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1 Constructing the uniform measure on [0, 1)

In this section, we briefly describe how to construct the uniform measure (also the Lebesgue mea-
sure) on [0, 1). We will mostly follow Dembo’s notes and Sections 1, 2 in Billingsley [1].

Consider sets that are finite disjoint unions of intervals in [0, 1). Let B0 denote this family of
sets:

B0 =

{
A =

n⋃
k=1

[ak, bk) : 0 ≤ a1 < b1 < · · · < an < bn ≤ 1, n ∈ N

}
.

It is easy to verify that B0 is an algebra: it is closed under complement and union, and ∅ ∈ B0.
Now, define set function λ : B0 → [0, 1] as

λ(A) =
n∑

k=1

(bk − ak) for A =
n⋃

k=1

[ak, bk).

We claim that λ is a probability measure on B0. Clearly, λ(A) ∈ [0, 1] for all A ∈ B0, λ(∅) = 0, and
λ([0, 1)) = 1. It remains to show that λ is countably additive, that is,

A =

∞⋃
k=1

Ak, A,Ak ∈ B0, Ak disjoint implies λ(A) =

∞∑
i=1

λ(Ai).

To achieve this, we need the following result on the length of intervals. For a (finite) interval
I = [a, b), let |I| = b− a denote its length.

Lemma 1.1 (Theorem 1.3, [1]). Let I and {Ik}∞k=0 be intervals.

(i) If
⋃

k Ik ⊂ I and the Ik are disjoint, then
∑

k |Ik| ≤ |I|.

(ii) If I ⊂
⋃

k Ik, then |I| ≤
∑

k |Ik|.

(iii) If I =
⋃

k Ik and the Ik are disjoint, then |I| =
∑

k |Ik|.

In particular, (iii) ensures that the length of an interval is not only finitely but also countably
additive, which we will now use to show that λ is also countably additive. Let A =

⋃n
k=1 Ik and

Ak =
⋃mk

j=1 Jkj be the disjoint interval representations. Then for all i, we have

Ii = Ii ∩A = Ii
⋂ ∞⋃

k=1

mk⋃
j=1

Jkj

 =

∞⋃
k=1

mk⋃
j=1

Ii ∩ Jkj .
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Ii ∩ Jkj are disjoint intervals, so we can apply Lemma 1.1(iii) twice to get

λ(A) =
n∑

i=1

|Ii| =
n∑

i=1

∞∑
k=1

mk∑
j=1

|Ii ∩ Jkj | =
∞∑
k=1

mk∑
j=1

|Jkj | =
∞∑
k=1

λ(Ak).

This completes the proof.
As λ is a probability measure on the algebra B0, the Caratheodory extension theorem states

that λ has an unique extension onto B = σ(B0), giving the Lebesgue measure on Borel sets. Note
that λ can be extended onto G, the family of measurable sets, which is strictly larger than B.
Proof of Lemma 1.1 Let I = [a, b) and Ik = [ak, bk).

(i) Finite case. Suppose there are n intervals. We perform induction on n. The result is obvious
when n = 1. Assume the result is true for n− 1, and let Ik be sorted in the increasing order,
then we have bk ≤ an < bn ≤ b for all k ≤ n − 1. Now, the smaller interval [a, an) contains⋃n−1

k=0 Ik, so by the inductive assumption we have
∑n−1

k=1 |Ik| ≤ an − a. This gives

n∑
k=1

|Ik| =
n−1∑
k=1

|Ik|+ (bn − an) ≤ (an − a) + (bn − an) = bn − a ≤ b− a = |I|,

verifying the result for n.

Infinite case. For all n we have
∑n

k=1 |Ik| ≤ |I| by the finite case. Letting n → ∞ gives the
result.

(ii) Finite case. Induction. Assume the result is true for n−1. Then, there is at least one interval,
WLOG [an, bn), such that an < b ≤ bn. This interval covers the [an, b) portion of I, so the
rest must cover [a, an). By the inductive assumption, an − a ≤

∑n−1
k=1 |Ik|. This gives

|I| = b− a = (an − a) + (b− an) ≤
n−1∑
k=1

|Ik|+ (bn − an) =
n∑

k=1

|Ik|.

Infinite case. By the assumption

[a, b) ⊂
∞⋃
k=1

[ak, bk),

we have

[a, b− ε] ⊂
∞⋃
k=1

(
ak −

ε

2k
, bk

)
for all 0 < ε < b− a,

as the LHS is a smaller set and the RHS is a larger set. However, as the interval [a, b− ε] is
compact and the RHS is an open cover, it must have a finite subcover, WLOG k ∈ {1, . . . , n},
giving that

n⋃
k=1

(
ak −

ε

2k
, bk

)
⊃ [a, b− ε] ⊃ [a, b− ε).

Applying the finite case, we get

b− a ≤ ε+

n∑
k=1

(
bk − ak +

ε

2k

)
≤

n∑
k=1

(bk − ak) + 2ε ≤
∞∑
k=1

(bk − ak) + 2ε.

Taking ε→ 0 gives the desired result.
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(iii) Follows from (i) and (ii).

2 Proof of existence in Caratheodory’s extension theorem

In this section, we prove the existence part in Caratheodory’s extension theorem: a probability
measure P on a field F0 has an extension to σ(F0). We will follow Section 3 in Billingsley [1].

For any set A ⊂ Ω, define its outer measure by

P ∗(A) = inf
{An} covers A

∞∑
n=1

P (An).

P ∗(A) measures the size of a set A by its smallest countable F0-cover. One can check that it
satisfies the following properties:

(i) P ∗(∅) = 0.

