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1 Constructing the uniform measure on [0, 1)

In this section, we briefly describe how to construct the uniform measure (also the Lebesgue mea-
sure) on [0,1). We will mostly follow Dembo’s notes and Sections 1, 2 in Billingsley [1].

Consider sets that are finite disjoint unions of intervals in [0,1). Let By denote this family of
sets:

B():{A: U[ak,bk):Ogal<b1<~-<an<bn§1,n€N}.
k=1

It is easy to verify that By is an algebra: it is closed under complement and union, and () € By.
Now, define set function A : By — [0, 1] as

i k—ak for A= Uak,bk
k=1 k=1

We claim that A is a probability measure on By. Clearly, A(A) € [0,1] for all A € By, A\(#) = 0, and
A([0,1)) = 1. It remains to show that X is countably additive, that is,

A=A, A Ay € By, A disjoint implies A(A) = > A(Ay)
k=1 i

To achieve this, we need the following result on the length of intervals. For a (finite) interval
I =la,b), let |[I| =b— a denote its length.

Lemma 1.1 (Theorem 1.3, [1]). Let I and {I}};-, be intervals.
(i) If Uy I C I and the I}, are disjoint, then Y, || < |I|.
(ii) If I C Uy Ir, then |I| <37, |1k

(1it) If I = J, I, and the Iy, are disjoint, then |I| =", |Ix|.

In particular, (iii) ensures that the length of an interval is not only finitely but also countably
additive, which we will now use to show that A is also countably additive. Let A = (J;_; I and
A = U;n:kl Jij be the disjoint interval representations. Then for all 7, we have

oo My oo My
Ii:IimA:Iim UUJk] :UUIZ'ﬂka.
k=1j=1 k=1j=1



I; N Jy; are disjoint intervals, so we can apply Lemma (iii) twice to get

n n oo Mmg oo Mg
=51 Z Zu mJ,w\_ZZuk]\—ZAAk
i=1 i=1 k=1 j= k=1 j=1

This completes the proof.

As ) is a probability measure on the algebra By, the Caratheodory extension theorem states
that A has an unique extension onto B = o(By), giving the Lebesgue measure on Borel sets. Note
that A can be extended onto G, the family of measurable sets, which is strictly larger than B.
Proof of Lemma Let I = [a,b) and I} = [ak, bg).

(i) Finite case. Suppose there are n intervals. We perform induction on n. The result is obvious
when n = 1. Assume the result is true for n — 1, and let I; be sorted in the increasing order,
then we have by < a, < b, < b for all K < n — 1. Now, the smaller interval [a,a,) contains
Uz;é I, so by the inductive assumption we have 327" |Ix| < a, — a. This gives

n n—1
Skl =D Tkl + (b — an) < (an —a) + (bp — an) =bp —a <b—a =],
k= =1

verifying the result for n.

Infinite case. For all n we have >}, [Iz| < |I| by the finite case. Letting n — oo gives the
result.

(ii) Finite case. Induction. Assume the result is true for n—1. Then, there is at least one interval,
WLOG [ap, by), such that a, < b < b,. This interval covers the [a,,b) portion of I, so the
rest must cover [a, ay). By the inductive assumption, a, —a < ZZ;% |I;|. This gives

n—1 n
I =b—a=(an—a)+(b—a) < > el +bn—an) = Sl
k=1 k=1

Infinite case. By the assumption

(@G:

[a,b) C | [ak, bk),

k=1

we have -
la,b—¢] c | (ak Qk,bk> forall0 < & < b—a,
k=1
as the LHS is a smaller set and the RHS is a larger set. However, as the interval [a,b — €] is

compact and the RHS is an open cover, it must have a finite subcover, WLOG k € {1,...,n},
giving that

LnJ (ak 2k7bk:) [a,b—¢] D [a,b—¢).

k=1
Applying the finite case, we get

n o0
b—a<€+2(bk—ak+2) Z(bk—ak ) + 2¢ Zbk—(lk ) + 2e.
k=1

k=1 k=1

Taking € — 0 gives the desired result.



(iii) Follows from (i) and (ii).

2 Proof of existence in Caratheodory’s extension theorem

In this section, we prove the existence part in Caratheodory’s extension theorem: a probability
measure P on a field Fy has an extension to o(Fp). We will follow Section 3 in Billingsley [1].
For any set A C (), define its outer measure by

P*(A f P(A
( ) {An }lcri)vers AZ

P*(A) measures the size of a set A by its smallest countable Fy-cover. One can check that it
satisfies the following properties:

(i) P*(0) =

) P
(ii) Nonnegativity: P*(A) > 0 for all A C Q.

