
Stat 310A/Math 230A Theory of Probability

Homework 1 Solutions
Andrea Montanari Due on 10/2/2019

Option 1: Exercises on measure spaces

Exercise [1.1.4]

1. A and B \A are disjoint with B = A∪ (B \A) so P(A) +P(B \A) = P(B) and rearranging gives the
desired result.

2. Let A′n = An ∩ A, B1 = A′1 and for n > 1, Bn = A′n \ ∪n−1
m=1A

′
m. Since the Bn are disjoint and have

union A we have using (a) and Bm ⊆ Am

P(A) =

∞∑
m=1

P(Bm) ≤
∞∑
m=1

P(Am)

3. Consider the disjoint sets Bn = An \An−1 for which ∪∞m=1Bm = A, and ∪nm=1Bm = An. Then,

P(A) =

∞∑
m=1

P(Bm) = lim
n→∞

n∑
m=1

P(Bm) = lim
n→∞

P(An)

4. Acn ↑ Ac, so (c) implies P(Acn) ↑ P(Ac). Since P(Bc) = 1−P(B) it follows that P(An) ↓ P(A).

Exercise [1.1.13]

(a) Let G =
⋂
α Fα, with each Fα a σ-algebra. Since Fα a σ-algebra, we have that Ω ∈ Fα, and as this

applies for all α, it follows that Ω ∈ G. Suppose now that A ∈ G. That is, A ∈ Fα for all α. Since each
Fα is a σ-algebra, it follows that Ac ∈ Fα for all α, and hence Ac ∈ G. Similarly, let A =

⋃
iAi for

some countable collection A1, A2, . . . of elements of G. By definition of G, necessarily Ai ∈ Fα for all i
and every α. Since Fα is a σ-algebra, we deduce that A ∈ Fα, and as this applies for all α, it follows
that A ∈ G.

(b) We verify the conditions for σ-algebra.

(a) Ω ∈ G and Ω ∩H = H ∈ H. Hence Ω ∈ HH .

(b) Suppose A ∈ HH . Since G is a σ-algebra and A ∈ G, we have Ac ∈ G. Note that Ac ∩ H =
(A ∩H)c ∩H. Since by definition A ∩H ∈ H, we have Ac ∩H ∈ H as well. Hence Ac ∈ HH .

(c) Suppose Ai ∈ HH for i ∈ N. Since Ai ∈ G,
⋃
iAi ∈ G. Also, (

⋃
iAi)∩H =

⋃
i(Ai ∩H) ∈ H since

each component Ai ∩H ∈ H. Thus,
⋃
iAi ∈ HH .

Therefore, HH as defined is a σ-algebra.

(c) Suppose we have H1 ⊆ H2. We want to show that HH2 ⊆ HH1 . In fact, given any A ∈ HH2 , since
H1 ⊆ H2, we have A∩H1 = (A∩H2)∩H1. A∩H2 ∈ H by definition and we also know H1 ∈ H. This
implies A ∩H1 ∈ H. Also, A ∈ G by definition. Thus, A ∈ HH1 . Since the choice of A is arbitrary, we
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conclude HH2 ⊆ HH1 .

HΩ = {A ∈ G : A∩Ω ∈ H} = {A ∈ G : A ∈ H} = H. On the other hand, H∅ = {A ∈ G : A∩ ∅ ∈ H} =
{A ∈ G : ∅ ∈ H} = G due to the fact that whichever A is chosen in G, ∅ is always in H.

First note H ⊆ H ∪ H ′. By the monotonicity derived above, HH∪H′ ⊆ HH . For the same reason,
HH∪H′ ⊆ HH′ . This results in one direction, HH∪H′ ⊆ HH ∩ HH′ . We are left to prove the other
direction. In fact, if A ∈ HH ∩ HH′ , we have A ∩H ∈ H and A ∩H ′ ∈ H, and thus A ∩ (H ∪H ′) =
(A ∩H) ∪ (A ∩H ′) ∈ H. By definition, we know A ∈ HH∪H′ . Therefore, HH ∩ HH′ ⊆ HH∪H′ . We
conclude HH ∩HH′ = HH∪H′ .

Exercise [1.1.21]

It suffices to show that if F is the σ-algebra generated by {(a1, b1)× · · · × (ad, bd)}, then F contains (a) the
open sets and (b) all sets of the form A1× · · · ×Ad where Ai ∈ B. For (a), note that if G is open and x ∈ G
then there is a set of the form (a1, b1) × · · · × (ad, bd) with ai, bi ∈ Q that contains x and lies in G, so any
open set is a countable union of these basic sets ((a1, b1)× · · · × (ad, bd) with ai, bi ∈ Q). In this argument
we relied on the fact that there are only countably many such basic sets, hence we are not bothered by the
fact that there are uncountably many points x in G.

For (b), fix A2, · · · , Ad and let G = {A : A×A2 × · · · ×Ad ∈ F}. Since F is a σ-algebra it is easy to see
that if R ∈ G then G is a σ-algebra so if G ⊇ A then G ⊇ σ(A). Applying this for Ai = (ai, bi), i = 2, . . . , d
it follows that if A1 ∈ B then A1 × (a2, b2)× · · · × (ad, bd) ∈ F . Repeating now the preceding argument for
G = {A : A1 × A× A3 · · · × Ad ∈ F}, A1 ∈ B and Ai = (ai, bi), i = 3, . . . , d, shows that if A1, A2 ∈ B, then
A1×A2× (a3, b3)×· · ·× (ad, bd) ∈ F . Applying this type of argument d−2 more times, proves the assertion
(b).

