
Stat 310A/Math 230A Theory of Probability

Homework 5 Solutions
Andrea Montanari Due on November 6, 2019

Exercises on the law of large numbers and Borel-Cantelli

Exercise [2.1.5]

Let ε > 0 and pick K = K(ε) finite such that if k ≥ K then r(k) ≤ ε. Applying the Cauchy-Schwarz
inequality for Xi −EXi and Xj −EXj we have that

Cov(Xi, Xj) ≤ [Var(Xi)Var(Xj)]
1/2 ≤ r(0) <∞

for all i, j. Thus, breaking the double sum in Var(Sn) =
∑n
i,j=1 Cov(Xi, Xj) into {(i, j) : |i − j| < K} and

{(i, j) : |i− j| ≥ K} gives the bound

Var(Sn) ≤ 2Knr(0) + n2ε .

Dividing by n2 we see that lim supn Var(n−1Sn) ≤ ε. Since ε > 0 is arbitrary and ESn = nx, we have that

n−1Sn
L2

→ x (with convergence in probability as well).

Exercise [2.1.13]

We have E|X1| =
∑∞
k=2 1/(ck log k) =∞. On the other hand, for n ∈ N

nP(|X1| ≥ n) =
n

c

∞∑
k=n

1

k2 log k

≤ n

c

∫ ∞
n−1

1

x2 log x
dx

=
n

c

∫ ∞
log(n−1)

e−z

z
dz

≤ n

c log(n− 1)

∫ ∞
log(n−1)

e−z dz =
n

c(n− 1) log(n− 1)
.

In particular nP(|X1| ≥ n)→ 0 as n→∞, which implies limx→∞ xP(|X1| ≥ x) = 0. We can therefore apply

Proposition 2.1.12, which yields (Sn/n− µn)
p→ 0.

It is therefore sufficient to show that µn has a finite limit. We have, for n even

µn = E{X1I|X1|≤n =
1

c

n∑
k=2

(−1)k
1

k log k

=
1

c

n/2∑
i=1

{ 1

2i log(2i)
− 1

(2i+ 1) log(2i+ 1)

}
,

and this series is convergent. Further, for n odd, |µn − µn−1| = 1/(cn log n)→ 0. Therefore µn has a limit.
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Exercise [2.2.9]

Fixing 1 > λ > 0, define Yn :=
∑
k≤n IAk

and set an = λEYn. Since an →∞, we have that,

P(An i.o. ) ≥ P(Yn > an i.o. ) ≥ lim sup
n→∞

P(Yn > an)

where the last inequality is due to Fatou’s lemma (c.f. (1.3.10), or Exercise 2.2.2). Applying Exercise 1.3.20,
we have that P(Yn > an) ≥ (1− λ)2cn for cn := (EYn)2/E(Y 2

n ). By the definition of Yn, the assumption of
the exercise is precisely that α = lim supn cn. Thus, taking first n → ∞ then λ ↓ 0 completes the proof of
the Kochen-Stone lemma.

Exercise [2.2.26]

1. First note that

Var(Sn) =

n∑
i=1

P(Ai)(1−P(Ai)) ≤
n∑
i=1

P(Ai) = ESn .

By Markov’s inequality, then,

P
(∣∣Sn −ESn

ESn

∣∣ > ε
)
≤ Var(Sn)

ε2(ESn)2
≤ 1

ε2ESn
,

and since we assumed that ESn =
∑
i≤n P(Ai)→∞, we are done.

2. Since E(Snk
) ≥ k2, we have from part (a) that

P(|Snk
−ESnk

| > εESnk
) ≤ 1/(ε2k2) .

Since the series
∑
k k
−2 is finite, the first Borel-Cantelli lemma implies that P(|Snk

− ESnk
| >

εESnk
i.o ) = 0. Since ε > 0 is arbitrary, it follows that Snk

/ESnk

a.s.→ 1.

3. Since k2 ≤ ESnk
≤ k2 + 1 and (k + 1)2 ≤ ESnk+1

≤ (k + 1)2 + 1

k2

(k + 1)2 + 1
≤ E(Snk

)

E(Snk+1
)
≤ k2 + 1

(k + 1)2
,

so E(Snk
)/E(Snk+1

)→ 1 when k →∞. Then, for nk ≤ n ≤ nk+1,

Snk

E(Snk
)

E(Snk
)

E(Snk+1
)
≤ Sn

E(Sn)
≤

Snk+1

E(Snk+1
)

E(Snk+1
)

E(Snk
)
.