(iii) Monotonicity: A C B implies P*(A) < P*(B).
(iv)

Properties (i) - (iii) are relatively easy to verify; (iv) can be verified by constructing covers of A,
wiithin /2" of the outer measure. We note that (iv) also implies finite subadditivity, in particular,
P*(AUB) < P*(A) + P*(B).

Now, we define a class of sets

Countable subadditivity: if A C |J,, A, then P*(A4) <> P*(Ay).

G ={ACQ:P"(ENA)+ P (ENA°) =P*E) for all E C Q}.

Our goal is to show that P* restricted on G is the extension of P. The class G contains o(Fp) and
is what we will later call measurable sets. Also, as a consequence of finite subadditivity, the “>”
direction in the defining equality always holds, so we only need to check the “<” direction in order
to show that a set is in G.

Lemma 2.1. The class G is an algebra.

Proof Clearly () € G, and A € G implies A° € G by symmetry of the definition, so it remains to
show that G is closed under intersection. For any A, B € G and E C (), we have

P*(B) = P*(ENA) + P*(EN A°)
=P (ENANB)+ P (ENANB°)+ P (ENA°NB)+ P*(ENA°N B°)
> P*(ENANB) + P* <EmAmBCUEmACmBUEmACmBC>
= P*(EN(ANB))+ P* (EN(ANB)),

which shows AN B € G. O



Lemma 2.2. If A, Ao, ... are disjoint G-sets, then for all E C €,

P* (Eﬂ (LnJAn» = ;P*(EﬁAn).

Proof Finite case. Suppose there are n sets Aq,...,A,. When n = 1 this is obvious. Assume
the result holds with n — 1, then letting B = Ule A; for all k, we have

P(ENB,) =P (ENB,NB,_1)+P(ENB,NB;_,;)

n—1
n—1 n
=P*(ENBn 1)+ P(ENAy) =Y PYENA)+P(ENA,) =Y P (ENA).
i=1 1=1
By induction, the result is true for all finite collections.

Infinite case. As P* is countably subadditive, we need only show the “>” direction. By
monotonicity and the finite case,

 (sn(Un)) = (0 (08)) - S e
i i=1 i=1
for all n. Letting n — oo, we get

P* (Eﬂ (UA)) > iP*(EﬂAn).

i=1

Lemma 2.3. The class G is a o-algebra, and P* restricted on G is countably additive.

Proof Suppose A, Ag, ... are disjoint G-sets. Let B = J A; and B,, = |J;"_; 4;. For any E C Q,
we have

P*(E) = P*(ENB,)+P*(ENB) = > P*(ENA)+P*(ENB;) > Y PYENA)+P(ENB°).
i=1 =1

Letting n — 0o, we obtain

P*(E) > iP*(EﬁAi) + P*(EN B°) = P*(ENB) + P*(EN B,

=1

where we applied Lemma to get the last equality. This shows that B € G, and so G is a
o-algebra. Taking £ = B in the above inequality gives countable additivity. O

Lemma 2.4. We have Fy € G.

Proof Let A € Fy and take any E C Q. For any € > 0, there exists a cover {4,} C Fy of E
such that ) P(A,) < P*(E)+e¢. Let B, = A, N A and C,, = A, N A°, these sets are all in Fy
and cover EN A and E N A¢, respectively. So we have

P*(ENA)+P*(ENA%) <> P(A,NA)+ > P(A,NA°) =) P(A,) < P*(E) +e.

Letting e — 0, we get A € G. O



Lemma 2.5. P* restricted on Fy is equal to P, i.e.
P*(A) = P(A), for all A € Fy.

Proof Let A € Fy. Clearly A itself covers A, so P*(A) < P(A). Conversely, if {4, } is a Fp-cover
of A, then by the countable subadditivity and monotonicity of P on Fy, we have

P(A) <) P(ANA,) <) P(Ay).

Taking inf over all covers gives that P(A4) < P*(A). O

Proof of existence of extension By Lemmas and the outer measure P* extends
P onto G, which is a o-algebra that contains Fy. Thus, G D o(Fp). As P* is a probability measure
on G, it is also a probability measure when restricted to o(Fp). O
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