Stat 310A /Math 230A Theory of Probability

Homework 4 Solutions
Andrea Montanari Due on October 25, 2017

Exercises on independent random variables and product measures

Exercise [1.3.65]

1. Let Z,, = Z:o Y}, for Y > 0. Since Z,, 1 Z, it follows by monotone convergence and linearity of the
expectation that as n — oo
> EYi =EZ,1EZ, =E(>_Y)
k=0 k=0
In particular, since Ay are disjoint sets, for Y, = X T4, > 0 (with X; = max(X,0)), we have that
Z+ = X 14. Consequently,
oo
> E(Xila,)=EX,I4.
k=0
Similarly, for X_ = —min(X,0),

Y E(X_I4,)=EX_I4.
k=0

Since E|X| < oo it follows that EX Iy + EX_T4 = E|X|I4 < oo as well. It thus follows by linearity
of the expectation that for n — oo,

S E(XIa) =) E(Xpla) - Y E(X_I4) > EX Iy - EX_I,=EXI,
k=0 k=0 k=0

n

(recall that X = X, — X_). By Jensen’s inequality, |E(XI4,)| < E|X|I4, and so by the same
argument as before,

> E(XI4,) <) E[X[Ia, =E|X|I4 < 0,
k=0 k=0

namely, EXI,  is absolutely summable.
2. Q(A) > 0 and Q(2) = 1, with countable additivity of Q shown in part (a).

3. Per our assumption EX = EY. If EX = EY = 0 then both X = 0 a.s. and Y = 0 a.s. so we
are done. Otherwise, the probability measures Qx(A) = EXI4/EX and Qy(A) = EYI4/EY of
part (b) agree on the m-system A, hence they must agree on F = o(A). Considering the events
A, ={w: X(w) — Y (w) > 1/n} we thus have that for every n,

0= (EX)[QX(AH) - QY(An)] = E[(X - Y)IAnJ > nilp(An) s

which means that P(A4,) = P(X —Y > 1/n) = 0. It follows that P(A) = 0 for A :=J,, An = {w:
X (w) =Y (w) > 0}. Reversing the roles of X and Y the same argument shows that also P(X <Y) =0,
so X 2y,



Exercise [1.4.15]

(a). It is not hard to check that each of the three pairs of random variables, namely (Zy, Z1), (Zo, Z2) and
(Z1, Z3) take all values w € Q2 with equal probability (of 1/9). This of course implies that Zy, Z; and Z; are
pairwise independent. However, easy to check that also (Zy + Z1 + Z2) mod 3 = 0, so as stated Zy and Z;
determine the value of Zs.

(b). Let X, X5, X35, X4 be mutually independent and take values 1 and —1 with probability % each. Let
Yl = XlXQ, }/2 = X2X3, Yg = X3X4, YZ; = X4X1. It is easy to see that P(Y; = ].) = P(Y; = 71) = %
Since V1Y2Y3Y, = 1, P(Y1 = Yo = Y3 = 1,Y, = —1) = 0 so the four random variable are not mutually
independent. To check that any three are mutually independent, it suffices by symmetry to check only for
Y1,Ys,Y5. Let iy1,i0,4i5 € {—1, 1}, noting that since X; are mutually independent, with (X1, ..., Xy) taking
each value in {—1,1}* with probability -, we have that

P(Yk = ik,k = 1,2,3)2 Z P(X2 = ,%‘Q)P(Xl = i1$2,X3 = igl’g,X4 = igigl‘g)
1‘26{71,1}

= =P(Y1 =i1)P(Ya = i2)P (V3 = i3).

Since this applies for any 1,142,135 € {—1, 1} we established the independence of Y7, Y3, and Y3 (for example,
add over i1 < y1, i2 < Yo, i3 < y3 and apply Corollary 1.4.12).

Exercise [1.4.18]
We will use the following fact repeatedly: the probability that X is divisible by j is

P(D;) = (kj)™/¢(s) =

k=1

1. Let p; be an enumeration of distinct primes. By definition, it suffices to show that for any finite
sub-collection {p;}"_; and any n < oo,

Indeed, all the primes p; in the sub-collection divide % if and only if & is divisible by their product. So
the LHS is just ([, p;)~* which by the fact we derived before, equals the RHS.

2. Euler’s formula is the statement that {X = 1} if and only if X is not divisible by any prime number.
Indeed, as the latter event is (), Dy, by continuity from below of P(-) we have that

n

1 . .
ag_mx_n_ﬁﬂpmp%y
Jj=1
In part (a) we verified the mutual independence of the collections {D,}, p prime, each of which is
trivially a m-system. This implies the mutual independence of o(D,), p prime (see Corollary 1.4.7),
hence that of the events Dy. With P(D,) = p~°, we get that P(N7_, Dy ) = [[j_,(1 — p; ") leading
to Euler’s formula when taking n — oo.

3. The event that no perfect square other than 1 divides X, is precisely the event that p? does not divide
X for every prime p, which is (), Df.. Similarly to part (a), it is not hard to verify that {D,z2}, p prime,
are mutually independent, hence so are {D;Q}, p prime. As in part (b), this leads to the probability
of the event of interest being [],(1 — p~2%), which by Euler’s formula is 1/¢(2s).



