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Problem 1 Let f : R→ R be right-continuous. Define a sequence of functions fn by

fn(x) = f
(dnxe

n

)
=
∑
k∈Z

f
(k
n

)
I((k−1)/n,k/n](x). (1)

Each fn is a countable sum of indicators and so is measurable. Moreover, for any x, we have that
dnxe /n ↓ x. By right-continuity of f , this implies that fn(x)→ f(x) and so that f is measurable.

Problem 2

(a) Notice that the evaluation operators evt(ω) = ω(t) satisfy, for any ω1, ω2 ∈ Ω,

|evt(ω1)− evt(ω2)| = |ω1(t)− ω2(t)| ≤ d(ω1, ω2). (2)

In particular, each ωt is Lipschitz and so continuous with respect to the sup norm. We
therefore have that each

{ω : Xt(ω) < b} = {ω : ω(t) < b} = ev−1
t ((−∞, b)) (3)

is an open set and so in B. Since such sets generate F , we conclude that F ⊆ B.

(b) We first show that C([0, 1]) with the sup norm has a countable dense subset. To construct
this set, define

Cn =
{
φ ∈ C([0, 1]) : φ is a linear interpolation between {(k/n, q) : k = 0, . . . n; q ∈ Q}

}
.

(4)

Each such set is countable, so their union D =
⋃∞
n=1 Cn is also countable.

To see that D is dense, let f ∈ C([0, 1]) and let ε > 0. Since f is continuous on a compact
set, it is uniformly continuous. Hence, let n be such that |f(x) − f(y)| < ε/2 whenever
|x−y| ≤ 1/n. By the density of Q in R, we can choose φ ∈ Cn such that |φ(k/n)−f(k/n)| < ε/2
for any k.

Now, let x ∈ [0, 1]. Then x falls between xk = k/n and xk+1 = (k + 1)/n for some k.
Hence, there exists a λ ∈ [0, 1] such that x = λxk+(1−λ)xk−1. By linearity of φ on [xk, xk+1]
and convexity of the absolute value, we have that

|φ(x)− f(x)| = |λ(φ(xk)− f(x)) + (1− λ)(φ(xk+1)− f(x))| (5)

≤ λ|φ(xk)− f(x)|+ (1− λ)|φ(xk+1)− f(x)|. (6)
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But notice that since |xk − x| ≤ 1/n, uniform continuity of f yields that

|φ(xk)− f(x)| ≤ |φ(xk)− f(xk)|+ |f(xk) + f(x)| ≤ ε

2
+
ε

2
= ε. (7)

Reasoning similarly for xk+1, eq. 6 becomes

|φ(x)− f(x)| ≤ λε+ (1− λ)ε = ε (8)

This inequality holds uniformly in x, so d(φ, f) ≤ ε, and so we conclude that D is dense
in C([0, 1]). Therefore, any set that is open in C([0, 1]) is a countable union of open balls,
and so in turn we conclude that the open balls generate B.

But now, for any open ball Bε(ω
′), we have that

Bε(ω
′) =

{
ω : sup

t∈[0,1]
|ω(t)− ω′(t)| < ε

}
(9)

=
{
ω : sup

q∈[0,1]∩Q
|ω(q)− ω′(q)| < ε

}
(10)

=
∞⋃
n=1

⋂
q∈[0,1]∩Q

{ω : |Xq(ω)− ω′(q)| ≤ ε− 1/n}. (11)

But this is a countable union of F-measurable sets and so it itself F-meansurable. Hence,
B ⊆ F .

Problem 3

(a) We have that

{XNk
≤ b} =

⋃
n∈N

{XNk
≤ b,Nk = n} =

⋃
n∈N

({Xn ≤ b} ∩ {Nk = n}) (12)

This is a countable union of measurable sets. Hence, each {Zk ≤ b} is measurable and so
each Zk is a random variable.

(b) By almost sure convergence of the sequences, let A and B be probability-1 events such that
on A, Xn → X∞ and on B, Nk →∞. Then A ∩B is an intersection of probability-1 events,
and so itself has probability 1.

Moreover, on this event, Xak → X∞ along any sequence ak diverging to infinity. But on
this event, Nk is such a sequence, so we have that XNk

→ X∞ on a probability-1 event. That
is, XNk

converges almost surely to X∞.

