November 1, 2019

1 Uniform integrability

The dominated convergence theorem states that $X_n \stackrel{a.s.}{\rightarrow} X_\infty$ and $|X_n| \leq Y$ for some integrable Y implies that $X_n \stackrel{L_1}{\to} X_\infty$ and $\mathbb{E}[X_n] \to \mathbb{E}[X_\infty]$. In this section, we explore *uniform integrability*, a useful concept that allows us to relax both conditions assumed in the dominated convergence theorem and still get L_1 convergence. We will follow Section 1.3.4 in Dembo's Notes.

Definition 1 (Uniform integrability). A collection of R.V.-s $\{X_\alpha, \alpha \in \mathcal{I}\}\$ is called uniformly integrable $(U.I.)$ if

$$
\lim_{n\to\infty}\sup_{\alpha\in\mathcal{I}}\mathbb{E}[|X_\alpha|{\bf 1}\{|X_\alpha|>M\}]=0.
$$

Let us show that U.I. is indeed a relaxation of that $|X_\alpha| \leq Y$ for some integrable Y.

Lemma 1.1. Let Y be integrable and suppose that $|X_\alpha| \leq Y$ for all α , then $\{X_\alpha\}$ is U.I.. In particular, any finite collection of integrable R.V.-s is U.I.. Further, if X_α is U.I. then $\sup_\alpha \mathbb{E}[|X_\alpha|] < \infty$.

Proof That $\{X_{\alpha}\}\$ is U.I. follows from that

$$
\sup_{\alpha}\mathbb{E}[|X_{\alpha}| \mathbf{1}\{|X_{\alpha}| \geq M\}] \leq \mathbb{E}[|Y| \mathbf{1}\{|Y| \geq M\}] \to 0 \text{ as } M \to \infty.
$$

If we have a finite collection ${X_k}_{k=1}^n$ that are integrable, then $Y = \sum_{k=1}^n |X_k|$ is integrable and dominates X_k . Suppose $\{X_{\alpha}\}\$ is U.I., then for all M we have

$$
\sup_{\alpha}\mathbb{E}[|X_{\alpha}|] \leq M + \sup_{\alpha}\mathbb{E}[|X_{\alpha}| \mathbf{1}\{|X_{\alpha}| > M\}].
$$

The second term goes to zero as $M \to \infty$, so has to be finite for some M. This M yields a finite value on the RHS, so gives a finite upper bound on $\sup_{\alpha} \mathbb{E}[|X_{\alpha}|].$ \Box

To further understand U.I., consider the following example, which shows $\sup_{\alpha} \mathbb{E}[|X_{\alpha}|] < \infty$ does not necessarily give U.I.. **Example 1:** Let X_n be binary R.V.-s with $\mathbb{P}(X_n = 0) = 1 - 1/n$ and $\mathbb{P}(X_n = n) = 1/n$. Then $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = 1$ for all n but X_n is not U.I.: for any M, take $n = [M]$, we have $\mathbb{E}[|X_n| \mathbf{1}\{|X_n| \geq M\}] = \mathbb{E}[|X_n|] = 1. \diamond$

We are now ready to state the main convergence theorem.

Theorem 1 (Vitali's convergence theorem). Suppose $X_n \stackrel{p}{\rightarrow} X_\infty$, then the following are equivalent: (a) $\{X_n\}$ is U.I..

(b) $X_n \stackrel{L_1}{\rightarrow} X_\infty$.

(c) X_n is integrable for all $n \leq \infty$ and $\mathbb{E}[|X_n|] \to \mathbb{E}[|X_\infty|].$

Proof "(a) \implies (b)". We first deal with the case that $|X_n| \leq M$ for some finite M. For all n and $\varepsilon > 0$, define

$$
B_{n,\varepsilon} = \{\omega : |X_n(\omega) - X_\infty(\omega)| > \varepsilon\}.
$$