Hence, by part (b) and the fact that E(Snk
)/E(Snk+1

)→ 1, we conclude that Sn/E(Sn)
a.s.→ 1.

Exercise [2.3.14]

1. By induction, logWn =
∑n
i=1Xi for the i.i.d. random variables Xi = log(qr+ (1− q)Vi). As {Xi} are

bounded below by log(qr) > −∞, it follows that E[(X1)−] is finite, so the strong law of large numbers

implies that n−1 logWn
a.s.→ w(q), as stated.

2. Since q 7→ (qr + (1− q)V1(ω)) is linear and log x is concave, it follows that q 7→ log(qr + (1− q)V1) is
concave on (0, 1], per ω ∈ Ω. The expectation preserves the concavity, hence q 7→ w(q) is concave on
(0, 1].
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3. By Jensen’s inequality for the concave function g(x) = log x, x > 0, we have that

w(q) = E log(qr + (1− q)V1) ≤ log(qr + (1− q)EV1) .

Hence, if EV1 ≤ r then w(q) ≤ log(qr + (1− q)r) = log r = w(1).
Recall that (log x)− ≤ 1/(ex) for all x ≥ 0. Hence, if EV −11 is finite, then so is E[(log V1)−]. Conse-
quently, the strong law of large numbers of part (a) also applies for n−1 logWn in case q = 0 (i.e., for
Xi = log Vi). Further, when E[(log V1)−] is finite, w(q) = w(0) +E log(qrV −11 + 1− q) and by Jensen’s
inequality

E log(qrV −11 + 1− q) ≤ log(qrEV −11 + 1− q) ≤ 0

if EV −11 ≤ r−1, implying that then w(q) ≤ w(0).

4. Our assumption that EV 2
1 < ∞ and EV −21 < ∞ implies that EV1 < ∞ and EV −11 < ∞. Further,

w(0) = E log V1 ≤ EV1 is then also finite. We have shown in part (c) that w(q) ≤ w(1) = log r in
case EV1 ≤ r and that w(q) ≤ w(0) in case EV −11 ≤ r−1. Consequently, if suffices to show that
if EV1 > r > 1/EV −11 , then there exists q? ∈ (0, 1) where w(·) reaches its supremum (which is
hence finite). The former condition is equivalent to EY > 0 and EZ > 0 for Y = rV −11 − 1 ≥ −1 and
Z = r−1V1−1 ≥ −1, both of which are in L2. Further, since q 7→ w(q) : [0, 1]→ R is a concave function,
the existence of such q? ∈ (0, 1) follows as soon as we check that w(ε)−w(0) = E log(1 + εY ) > 0 and
w(1−ε)−w(1) = E log(1+εZ) > 0 when ε > 0 is small enough. To this end, note that log(1+x) ≥ x−x2
for all x ≥ −1/2. Hence, E log(1 + εY ) ≥ εEY − ε2EY 2 > 0 for ε ∈ (0, 1/2) small enough. As the same
applies for E log(1 + εZ), we are done.
We see that one should invest only in risky assets whose expected annual growth factor EV1 exceeds
that of the risk-less asset, and that if in addition EV −11 > r−1, then a unique optimal fraction q? ∈ (0, 1)
should be re-invested each year in the risky asset.

Exercise [2.3.9]

1. Fix δ > 0 such that p := P(τ1 > δ) > δ. Note that Ñt+1−r follows the negative Binomial distribution
of parameters p and r = bt/δc+ 1. That is, for ` = 0, 1, 2, . . .,

P(Ñt + 1− r = `) = P(T̃`+r−1 ≤ t < T̃`+r)

It is easy to check that E(Ñt) = r/p− 1 and Var(Ñt) = r(1− p)/p2. Consequently, E[Ñ2
t ] = (r2 + r−

3rp+ p2)/p2, and with p > 0 fixed and r ≤ t/δ + 1 it follows that supt≥1 t
−2EÑ2

t <∞.

2. Since τ̃i ≤ τi, clearly Nt ≤ Ñt. Hence, by part (a), supt≥1 t
−2EN2

t < ∞. In view of the criterion of
Exercise 1.3.54 (for f(x) = x2), this implies that {t−1Nt : t ≥ 1} is a uniformly integrable collection of

R.V. As we have seen in Exercise 2.3.7 that t−1Nt
a.s.→ 1/Eτ1, it thus follows that also t−1Nt

L1

→ 1/Eτ1
(c.f. Theorem 1.3.49), and in particular, t−1ENt → 1/Eτ1 as stated.

