Stat 310A /Math 230A Theory of Probability

Homework 5 Solutions
Andrea Montanari Due on November 6, 2019

Exercises on the law of large numbers and Borel-Cantelli

Exercise [2.1.5]

Let € > 0 and pick K = K(e) finite such that if ¥ > K then r(k) < e. Applying the Cauchy-Schwarz
inequality for X; — EX; and X; — EX; we have that

Cov(Xi, X;) < [Var(X;)Var(X;)]"/? < r(0) < oo

for all 4,j. Thus, breaking the double sum in Var(S,,) = szzl Cov(X;, X;) into {(4,7) : |¢ — j| < K} and
{(%,7) : | — j| > K} gives the bound

Var(S,) < 2Knr(0) 4 ne.

Dividing by n? we see that limsup,, Var(n=1S,) < e. Since € > 0 is arbitrary and ES,, = nZ, we have that

2
n=tS, Lz (with convergence in probability as well).

Exercise [2.1.13]
We have E|X| = >";2,1/(cklogk) = co. On the other hand, for n € N
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In particular nP(|X1] > n) — 0 as n — oo, which implies lim, o, 2P(]X1]| > ) = 0. We can therefore apply
Proposition 2.1.12, which yields (S, /n — p,) 2 0.
It is therefore sufficient to show that u, has a finite limit. We have, for n even
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i=1

and this series is convergent. Further, for n odd, |p, — ptn—1| = 1/(enlogn) — 0. Therefore p, has a limit.



Exercise [2.2.9]

Fixing 1 > A > 0, define Y,, := Zkgn 14, and set a,, = AEY,,. Since a,, — oo, we have that,

P(A, io.)>P(Y, >a, io.)>limsupP(Y, > ay,)

n—oo

where the last inequality is due to Fatou’s lemma (c.f. (1.3.10), or Exercise 2.2.2). Applying Exercise 1.3.20,
we have that P(Y,, > a,,) > (1 — \)?¢, for ¢, := (EY,,)?/E(Y,?). By the definition of Y,,, the assumption of
the exercise is precisely that o = limsup,, ¢,. Thus, taking first n — oo then A | 0 completes the proof of
the Kochen-Stone lemma.

Exercise [2.2.26]
1. First note that

n

Var(S,) = > P(A)(1-P(4))) < zn:P(Ai) =ES, .

i=1

By Markov’s inequality, then,

S, — ES, Var(Sy,) 1
il Bs, |~ ) < 2(ES,)? = @ES,

and since we assumed that ES,, =37, P(4;) — oo, we are done.
2. Since E(S,,) > k?, we have from part (a) that
P(|S,, —ES,,| > €ES,,) < 1/(€%k?).

Since the series Y., k=2 is finite, the first Borel-Cantelli lemma implies that P(|S,, — ES,,| >
¢ES,, i.0)=0. Since € > 0 is arbitrary, it follows that S, /ES,, “3 1.

3. Since k? <ES,, <k*+1land (k+1)><ES,,  , < (k+1)*+1

k2 - E(Sn) _ k%41
(k+1)2+1 7~ E(Sh,,,) ~ (k+1)27

so E(Sy,)/E(Sn,,) = 1 when k — oco. Then, for ny <n < ngq1,

Snk E(Snk) < Sn < Snk+1 E(Snk+1) )
E(Sn.) E(Snyy) — E(Sn) = E(Sn,,,) E(Sh,)

a.s.

Hence, by part (b) and the fact that E(S,,)/E(Sy,,,) — 1, we conclude that S, /E(S,) = 1.

Exercise [2.3.14]

1. By induction, log W,, = >"" | X; for the i.i.d. random variables X; = log(qr + (1 — q)V;). As {X;} are
bounded below by log(gr) > —oo, it follows that E[(X7)_] is finite, so the strong law of large numbers
implies that n~!log W,, “3 w(q), as stated.

2. Since ¢ — (gr + (1 — ¢)Vi(w)) is linear and logz is concave, it follows that ¢ — log(qr + (1 — ¢)V1) is
concave on (0, 1], per w € Q. The expectation preserves the concavity, hence ¢ — w(q) is concave on
(0, 1].



3. By Jensen’s inequality for the concave function g(z) = logxz, = > 0, we have that
w(q) = Elog(qr + (1 — ¢)V1) < log(gr + (1 — ¢)EV3) .

Hence, if EV; <7 then w(q) <log(qr + (1 — ¢)r) =logr = w(1).
Recall that (logz)_ < 1/(ex) for all z > 0. Hence, if EV,"! is finite, then so is E[(logV;)_]. Conse-
quently, the strong law of large numbers of part (a) also applies for n=!log W,, in case ¢ = 0 (i.e., for
X; = logV;). Further, when E[(log V7)_] is finite, w(q) = w(0) + Elog(qrV; * +1 — q) and by Jensen’s
inequality

Elog(qrVi ' +1—¢q) <log(¢rEV;y ' +1—¢) <0

if EV,”* <!, implying that then w(q) < w(0).