As $X_n \stackrel{p}{\to} X_\infty$, we have $\mathbb{P}(B_{n,\varepsilon}) \to 0$ as $n \to \infty$ for all ε . In particular, we have $\mathbb{P}(|X_\infty| \geq M + \varepsilon) \leq$ $\mathbb{P}(B_{n,\varepsilon})$. Letting $n \to \infty$ gives $|X_{\infty}| \leq M + \varepsilon$ almost surely, which after taking $\varepsilon \to 0$ gives that $|X_\infty| \leq M$ almost surely. Hence, $|X_n - X_\infty| \leq 2M$, which allows us to bound

$$
\mathbb{E}[|X_n - X_{\infty}|] = \mathbb{E}[|X_n - X_{\infty}| \mathbf{1}\{B_{n,\varepsilon}\}] + \mathbb{E}[|X_n - X_{\infty}| \mathbf{1}\{B_{n,\varepsilon}^c\}] \le 2M \mathbb{P}(B_{n,\varepsilon}) + \varepsilon.
$$

Taking $n \to \infty$, we conclude that $\limsup_{n\to\infty} \mathbb{E}[|X_n - X_\infty|] \leq \varepsilon$, so as ε is arbitrary we get $\mathbb{E}[|X_n - X_\infty|] \to 0.$

We now show the general case where $\{X_n\}$ is U.I. by applying a truncation argument. Define the truncation function

$$
\varphi_M(x) = x \mathbf{1}\{|x| \le M\}.
$$

As $X_n \stackrel{p}{\to} X_\infty$ and φ_M is continuous, we have $\varphi_M(X_n) \stackrel{p}{\to} \varphi_M(X_\infty)$. The R.V.-s $\varphi_M(X_n)$ are bounded in $[-M, M]$, so by the bounded case, we get $\mathbb{E}[|\varphi_M(X_n) - \varphi_M(X_\infty)|] \to 0$.

As $\{X_n\}$ is U.I., we have $\sup_n \mathbb{E}[|X_n|] = c < \infty$ by Lemma [1.1,](#page-0-0) which gives that

$$
c = \sup_{n} \mathbb{E}[|X_n|] \ge \sup_{n} \mathbb{E}[|\varphi_M(X_n)|] \ge \lim_{n \to \infty} \mathbb{E}[|\varphi_M(X_n)|] = \mathbb{E}[\varphi_M(X_\infty)].
$$

The R.V.-s $|\varphi_M(X_\infty)|$ is an increasing sequence as $M \uparrow \infty$ and converges to $|X_\infty|$. By the monotone convergence theorem, we have

$$
\mathbb{E}[|X_{\infty}|] = \lim_{M \to \infty} \mathbb{E}[|\varphi_M(X_{\infty})|] \leq c,
$$

so X_{∞} is integrable.

As $\{X_n\}$ is U.I. and X_∞ is integrable, for any $\varepsilon > 0$, there exists some M such that

$$
\sup_n \mathbb{E}[|X_n| \mathbf{1}\{|X_n| \ge M\}] \le \varepsilon,
$$

and $\mathbb{E}[|X_{\infty}| \mathbf{1}\{|X_{\infty}| \geq M\}] \leq \varepsilon$. By the triangle inequality, we have

$$
\mathbb{E}[|X_n - X_\infty|] \le \mathbb{E}[|X_n - \varphi_M(X_n)|] + \mathbb{E}[|\varphi_M(X_n) - \varphi_m(X_\infty)|] + \mathbb{E}[|\varphi_M(X_\infty) - X_\infty|]
$$

$$
\le 2\varepsilon + \mathbb{E}[|\varphi_M(X_n) - \varphi_M(X_\infty)|].
$$

Letting $n \to \infty$, we get $\limsup_{n \to \infty} \mathbb{E}[|X_n - X_\infty|] \leq 2\varepsilon$. Taking $\varepsilon \downarrow 0$ gives that $\mathbb{E}[|X_n - X_\infty|] \to 0$, the desired result.

That $(b) \implies (c)$ is immediate, and we will skip the proof of $(c) \implies (a)$. \Box

2 Kolmogorov's extension theorem

We state and prove the Kolmogorov's extension theorem when the index set is $T = \{1, 2, 3, ...\} = \mathbb{N}$.