4. Let ¢ = P(G = 1) denote the probability that the i.i.d. variables X and Y have no common factors.
Applying the elementary conditioning formula P(A|B) = P(ANB)/P(B), it follows from the definition
of the law of X, that the conditional law of X/k given that X is a multiple of k, is the same as
the original law of X. Therefore, given that X and Y are both multiples of k, an event whose
probability is P(Dy)? = k=24, the probability that X/k and Y/k have no common factors is precisely
c. Consequently, by the same elementary formula, we deduce that P(G = k) = ck=2% for k =1,2,. ...
Since ), P(G = k) =1 it follows that ¢ = 1/((2s), as stated.

Exercises on L, spaces

1. Obviously X ~ X and X ~ Y implies Y ~ X (here and below ~ denotes the equivalence relation).
To prove transitivity, consider X,Y,Z random variables on (2, F,P) and let ; = {w : X(w) # Y(w)},
Q=w: YW #Zw)} X ~Yand Y ~Z then P(2;) = P(Q2) = 0 and since {w : X(w) # Z(w)} C
Q1 Uy, we have X ~ Z.

2. First of all L,(Q, F,P) is a linear space. Indeed if X ~ X’ and Y ~ Y’ then (aX + bY) ~ (a X’ + bY"),
and E| X|P,E|Y|? < oo implies ElaX + bY|P < co.

To check that || - ||, is indeed a norm, recall the following elementary facts: (i) E|X|? > 0, with E|X|P =0
if and only if X = 0 almost everywhere (i.e. X ~ 0); (i7) E|aX|? = o?E|X|? for a non-negative (linearity of
expectation); (i4i) || X + Y|, < [|X||, + |[Y]|, by Minkowski inequality.

3. Notice that the definition of || X ||~ only depends on te equivalence class of X. Conditions (7) and (4¢) follow
as above. For (iii) -triangular inequality- let Q; = {w : | X (0)| < || X}, Q2 = {w : |[Y(W)| < |V ||oo}-
By definition P(£2;) = P(Q2) = 1, whence P(Qy N Q) = 1. Further, for w € O3 N Qa, | X(w) + Y (w)] <
I X ()| + [Y(w)| < [|X]loo + [|Y||oo- This implies ||X + Y||ooc < [|X||oc + ||Y]]oc (and -in passing- that
Lo (9, F,P) is indeed a vector space).

4. We can fix a representative of the equivalence class such that |X(w)| < ||X||e for any w € Q. By
monotonicity of the integral, we have ||X||, < ||X||oc for any p > 0. Without loss of generality, we can
assume || X||oc > 0. Fix e > 0 and let . = {w: | X(w)] > (1 — €)||X||oo}- By definition P(Q2.) > 0. Again
by monotonicity of the integral

[1X]p > E{(1 = )| X|[% Lo }1/P = (1 = &) | X |0 ()17 (1)
The right hand side converges to (1 — ¢)||X||ec as p — 0. The thesis follows since ¢ is arbitrary.
5. For n > 1, let X,, = |X|I|x|<n- Then, for p <gq,
0 < B{IX["} — B{XZ} < E{|X|7) — B{X7} <6, 2)

for some sequence §,, J 0 by monotone convergence. Further, by bounded convergence lim, ,o E{XE} =
S(X), whence [limsup,_,q E{|X[?} — S(X)| < §, and |liminf, ,o E{|X [P} — S(X)| < 6,. The claim follows
by letting n — oo.

6. For any random variable X, we can construct a sequence {X,} C SF such that X,(w) — X(w) for
any w € Q. Further, if X € Lo (Q,F,P) (and choosing a representative of the equivalence class that
is itself bounded), the standard construction yields a sequence such that | X, (w) — X(w)| < 1/n for all
w € Q. This proves the claim for p = co. It is therefore sufficient to prove that L., (2, F,P) is dense in
L,(Q,F,P). For X € L,(,F,P) and M > 0, let X = sign(X) max(|X|, M). By monotone convergence
limas— 00 E{|X — Xas|P} = 0, which finishes the proof.



Completeness

We give a proof for p < oo (the case p = oo is simpler) which uses the following fact. fact A normed
space is complete if, for any sequence {Z,} such that > | ||Z,|| < oo, the sequence of sums W,, =Y | Z;
converges (in the topology induced by the norm || - ||). fact Consider next a sequence of random variables Z,, €
L, (9, F,P) as in this statement and let M = >~ | ||Z,||, < co. By triangular inequality ||(3°""_; | Z,])|], <
M, and monotone convergence implies ||(3°77; |Z,])|[, < M. This implies that Y. 7, |Z,(w)| is finite for
almost every w and therefore W, (w) = Y =, Z;(w) converges absolutely for almost every w. Call W the
limit, which is obviously measurable and in L, (2, F,P) (with ||W||, < M).

For any w

W(w) = Waw)] < Y 1Zi(w)]- 3)

i=n+1

The right hand side converges to 0 monotonically as n — oo, and therefore the thesis follows by monotone
convergence.

Proof of the Fact

Let {Xy}ren be a Cauchy sequence. It is clearly sufficient to exhibit a subsequence {Xj ) }nen that con-
verges. In order to achieve this goal, let k(n) be the smallest integer such that ||X; — X;|| < 27" for all
i,j > k(n). Define Z,, = Xymy1) — Xin). Clearly |[Z,]| < 27" and therefore ) _,||Z,|| < co. By
hypothesis W,, = 7" | Z; converges and therefore the subsequence Ximy = Xi(1) + W, 1 converges as
well.



	

