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Exercises on characteristic functions

Exercise [3.3.10]

1. Denoting by ΦX(θ) the ch.f. of X, since X and X̃ are i.i.d., the ch.f. of −X̃ is ΦX(−θ) = ΦX(θ).
Hence, by Lemma 3.3.8,

ΦZ(θ) = ΦX(θ)ΦX(θ) = |ΦX(θ)|2 ≥ 0 .

2. If U = X − X̃ for some i.i.d. X and X̃, then by part (a), its ch.f. ΦU (θ) must be a real-valued
non-negative function. Recall that the ch.f. of the uniform random variable on (a, b) is ΦU (θ) =
eiθ(a+b)/2 sin(cθ)/(cθ) for c = (b − a)/2 (see Example 3.3.7). This function is real-valued only when
a = −b and even then sin(bθ) = −1 for θ = 3π/(2b) > 0, leading to the stated conclusion.

Exercise [3.3.21]

1. Recall Example 3.3.7 showing that the Uniform Distribution on (−1, 1), which is of bounded probability
density function, has the ch.f. sin(θ)/θ. Clearly,

∫
R(| sin θ|/|θ|)dθ = ∞ (consider θ ∈ [πn + π/4, πn +

3π/4], n = 0, 1, 2, . . . for which | sin θ| ≥ 1/
√

2).

2. Recall Example 3.3.13 showing that the Cauchy distribution has the ch.f. exp(−|θ|) which is not
differentiable at θ = 0.

Exercise [3.3.22]

Combining Lemma 3.3.8 and Example 3.3.7, we deduce that

ΦSn(θ) = (sin θ/θ)n .

For any n ≥ 2, the integral
∫
|(sin θ)/θ|ndθ is finite. Thus, by the inversion formula (3.3.7), the r.v. Sn has

the bounded continuous probability density function

fSn(s) =
1

2π

∫ ∞
−∞

e−iθs(sin θ/θ)ndθ

=
1

π

∫ ∞
0

cos(θs)(sin θ/θ)ndθ

with the latter identity due to the fact that (sin θ)/θ is invariant under the change of variable θ 7→ −θ. Since
Sn ≤ n, the continuous p.d.f. fSn(·) must be identically zero for s > n, yielding the stated conclusion that∫∞
0

cos(θs)(sin θ/θ)ndθ = 0 for all s > n ≥ 2.

Exercise [3.3.23]

Φ
n−1

n∑
k=1

Xk

(θ) =

n∏
k=1

ΦXk
(θ/n) =

n∏
k=1

e−|θ|/n = e−|θ| = ΦX1(θ).

∴ X1
d
=

1

n

n∑
k=1

Xk.
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An exercise on weak convergence of measures

1. Indeed |An| =
(
n
n/2

)
is finite and

νn =
1

|An|
∑
ξ∈An

δξ (1)

(this identity can be checked on the π-system P = {N`(ω) : ` ∈ N, ω ∈ Ω}). Each δξ is a probability
measure, hence νn is a probability measure.

2. We claim that νn converges weakly to the uniform measure ν∞, defined by

ν∞(N`(ω)) =
1

2`
. (2)

In order to prove this fact, we will show that, for any bounded continuous function h : {0, 1}N → R,
limn→∞ νn(h) = ν∞(h). Let us start by a function h measurable on σ({N`(ω) : ω ∈ Ω}), i.e. depending only
on the first ` coordinates of ω. For sugn a function we have h(ω) = h`(ω

`
1), h` : {0, 1}` → R. Therefore

νn(h) =
∑
ξ`1

h`(ξ
`
1)νn({ω : ω`1 = ξ`1}) . (3)

But, letting k = ξ1 + · · ·+ ξ`, we have

lim
n→∞

νn({ω : ω`1 = ξ`1}) = lim
n→∞

(
n

n/2

)−1(
n− `
n/2− k

)
=

1

2`
, (4)

where the last equality is a straightforward application of Stirling formula. This proves the claim for h ∈
mσ({N`(ω) : ω ∈ Ω}).

Consider now a general bounded continuous function h, and let for ` ∈ N, ĥ` ∈ mσ({N`(ω) : ω ∈ Ω}) be

defined by ĥ`(ω) = h(ω`1, 0, 0, 0 . . . ). By Fact 1, we have, for any probability measure µ, |µ(h) − µ(ĥ`)| ≤∫
|h(ω)− ĥ`(ω)|dµ(ω) ≤ δ(`). Therefore

|νn(h)− ν∞(h)| ≤ |νn(h)− νn(ĥ`)|+ |νn(ĥ`)− ν∞(ĥ`)|+ |ν∞(h)− ν∞(ĥ`)| (5)

≤ |νn(ĥ`)− ν∞(ĥ`)|+ 2δ(`) . (6)

By letting n→∞, and using the above result, we get

lim
n→∞

|νn(h)− ν∞(h)| ≤ 2δ(`) . (7)

The thesis follows because ` can be taken arbitrarily large.
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