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1 Characterization of distribution functions

In this section, we give necessary and sufficient conditions for a function F : R → [0, 1] to be a
distribution function.

Theorem 1 (Thm 1.2.36, Dembo’s Notes). A function F : R→ [0, 1] is a distribution function of
some R.V. if and only if

(a) F is non-decreasing;

(b) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0;

(c) F is right-continuous, i.e. limy↓x F (y) = F (x).

Proof “⇒”. Let F be the distribution of some random variable X on a probability space
(Ω,F , P ). Let x ≤ y, then {ω : X(ω) ≤ x} ⊆ {ω : X(ω) ≤ y}, hence F (x) = P(X ≤ x) ≤ P(X ≤
y) = F (y). By continuity of P , we have

lim
x→∞

F (x) = lim
x→∞

P ({ω : X(ω) ≤ x}) = P ( lim
x→∞

{ω : X(ω) ≤ x}) = P (Ω) = 1

and similarly limx→0 F (x) = P (∅) = 0. Take x ∈ R, we have

lim
y↓x
{ω : X(ω) ≤ y} = {ω : X(ω) ≤ x}.

Hence by continuity of P ,

lim
y↓x

F (y) = lim
y↓x

P ({ω : X(ω) ≤ y}) = P ({ω : X(ω) ≤ x}) = F (x).

“⇐”. We define X−(ω) = sup {y : F (y) < ω} on the probability space ((0, 1],B(0,1], U), i.e.
(0, 1] with the uniform distribution. Note that for all ω ∈ (0, 1), as F is non-decreasing and its
range contains (0, 1), the set {y : F (y) ≤ ω} is non-empty and has a finite upper bound. Hence
X− : (0, 1)→ R is well-defined.

We are going to show that the distribution function of X− equals to F . We claim that for all
x ∈ R, {

ω : X−(ω) ≤ x
}

= {ω : ω ≤ F (x)}. (1)

This implies that the LHS is in B(0,1] and that

U(
{
ω : X−(ω) ≤ x

}
) = U({ω : ω ≤ F (x)}) = U((0, F (x)]) = F (x),

so the distribution function of X−(ω) is F .
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It remains to show (1). Suppose F (x) ≥ ω, then by monotonicity x ≥ y for all y such that
F (y) < ω, giving that X−(ω) = sup {y : F (y) < ω} ≤ x. Conversely, suppose X−(ω) ≤ x, we claim
that F (x) ≥ ω has to be true. If not, then F (x) < ω. By the right continuity of F , there exists
some ε > 0 such that F (x+ ε) < ω, giving that

X−(ω) = sup {y : F (y) < ω} ≥ x+ ε > x,

a contradiction. Hence, we must have F (x) ≥ ω.

2 Completion of measure spaces

A nice property about the Lebesgue measure is the following: any subset of a measure-zero set is
measurable. To see this, for example on R, let A have measure zero and B ⊂ A. For any E ⊂ R,
we have

P ∗(E ∩B) + P ∗(E ∩Bc)

≤ P ∗(E ∩A) + P ∗(E ∩Bc ∩Ac) + P ∗(E ∩Bc ∩A)

= P ∗(E ∩A) + P ∗(E ∩Ac) + P ∗(E ∩ (A \B)) = P ∗(E ∩A) + P ∗(E ∩Ac) = P ∗(E).

(2)

The last equality follows as E ∩ (A \B) is a subset of A, so P ∗(E ∩ (A \B)) ≤ P ∗(A) = 0. Hence,
B is measurable, and P (B) ≤ P (A) = 0.

However, such a property might not be present in a general measure space. We are going present
a result saying that one can always slightly enlarge the σ-algebra and extend the measure to get
this property.

Definition 1 (Def 1.1.34, Dembo’s Notes). We say that a measure space (Ω,F , µ) is complete if
any subset N of any B ∈ F with µ(B) = 0 is also in F .

Theorem 2 (Thm 1.1.35, Dembo’s Notes). Given a measure space (Ω,F , µ), let

N = {N : N ⊆ A for some A ∈ F with µ(A) = 0}

denote the collection of µ-null sets. Then, there exists a complete measure space (Ω,F , µ), called
the completion of the measure space (Ω,F , µ), such that F = {F ∪N : F ∈ F , N ∈ N} and µ = µ
on F .

Intuitively the result is quite expected: we can add all the µ-null sets into F and let them have
measure zero.
Proof We divide the proof into the following steps.

(1) F is a σ-algebra.

Clearly ∅ ∈ F . Take any B ∈ F , then B = F ∪N with F ∈ F and N ∈ N . In particular, there
exists A ∈ F such that µ(A) = 0 and N ⊆ A. Thus

Bc = F c ∩N c = ((F c ∩A) ∩N c) ∪ ((F c ∩Ac) ∩N c) = (F c ∩Ac) ∪ (F c ∩A ∩N c) .

As F c ∩Ac ∈ F and F c ∩A ∩N c ⊆ A, we have Bc ∈ F . For any {Bn} ∈ F , let Bn = Fn ∪Nn

and Nn ⊆ An be their decompositions, then

⋃
n

Bn =

(⋃
n

Fn

)
∪

(⋃
n

Nn

)
.
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As
⋃

nNn ⊆
⋃

nAn and
⋃

nAn ∈ F with µ(
⋃

nAn) =
∑

n µ(An) = 0, we have
⋃

nNn ∈ N and
thus

⋃
nBn ∈ F .

(2) Define µ(B) = µ(F ) for B = F ∪N , F ∈ F , N ∈ N . µ is well defined.

We need to verify that if B have two decompositions B = F1 ∪ N1 and B = F2 ∪ N2, then
µ(F1) = µ(F2). Indeed, we have

F1 ⊆ F1 ∪N1 = B = F2 ∪N2 ⊆ F2 ∪A2,

where µ(A2) = 0. Hence µ(F1) ≤ µ(F2 ∪ A2) ≤ µ(F2) + µ(A2) = µ(F2). That µ(F2) ≤ µ(F1)
follows by exchanging the roles of F1 and F2.

(3) µ is a measure on F and agrees with µ on F .

Clearly µ(∅) = 0. Let {Bn} be a sequence of disjoint sets in F with decompositions Bn =
Fn ∪Nn. As Fn and Nn are all disjoint, we have

µ

(⋃
n

Bn

)
= µ

(⋃
n

Fn ∪
⋃
n

Nn

)
= µ

(⋃
n

Fn

)
=
∑
n

µ(Fn) =
∑
n

µ(Bn).

Hence µ is countably additive. For any F ∈ F , F = F ∪ ∅, so µ(F ) = µ(F ).

(4) (Ω,F , µ) is complete.

Take any B ∈ F with µ(B) = 0. Then B = F ∪ N for some F ∈ F and N ∈ N . We have
µ(F ) = µ(F ) ≤ µ(B) = 0, so F itself is a measure-zero set in F , hence B ∈ N . (A∪F contains
B for A containing N .) So if C ⊆ B, then C ∈ N , and thus C ∈ F .

Remark Another way of constructing the completion is to look at the outer measure µ∗ on
µ∗-measurable sets G. One can show that this construction coincides with our construction, in
particular, G = F . (See Exercise 3.10(c) in Billingsley [1].)
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