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Problem 1

(a) For any ε > 0, we have that

1 = P(X ∈ R) ≤
∑
k∈Z

P(X ∈ (kε− ε, kε+ ε)). (1)

In particular, at least one of the terms of the sum must be non-zero, so the result follows
with the corresponding x0 = kε.

(b) Let ε > 0 and x0 such that P(X ∈ (x0 − ε/2, x + ε/2)) > 0. We then have that, since X,Y
are iid,

P(|X − Y | < ε) ≥ P(|X − x0| < ε/2, |Y − x0| < ε/2) (2)

= P(X ∈ (x0 − ε/2, x0 + ε/2))2 (3)

> 0 (4)

Problem 2

(a) Notice that for any ε > 0, since Xn ≥ 0 almost surely, we have that

∞∑
n=1

P
(Xn

n
> ε
)

=
∞∑
n=1

P
(X1

ε
> n

)
(5)

≤
∫ ∞
0

P
(X1

ε
> t
)

dt (6)

= E(X1)/ε (7)

<∞. (8)

Thus, by Borel-Cantelli, we have that

P
(Xn

n
> ε i. o.

)
= 0. (9)

Taking a union of probability-0 events, we thus conclude

P
(

lim sup
n→∞

Xn

n
> 0
)

= P
( ∞⋃

r=1

{Xn

n
>

1

r
i. o.
})

= 0. (10)
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(b) If E(Xn) =∞, we have instead for every K > 0

∞∑
n=1

P
(Xn

n
> K

)
=
∞∑
n=1

P
(X1

K
> n

)
(11)

≥
∫ ∞
1

P
(X1

K
> t
)

dt (12)

≥ E(X1)/K − 1 (13)

=∞. (14)

Since the Xn are mutually independent, the second Borel-Cantelli lemma yields that

P
(Xn

n
> K i. o.

)
= 1. (15)

Taking an intersection of probability-1 events, we now have

P
(

lim sup
n→∞

Xn

n
=∞

)
= P

( ∞⋂
K=1

{Xn

n
> K i. o.

})
= 1. (16)

Problem 3 Suppose that νn ⇒ ν∞, and so let C be the set of continuity points of F∞. The
complement of this set is at most countable, and so in particular has Lebesgue measure 0.

Now, |Fn(t) − F∞(t)| ≤ 2 and Fn(t) → F∞(t) on C, so the dominated convergence theorem
yields that ∫

(0,1]
|Fn(t)− F∞(t)|dt =

∫
C
|Fn(t)− F∞(t)| dt→ 0 (17)

To see the converse, suppose that
∫
(0,1]|Fn(t)− F∞(t)|dt→ 0. This means that Fn(t)→ F∞(t)

on a set A with measure 1.
Suppose that Fn(t0) doesn’t converge to F∞(t0) for t0 a continuity point of F∞. This means that

there exists an ε > 0 such that, either Fn(t0) > F∞(t0) + ε infinitely often or Fn(t0) < F∞(t0)− ε
infinitely often (or both).

We consider this first case, so assume that F∞(t0) < Fn(t0) − ε infinitely often. Since t0 is a
continuity point of F∞, let δ > 0 be such that, for any t ∈ [t0, t0 + δ], F∞(t) < F∞(t0) + ε/2.

Since Fn is non-decreasing, we have for any t ∈ [t0, t0 + δ] that

F∞(t) < F∞(t0) +
ε

2
(18)

< Fn(t0)−
ε

2
(19)

≤ Fn(t)− ε

2
. (20)

But this means that Fn fails to converge to F∞ on the positive-measure set [t0, t0 + δ], which is
a contradiction.

The second case is similar, assuming that F∞(t0) > Fn(t0) + ε infinitely often. Since t0 is a
continuity point of F∞, let δ > 0 be such that, for any t ∈ [t0 − δ, t0], F∞(t) > F∞(t0)− ε/2

Since Fn is non-decreasing, we have for any t ∈ [t0 − δ, t0] that

F∞(t) > F∞(t0)−
ε

2
(21)

> Fn(t0) +
ε

2
(22)

≥ Fn(t) +
ε

2
. (23)
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But this means that Fn fails to converge to F∞ on the positive-measure set [t0− δ, t0], which is
also a contradiction.

Hence, it must be the case that Fn(t) → F∞(t) for any t which is a continuity point of F∞.
Hence, νn ⇒ ν∞

Note: A cleaner but less elementary argument is the following:
Since both integrals denote the same area, we have that∫ 1

0
|Fn(t)− F∞(t)|dt =

∫ 1

0
|F−1n (s)− F−1∞ (s)|ds (24)

= E|Xn −X∞|, (25)

where Xn ∼ Fn are the random variables constructed in the proof of the Skorokhod representation
theorem.

In particular, since L1 convergence implies distributional convergence, if E|Xn−X∞| → 0, then
νn ⇒ ν∞.

Conversely, by the Skorokhod construction, if νn ⇒ ν∞, then Xn
a.s.−−→ X∞, where both random

variables are bounded by 1. The dominated convergence theorem thus yields that E|Xn−X∞| → 0.

