
Stat 310A/Math 230A Theory of Probability

Homework 3 Solutions
Andrea Montanari Due on October 16, 2019

Exercises on convergence theorems

Exercise [1.3.7]

If h = IB is an indicator function, this follows from the definition. Linearity of the integration extends
the result to simple functions, and then the monotone convergence theorem gives the result for nonnegative
functions. Finally, by taking positive and negative parts we get the result for all integrable functions.

Exercise [1.3.21]

(a). Cauchy-Schwarz implies

(EY I(Y >a))
2 ≤ EY 2P(Y > a)

For EY > a ≥ 0 the left hand side is larger than (EY − a)2 so rearranging gives the desired result.
(b). This follows again from Cauchy-Schwarz noting that {E|Y 2 − v|}2 ≤ E{(Y −

√
v)2}E{(Y +

√
v)2}.

(c). Let B1 = ∅ and Bi =
⋃i−1

j=1Aj for i = 2, . . . , n. Noting that Ci = Ai ∩ Bc
i are disjoint sets, such that⋃n

i=1Ai =
⋃n

i=1 Ci, we have by the additivity of probability measures that

P(

n⋃
i=1

Ai) = P(

n⋃
i=1

Ci) =

n∑
i=1

P(Ci) =

n∑
i=1

P(Ai)−
n∑

i=2

P(Ai ∩Bi)

(omitting the zero probability of A1 ∩ B1 = ∅ on the right side). Since Ai ∩ Bi ⊆
⋃

j<iAi ∩ Aj , we get by
sub-additivity of probability measures that for i = 2, . . . , n,

P(Ai ∩Bi) ≤
i−1∑
j=1

P(Ai ∩Aj) ,

which by the preceeding identity results with the second Bonferroni inequality.
For Y =

∑n
i=1 IAi

we have that {Y > 0} =
⋃n

i=1Ai whereas

m = EY =

n∑
i=1

P(Ai) , v = EY 2 =

n∑
i,j=1

P(Ai ∩Aj) .

Excluding the trivial case where P(Ai) = 0 for all i, we have from part (a) that P(Y > 0) ≥ m2/v ≥ 2m−v.
That is,

P(

n⋃
i=1

Ai) ≥
n∑

i=1

P(Ai)− 2
∑

1≤j<i≤n

P(Ai ∩Aj) .

Part (b) improves on the latter bound by removing the factor 2 in the right-most correlation term. However,
this improvement is somewhat irrelevant if one uses such bounds to approximate P(Y > 0) by EY =∑n

i=1 P(Ai) upon showing that the correlation term is much smaller than EY .
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Exercise [1.3.36]

Let Zn(ω) := supm≥n |Xm(ω)| noting that Zn ↓ Z for every ω, with Z ≥ 0. Since Xn(ω) → 0 if and only
if Z(ω) = 0, the a.s. convergence of Xn to 0 is equivalent to P(Z > ε) = 0 for each ε > 0. Note that

{Zn > ε} ↓ {Z > ε}, hence Xn
a.s.→ 0 if and only if for each ε > 0 there is n such that P(Zn > ε) < ε. To

complete the proof observe next that {|XM | > ε} ⊆ {Zn > ε} for any random integer M(ω) ≥ n, with set
equality for

M(ω) = inf{m ≥ n : |Xm(ω)| > ε}

in case Zn(ω) > ε and M(ω) = n otherwise.

Exercise [1.3.37]

1. Fix a Borel set B ⊆ B. Note that

{ω : YN (ω) ∈ B} =

∞⋃
n=1

(Y −1n (B) ∩N−1({n})) .

Since Yn and N are random variables, Y −1n (B) ∈ F and N−1({n}) ∈ F , implying that {ω : YN (ω) ∈
B} ∈ F . With B arbitrary Borel set, we see that YN is a random variable.

2. Note that |YNk
(ω) − Y∞(ω)| → 0 for any ω such that Nk(ω) → ∞ and |Yn(ω) − Y∞(ω)| → 0. The

result follows by the definition of a.s. convergence.

3. Take as Yn the random variable Xn of Example ??. Then, as shown there Yn
p→ 0 while for each

ω ∈ (0, 1] we have that Yn(ω) = 1 for infinitely many values of n. The latter property implies that
Nk = min{` ≥ k : Y` = 1} are finite. Further, Nk(ω) → ∞ (since Nk ≥ k) and by definition YNk

= 1
for all k and ω, as needed.

4. Let Zr = maxn>r |Yn − Y∞|. For any ε > 0 and positive integers k, r,

P(|YNk
− Y∞| > ε) ≤ P(Zr > ε) + P(Nk ≤ r) .

Fix ε > 0 and r <∞. Considering k →∞ you have

lim sup
k→∞

P(|YNk
− Y∞| > ε) ≤ P(Zr > ε) .

Since Yn
a.s.→ Y∞ also Zr

a.s.→ 0, implying that P(|YNk
− Y∞| > ε)→ 0 as needed.
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