Exercise [2.2.24]

1. Substituting y = x+ z and using the bound exp(−z2/2) ≤ 1 yields∫ ∞
x

e−y
2/2dy ≤ e−x

2/2

∫ ∞
0

e−xzdz = x−1e−x
2/2 .

For the other direction, observe that for x > 0,

(x−1 − x−3)e−x
2/2 =

∫ ∞
x

(1− 3y−4)e−y
2/2dy ≥

∫ ∞
x

e−y
2/2dy .
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2. Since the probability density function for a standard normal random variable Gn is (2π)−1/2e−x
2/2,

we get from the bounds of part (a) that

cγ = lim
n→∞

nγ
√

log nP
(
Gn >

√
2γ log n

)
,

exists, is finite and positive. Consequently, fixing ε > 0 by the first Borel-Cantelli lemma we have that
P(Gn/

√
2 log n > 1 + ε i.o. ) = 0. Further, since Gn are mutually independent, it follows from the

second Borel-Cantelli lemma that P(Gn/
√

2 log n > 1 − ε i.o. ) = 1. We see that with probability
one, the sequence n 7→ Gn(ω)/

√
2 log n is infinitely often above 1− ε but only finitely often above 1+ ε,

in which case L(ω) = lim supnGn(ω)/
√

2 log n must be in the interval (1 − ε, 1 + ε]. Considering the
intersection of the relevant events for εk ↓ 0, we conclude that P(L = 1) = 1, as stated.

3. Since Sn/
√
n has the same law as G1, the upper bound of part (a) implies that P(|Sn| ≥ 2

√
n log n) ≤

Cn−2 for some C < ∞ and all n large enough. Since the series
∑
n n
−2 is finite, applying the first

Borel-Cantelli lemma we get that P(|Sn| ≥ 2
√
n log n i.o. ) = 0, or equivalently, that P(|Sn| <

2
√
n log n ev. ) = 1.

Exercise on Markov chains

Throughout this solution we let Xn ≡ σ({Xi}i≤n), Tn ≡ σ({Xi}i≥n), and an1 = (a1, . . . , an) for any sequence
a. Futher we let B(xn1 ) = {ω : ωn1 = xn1}. We will prove that T is independent of Xn for any n which
implies the thesis by Lemma 1.4.9.

We start by noticing that, for any m ≤ n, any A ∈ Tn, and any xm1 ∈ Xm we have

P
(
B(xm1 ) ∩A

)
P
(
B(xm1 )

) =
P
(
{ωm = xm} ∩A

)
P(ωm = xm)

. (1)

Indeed the set functions A 7→ µ1(A), and A 7→ µ2(A) defined by the two sides of the above identity are
probability measures over Tn with µ1(Ω) = µ2(Ω) = 1 and µ1(A) = µ2(A) for any event of the form
A = {ω : ωn = xn, . . . , ωn+k = xn+k} (this is an elementary calculation). Since these events form a
π-system, the claim follows from the uniqueness in Carathéodory extension theorem.

Next let m < n, and for any B ∈ Xm, we let Bn = {xn1 ∈ Xn : ωn1 = xn1 ⇒ ω ∈ B}. For any A ∈ Tn, we
have

P(A ∩B) =
∑

xn
1∈Bn

P
(
B(xn1 ) ∩A

)
=

∑
xn
1∈Bn

P
(
B(xn1 )

)P({ωn = xn} ∩A
)

P(ωn = xn)
=

∑
xn
1∈Bn

P
(
B(xn1 )

)
fA(xn) , (2)

for some function fA : X → [0, 1]. Writing explicitely P
(
B(xn1 )

)
, using the fact that B ∈ Xm, and letting

k = n−m, we get

P(A ∩B) =
∑
xm,xn

gB(xm)pk(xm, xn) fA(xn) , (3)

gB(xm) = P
(
B ∩ {ωm = xm}

)
. (4)

Here pk is the k-th power of the matrix p. By Perron-Frobenius theorem, this implies that

|P(A ∩B)−P(A)P(B)| ≤ C λk , (5)

for some constant C independent of A, B, and some λ ∈ [0, 1). Since A ∈ Tn for any n, we can take k as
large as we want, thus implying P(A ∩B) = P(A)P(B).
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