(ii) Nonnegativity: P ∗(A) ≥ 0 for all A ⊂ Ω.

(iii) Monotonicity: A ⊂ B implies P ∗(A) ≤ P ∗(B).

(iv) Countable subadditivity: if A ⊂
⋃

nAn, then P ∗(A) ≤
∑

n P
∗(An).

Properties (i) - (iii) are relatively easy to verify; (iv) can be verified by constructing covers of An

wiithin ε/2n of the outer measure. We note that (iv) also implies finite subadditivity, in particular,
P ∗(A ∪B) ≤ P ∗(A) + P ∗(B).

Now, we define a class of sets

G := {A ⊂ Ω : P∗(E ∩A) + P ∗(E ∩Ac) = P ∗(E) for all E ⊂ Ω}.

Our goal is to show that P ∗ restricted on G is the extension of P . The class G contains σ(F0) and
is what we will later call measurable sets. Also, as a consequence of finite subadditivity, the “≥”
direction in the defining equality always holds, so we only need to check the “≤” direction in order
to show that a set is in G.

Lemma 2.1. The class G is an algebra.

Proof Clearly ∅ ∈ G, and A ∈ G implies Ac ∈ G by symmetry of the definition, so it remains to
show that G is closed under intersection. For any A,B ∈ G and E ⊂ Ω, we have

P ∗(E) = P ∗(E ∩A) + P ∗(E ∩Ac)

= P ∗(E ∩A ∩B) + P ∗(E ∩A ∩Bc) + P ∗(E ∩Ac ∩B) + P ∗(E ∩Ac ∩Bc)

≥ P ∗(E ∩A ∩B) + P ∗
(
E ∩A ∩Bc

⋃
E ∩Ac ∩B

⋃
E ∩Ac ∩Bc

)
= P ∗(E ∩ (A ∩B)) + P ∗ (E ∩ (A ∩B)c) ,

which shows A ∩B ∈ G.
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Lemma 2.2. If A1, A2, . . . are disjoint G-sets, then for all E ⊂ Ω,

P ∗

(
E
⋂(⋃

n

An

))
=
∑
n

P ∗(E ∩An).

Proof Finite case. Suppose there are n sets A1, . . . , An. When n = 1 this is obvious. Assume
the result holds with n− 1, then letting Bk =

⋃k
i=1Ai for all k, we have

P ∗(E ∩Bn) = P ∗(E ∩Bn ∩Bn−1) + P ∗(E ∩Bn ∩Bc
n−1)

= P ∗(E ∩Bn−1) + P ∗(E ∩An) =

n−1∑
i=1

P ∗(E ∩Ai) + P ∗(E ∩An) =

n∑
i=1

P ∗(E ∩Ai).

By induction, the result is true for all finite collections.
Infinite case. As P ∗ is countably subadditive, we need only show the “≥” direction. By

monotonicity and the finite case,

P ∗

(
E
⋂(⋃

i

Ai

))
≥ P ∗

(
E
⋂(

n⋃
i=1

Ai

))
=

n∑
i=1

P ∗(E ∩An)

for all n. Letting n→∞, we get

P ∗

(
E
⋂(⋃

i

Ai

))
≥
∞∑
i=1

P ∗(E ∩An).

Lemma 2.3. The class G is a σ-algebra, and P ∗ restricted on G is countably additive.

Proof Suppose A1, A2, . . . are disjoint G-sets. Let B =
⋃
Ai and Bn =

⋃n
i=1Ai. For any E ⊂ Ω,

we have

P ∗(E) = P ∗(E∩Bn)+P ∗(E∩Bc
n) =

n∑
i=1

P ∗(E∩Ai)+P ∗(E∩Bc
n) ≥

n∑
i=1

P ∗(E∩Ai)+P ∗(E∩Bc).

Letting n→∞, we obtain

P ∗(E) ≥
∞∑
i=1

P ∗(E ∩Ai) + P ∗(E ∩Bc) = P ∗(E ∩B) + P ∗(E ∩Bc),

where we applied Lemma 2.2 to get the last equality. This shows that B ∈ G, and so G is a
σ-algebra. Taking E = B in the above inequality gives countable additivity.

Lemma 2.4. We have F0 ∈ G.

Proof Let A ∈ F0 and take any E ⊂ Ω. For any ε > 0, there exists a cover {An} ⊂ F0 of E
such that

∑
n P (An) ≤ P ∗(E) + ε. Let Bn = An ∩ A and Cn = An ∩ Ac, these sets are all in F0

and cover E ∩A and E ∩Ac, respectively. So we have

P ∗(E ∩A) + P ∗(E ∩Ac) ≤
∑
n

P (An ∩A) +
∑
n

P (An ∩Ac) =
∑
n

P (An) ≤ P ∗(E) + ε.

Letting ε→ 0, we get A ∈ G.
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Lemma 2.5. P ∗ restricted on F0 is equal to P , i.e.

P ∗(A) = P (A), for all A ∈ F0.

Proof Let A ∈ F0. Clearly A itself covers A, so P ∗(A) ≤ P (A). Conversely, if {An} is a F0-cover
of A, then by the countable subadditivity and monotonicity of P on F0, we have

P (A) ≤
∑
n

P (A ∩An) ≤
∑
n

P (An).

Taking inf over all covers gives that P (A) ≤ P ∗(A).

Proof of existence of extension By Lemmas 2.3, 2.4, and 2.5, the outer measure P ∗ extends
P onto G, which is a σ-algebra that contains F0. Thus, G ⊃ σ(F0). As P ∗ is a probability measure
on G, it is also a probability measure when restricted to σ(F0).
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