Theorem 2 (Theorem 1.4.22, Dembo's Notes). Suppose we are give probability measures μ_n on $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$ that are consistent, that is,

$$
\mu_{n+1}(B_1 \times \cdots \times B_n \times \mathbb{R}) = \mu_n(B_1 \times \cdots \times B_n) \quad \forall B_i \in \mathcal{B}, \ i = 1, \dots, n < \infty. \tag{1}
$$

Then, there exists a unique probability measure $\mathbb P$ on $(\mathbb{R}^{\mathbb N}, \mathcal{B}_c)$ such that

$$
\mathbb{P}(\{\omega : \omega_i \in B_i, i = 1,\ldots,n\}) = \mu_n(B_1 \times \cdots \times B_n) \quad \forall B_i \in \mathcal{B}, i = 1,\ldots,n < \infty.
$$

Remark Kolmogorov's extension theorem builds the foundation on which stochastic processes are defined: namely, for any index set T , to define the distribution of a stochastic process X_T , it suffices to give a consistent collection of joint distributions of $(X_{t_1},...,X_{t_n})$ on finitely many coordinates. The measure of X_T on $(\mathbb{R}^T, \mathcal{B}_c)$, then, by the extension theorem, is guaranteed to exist and is unique.

The theorem is trivial when $T = \{1, \ldots, n\}$ is finite: just take $\mathbb{P} = \mu_n$. $T = \mathbb{N}$ is the first non-trivial case of the theorem. This case can give us, for example, the probability measure of countably many i.i.d. R.V.-s (X_1, X_2, \ldots) .

Proof of Theorem [2](#page-2-0) The proof mainly follows that of [\[1,](#page-3-0) Chapter 36]. Let $\mathbb{R}_0^{\mathbb{N}}$ be the collection of cylindral sets of the form

$$
A = \left\{ x \in \mathbb{R}^{\mathbb{N}} : (x_1, \dots, x_n) \in H \right\},\tag{2}
$$

where $n \in \mathbb{N}$ and $H \in \mathcal{B}_{\mathbb{R}^n}$. That is, we consider sets that require the first n coordinates lie in some Borel set $H \subset \mathbb{R}^n$. By definition of the cylindral σ -algebra, we have $\mathcal{B}_c = \sigma(\mathbb{R}_0^{\mathbb{N}})$ $_0^{\mathbb{N}}$). On this collection, define the set function

$$
\mathbb{P}(A) = \mu_n(H).
$$

We are going to use Caratheodory's extension theorem to extend $\mathbb P$ to \mathcal{B}_c , which we divide into the following steps.

 $\mathbb P$ is well-defined To show this, we need to verify that if a cylindral set A has two representations of the form [\(2\)](#page-2-1) then they give coinciding values of $\mathbb{P}(A)$. Consider

$$
A = \{x : (x_1, \ldots, x_{n_1}) \in H_1\} = \{x : (x_1, \ldots, x_{n_2}) \in H_2\}
$$

for some $n_1 \geq n_2$, then it is easy to see that $H_1 = H_2 \times \mathbb{R}^{n_1 - n_2}$. (Check this!) It remains to show that

$$
\mu_{n_1}(H_1) = \mu_{n_1}(H_2 \times \mathbb{R}^{n_1 - n_2}) = \mu_{n_2}(H_2). \tag{3}
$$

Repeating the consistency condition [\(1\)](#page-2-2) gives that $\mu_{n_1}(B_1 \times \cdots \times B_{n_2} \times \mathbb{R}^{n_1-n_2}) = \mu_{n_2}(B_1 \times \cdots \times B_{n_2}),$ and a standard extension argument shows that $\mu_{n_1}(\cdot \times \mathbb{R}^{n_1-n_2}) = \mu_{n_2}(\cdot)$, verifying [\(3\)](#page-2-3).

R N $\mathbb{R}^\mathbb{N}_0$ is an algebra; \mathbb{P} finitely additive on $\mathbb{R}^\mathbb{N}_0$. Clearly $\emptyset \in \mathbb{R}^\mathbb{N}_0$ $_{0}^{\mathbb{N}}$. For any cylindral set A, we have $A^{c} = \{x \in \mathbb{R}^{\mathbb{N}} : (x_1, \ldots, x_n) \in H^c\},\,$ so $A^{c} \in \mathbb{R}_{0}^{\mathbb{N}}$ $\frac{\mathbb{N}}{0}$. Let A, B be two cylindral sets:

$$
A = \{x : (x_1, \ldots, x_{n_1}) \in H_1\}, \quad B = \{x : (x_1, \ldots, x_{n_2}) \in H_2\}.
$$