4. Our assumption that EV2 < co and EV;"? < oo implies that EV; < oo and EV;"' < oo. Further,
w(0) = ElogV; < EV; is then also finite. We have shown in part (c¢) that w(q) < w(1) = logr in
case EV; < 7 and that w(q) < w(0) in case EV;"' < r~'. Consequently, if suffices to show that
if EV; > r > 1/EV;"!, then there exists ¢* € (0,1) where w(-) reaches its supremum (which is
hence finite). The former condition is equivalent to EY > 0 and EZ > 0 for Y =7V, ' —1 > —1 and
Z = r~'V;—1 > —1, both of which are in L2, Further, since ¢ — w(q) : [0,1] — R is a concave function,
the existence of such ¢* € (0,1) follows as soon as we check that w(e) —w(0) = Elog(1+ €Y) > 0 and
w(l—€)—w(1) = Elog(14+€Z) > 0 when ¢ > 0 is small enough. To this end, note that log(1+z) > x—2?
for all z > —1/2. Hence, Elog(1+¢Y) > eEY — 2EY? > 0 for € € (0,1/2) small enough. As the same
applies for Elog(1 4 €¢Z), we are done.

We see that one should invest only in risky assets whose expected annual growth factor EV; exceeds
that of the risk-less asset, and that if in addition EVf1 > r~1 then a unique optimal fraction ¢* € (0, 1)
should be re-invested each year in the risky asset.

Exercise [2.3.9]

1. Fix 6 > 0 such that p := P(r; > §) > 6. Note that N, +1—r follows the negative Binomial distribution
of parameters p and r = |t/§] + 1. That is, for £ =0,1,2,...,

P(Nt +1l-r=1¢)= P(f£+r—1 <t < TE+T)

It is easy to check that E(N;) = r/p — 1 and Var(N;) = (1 — p)/p?. Consequently, E[N2] = (r2 47 —
3rp + p?)/p?, and with p > 0 fixed and r < t/6 + 1 it follows that SUp;>1 t?EN? < oo.

2. Since 7; < 7, clearly N; < N,. Hence, by part (a), supy>; t7*EN}? < co. In view of the criterion of
Exercise 1.3.54 (for f(x) = x?), this implies that {t ' N, : ¢ > 1} is a uniformly integrable collection of

1
R.V. As we have seen in Exercise 2.3.7 that t 1N, “3 1/Em, it thus follows that also t~1 Ny =N 1/En
(c.f. Theorem 1.3.49), and in particular, t "' EN; — 1/Er; as stated.

Exercise [2.2.24]
1. Substituting ¥y = = + 2z and using the bound exp(—z2/2) < 1 yields

- 2/2 29 [T 1,—2%/2
/ eV 2dy < e/ / e Pdz =z e /2.
x 0

For the other direction, observe that for x > 0,

(1,71 N 1,73)6712/2 _ / (1 i 3y’4)e’yg/2dy > / €7y2/2dy.



2. Since the probability density function for a standard normal random variable G,, is (27)~1/2e=%"/2
we get from the bounds of part (a) that

Cy = nliﬁ\rr;(}n” v/logn P (Gn > \/Q'ylogn> ,

exists, is finite and positive. Consequently, fixing € > 0 by the first Borel-Cantelli lemma we have that
P(G,/v2logn > 1+ ¢ io. ) = 0. Further, since G, are mutually independent, it follows from the
second Borel-Cantelli lemma that P(G,,/v/2logn > 1 —€¢ io. ) = 1. We see that with probability
one, the sequence n — G, (w)/v/2logn is infinitely often above 1 — € but only finitely often above 1+,
in which case L(w) = limsup,, G,,(w)/v/21logn must be in the interval (1 — €, 1 + €]. Considering the
intersection of the relevant events for € | 0, we conclude that P(L = 1) = 1, as stated.

3. Since S,,/4/n has the same law as G1, the upper bound of part (a) implies that P(]S,| > 2y/nlogn) <
Cn~2 for some C' < oo and all n large enough. Since the series > n~? is finite, applying the first
Borel-Cantelli lemma we get that P(|S,| > 2v/nlogn io0. ) = 0, or equivalently, that P(|S,| <
2y/nlogn ev. )=1.

Exercise on Markov chains

Throughout this solution we let X, = 0({X;}i<n), Tn = 0({X;}i>n), and af = (a1, ..., a,) for any sequence
a. Futher we let B(2?) = {w : w] = 27}. We will prove that 7 is independent of X" for any n which
implies the thesis by Lemma 1.4.9.

We start by noticing that, for any m <n, any A € 7, and any " € X™ we have

P(B(x™)NA4) P({wn=2,}NA)

P(BG))  Pwm=am) @)

Indeed the set functions A — uq(A), and A — po(A) defined by the two sides of the above identity are
probability measures over T, with p1(2) = p2(Q) = 1 and p1(A) = pa(A) for any event of the form
A={w : Wy = Tpny.-.,Wntk = Tpsgt (this is an elementary calculation). Since these events form a
m-system, the claim follows from the uniqueness in Carathéodory extension theorem.

Next let m < n, and for any B € X,,, we let B, = {2} € X" : w} =z} = w € B}. For any A € T,, we
have

P({w, =z,} N A)
P(w, =z,)

P(ANB)= Y P(B@E!)nA)= Y P(B@})

P €By 7 E€B,

= Y P(B(@})) falzn), (2)

P €Bn

for some function f4 : X — [0,1]. Writing explicitely P(B(:c’f)), using the fact that B € AX,,, and letting
k=n—m, we get

P(ANB) = Z gB(;vm)pk(xm, Ty) fa(Tn), (3)
958(@m) = P(BN{wn =2n}). (4)

Here p” is the k-th power of the matrix p. By Perron-Frobenius theorem, this implies that
[P(ANB) ~P(A)P(B)| < O\, (5)

for some constant C' independent of A, B, and some A € [0,1). Since A € T, for any n, we can take k as
large as we want, thus implying P(4A N B) = P(A)P(B).



	

