
Stat 310A/Math 230A Theory of Probability

Homework 4 Solutions
Andrea Montanari Due on October 25, 2017

Exercises on independent random variables and product measures

Exercise [1.3.65]

1. Let Zn =
∑n

k=0 Yk for Yk ≥ 0. Since Zn ↑ Z∞, it follows by monotone convergence and linearity of the
expectation that as n→∞

n∑
k=0

EYk = EZn ↑ EZ∞ = E(

∞∑
k=0

Yk)

In particular, since Ak are disjoint sets, for Yk = X+IAk
≥ 0 (with X+ = max(X, 0)), we have that

Z∞ = X+IA. Consequently,
∞∑
k=0

E(X+IAk
) = EX+IA .

Similarly, for X− = −min(X, 0),
∞∑
k=0

E(X−IAk
) = EX−IA .

Since E|X| <∞ it follows that EX+IA + EX−IA = E|X|IA <∞ as well. It thus follows by linearity
of the expectation that for n→∞,

n∑
k=0

E(XIAk
) =

n∑
k=0

E(X+IAk
)−

n∑
k=0

E(X−IAk
)→ EX+IA −EX−IA = EXIA

(recall that X = X+ − X−). By Jensen’s inequality, |E(XIAk
)| ≤ E|X|IAk

and so by the same
argument as before,

∞∑
k=0

|E(XIAk
)| ≤

∞∑
k=0

E|X|IAk
= E|X|IA <∞ ,

namely, EXIAn
is absolutely summable.

2. Q(A) ≥ 0 and Q(Ω) = 1, with countable additivity of Q shown in part (a).

3. Per our assumption EX = EY . If EX = EY = 0 then both X = 0 a.s. and Y = 0 a.s. so we
are done. Otherwise, the probability measures QX(A) = EXIA/EX and QY (A) = EY IA/EY of
part (b) agree on the π-system A, hence they must agree on F = σ(A). Considering the events
An = {ω : X(ω)− Y (ω) ≥ 1/n} we thus have that for every n,

0 = (EX)[QX(An)−QY (An)] = E[(X − Y )IAn
] ≥ n−1P(An) ,

which means that P(An) = P(X − Y ≥ 1/n) = 0. It follows that P(A) = 0 for A :=
⋃

nAn = {ω :
X(ω)−Y (ω) > 0}. Reversing the roles of X and Y the same argument shows that also P(X < Y ) = 0,

so X
a.s.
= Y .
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Exercise [1.4.15]

(a). It is not hard to check that each of the three pairs of random variables, namely (Z0, Z1), (Z0, Z2) and
(Z1, Z2) take all values ω ∈ Ω with equal probability (of 1/9). This of course implies that Z0, Z1 and Z2 are
pairwise independent. However, easy to check that also (Z0 + Z1 + Z2) mod 3 = 0, so as stated Z0 and Z1

determine the value of Z2.
(b). Let X1, X2, X3, X4 be mutually independent and take values 1 and −1 with probability 1

2 each. Let
Y1 = X1X2, Y2 = X2X3, Y3 = X3X4, Y4 = X4X1. It is easy to see that P(Yi = 1) = P(Yi = −1) = 1

2 .
Since Y1Y2Y3Y4 = 1, P(Y1 = Y2 = Y3 = 1, Y4 = −1) = 0 so the four random variable are not mutually
independent. To check that any three are mutually independent, it suffices by symmetry to check only for
Y1, Y2, Y3. Let i1, i2, i3 ∈ {−1, 1}, noting that since Xi are mutually independent, with (X1, . . . , X4) taking
each value in {−1, 1}4 with probability 1

16 , we have that

P(Yk = ik, k = 1, 2, 3)=
∑

x2∈{−1,1}

P(X2 = x2)P(X1 = i1x2, X3 = i2x2, X4 = i3i2x2)

=
1

8
= P(Y1 = i1)P(Y2 = i2)P(Y3 = i3).

Since this applies for any i1, i2, i3 ∈ {−1, 1} we established the independence of Y1, Y2, and Y3 (for example,
add over i1 ≤ y1, i2 ≤ y2, i3 ≤ y3 and apply Corollary 1.4.12).

