Stat 310A/Math 230A Theory of Probability

Homework 5 Solutions

Andrea Montanari Due on November 6, 2019

Exercises on the law of large numbers and Borel-Cantelli

Exercise [2.1.5]

Let $\epsilon > 0$ and pick $K = K(\epsilon)$ finite such that if $k \geq K$ then $r(k) \leq \epsilon$. Applying the Cauchy-Schwarz inequality for $X_i - \mathbf{E} X_i$ and $X_j - \mathbf{E} X_j$ we have that

$$
Cov(X_i, X_j) \leq [Var(X_i)Var(X_j)]^{1/2} \leq r(0) < \infty
$$

for all *i*, *j*. Thus, breaking the double sum in $\text{Var}(S_n) = \sum_{i,j=1}^n \text{Cov}(X_i, X_j)$ into $\{(i,j) : |i - j| < K\}$ and $\{(i, j) : |i - j| \geq K\}$ gives the bound

$$
Var(S_n) \le 2Knr(0) + n^2\epsilon.
$$

Dividing by n^2 we see that $\limsup_n \text{Var}(n^{-1}S_n) \leq \epsilon$. Since $\epsilon > 0$ is arbitrary and $\mathbf{E}S_n = n\overline{x}$, we have that $n^{-1}S_n \stackrel{L^2}{\rightarrow} \overline{x}$ (with convergence in probability as well).

Exercise [2.1.13]

We have $\mathbb{E}|X_1| = \sum_{k=2}^{\infty} 1/(ck \log k) = \infty$. On the other hand, for $n \in \mathbb{N}$

$$
n \mathbb{P}(|X_1| \ge n) = \frac{n}{c} \sum_{k=n}^{\infty} \frac{1}{k^2 \log k}
$$

\n
$$
\le \frac{n}{c} \int_{n-1}^{\infty} \frac{1}{x^2 \log x} dx
$$

\n
$$
= \frac{n}{c} \int_{\log(n-1)}^{\infty} \frac{e^{-z}}{z} dz
$$

\n
$$
\le \frac{n}{c \log(n-1)} \int_{\log(n-1)}^{\infty} e^{-z} dz = \frac{n}{c(n-1) \log(n-1)}.
$$

In particular $n\mathbb{P}(|X_1|\geq n)\to 0$ as $n\to\infty$, which implies $\lim_{x\to\infty} x\mathbb{P}(|X_1|\geq x)=0$. We can therefore apply Proposition 2.1.12, which yields $(S_n/n - \mu_n) \stackrel{p}{\to} 0$.

It is therefore sufficient to show that μ_n has a finite limit. We have, for n even

$$
\mu_n = \mathbb{E}\{X_1 I_{|X_1| \le n} = \frac{1}{c} \sum_{k=2}^n (-1)^k \frac{1}{k \log k}
$$

=
$$
\frac{1}{c} \sum_{i=1}^{n/2} \left\{ \frac{1}{2i \log(2i)} - \frac{1}{(2i+1) \log(2i+1)} \right\},
$$

and this series is convergent. Further, for n odd, $|\mu_n - \mu_{n-1}| = 1/(cn \log n) \to 0$. Therefore μ_n has a limit.

Exercise [2.2.9]

Fixing $1 > \lambda > 0$, define $Y_n := \sum_{k \le n} I_{A_k}$ and set $a_n = \lambda \mathbf{E} Y_n$. Since $a_n \to \infty$, we have that,

$$
\mathbf{P}(A_n \text{ i.o. }) \ge \mathbf{P}(Y_n > a_n \text{ i.o. }) \ge \limsup_{n \to \infty} \mathbf{P}(Y_n > a_n)
$$

where the last inequality is due to Fatou's lemma (c.f. $(1.3.10)$, or Exercise 2.2.2). Applying Exercise 1.3.20, we have that $P(Y_n > a_n) \ge (1 - \lambda)^2 c_n$ for $c_n := (EY_n)^2 / E(Y_n^2)$. By the definition of Y_n , the assumption of the exercise is precisely that $\alpha = \limsup_n c_n$. Thus, taking first $n \to \infty$ then $\lambda \downarrow 0$ completes the proof of the Kochen-Stone lemma.

Exercise [2.2.26]

1. First note that

$$
Var(S_n) = \sum_{i=1}^{n} \mathbf{P}(A_i)(1 - \mathbf{P}(A_i)) \le \sum_{i=1}^{n} \mathbf{P}(A_i) = \mathbf{E}S_n
$$
.

By Markov's inequality, then,

$$
\mathbf{P}\Big(\Big|\frac{S_n - \mathbf{E}S_n}{\mathbf{E}S_n}\Big| > \epsilon\Big) \le \frac{\text{Var}(S_n)}{\epsilon^2(\mathbf{E}S_n)^2} \le \frac{1}{\epsilon^2 \mathbf{E}S_n},
$$

and since we assumed that $\mathbf{E}S_n = \sum_{i \leq n} \mathbf{P}(A_i) \to \infty$, we are done.