Without loss of generality, let $n_1 \geq n_2$. We then have

$$
A \cup B = \{x : (x_1, \dots, x_{n_1}) \in H_1 \cup (H_2 \times \mathbb{R}^{n_1 - n_2})\} \in \mathbb{R}_0^{\mathbb{N}}.
$$
 (4)

This shows that $\mathbb{R}^{\mathbb{N}}_0$ ^N is an algebra. If A and B are disjoint, then $H_2 \times \mathbb{R}^{n_1-n_2} \cap H_1 = \emptyset$, giving that

$$
\mathbb{P}(A \cup B) = \mu_{n_1}(H_1 \cup (H_2 \times \mathbb{R}^{n_1 - n_2})) = \mu_{n_1}(H_1) + \mu_1(H_2 \times \mathbb{R}^{n_1 - n_2}) = \mathbb{P}(A) + \mathbb{P}(B),
$$

so $\mathbb P$ is finitely additive.

 $\mathbb P$ is a probability measure on $\mathbb R_0^\mathbb N$ Clearly $\mathbb{P} \geq 0$ and $\mathbb{P}(\emptyset) = 0$. Let A be a cylindral set, then

$$
\mathbb{P}(A^{c}) = \mu_{n}(H^{c}) = 1 - \mu_{n}(H) = 1 - \mathbb{P}(A).
$$

It remains to show countable additivity. As it is finitely additive, it suffices to show that $A_k \in \mathbb{R}_0^{\mathbb{N}}$ 0 with $A_k \downarrow \emptyset$ implies $\mathbb{P}(A_k) \to 0$. (See the Remark in Dembo notes, page 14). As we can always make the defining index non-decreasing, we can let

$$
A_k = \{x : (x_1, \ldots, x_{n_k}) \in H_k\}
$$

where $n_k \in \mathbb{N}$ is increasing and $H_k \subset \mathbb{R}^{n_k}$.

Suppose $\mathbb{P}(A_k) \nrightarrow 0$, then $\mathbb{P}(A_k) \geq \varepsilon$ holds for all k, for some $\varepsilon > 0$. This means $\mu_{n_k}(H_k) \geq \varepsilon$. Applying [\[1,](#page-3-0) Theorem 12.3], there exists compact sets $K_k \subseteq H_k$ such that $\mu_{n_k}(H_k \setminus K_k) \leq \varepsilon/2^{k+1}$. Define

$$
B_k = \{x : (x_1, \ldots, x_{n_k}) \in K_k\},\
$$

then $\mathbb{P}(A_k \setminus B_k) \leq \varepsilon/2^{k+1}$. Define $C_k = \bigcap_{j=1}^k B_j$, then we have $C_k \subset B_k \subset A_k$ and $\mathbb{P}(A_k \setminus C_k) \leq \varepsilon/2$, so $\mathbb{P}(C_k) \geq \varepsilon/2$, and thus C_k is non-empty.

Now, for all k, choose a point $x^{(k)} \in C_k$. As C_k is the intersection of ${B_j}_{j\leq k}$, we have $(x_1^{(k)}$ $\{x_1^{(k)},\ldots,x_{n_j}^{(k)}\}\in K_j$ for all $j\leq k$. In other words, the first n_j indices of $\{x^{(k)}\}_{k\geq j}$ lie in the compact set K_j . Hence, there exists a subsequence k_i such that $(x_1^{(k_i)})$ $\binom{(k_i)}{1}, \ldots, \binom{(k_i)}{n_j}$ converges. By the diagonal method, we can find a subsequence k_i such that $(x_1^{(k_i)})$ $x_1^{(k_i)}, \ldots, x_{n_j}^{(k_i)}$ converges for all j. Let x be the point in $\mathbb{R}^{\mathbb{N}}$ such that (x_1, \ldots, x_{n_j}) is the limit of the above sequence (as the limits are consistent, x exists). The closedness of K_j implies that $(x_1, \ldots, x_{n_j}) \in K_j$, so $x \in A_j$. Thus we have found a point $x \in \bigcap_{j=1}^{\infty} A_j$, contradictory to that $A_j \downarrow \emptyset$. Hence our assumption is wrong so we must have $\mathbb{P}(A_i) \to 0$. \Box

References

[1] P. Billingsley. Probability and measure. John Wiley & Sons, 2008.