Exercise [1.4.18]

We will use the following fact repeatedly: the probability that X is divisible by j is

P(Dj) =

∞∑
k=1

(kj)−s/ζ(s) = j−s.

1. Let pi be an enumeration of distinct primes. By definition, it suffices to show that for any finite
sub-collection {pj}nj=1 and any n <∞,

P(

n⋂
j=1

Dpj ) =

n∏
j=1

P(Dpj ).

Indeed, all the primes pj in the sub-collection divide k if and only if k is divisible by their product. So
the LHS is just (

∏n
i=1 pj)

−s which by the fact we derived before, equals the RHS.

2. Euler’s formula is the statement that {X = 1} if and only if X is not divisible by any prime number.
Indeed, as the latter event is

⋂
pD

c
p, by continuity from below of P(·) we have that

1

ζ(s)
= P(X = 1) = lim

n→∞
P(

n⋂
j=1

Dc
pj

) .

In part (a) we verified the mutual independence of the collections {Dp}, p prime, each of which is
trivially a π-system. This implies the mutual independence of σ(Dp), p prime (see Corollary 1.4.7),
hence that of the events Dc

p. With P(Dp) = p−s, we get that P(
⋂n

j=1D
c
pj

) =
∏n

j=1(1 − p−sj ) leading
to Euler’s formula when taking n→∞.

3. The event that no perfect square other than 1 divides X, is precisely the event that p2 does not divide
X for every prime p, which is

⋂
pD

c
p2 . Similarly to part (a), it is not hard to verify that {Dp2}, p prime,

are mutually independent, hence so are {Dc
p2}, p prime. As in part (b), this leads to the probability

of the event of interest being
∏

p(1− p−2s), which by Euler’s formula is 1/ζ(2s).
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4. Let c = P(G = 1) denote the probability that the i.i.d. variables X and Y have no common factors.
Applying the elementary conditioning formula P(A|B) = P(A∩B)/P(B), it follows from the definition
of the law of X, that the conditional law of X/k given that X is a multiple of k, is the same as
the original law of X. Therefore, given that X and Y are both multiples of k, an event whose
probability is P(Dk)2 = k−2s, the probability that X/k and Y/k have no common factors is precisely
c. Consequently, by the same elementary formula, we deduce that P(G = k) = ck−2s for k = 1, 2, . . ..
Since

∑
k P(G = k) = 1 it follows that c = 1/ζ(2s), as stated.

Exercises on Lp spaces

1. Obviously X ' X and X ' Y implies Y ' X (here and below ' denotes the equivalence relation).
To prove transitivity, consider X,Y, Z random variables on (Ω,F ,P) and let Ω1 = {ω : X(ω) 6= Y (ω)},
Ω2 = {ω : Y (ω) 6= Z(ω)}. If X ' Y and Y ' Z then P(Ω1) = P(Ω2) = 0 and since {ω : X(ω) 6= Z(ω)} ⊆
Ω1 ∪ Ω2, we have X ∼ Z.

2. First of all Lp(Ω,F ,P) is a linear space. Indeed if X ' X ′ and Y ' Y ′, then (aX + bY ) ' (aX ′ + bY ′),
and E|X|p,E|Y |p ≤ ∞ implies E|aX + bY |p ≤ ∞.

To check that || · ||p is indeed a norm, recall the following elementary facts: (i) E|X|p ≥ 0, with E|X|p = 0
if and only if X = 0 almost everywhere (i.e. X ' 0); (ii) E|aX|p = apE|X|p for a non-negative (linearity of
expectation); (iii) ||X + Y ||p ≤ ||X||p + ||Y ||p by Minkowski inequality.

3. Notice that the definition of ||X||∞ only depends on te equivalence class ofX. Conditions (i) and (ii) follow
as above. For (iii) -triangular inequality- let Ω1 = {ω : |X(ω)| ≤ ||X||∞}, Ω2 = {ω : |Y (ω)| ≤ ||Y ||∞}.
By definition P(Ω1) = P(Ω2) = 1, whence P(Ω1 ∩ Ω2) = 1. Further, for ω ∈ Ω1 ∩ Ω2, |X(ω) + Y (ω)| ≤
|X(ω)| + |Y (ω)| ≤ ||X||∞ + ||Y ||∞. This implies ||X + Y ||∞ ≤ ||X||∞ + ||Y ||∞ (and -in passing- that
L∞(Ω,F ,P) is indeed a vector space).

