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1 Comparison of Riemann and Lebesgue integral

It frequently happens that we are required to compute an integral
∫
(a,b] f(x)dx where f is Lebesgue

measurable on ((a, b],G(a,b], λ). How do we compute this integral? Well, we could follow the
definition (approximate by simple functions) or use change of variables formula, both still being
quite complicated tasks. In practice, however, we often simply compute the Riemannian integral
(e.g. by finding the primitive F and computing F (b)− F (a)).

We show that any non-negative Riemann integrable function on (a, b] will also be Lebesgue
measurable (hence integrable) with coinciding integral values, justifying their relation.

Definition 1. A function f : (a, b] → [0,∞] is Riemann integrable with integral R(f) < ∞ if for
any ε > 0 there exists δ = δ(ε) > 0 such that |

∑
l f(xl)λ(Jl)− R(f)| ≤ ε for any xl ∈ Jl and {Jl}

a finite partition of (a, b] into disjoint intervals whose length λ(Jl) ≤ δ.

Proposition 1 (Proposition 1.3.64, Dembo’s Notes). If f(x) is a non-negative Riemann integrable
function on an interval (a, b], then it is also Lebesgue measurable on (a, b] and λ(f) = R(f).

Proof For any ε > 0, there exists some δ > 0, such that for all partition {Jl} of size ≤ δ and
any xl ∈ Jl

R(f)− ε ≤
∑
l

f(xl)λ(Jl) ≤ R(f) + ε.

Define f∗(J) = inf {f(x) : x ∈ J} and f∗(J) = sup {f(x) : x ∈ J}. Varying xl in the above bound,
we see that

R(f)− ε ≤
∑
l

f∗(Jl)λ(Jl) ≤
∑
l

f∗(Jl)λ(Jl) ≤ R(f) + ε.

Written differently, if we define for any partition Π

`(Π)(x) =
∑
l

f∗(Jl)1{x ∈ Jl}, u(Π)(x) =
∑
l

f∗(Jl)1{x ∈ Jl}.

then `(Π) and u(Π) are non-negative simple functions with Lebesgue integrals
∑

l f∗(Jl)λ(Jl) and∑
l f
∗(Jl)λ(Jl). Consequently, as long as Π has size ≤ δ, we have R(f)− ε ≤ λ(`(Π)) ≤ λ(u(Π)) ≤

R(f) + ε.
Let Πn be the dyadic partition of (a, b] to 2n intervals of equal length (b−a)2−n. For sufficiently

large n, R(f)−ε ≤ λ(`(Πn)) ≤ λ(u(Πn)) ≤ R(f)+ε. Noting that u(Πn) ≥ u(Πn+1) and so they have
a pointwise limit u(Πn) ↓ u∞ and similarly `(Πn) ↑ `∞, where u∞, `∞ are Lebesgue measurable.
By the motonicity of Lebesgue’s integral,

R(f)− ε ≤ lim inf
n→∞

λ(`(Πn)) ≤ λ(`∞) ≤ λ(u∞) ≤ lim sup
n→∞

λ(u(Πn)) ≤ R(f) + ε.
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Letting ε→ 0 gives λ(`∞) = λ(u∞) = R(f).
Finally, observe that `∞(x) ≤ f(x) ≤ u∞(x), and that

{x : f(x) 6= `∞(x)} ⊆ {x : u∞(x) > `∞(x)},

with the latter a measure-zero set (as u∞ ≥ `∞ and
∫

(u∞ − `∞)dx = 0). Hence, by the complete-
ness of the Lebesgue measure, {x : f(x) 6= `∞(x)} is also Lebesgue measurable with measure zero,
which implies that f is measurable and λ(f) = λ(`∞).

2 Miscellanous Examples

2.1 Set operations

We have seen some set operations in the the last HW (Exercise 1.2.30, Dembo’s Notes). Here we
make formal some set operations that will be useful later in the class.

As a motivation, let us think of how we could define the limit of sets (assuming a common
superset Ω). Recall that we define the limit of an increasing sequence of sets as limnAn =

⋃
nAn

and for a decreasing sequence as limnAn =
⋂

nAn. Then, for a general non-monotone sequence, we
are going to define the upper and lower limits for the sequence via constructing related monotone
sequences. For a sequence of sets {An}, we define

lim inf
n

An =

∞⋃
N=1

∞⋂
n=N

An = {ω : An(ω) happens for all large n},

lim sup
n

An =
∞⋂

N=1

∞⋃
n=N

An = {ω : An(ω) happens infinitely often}.

It is easy to verify that lim infnAn ⊆ lim supnAn, and we say that the limit of An exists if
lim infnAn = lim supnAn.

Let us practice set operations on an example: let X1, X2, . . . be a sequence of R.V.s and X∞
be an R.V., all defined on some measure space (Ω,F). Then,

{ω : Xn(ω)→ X∞(ω) as n→∞} =
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

{
ω : |Xn(ω)−X∞(ω)| ≤ 1

k

}
.

As we will see later, this relation is useful for characterizing almost sure convergence, in particular,
for showing that Xn

a.s.→ X∞ implies Xn
p→ X∞.

To show this, note that Xn(ω)→ X∞(ω) happens iff for all k ∈ N, |Xn(ω)−X∞(ω)| ≤ k−1 for
all large n. Hence,

{ω : Xn(ω)→ X∞(ω)} =

∞⋂
k=1

{
ω : |Xn(ω)−X∞(ω)| ≤ 1

k
for all large n

}
,

which implies the result.
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2.2 Generated σ-algebra

The following gives an example in which for an increasing sequence of σ-algebras Fn,
⋃

nFn is a
σ-algebra, thereby showing that σ(

⋃
nFn) )

⋃
nFn in general.

On R, define
Fn = σ({[a, b) : 2na, 2nb ∈ Z}),

i.e. Fn is generated by intervals whose endpoints are dyadic numbers with no more than n decimal
digits. Clearly Fn is an increasing sequence. We claim that [0, 13) ∈ σ(

⋃
nFn) \

⋃
nFn. Indeed,

take xn to be largest n-digit dyadic number below 1
3 . As dyadic numbers are dense, xn → 1

3 . Now,
[0, xn) ∈ Fn, hence

[0, 1/3) = ∪n[0, xn) ∈ σ(∪nFn).

However, [0, 13) does not belong to Fn for all n, as 1
3 is not dyadic.
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