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Exercises on measurable functions and Lebesgue integration

Exercise [1.2.14]

The same method works for all four parts.

1. Since B = σ({(−∞, α] : α ∈ R}), it follows from Theorem 1.2.11 that X is measurable with respect
to the right hand side (RHS), which hence also contains the left hand side (LHS). But the RHS is
generated by elements of the σ-algebra on the LHS, so the LHS contains the RHS as well.

2. For 1 ≤ i ≤ n, each Xi is by Theorem 1.2.11 measurable with respect to the RHS. Therefore, the RHS
contains the LHS. Again, the RHS is generated by sets from the LHS, so the latter contains the former.

3. Exactly the same method applies.

4. Since each Xk is measurable with respect to the RHS, the latter contains the LHS. By definition
σ(Xk, k ≤ n) is contained in the LHS for each n, hence so is the union of these collections, implying
that the LHS contains the RHS as well.

Exercise [1.2.20]

1. If g is l.s.c. and xn is a sequence of points that converge to x and such that g(xn) ≤ a for all n then
necessarily also g(x) ≤ lim infn g(xn) ≤ a. So, we see that {x : g(x) ≤ a} is closed.

2. From part (a) we see that g−1((−∞, a]) is a closed set for l.s.c. g and g−1((−∞, a)) is an open set for
u.s.c. g, hence both are in BRn . Since (−∞, a], a ∈ R generate B (see Exercise 1.1.17), as do (−∞, a),
a ∈ R, it follows (from Theorem 1.2.11) that any such g is a Borel function.

3. Since continuous functions are also l.s.c. we use part (b) here.

Exercise [1.2.30]

Since
{ω : lim sup

n→∞
Xn(ω) ≤ X∞(ω)} = {ω : lim sup

n→∞
(Xn(ω)−X∞(ω)) ≤ 0} ,

it suffices to consider the case of X∞ = 0. By the definition of lim sup,

{ω : lim sup
n→∞

Xn(ω) ≤ 0} =
⋂
ε>0

{ω : lim sup
n→∞

Xn(ω) < ε} =
⋂
ε>0

∞⋃
n=1

Cn ,

for Cn = ∩k≥n{ω : Xk(ω) < ε}. Since the sets Cn are non-decreasing in n it follows from our assumption
that for any ε > 0,

1 = P(

∞⋃
n=1

Cn) = lim
m→∞

P(

m⋃
n=1

Cn) = lim
m→∞

P(Cm) .

Hence, there exists N such that P(Cn) > 1 − ε for all n ≥ N and the set CcN is the required event A from
the statement of this exercise.

1



Exercise [1.2.31]

Expanding on Example 1.2.4 we know that each simple function is a measurable function from (Ω,F) to
(R,B), hence belongs to the (larger) collection mF of all R-valued measurable functions on (Ω,F). Further,
by Theorem 1.2.23 the latter collection is closed under pointwise limits. We complete the proof upon
observing that mF is the minimal collection with these two properties since any f ∈ mF is the pointwise
limit of some sequence fn of simple fucntions (for example, take fn = −n ∨ ((2−n[2nf ]) ∧ n)).

Exercise [1.2.49]

1. If x is a point of discontinuity of F , then F (x) − F (x−) > 0, so by monotonicity, for each ε > 0 also
F (x + ε) − F (x − ε) > 0. On the other hand, if x is outside the support of F then for all ε > 0
sufficiently small, F (x + ε) = F (x − ε), by the definition of the support and the monotonicity of F .
Now let (a, b) be an open interval in the complement of the support. Then, for each x ∈ (a, b), there
is an open interval (ax, bx) such that x ∈ (ax, bx) ⊂ (a, b) and F is constant on (ax, bx). If further x is
an isolated point of the support of F then there is an interval (x, bx) outside the support of F , and F
is constant over this interval. Also, there is an interval (ax, x) outside the support, and F is constant
over this interval as well. Since x is in the support, the two constants must be different, which implies
that F (x) > F (x−), or in other words, that F has a discontinuity at x.

2. Let µ = PX , a probability measure on (R,B) with the corresponding distribution function FX = F . In
the definition of the support of µ, the word “neighborhood” can be replaced without loss by “interval”,
since every open neighborhood of x contains an interval which contains x. Now if x is in the support
of µ, then

F (x+ ε)− F (x− ε) ≥ µ(x− ε, x+ ε) > 0

so x is in the support of F and if x is in the support of F , then µ(x − 2ε, x + 2ε) > 0, so x is in the
support of µ.