(c) Consider the sequence of random variables Xn on [0, 1) with the uniform measure defined by

X2k+` =
{
I[`2−k,(`+1)2−k) if ` = 0, . . . , 2k−1. (13)

We have that P(|X2k+`| > ε) = 2−k so that Xn
P−→ X∞ := 0. However, notice that for

any k,
2k−1∑
`=0

X2k+` = I[0,1). (14)
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Therefore, with probability 1, for any n, exactly one of {X2k , . . . , X2k+1−1} is equal to 1,
while the rest are 0. In particular, if we define (taking min∅ =∞)

Nk = min{n ∈ {2k, . . . , 2k+1 − 1} : Xn = 1}, (15)

then surely, Nk ≥ 2k so that Nk →∞ almost surely, and so in probability, while also XNk
= 1

almost surely and so XNk

P−→ 1.

(d) We use the same counter-example as in the previous question, noting that E|X2k+`| = 2−k → 0

and Nk
a.s.−−→∞ but that E|XNk

− 1| = 0 so that XNk

L1−→ 1.

Problem 4

(a) For ΩM = [−M,M ]d, define the family of sets

GM =
{
A ∈ BRd :

∫
fΩM

(x)IA(x) dx = 0
}
. (16)

To see that this is a λ-system, first notice that ΩM = [−M,M ]d ∈ R and so Rd ∈ GM let
A,B ∈ GM such that A ⊆ B. We then have that∫

fΩM
IB\A dx =

∫
fΩM

IB dx−
∫
fΩM

IA dx = 0, (17)

so that B \A ∈ G.

Next, let A1 ⊆ A2 ⊆ · · · be a sequence in GM increasing to A. Since fΩM
∈ L1 and

|fΩM
|IAn ≤ |fΩM

|IA, the dominated convergence theorem thus yields that∫
fΩM

IA dx = lim
n→∞

∫
fΩM

IAn dx = 0. (18)

Hence, GM is closed under increasing limits and so is a λ-system. Since R} ⊆ GM is a
π-system, Dynkin’s π-λ theorem then yields that

BRd = σ(R) ⊆ GM . (19)

In particular, {x : fΩM
(x) > 0}, {x : fΩM

(x) < 0} ∈ GM so that∫
|fΩM

| dx =

∫
fΩM

I{fΩM
>0} dx−

∫
fI{fΩM

<0} dx. = 0 (20)

Therefore, fΩM
= 0 almost everywhere for any M . But notice that {fΩM

6= 0} is an
sequence of sets increasing to {f = 0}, so continuity of measure yields that f = 0 almost
everywhere.

(b) For any R = (a1, b1)× · · · × (an, bn), define the functions ηRε ∈ C∞c (Rn) by

ηRε (t1, . . . , tn) =

n∏
i=1

ηε

(2(ti − ai)
bi − ai

− 1
)
. (21)
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In particular, we have that that ηRε → IR pointwise (though there is no guarantee that this
convergence is monotone). Moreover, |fηRε | = |f |ηRε ≤ |f |IR = fR, where the latter function
is integrable since f ∈ L1

loc(Rn) and R is compact. Hence, the dominated convergence yields
that ∫

fIR dx = lim
ε→0

∫
fηRε dx = 0. (22)

Since this holds for any rectangle R, we have from part (a) that f = 0 almost everywhere.

Problem 5

(a) We first prove the result for functions of the form

ψ =

n∑
k=1

ciI[ai,bi), (23)

which we will call interval-simple functions.

In particular, we have that, as ε→ 0,

‖Tεψ − ψ‖p =

∥∥∥∥∥
n∑
i=1

ci(TεI[ai,bi) − I[ai,bi))

∥∥∥∥∥
p

(24)

≤
n∑
i=1

ci
∥∥I[ai+ε,bi+ε) − I[ai,bi)

∥∥
p

(25)

≤
n∑
i=1

ci[(ai + ε− ai) + (bi + ε− bi)]1/p (26)

= (2ε)1/p
n∑
i=1

ci (27)

→ 0. (28)

To complete the proof, we will show that such functions are dense in Lp.

