f is non-negative, and ||f|lc < 1. To
start, observe that for any simple function of the form h = Zle bila,, with A; € Ry, for all
1<i<k,and 0 < b; < oo for all 1 <i <k, we have v,(h) = voo(h). So to finish, it suffices
to show that for all € > 0, there exists simple functions /., u. of the previously described
form, such that . < f < ug, and veo(us) — Voo (be) < €.

Towards this end, fix ¢ > 0. There exists some large, finite rectangle Ay € R,, such that
Voo (A§) < e/2. As A is compact, f is uniformly continuous on Ag. Thus there exists § > 0
such that for all z,y € Ao, ||z — y|lec < 0 implies |f(x) — f(y)| < /2. As the set of atoms
of v is at most countable, there exists some collection of rectangles A1,..., Ax € R,,, such
that Ag = Ay U--- U Ay, the interiors of the rectangles AS,..., A} are disjoint, and for all
1 < i <k, A; has all side lengths at most . Given this collection, define bf = infgeq, f(x),

by :=sup,c 4, f(x). Define

k
lei="> bilse,
i=1

k
Ue 1= HAB + Zb?ﬂAi.
i=1
Using the facts that the interiors A7, ..., A} are disjoint, Ag = A1U---UAy, f is non-negative,
and || fllco < 1, we have £ < f < u.. Moreover, recalling the definition of J, and using the
fact that A; has all side lengths at most ¢ for all 1 < i < k, we have uf — bf < g/2 for all
1 <i < k. To finish, observe that since A; € R,,, we have vy (A4;) = Voo (A7), so that

k
Voo (Ue) = Voo (£e) < Voo (Af) + Z(bf - bf)VOO(AS)
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as desired.
By definition, for any bounded continuous function f :R™ — R, we have
Ef(Z™) — Ef(Z),

In particular, given a bounded continuous function g : R™! — R, we may define f : R™ — R
by f(z1,...,%m) = g(x1,...,2Zm,). As f is bounded and continuous, we obtain

Eg(X™, .. X)) 5 Eg(X™, ..., X)),
This shows that u,(«}) = 1/&). The proof for V7(12) is the same. To show that v is a product
measure, take bounded continuous functions g; : R™ — R, g3 : R™2 — R. Define f : R - R
by f(x1,...,2m) == g1(1,. .., Tmy)92(Tmi+1,---,Tm). Note f is also bounded continuous,
and thus (using also the assumption that the v, are product measures)

Egi(X{™, ., X Ega (X 1, XY = Egr (X0, X0 g0 (X0, X090,



But by weak convergence of the individual yr(la), we also have that the limit is equal to

Egr (X, .. XECNEga (X .., X 0).

mi+1° m



