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1 Uniform integrability

The dominated convergence theorem states that Xn
a.s.→ X∞ and |Xn| ≤ Y for some integrable Y

implies that Xn
L1→ X∞ and E[Xn] → E[X∞]. In this section, we explore uniform integrability,

a useful concept that allows us to relax both conditions assumed in the dominated convergence
theorem and still get L1 convergence. We will follow Section 1.3.4 in Dembo’s Notes.

Definition 1 (Uniform integrability). A collection of R.V.-s {Xα, α ∈ I} is called uniformly inte-
grable (U.I.) if

lim
n→∞

sup
α∈I

E[|Xα|1{|Xα| > M}] = 0.

Let us show that U.I. is indeed a relaxation of that |Xα| ≤ Y for some integrable Y .

Lemma 1.1. Let Y be integrable and suppose that |Xα| ≤ Y for all α, then {Xα} is U.I.. In partic-
ular, any finite collection of integrable R.V.-s is U.I.. Further, if Xα is U.I. then supα E[|Xα|] <∞.

Proof That {Xα} is U.I. follows from that

sup
α

E[|Xα|1{|Xα| ≥M}] ≤ E[|Y |1{|Y | ≥M}]→ 0 as M →∞.

If we have a finite collection {Xk}nk=1 that are integrable, then Y =
∑n

k=1 |Xk| is integrable and
dominates Xk. Suppose {Xα} is U.I., then for all M we have

sup
α

E[|Xα|] ≤M + sup
α

E[|Xα|1{|Xα| > M}].

The second term goes to zero as M → ∞, so has to be finite for some M . This M yields a finite
value on the RHS, so gives a finite upper bound on supα E[|Xα|].

To further understand U.I., consider the following example, which shows supα E[|Xα|] <∞ does
not necessarily give U.I..
Example 1: Let Xn be binary R.V.-s with P(Xn = 0) = 1 − 1/n and P(Xn = n) = 1/n.
Then E[|Xn|] = E[Xn] = 1 for all n but Xn is not U.I.: for any M , take n = dMe, we have
E[|Xn|1{|Xn| ≥M}] = E[|Xn|] = 1. 3

We are now ready to state the main convergence theorem.

Theorem 1 (Vitali’s convergence theorem). Suppose Xn
p→ X∞, then the following are equivalent:

(a) {Xn} is U.I..
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(b) Xn
L1→ X∞.

(c) Xn is integrable for all n ≤ ∞ and E[|Xn|]→ E[|X∞|].

Proof “(a) =⇒ (b)”. We first deal with the case that |Xn| ≤ M for some finite M . For all n
and ε > 0, define

Bn,ε = {ω : |Xn(ω)−X∞(ω)| > ε}.

As Xn
p→ X∞, we have P(Bn,ε)→ 0 as n→∞ for all ε. In particular, we have P(|X∞| ≥M + ε) ≤

P(Bn,ε). Letting n → ∞ gives |X∞| ≤ M + ε almost surely, which after taking ε → 0 gives that
|X∞| ≤M almost surely. Hence, |Xn −X∞| ≤ 2M , which allows us to bound

E[|Xn −X∞|] = E[|Xn −X∞|1{Bn,ε}] + E[|Xn −X∞|1
{
Bc
n,ε

}
] ≤ 2MP(Bn,ε) + ε.

Taking n → ∞, we conclude that lim supn→∞ E[|Xn − X∞|] ≤ ε, so as ε is arbitrary we get
E[|Xn −X∞|]→ 0.

We now show the general case where {Xn} is U.I. by applying a truncation argument. Define
the truncation function

ϕM (x) = x1{|x| ≤M}.

As Xn
p→ X∞ and ϕM is continuous, we have ϕM (Xn)

p→ ϕM (X∞). The R.V.-s ϕM (Xn) are
bounded in [−M,M ], so by the bounded case, we get E[|ϕM (Xn)− ϕM (X∞)|]→ 0.

As {Xn} is U.I., we have supn E[|Xn|] = c <∞ by Lemma 1.1, which gives that

c = sup
n

E[|Xn|] ≥ sup
n

E[|ϕM (Xn)|] ≥ lim
n→∞

E[|ϕM (Xn)|] = E[ϕM (X∞)].

The R.V.-s |ϕM (X∞)| is an increasing sequence as M ↑ ∞ and converges to |X∞|. By the monotone
convergence theorem, we have

E[|X∞|] = lim
M→∞

E[|ϕM (X∞)|] ≤ c,

so X∞ is integrable.
As {Xn} is U.I. and X∞ is integrable, for any ε > 0, there exists some M such that

sup
n

E[|Xn|1{|Xn| ≥M}] ≤ ε,

and E[|X∞|1{|X∞| ≥M}] ≤ ε. By the triangle inequality, we have

E[|Xn −X∞|] ≤ E[|Xn − ϕM (Xn)|] + E[|ϕM (Xn)− ϕm(X∞)|] + E[|ϕM (X∞)−X∞|]
≤ 2ε+ E[|ϕM (Xn)− ϕM (X∞)|].

Letting n→∞, we get lim supn→∞ E[|Xn−X∞|] ≤ 2ε. Taking ε ↓ 0 gives that E[|Xn−X∞|]→ 0,
the desired result.

That (b) =⇒ (c) is immediate, and we will skip the proof of (c) =⇒ (a).
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2 Kolmogorov’s extension theorem

We state and prove the Kolmogorov’s extension theorem when the index set is T = {1, 2, 3, . . .} = N.

