October 4, 2019

1 Characterization of distribution functions

In this section, we give necessary and sufficient conditions for a function $F : \mathbb{R} \to [0,1]$ to be a distribution function.

Theorem 1 (Thm 1.2.36, Dembo's Notes). A function $F : \mathbb{R} \to [0,1]$ is a distribution function of some R.V. if and only if

- (a) F is non-decreasing;
- (b) $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$;

(c) F is right-continuous, i.e. $\lim_{y \downarrow x} F(y) = F(x)$.

Proof " \Rightarrow ". Let F be the distribution of some random variable X on a probability space (Ω, \mathcal{F}, P) . Let $x \leq y$, then $\{\omega : X(\omega) \leq x\} \subseteq {\{\omega : X(\omega) \leq y\}}$, hence $F(x) = \mathbb{P}(X \leq x) \leq \mathbb{P}(X \leq x)$ $y) = F(y)$. By continuity of P, we have

$$
\lim_{x \to \infty} F(x) = \lim_{x \to \infty} P(\{\omega : X(\omega) \le x\}) = P(\lim_{x \to \infty} \{\omega : X(\omega) \le x\}) = P(\Omega) = 1
$$

and similarly $\lim_{x\to 0} F(x) = P(\emptyset) = 0$. Take $x \in \mathbb{R}$, we have

$$
\lim_{y \downarrow x} {\{\omega : X(\omega) \le y\}} = {\{\omega : X(\omega) \le x\}}.
$$

Hence by continuity of P ,

$$
\lim_{y \downarrow x} F(y) = \lim_{y \downarrow x} P(\{\omega : X(\omega) \le y\}) = P(\{\omega : X(\omega) \le x\}) = F(x).
$$

" \Leftarrow ". We define $X^{-}(\omega) = \sup \{y : F(y) < \omega\}$ on the probability space $((0,1], \mathcal{B}_{(0,1]}, U)$, i.e. $(0, 1]$ with the uniform distribution. Note that for all $\omega \in (0, 1)$, as F is non-decreasing and its range contains (0, 1), the set $\{y : F(y) \leq \omega\}$ is non-empty and has a finite upper bound. Hence $X^-:(0,1)\to\mathbb{R}$ is well-defined.

We are going to show that the distribution function of X^- equals to F. We claim that for all $x \in \mathbb{R},$

$$
\{\omega : X^-(\omega) \le x\} = \{\omega : \omega \le F(x)\}.
$$
\n(1)

This implies that the LHS is in $\mathcal{B}_{(0,1]}$ and that

$$
U(\{\omega : X^-(\omega) \le x\}) = U(\{\omega : \omega \le F(x)\}) = U((0, F(x)]) = F(x),
$$

so the distribution function of $X^{-}(\omega)$ is F.

It remains to show [\(1\)](#page-0-0). Suppose $F(x) \geq \omega$, then by monotonicity $x \geq y$ for all y such that $F(y) < \omega$, giving that $X^{-}(\omega) = \sup \{y : F(y) < \omega\} \leq x$. Conversely, suppose $X^{-}(\omega) \leq x$, we claim that $F(x) \geq \omega$ has to be true. If not, then $F(x) < \omega$. By the right continuity of F, there exists some $\varepsilon > 0$ such that $F(x + \varepsilon) < \omega$, giving that

$$
X^{-}(\omega) = \sup \{ y : F(y) < \omega \} \ge x + \varepsilon > x,
$$

a contradiction. Hence, we must have $F(x) \geq \omega$.

2 Completion of measure spaces

A nice property about the Lebesgue measure is the following: any subset of a measure-zero set is measurable. To see this, for example on R, let A have measure zero and $B \subset A$. For any $E \subset \mathbb{R}$, we have

$$
P^*(E \cap B) + P^*(E \cap B^c)
$$

\n
$$
\leq P^*(E \cap A) + P^*(E \cap B^c \cap A^c) + P^*(E \cap B^c \cap A)
$$

\n
$$
= P^*(E \cap A) + P^*(E \cap A^c) + P^*(E \cap (A \setminus B)) = P^*(E \cap A) + P^*(E \cap A^c) = P^*(E).
$$
\n(2)

The last equality follows as $E \cap (A \setminus B)$ is a subset of A, so $P^*(E \cap (A \setminus B)) \le P^*(A) = 0$. Hence, B is measurable, and $P(B) \leq P(A) = 0$.

However, such a property might not be present in a general measure space. We are going present a result saying that one can always slightly enlarge the σ -algebra and extend the measure to get this property.

Definition 1 (Def 1.1.34, Dembo's Notes). We say that a measure space $(\Omega, \mathcal{F}, \mu)$ is complete if any subset N of any $B \in \mathcal{F}$ with $\mu(B) = 0$ is also in \mathcal{F} .