Optional exercises

Exercise [1.2.15]

1. Let C = {B ∈ F : infA∈AP(A∆B) = 0}. If B ∈ A, taking A = B we see that B ∈ C as well. So, it
suffices to show that C is a σ-algebra (for then C contains F = σ(A)). Since A∆B = Ac∆Bc and A is
closed with respect to taking complements, the same applies for C. It remains to show that if Bn ∈ C
then B = ∪∞i=1Bi must also be in C. To this end, fix ε > 0 and choose m so that P(B \

⋃m
i=1Bi) < ε/2.

Next, choose {Ai}i≤m ⊆ A so that P(Ai∆Bi) < ε/(2m). Since

(
⋃
i≤m

Ai)∆(
⋃
i≤m

Bi) ⊆
⋃
i≤m

(Ai∆Bi) ,

taking A = ∪i≤mAi which is in A, we have that for B̂ = ∪i≤mBi,

P(A∆B) ≤ P(B \ B̂) + P(A∆B̂) < ε .

Since ε > 0 is arbitrary, it follows that B ∈ C and we are done.

2. It suffices to show the property for X non-negative which we do in two steps. First, choose positive
integer n large enough so that X(ω) ≤ n almost surely and 2−n < ε. This implies that |X−fn(X)| ≤ ε
a.s. for fn(·) as in the proof of Proposition 1.2.6. Next let Bk = {ω : k2−n < X(ω) ≤ (k + 1)2−n} for
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k = 0, . . . , n2n − 1, which are all in σ(A). By part (a) we have for any δ > 0 some sets Ak ∈ A such

that P(Ak∆Bk) < δ. Taking δ = ε/(n2n) the random variable Y =
∑n2n−1
k=0 k2−nIAk

is such that

P(|X − Y | > ε) ≤ P(fn(X) 6= Y ) ≤
n2n−1∑
k=0

P(Ak∆Bk) < ε ,

with the simple function Y having the stated property.

Exercise [1.2.28]

1. As g∗(x, δ) = −[(−g)∗(x, δ)] it suffices to show that g∗(x, δ) is l.s.c. To this end, fix δ > 0, and let
B(x, δ) = {y : |y − x| < δ}. Using the notation (v)ε = min(v − ε, 1/ε) and fixing ε > 0, by definition
g(z) ≥ (g∗(x))ε for some z ∈ B(x, δ). With η = δ − |z − x| > 0 note that z ∈ B(y, δ) whenever
y ∈ B(x, η), so for any such y we have by the definition of g∗(y) that g∗(y) ≥ g(z) ≥ (g∗(x))ε.
Consequently, lim infy→x g

∗(y) ≥ (g∗(x))ε. Finally, since (v)ε ↑ v as ε ↓ 0, for any v ∈ [−∞,∞], we
arrive at the stated conclusion that lim infy→x g

∗(y) ≥ g∗(x).

2. Let D = D− ∪D+ denote the set of points at which g is discountinuous, where D− = {x : ∃ε > 0 and
xn → x such that g(xn) ≤ g(x) − ε}, D+ = {x : ∃ε > 0 and xn → x such that g(xn) ≥ g(x) + ε}. If
x ∈ D− then for any k,

g∗(x, k
−1) ≤ sup

n
g(xn) < g(x) ≤ g∗(x, k−1) .

Considering k ↑ ∞ this inequality results with D− ⊆ Dg. Similarly, if x ∈ D+ then for any k,

g∗(x, k
−1) ≤ g(x) < inf

n
g(xn) ≤ g∗(x, k−1) ,

implying in the limit k ↑ ∞ that D+ ⊆ Dg. Conversely, if x ∈ Dg then there exists c such that

sup
k
g∗(x, k

−1) < c < inf
k
g∗(x, k−1) .

Hence, lim infn g(xn) < c < lim supn g(xn) for some xn → x. That is, x is a point of discontinuity of
g, i.e. x ∈ D.

3. The functions g∗(x, k−1) and g∗(x, k
−1) are by part (a) semi-continuous, hence Borel measurable

(see Exercise 1.2.18). It thus follows from Theorem 1.2.23 that so are h−(x) = supk g∗(x, k
−1) and

h+(x) = infk g
∗(x, k−1). By definition Ar,q = {x : h−(x) ≤ r, q ≤ h+(x)} is a Borel set, hence so is the

countable union Dg of Ar,q over r < q, r, q ∈ Q.
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