Theorem 2 (Theorem 1.4.22, Dembo’s Notes). Suppose we are give probability measures µn on
(Rn,BRn) that are consistent, that is,

µn+1(B1 × · · · ×Bn × R) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i = 1, . . . , n <∞. (1)

Then, there exists a unique probability measure P on (RN,Bc) such that

P({ω : ωi ∈ Bi, i = 1, . . . , n}) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i = 1, . . . , n <∞.

Remark Kolmogorov’s extension theorem builds the foundation on which stochastic processes
are defined: namely, for any index set T , to define the distribution of a stochastic process XT ,
it suffices to give a consistent collection of joint distributions of (Xt1 , . . . , Xtn) on finitely many
coordinates. The measure of XT on (RT ,Bc), then, by the extension theorem, is guaranteed to
exist and is unique.

The theorem is trivial when T = {1, . . . , n} is finite: just take P = µn. T = N is the first
non-trivial case of the theorem. This case can give us, for example, the probability measure of
countably many i.i.d. R.V.-s (X1, X2, . . . ).

Proof of Theorem 2 The proof mainly follows that of [1, Chapter 36]. Let RN
0 be the collection

of cylindral sets of the form

A =
{
x ∈ RN : (x1, . . . , xn) ∈ H

}
, (2)

where n ∈ N and H ∈ BRn . That is, we consider sets that require the first n coordinates lie in
some Borel set H ⊂ Rn. By definition of the cylindral σ-algebra, we have Bc = σ(RN

0 ). On this
collection, define the set function

P(A) = µn(H).

We are going to use Caratheodory’s extension theorem to extend P to Bc, which we divide into the
following steps.

P is well-defined To show this, we need to verify that if a cylindral set A has two representations
of the form (2) then they give coinciding values of P(A). Consider

A = {x : (x1, . . . , xn1) ∈ H1} = {x : (x1, . . . , xn2) ∈ H2}

for some n1 ≥ n2, then it is easy to see that H1 = H2 × Rn1−n2 . (Check this!) It remains to show
that

µn1(H1) = µn1(H2 × Rn1−n2) = µn2(H2). (3)

Repeating the consistency condition (1) gives that µn1(B1×· · ·×Bn2×Rn1−n2) = µn2(B1×· · ·×Bn2),
and a standard extension argument shows that µn1(· × Rn1−n2) = µn2(·), verifying (3).
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RN
0 is an algebra; P finitely additive on RN

0 Clearly ∅ ∈ RN
0 . For any cylindral set A, we have

Ac =
{
x ∈ RN : (x1, . . . , xn) ∈ Hc

}
, so Ac ∈ RN

0 . Let A,B be two cylindral sets:

A = {x : (x1, . . . , xn1) ∈ H1}, B = {x : (x1, . . . , xn2) ∈ H2}.

Without loss of generality, let n1 ≥ n2. We then have

A ∪B =
{
x : (x1, . . . , xn1) ∈ H1 ∪ (H2 × Rn1−n2)

}
∈ RN

0 . (4)

This shows that RN
0 is an algebra. If A and B are disjoint, then H2×Rn1−n2 ∩H1 = ∅, giving that

P(A ∪B) = µn1(H1 ∪ (H2 × Rn1−n2)) = µn1(H1) + µ1(H2 × Rn1−n2) = P(A) + P(B),

so P is finitely additive.

P is a probability measure on RN
0 Clearly P ≥ 0 and P(∅) = 0. Let A be a cylindral set, then

P(Ac) = µn(Hc) = 1− µn(H) = 1− P(A).

It remains to show countable additivity. As it is finitely additive, it suffices to show that Ak ∈ RN
0

with Ak ↓ ∅ implies P(Ak) → 0. (See the Remark in Dembo notes, page 14). As we can always
make the defining index non-decreasing, we can let

Ak = {x : (x1, . . . , xnk
) ∈ Hk}

where nk ∈ N is increasing and Hk ⊂ Rnk .
Suppose P(Ak) 6→ 0, then P(Ak) ≥ ε holds for all k, for some ε > 0. This means µnk

(Hk) ≥ ε.
Applying [1, Theorem 12.3], there exists compact sets Kk ⊆ Hk such that µnk

(Hk \Kk) ≤ ε/2k+1.
Define

Bk = {x : (x1, . . . , xnk
) ∈ Kk},

then P(Ak\Bk) ≤ ε/2k+1. Define Ck =
⋂k
j=1Bj , then we have Ck ⊂ Bk ⊂ Ak and P(Ak\Ck) ≤ ε/2,

so P(Ck) ≥ ε/2, and thus Ck is non-empty.
Now, for all k, choose a point x(k) ∈ Ck. As Ck is the intersection of {Bj}j≤k, we have

(x
(k)
1 , . . . , x

(k)
nj ) ∈ Kj for all j ≤ k. In other words, the first nj indices of

{
x(k)

}
k≥j lie in the

compact set Kj . Hence, there exists a subsequence ki such that (x
(ki)
1 , . . . , x

(ki)
nj ) converges. By the

diagonal method, we can find a subsequence ki such that (x
(ki)
1 , . . . , x

(ki)
nj ) converges for all j. Let

x be the point in RN such that (x1, . . . , xnj ) is the limit of the above sequence (as the limits are
consistent, x exists). The closedness of Kj implies that (x1, . . . , xnj ) ∈ Kj , so x ∈ Aj . Thus we
have found a point x ∈

⋂∞
j=1Aj , contradictory to that Aj ↓ ∅. Hence our assumption is wrong so

we must have P(Aj)→ 0.
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