Theorem 2 (Thm 1.1.35, Dembo's Notes). Given a measure space $(\Omega, \mathcal{F}, \mu)$, let

 $\mathcal{N} = \{ N : N \subseteq A \text{ for some } A \in \mathcal{F} \text{ with } \mu(A) = 0 \}$

denote the collection of μ -null sets. Then, there exists a complete measure space $(\Omega, \overline{F}, \overline{\mu})$, called the completion of the measure space $(\Omega, \mathcal{F}, \mu)$, such that $\overline{\mathcal{F}} = \{F \cup N : F \in \mathcal{F}, N \in \mathcal{N}\}\$ and $\overline{\mu} = \mu$ on F.

Intuitively the result is quite expected: we can add all the μ -null sets into $\mathcal F$ and let them have measure zero.

Proof We divide the proof into the following steps.

(1) $\overline{\mathcal{F}}$ is a σ -algebra.

Clearly $\emptyset \in \overline{\mathcal{F}}$. Take any $B \in \overline{\mathcal{F}}$, then $B = F \cup N$ with $F \in \mathcal{F}$ and $N \in \mathcal{N}$. In particular, there exists $A \in \mathcal{F}$ such that $\mu(A) = 0$ and $N \subseteq A$. Thus

$$
B^c = F^c \cap N^c = ((F^c \cap A) \cap N^c) \cup ((F^c \cap A^c) \cap N^c) = (F^c \cap A^c) \cup (F^c \cap A \cap N^c).
$$

As $F^c \cap A^c \in \mathcal{F}$ and $F^c \cap A \cap N^c \subseteq A$, we have $B^c \in \overline{\mathcal{F}}$. For any $\{B_n\} \in \overline{\mathcal{F}}$, let $B_n = F_n \cup N_n$ and $N_n \subseteq A_n$ be their decompositions, then

$$
\bigcup_n B_n = \left(\bigcup_n F_n\right) \cup \left(\bigcup_n N_n\right).
$$

 \Box

As $\bigcup_n N_n \subseteq \bigcup_n A_n$ and $\bigcup_n A_n \in \mathcal{F}$ with $\mu(\bigcup_n A_n) = \sum_n \mu(A_n) = 0$, we have $\bigcup_n N_n \in \mathcal{N}$ and thus $\bigcup_n B_n \in \overline{\mathcal{F}}$.

(2) Define $\overline{\mu}(B) = \mu(F)$ for $B = F \cup N$, $F \in \mathcal{F}$, $N \in \mathcal{N}$. $\overline{\mu}$ is well defined.

We need to verify that if B have two decompositions $B = F_1 \cup N_1$ and $B = F_2 \cup N_2$, then $\mu(F_1) = \mu(F_2)$. Indeed, we have

$$
F_1 \subseteq F_1 \cup N_1 = B = F_2 \cup N_2 \subseteq F_2 \cup A_2,
$$

where $\mu(A_2) = 0$. Hence $\mu(F_1) \leq \mu(F_2 \cup A_2) \leq \mu(F_2) + \mu(A_2) = \mu(F_2)$. That $\mu(F_2) \leq \mu(F_1)$ follows by exchanging the roles of F_1 and F_2 .

(3) $\bar{\mu}$ is a measure on $\bar{\mathcal{F}}$ and agrees with μ on \mathcal{F} .

Clearly $\overline{\mu}(\emptyset) = 0$. Let ${B_n}$ be a sequence of disjoint sets in $\overline{\mathcal{F}}$ with decompositions $B_n =$ $F_n \cup N_n$. As F_n and N_n are all disjoint, we have

$$
\overline{\mu}\left(\bigcup_n B_n\right) = \overline{\mu}\left(\bigcup_n F_n \cup \bigcup_n N_n\right) = \mu\left(\bigcup_n F_n\right) = \sum_n \mu(F_n) = \sum_n \overline{\mu}(B_n).
$$

Hence $\overline{\mu}$ is countably additive. For any $F \in \mathcal{F}$, $F = F \cup \emptyset$, so $\overline{\mu}(F) = \mu(F)$.

(4) $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ is complete.

Take any $B \in \overline{\mathcal{F}}$ with $\overline{\mu}(B) = 0$. Then $B = F \cup N$ for some $F \in \mathcal{F}$ and $N \in \mathcal{N}$. We have $\mu(F) = \overline{\mu}(F) \leq \overline{\mu}(B) = 0$, so F itself is a measure-zero set in F, hence $B \in \mathcal{N}$. (A \cup F contains B for A containing N.) So if $C \subseteq B$, then $C \in \mathcal{N}$, and thus $C \in \overline{\mathcal{F}}$.

 \Box

Remark Another way of constructing the completion is to look at the outer measure μ^* on μ^* -measurable sets G. One can show that this construction coincides with our construction, in particular, $\mathcal{G} = \overline{\mathcal{F}}$. (See Exercise 3.10(c) in Billingsley [\[1\]](#page-2-0).)

References

[1] P. Billingsley. Probability and measure. John Wiley & Sons, 2008.