4. We can fix a representative of the equivalence class such that |X(ω)| ≤ ||X||∞ for any ω ∈ Ω. By
monotonicity of the integral, we have ||X||p ≤ ||X||∞ for any p > 0. Without loss of generality, we can
assume ||X||∞ > 0. Fix ε > 0 and let Ωε = {ω : |X(ω)| ≥ (1 − ε)||X||∞}. By definition P(Ωε) > 0. Again
by monotonicity of the integral

||X||p ≥ E{(1− ε)p||X||p∞ IΩε
}1/p = (1− ε)||X||∞ P(Ωε)

1/p . (1)

The right hand side converges to (1− ε)||X||∞ as p→ 0. The thesis follows since ε is arbitrary.

5. For n ≥ 1, let Xn ≡ |X| I|X|≤n. Then, for p ≤ q,

0 ≤ E{|X|p} − E{Xp
n} ≤ E{|X|q} − E{Xq

n} ≤ δn (2)

for some sequence δn ↓ 0 by monotone convergence. Further, by bounded convergence limp→0 E{Xp
n} =

S(X), whence | lim supp→0 E{|X|p} − S(X)| ≤ δn and | lim infp→0 E{|X|p} − S(X)| ≤ δn. The claim follows
by letting n→∞.

6. For any random variable X, we can construct a sequence {Xn} ⊆ SF such that Xn(ω) → X(ω) for
any ω ∈ Ω. Further, if X ∈ L∞(Ω,F ,P) (and choosing a representative of the equivalence class that
is itself bounded), the standard construction yields a sequence such that |Xn(ω) − X(ω)| ≤ 1/n for all
ω ∈ Ω. This proves the claim for p = ∞. It is therefore sufficient to prove that L∞(Ω,F ,P) is dense in
Lp(Ω,F ,P). For X ∈ Lp(Ω,F ,P) and M > 0, let XM = sign(X) max(|X|,M). By monotone convergence
limM→∞ E{|X −XM |p} = 0, which finishes the proof.
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Completeness

We give a proof for p < ∞ (the case p = ∞ is simpler) which uses the following fact. fact A normed
space is complete if, for any sequence {Zn} such that

∑∞
n=1 ||Zn|| <∞, the sequence of sums Wn ≡

∑n
i=1 Zi

converges (in the topology induced by the norm || · ||). fact Consider next a sequence of random variables Zn ∈
Lp(Ω,F ,P) as in this statement and let M ≡

∑∞
n=1 ||Zn||p <∞. By triangular inequality ||(

∑m
n=1 |Zn|)||p ≤

M , and monotone convergence implies ||(
∑∞

n=1 |Zn|)||p ≤ M . This implies that
∑∞

n=1 |Zn(ω)| is finite for
almost every ω and therefore Wn(ω) =

∑∞
i=1 Zi(ω) converges absolutely for almost every ω. Call W the

limit, which is obviously measurable and in Lp(Ω,F ,P) (with ||W ||p ≤M).
For any ω

|W (ω)−Wn(ω)| ≤
∞∑

i=n+1

|Zi(ω)| . (3)

The right hand side converges to 0 monotonically as n → ∞, and therefore the thesis follows by monotone
convergence.

Proof of the Fact

Let {Xk}k∈N be a Cauchy sequence. It is clearly sufficient to exhibit a subsequence {Xk(n)}n∈N that con-
verges. In order to achieve this goal, let k(n) be the smallest integer such that ||Xi − Xj || ≤ 2−n for all
i, j ≥ k(n). Define Zn ≡ Xk(n+1) − Xk(n). Clearly ||Zn|| ≤ 2−n and therefore

∑
n=1 ||Zn|| < ∞. By

hypothesis Wn =
∑n

i=1 Zi converges and therefore the subsequence Xk(n) = Xk(1) + Wn−1 converges as
well.
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