2. Since $\mathbf{E}(S_{n_k}) \geq k^2$, we have from part (a) that

$$
\mathbf{P}(|S_{n_k} - \mathbf{E} S_{n_k}| > \epsilon \mathbf{E} S_{n_k}) \le 1/(\epsilon^2 k^2).
$$

Since the series $\sum_k k^{-2}$ is finite, the first Borel-Cantelli lemma implies that $P(|S_{n_k} - ES_{n_k}| >$ $\epsilon \mathbf{E} S_{n_k}$ i.o $=0$. Since $\epsilon > 0$ is arbitrary, it follows that $S_{n_k}/\mathbf{E} S_{n_k} \stackrel{a.s.}{\rightarrow} 1$.

3. Since $k^2 \n\t\leq \mathbf{E} S_{n_k} \leq k^2 + 1$ and $(k+1)^2 \leq \mathbf{E} S_{n_{k+1}} \leq (k+1)^2 + 1$

$$
\frac{k^2}{(k+1)^2+1} \leq \frac{\mathbf{E}(S_{n_k})}{\mathbf{E}(S_{n_{k+1}})} \leq \frac{k^2+1}{(k+1)^2}\,,
$$

so $\mathbf{E}(S_{n_k})/\mathbf{E}(S_{n_{k+1}}) \to 1$ when $k \to \infty$. Then, for $n_k \leq n \leq n_{k+1}$,

$$
\frac{S_{n_k}}{\mathbf{E}(S_{n_k})}\frac{\mathbf{E}(S_{n_k})}{\mathbf{E}(S_{n_{k+1}})} \leq \frac{S_n}{\mathbf{E}(S_n)} \leq \frac{S_{n_{k+1}}}{\mathbf{E}(S_{n_{k+1}})}\frac{\mathbf{E}(S_{n_{k+1}})}{\mathbf{E}(S_{n_k})}.
$$

Hence, by part (b) and the fact that $\mathbf{E}(S_{n_k})/\mathbf{E}(S_{n_{k+1}}) \to 1$, we conclude that $S_n/\mathbf{E}(S_n) \stackrel{a.s.}{\to} 1$.

Exercise [2.3.14]

- 1. By induction, $\log W_n = \sum_{i=1}^n X_i$ for the i.i.d. random variables $X_i = \log(qr + (1-q)V_i)$. As $\{X_i\}$ are bounded below by $log(qr) > -\infty$, it follows that $\mathbf{E}[(X_1)$ _−] is finite, so the strong law of large numbers implies that $n^{-1} \log W_n \stackrel{a.s.}{\rightarrow} w(q)$, as stated.
- 2. Since $q \mapsto (qr + (1 q)V_1(\omega))$ is linear and log x is concave, it follows that $q \mapsto \log(qr + (1 q)V_1)$ is concave on (0, 1], per $\omega \in \Omega$. The expectation preserves the concavity, hence $q \mapsto w(q)$ is concave on $(0, 1].$

3. By Jensen's inequality for the concave function $g(x) = \log x, x > 0$, we have that

$$
w(q) = \mathbf{E} \log(qr + (1-q)V_1) \le \log(qr + (1-q)\mathbf{E}V_1).
$$

Hence, if $\mathbf{E}V_1 \leq r$ then $w(q) \leq \log(qr + (1-q)r) = \log r = w(1)$.

Recall that $(\log x)$ – $\leq 1/(ex)$ for all $x \geq 0$. Hence, if $\mathbf{E}V_1^{-1}$ is finite, then so is $\mathbf{E}[(\log V_1)$ – Consequently, the strong law of large numbers of part (a) also applies for $n^{-1} \log W_n$ in case $q = 0$ (i.e., for $X_i = \log V_i$). Further, when $\mathbf{E}[(\log V_1)_-]$ is finite, $w(q) = w(0) + \mathbf{E} \log(qrV_1^{-1} + 1 - q)$ and by Jensen's inequality

$$
\mathbf{E}\log(qrV_1^{-1} + 1 - q) \le \log(qr\mathbf{E}V_1^{-1} + 1 - q) \le 0
$$

if $\mathbf{E}V_1^{-1} \leq r^{-1}$, implying that then $w(q) \leq w(0)$.