Exercise [1.1.22]

We have F = σ(Aα, α ∈ Γ), and want to show that every set B in F has a certain property. The property
in this problem is B ∈ σ({Aαj

, j ≥ 1}), for some countable {αj} ⊂ Γ, but ignore that for now, because the
method indicated here applies very generally, and will be used again. Notice first that every set Aα in the
generating class has the property. Now consider the class C of all sets in F that have the property. We
have already shown that each Aα is in this class; the problem is to show that all sets in F are in this class.
Luckily, the “property” is such that C is a σ-algebra (check: this is the only calculation in this problem). So
C is a σ-algebra which contains all the Aα, hence it contains F , because F is the intersection of all σ-algebras
that contain all the Aα.

Exercise [1.1.33]

Let Ω = {1, 2, 3, 4} and A = {{1, 3}, {2, 3},Ω} for which σ(A) = 2Ω. Define µ and ν by µ({1}) = µ({2}) =
µ({3}) = µ({4}) = 1/4 and ν({1}) = ν({2}) = 1/3, ν({3}) = ν({4}) = 1/6.

Option 2: The Banach-Tarski paradox in one dimension

A1

For the first direction, let f : A → R be an equidecomposition. and define Bi = f(Ai) = Bi + ti for i ∈ N.
Since {Ai} is a countable partition of A, it is sufficient to show that {Bi} is a countable partition of B.
Indeed Bi ∩Bj = ∅ for i 6= j follows from the injectivity of f (because otherwise there would be y ∈ Bi ∩Bj
whence y = f(xi), and y = f(xj) for some xi ∈ Ai, xj ∈ Aj distict). Further, f(A) =

⋃
i f(Ai) =

⋃
iBi, and

since f is surjective, f(A) = B.
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To prove the converse, assume {Ai} and {Bi} to be partitions (respectively) of A and B, and let {ti}
be the such that Bi = Ai + ti. Define f by letting f |Ai = Rti |Ai . This map is clearly bijective (with
f−1|Bi = R−ti |Ai).

A2

Let A′ ⊆ A, B′ ⊆ B, and consider the bijective equidecompositions f : A→ B′ and g : B → A′.
As suggested, we define A(0) ≡ A \ g(B), and A(∗) ≡ ∪∞n=0(g ◦ f)n(A(0)). Let h : A→ B be defined by

h(x) =

{
f(x) if x ∈ A(∗),
g−1(x) if x ∈ A \A(∗).

(1)

Notice that h is well defined because A\A(∗) ⊆ A\A(0) = g(B). Further, it is a countable equidecomposition.
To prove this, conside the partitions A = ∪∞i=1Ai and B = ∪∞i=1Bi, with respect to which f and g are
(respectively) equidecompositions with translation parameters {ti} and {si}. Then

A =
{ ∞⋃
i=1

(Ai ∩A(∗))
}⋃{ ∞⋃

i=1

(g(Bi) ∩ (A \A(∗)))
}

(2)

is a countable partition of A and it is easy to check that h is an equidecomposition with respect to
this partition. Indeed h|Ai∩A(∗) = f |Ai∩A(∗) = Rti |Ai∩A(∗) and h|g(Bi)∩(A\A(∗)) = g−1|g(Bi)∩(A\A(∗)) =
R−si |g(Bi)∩(A\A(∗)).

It remains to prove that h is bijective. To this end, define the mapping l : B → A by

l(y) =

{
f−1(y) if g(y) ∈ A(∗),
g(y) otherwise.

(3)

It is not hard to prove that l is the inverse of h. Indeed, if x ≡ g(y) 6∈ A(∗), then h(x) = g−1(x) = y. On
the other hand, if g(y) ∈ A(∗), then g(y) = (g ◦ f)k(A(0)) for some k ≥ 1 (because A(0) ∩ g(B) = ∅). By
injectivity of g, y = f((g ◦ f)k−1(x0)) for some x0 ∈ A(0). If we let x = l(y) = f−1(y), then x ∈ A(∗) as well,
whence h(x) = f(x) = y.

B1

Consider the equivalence relation x ∼ y if (x − y) ∈ Q, and let E denote the collection of its equivalence
classes. For every E ∈ E , E ∩ [0, 1/2] is non-empty and by the axiom of choice, there exist a choice function
E 7→ xE such that xE ∈ E ∩ [0, 1/2] for each E. Obviously E = xE + Q. Therefore

R = ∪E∈EE = ∪E∈E{xE + Q} = ∪x∈C{x+ Q} , (4)

where C = {xE}E∈E .

B2

Since the rationals are countable, there exist partitions in isolated points

Q ∩ [0, 1/2] = ∪∞i=1{qi} , Q = ∪∞i=1{pi} . (5)

Of course, for any i, {pi} = Rti({qi}) if we set ti = pi − qi.

B3

Using the enumerations of Q ∩ [0, 1/2] and of Q at the previous point, we get

A ≡ ∪x∈C{x+ (Q ∩ [0, 1/2])} = ∪∞i=1{qi + C} , R = ∪x∈C{x+ Q} = ∪∞i=1{pi + C} . (6)

We have {pi + C} = Rti({qi + C}) if we set ti = pi − qi as above.
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B4

Clearly [0, 1] is equidecomposable with [0, 1] ⊆ R (via the identity mapping). On the other hand R is
equidecomposable with A ⊆ [0, 1]. By points A1, A2, this implies that [0, 1] is equidecomposable with R.

This implies that there exists no measure on R satisfying the following requirements

1. The measure is countably additive (As it should be).

2. µ([0, 1]) 6∈ {0,∞}.

3. Any set is measurable.

4. µ(S) = µ(RtS) for any measurable set S.
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