Problem 4

(a) We have that, for any ε > 0,

P(|Zn1(`) − Zn1(`)| > ε) ≤ P(|Zn1(`) − Z∞| > ε/2) + P(|Zn2(`) − Z∞| > ε/2)→ 0. (26)

(b) Notice that

S2n − Sn =
1√
2n

2n∑
i=1

Xi −
1√
n

n∑
j=1

Xj (27)

=
1−
√

2√
2

1√
n

n∑
i=1

Xi +
1√
2

1√
n

2n∑
j=n+1

Xj (28)

Since the Xi are independent, the central limit theorem yields the joint convergence in
distribution of (

∑n
i=1Xi/

√
n,
∑2n

j=n+1Xj/
√
n) to (G,G′), a pair of independent standard

normals. In particular,

S2n − Sn
d−→ 1−

√
2√

2
G+

1√
2
G′ ∼ N (0, 2−

√
2). (29)

In particular, S2n−Sn does not converge in probability to 0, and so by part (a), Sn cannot
converge in probability.

Problem 5

(a) The Portmanteau theorem yields that if νn ⇒ ν∞, then νn(A)→ ν∞(A) for all ν∞-continuity
sets, and so in particular for all ν∞-continuity rectangles.

Conversely, suppose νn(A) → ν∞(A) for all rectangles A ∈ Rm which are ν∞-continuity
sets. To show νn ⇒ ν∞, we need to show that for all bounded continuous functions f : Rm →
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R, we have νn(f) → ν∞(f). It suffices to assume f is non-negative, and ‖f‖∞ ≤ 1. To
start, observe that for any simple function of the form h =

∑k
i=1 biIAi , with Ai ∈ Rm for all

1 ≤ i ≤ k, and 0 ≤ bi <∞ for all 1 ≤ i ≤ k, we have νn(h)→ ν∞(h). So to finish, it suffices
to show that for all ε > 0, there exists simple functions `ε, uε of the previously described
form, such that `ε ≤ f ≤ uε, and ν∞(uε)− ν∞(`ε) ≤ ε.

Towards this end, fix ε > 0. There exists some large, finite rectangle A0 ∈ Rm such that
ν∞(Ac

0) ≤ ε/2. As A0 is compact, f is uniformly continuous on A0. Thus there exists δ > 0
such that for all x, y ∈ A0, ‖x − y‖∞ ≤ δ implies |f(x) − f(y)| ≤ ε/2. As the set of atoms
of ν∞ is at most countable, there exists some collection of rectangles A1, . . . , Ak ∈ Rm, such
that A0 = A1 ∪ · · · ∪ Ak, the interiors of the rectangles A◦1, . . . , A

◦
k are disjoint, and for all

1 ≤ i ≤ k, Ai has all side lengths at most δ. Given this collection, define b`i := infx∈Ai f(x),
bui := supx∈Ai

f(x). Define

`ε :=

k∑
i=1

b`iIA◦
i
,

uε := IAc
0

+
k∑

i=1

bui IAi .

Using the facts that the interiors A◦1, . . . , A
◦
k are disjoint, A0 = A1∪· · ·∪Ak, f is non-negative,

and ‖f‖∞ ≤ 1, we have `ε ≤ f ≤ uε. Moreover, recalling the definition of δ, and using the
fact that Ai has all side lengths at most δ for all 1 ≤ i ≤ k, we have u`i − b`i ≤ ε/2 for all
1 ≤ i ≤ k. To finish, observe that since Ai ∈ Rm, we have ν∞(Ai) = ν∞(A◦i ), so that

ν∞(uε)− ν∞(`ε) ≤ ν∞(Ac
0) +

k∑
i=1

(bui − b`i)ν∞(A◦i )

≤ ε

2
+
ε

2

k∑
i=1

ν∞(A◦i )

≤ ε

2
+
ε

2
= ε,

as desired.

(b) By definition, for any bounded continuous function f : Rm → R, we have

Ef(Z(n))→ Ef(Z(∞)).

In particular, given a bounded continuous function g : Rm1 → R, we may define f : Rm → R
by f(x1, . . . , xm) := g(x1, . . . , xm1). As f is bounded and continuous, we obtain

Eg(X
(n)
1 , . . . , X(n)

m1
)→ Eg(X

(∞)
1 , . . . , X(∞)

m1
).

This shows that ν
(1)
n

w⇒ ν
(1)
∞ . The proof for ν

(2)
n is the same. To show that ν∞ is a product

measure, take bounded continuous functions g1 : Rm1 → R, g2 : Rm2 → R. Define f : Rm → R
by f(x1, . . . , xm) := g1(x1, . . . , xm1)g2(xm1+1, . . . , xm). Note f is also bounded continuous,
and thus (using also the assumption that the νn are product measures)

Eg1(X
(n)
1 , . . . , X(n)

m1
)Eg2(X

(n)
m1+1, . . . , X

(n)
m )→ Eg1(X

(∞)
1 , . . . , X(∞)

m1
)g2(X

(∞)
m1+1, . . . , X

(∞)
m ).
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But by weak convergence of the individual ν
(a)
n , we also have that the limit is equal to

Eg1(X
(∞)
1 , . . . , X(∞)

m1
)Eg2(X

(∞)
m1+1, . . . , X

(∞)
m ).
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