4. Our assumption that $\mathbf{E}V_1^2 < \infty$ and $\mathbf{E}V_1^{-2} < \infty$ implies that $\mathbf{E}V_1 < \infty$ and $\mathbf{E}V_1^{-1} < \infty$. Further, $w(0) = \mathbf{E} \log V_1 \leq \mathbf{E} V_1$ is then also finite. We have shown in part (c) that $w(q) \leq w(1) = \log r$ in case $\mathbf{E}V_1 \leq r$ and that $w(q) \leq w(0)$ in case $\mathbf{E}V_1^{-1} \leq r^{-1}$. Consequently, if suffices to show that if $\mathbf{E}V_1 > r > 1/\mathbf{E}V_1^{-1}$, then there exists $q^* \in (0,1)$ where $w(\cdot)$ reaches its supremum (which is hence finite). The former condition is equivalent to $EY > 0$ and $EZ > 0$ for $Y = rV_1^{-1} - 1 \ge -1$ and $Z = r^{-1}V_1 - 1 \geq -1$, both of which are in L^2 . Further, since $q \mapsto w(q) : [0, 1] \to \mathbb{R}$ is a concave function, the existence of such $q^* \in (0,1)$ follows as soon as we check that $w(\epsilon) - w(0) = \mathbf{E} \log(1 + \epsilon Y) > 0$ and $w(1-\epsilon)-w(1) = \mathbf{E} \log(1+\epsilon Z) > 0$ when $\epsilon > 0$ is small enough. To this end, note that $\log(1+x) \geq x-x^2$ for all $x \ge -1/2$. Hence, $\mathbf{E} \log(1+\epsilon Y) \ge \epsilon \mathbf{E} Y - \epsilon^2 \mathbf{E} Y^2 > 0$ for $\epsilon \in (0,1/2)$ small enough. As the same applies for $\mathbf{E} \log(1 + \epsilon Z)$, we are done.

We see that one should invest only in risky assets whose expected annual growth factor $\mathbf{E}V_1$ exceeds that of the risk-less asset, and that if in addition $\mathbf{E}V_1^{-1} > r^{-1}$, then a unique optimal fraction $q^* \in (0,1)$ should be re-invested each year in the risky asset.

Exercise [2.3.9]

1. Fix $\delta > 0$ such that $p := \mathbf{P}(\tau_1 > \delta) > \delta$. Note that $\widetilde{N}_t + 1 - r$ follows the negative Binomial distribution of parameters p and $r = |t/\delta| + 1$. That is, for $\ell = 0, 1, 2, \ldots$,

$$
\mathbf{P}(\widetilde{N}_t + 1 - r = \ell) = \mathbf{P}(\widetilde{T}_{\ell+r-1} \le t < \widetilde{T}_{\ell+r})
$$

It is easy to check that $\mathbf{E}(\tilde{N}_t) = r/p - 1$ and $\text{Var}(\tilde{N}_t) = r(1-p)/p^2$. Consequently, $\mathbf{E}[\tilde{N}_t^2] = (r^2 + r - 1)$ $3rp + p^2)/p^2$, and with $p > 0$ fixed and $r \le t/\delta + 1$ it follows that $\sup_{t \ge 1} t^{-2} \mathbf{E} \widetilde{N}_t^2 < \infty$.

2. Since $\widetilde{\tau}_i \leq \tau_i$, clearly $N_t \leq \widetilde{N}_t$. Hence, by part (a), $\sup_{t\geq 1} t^{-2} \mathbf{E} N_t^2 < \infty$. In view of the criterion of Exercise 1.3.54 (for $f(x) = x^2$) this implies that $f_t^{-1} N_t \to 1$ is a uniformly integrable Exercise 1.3.54 (for $f(x) = x^2$), this implies that $\{t^{-1}N_t : t \ge 1\}$ is a uniformly integrable collection of R.V. As we have seen in Exercise 2.3.7 that $t^{-1}N_t \stackrel{a.s.}{\rightarrow} 1/\mathbf{E} \tau_1$, it thus follows that also $t^{-1}N_t \stackrel{L^1}{\rightarrow} 1/\mathbf{E} \tau_1$ (c.f. Theorem 1.3.49), and in particular, $t^{-1} \mathbf{E} N_t \to 1/\mathbf{E} \tau_1$ as stated.

Exercise [2.2.24]

1. Substituting $y = x + z$ and using the bound $\exp(-z^2/2) \le 1$ yields

$$
\int_x^{\infty} e^{-y^2/2} dy \le e^{-x^2/2} \int_0^{\infty} e^{-xz} dz = x^{-1} e^{-x^2/2}.
$$

For the other direction, observe that for $x > 0$,

$$
(x^{-1} - x^{-3})e^{-x^2/2} = \int_x^{\infty} (1 - 3y^{-4})e^{-y^2/2} dy \ge \int_x^{\infty} e^{-y^2/2} dy.
$$