Let φ =
∑n

i=1 ciIBi be a simple function supported inside the set [−M,M ] and let ε > 0.
Since A, the set of finite unions of fingernail sets, is an algebra that generates B, we can
apply Exercise 1.2.15 (a) of Dembo’s notes. In particular, for each Bi, there exists a Ai ∈ A
such that for µ = L|[−M,M ]/2M , the probability measure formed by restricting the Lebesgue
measure to [−M,M ],

L(Ai∆Bi) = 2Mµ(Ai∆Bi) <
( ε

nci

)p
. (29)

But then we have that, for ψ =
∑n

i=1 ciIAi , which is an interval-simple function since each
Ai is a finite union of fingernail sets,

‖φ− ψ‖p ≤
n∑
i=1

ci ‖IBi − IAi‖p (30)

=

n∑
i=1

ciL(Ai∆Bi)
1/p (31)

< ε. (32)
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Now, let f ∈ Lp and let ε > 0. By the dominated convergence theorem, fI[−M,M ]
Lp−→ f , so

let M be such that
∥∥f − fI[−M,M ]

∥∥
p
< ε/3. Next, since simple functions are dense in Lp, let

φ be a simple function supported on [−M,M ] such that
∥∥fI[−M,M ] − φ

∥∥
p
< ε/3. Finally, by

the result that we just proved, let ψ be an interval-simple function such that ‖φ− ψ‖p < ε/3.
Therefore, we have that

‖f − ψ‖p ≤
∥∥f − fI[−M,M ]

∥∥
p

+
∥∥fI[−M,M ] − φ

∥∥
p

+ ‖φ− ψ‖p < ε. (33)

Notice that for any f ∈ Lp and interval-simple function ψ, we have that

‖Tεf − f‖p ≤ ‖Tεf − Tεψ‖p + ‖Tεψ − ψ‖p + ‖ψ − f‖p (34)

= 2 ‖f − ψ‖p + ‖Tεψ − ψ‖p (35)

ε→0−−→ 2 ‖f − ψ‖p . (36)

But since interval-simple functions are dense in Lp, taking the infimum over all such
functions yields that lim supε→0 ‖Tεf − f‖p = 0.

(b) For each x, let Fxf be the function defined by Fxf(y) = f(x− y). Notice that ‖Fxf‖p = ‖f‖p
We have by Hölder’s inequality that

|f ? g(x)| ≤
∫
|f(x− y)g(y)|dy (37)

= ‖Fxf · g‖1 (38)

≤ ‖Fxf‖p ‖g‖q (39)

= ‖f‖p ‖g‖q . (40)

Since the above holds uniformly in x and since f ∈ Lp, g ∈ Lq, we conclude that

sup
x
|f ? g(x)| ≤ ‖f‖p ‖g‖q <∞. (41)

(c) Let x, x′ ∈ R. We again use Hölder’s inequality to compute

|f ? g(x)− f ? g(x′)| ≤
∫
|f(x− y)− f(x′ − y)||g(y)| dy (42)

≤
[ ∫
|f(x− y)− f(x′ − y)|p dy

]1/p
‖g‖q . (43)

Making the substitution z = x− y, this becomes[ ∫
|f(z)− f(z − (x− x′))|p dz

]1/p
‖g‖q = ‖f − Tx−x′f‖p ‖g‖q . (44)

By the result of part (a), this converges to 0 as x− x′ → 0 at a rate depending on x and
x′ only through their difference. Therefore, f ? g is uniformly continuous.
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(d) Notice that ? is bilinear. In particular, if we define fM = fI[−M,M ] and gM = fI[−M,M ], then
we have from part (b) that

|f ? g(x)| ≤ |fM ? gM (x)|+ |(f − fM ) ? g(x)|+ |fM ? (g − gM )(x)| (45)

≤ |fM ? gM (x)|+ ‖f − fM‖p ‖g‖q + ‖fM‖p ‖g − gM‖q (46)

≤ |fM ? gM (x)|+ ‖f − fM‖p ‖g‖q + ‖f‖p ‖g − gM‖q . (47)

But notice that when |x| > 2M , the sets [−M,M ] and [x−M,x+M ] are disjoint, so we
have that

fM ? gM (x) =

∫
f(x− y)g(y)I[−M,M ](x− y)I[−M,M ](y) dy (48)

=

∫
f(x− y)g(y)I[−M,M ]∩[x−M,x+M ](y) dy (49)

= 0. (50)

Therefore, we see that for any M ,

lim sup
|x|→∞

|f ? g(x)| ≤ ‖f − fM‖p ‖g‖q + ‖f‖p ‖g − gM‖q . (51)

Taking M → ∞, the dominated convergence theorem yields that the right-hand side
converges to 0. Hence, we conclude that lim|x|→∞ f ? g(x) = 0.
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