2. Since the probability density function for a standard normal random variable G_n is $(2\pi)^{-1/2}e^{-x^2/2}$, we get from the bounds of part (a) that

$$
c_{\gamma} = \lim_{n \to \infty} n^{\gamma} \sqrt{\log n} \mathbf{P} \left(G_n > \sqrt{2\gamma \log n} \right),
$$

exists, is finite and positive. Consequently, fixing $\epsilon > 0$ by the first Borel-Cantelli lemma we have that $\mathbf{P}(G_n/\sqrt{2\log n}) > 1 + \epsilon$ i.o.) = 0. Further, since G_n are mutually independent, it follows from the second Borel-Cantelli lemma that $P(G_n/\sqrt{2\log n}) > 1 - \epsilon$ i.o. $) = 1$. We see that with probability one, the sequence $n \mapsto G_n(\omega)/\sqrt{2 \log n}$ is infinitely often above $1 - \epsilon$ but only finitely often above $1 + \epsilon$, in which case $L(\omega) = \limsup_n G_n(\omega) / \sqrt{2 \log n}$ must be in the interval $(1 - \epsilon, 1 + \epsilon]$. Considering the intersection of the relevant events for $\epsilon_k \downarrow 0$, we conclude that $\mathbf{P}(L = 1) = 1$, as stated.

3. Since S_n/\sqrt{n} has the same law as G_1 , the upper bound of part (a) implies that $P(|S_n| \ge 2\sqrt{n \log n}) \le$ Cn^{-2} for some $C < \infty$ and all n large enough. Since the series $\sum_{n} n^{-2}$ is finite, applying the first Borel-Cantelli lemma we get that $P(|S_n| \geq 2\sqrt{n \log n}$ i.o. $= 0$, or equivalently, that $P(|S_n| <$ $2\sqrt{n \log n}$ ev. $= 1$.

Exercise on Markov chains

Throughout this solution we let $\mathcal{X}_n \equiv \sigma(\{X_i\}_{i\leq n}), \mathcal{T}_n \equiv \sigma(\{X_i\}_{i\geq n}),$ and $a_1^n = (a_1, \ldots, a_n)$ for any sequence a. Futher we let $B(x_1^n) = \{\omega : \omega_1^n = x_1^n\}$. We will prove that $\mathcal T$ is independent of $\mathcal X^n$ for any n which implies the thesis by Lemma 1.4.9.

We start by noticing that, for any $m \leq n$, any $A \in \mathcal{T}_n$, and any $x_1^m \in \mathcal{X}^m$ we have

$$
\frac{\mathbf{P}(B(x_1^m) \cap A)}{\mathbf{P}(B(x_1^m))} = \frac{\mathbf{P}(\{\omega_m = x_m\} \cap A)}{\mathbf{P}(\omega_m = x_m)}.
$$
\n(1)

Indeed the set functions $A \mapsto \mu_1(A)$, and $A \mapsto \mu_2(A)$ defined by the two sides of the above identity are probability measures over \mathcal{T}_n with $\mu_1(\Omega) = \mu_2(\Omega) = 1$ and $\mu_1(A) = \mu_2(A)$ for any event of the form $A = \{\omega : \omega_n = x_n, \ldots, \omega_{n+k} = x_{n+k}\}\$ (this is an elementary calculation). Since these events form a π -system, the claim follows from the uniqueness in Carathéodory extension theorem.

Next let $m < n$, and for any $B \in \mathcal{X}_m$, we let $B_n = \{x_1^n \in \mathcal{X}^n : \omega_1^n = x_1^n \Rightarrow \omega \in B\}$. For any $A \in \mathcal{T}_n$, we have

$$
\mathbf{P}(A \cap B) = \sum_{x_1^n \in B_n} \mathbf{P}\big(B(x_1^n) \cap A\big) = \sum_{x_1^n \in B_n} \mathbf{P}\big(B(x_1^n)\big) \frac{\mathbf{P}\big(\{\omega_n = x_n\} \cap A\big)}{\mathbf{P}(\omega_n = x_n)} = \sum_{x_1^n \in B_n} \mathbf{P}\big(B(x_1^n)\big) f_A(x_n), \quad (2)
$$

for some function $f_A: \mathcal{X} \to [0,1]$. Writing explicitely $\mathbf{P}(B(x_1^n))$, using the fact that $B \in \mathcal{X}_m$, and letting $k = n - m$, we get

$$
\mathbf{P}(A \cap B) = \sum_{x_m, x_n} g_B(x_m) p^k(x_m, x_n) f_A(x_n), \qquad (3)
$$

$$
g_B(x_m) = \mathbb{P}(B \cap \{\omega_m = x_m\}). \tag{4}
$$

Here p^k is the k-th power of the matrix p. By Perron-Frobenius theorem, this implies that

$$
|\mathbf{P}(A \cap B) - \mathbf{P}(A)\mathbf{P}(B)| \le C\lambda^k,
$$
\n(5)

for some constant C independent of A, B, and some $\lambda \in [0,1)$. Since $A \in \mathcal{T}_n$ for any n, we can take k as large as we want, thus implying $P(A \cap B) = P(A)P(B)$.