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1 Uniform integrability

The dominated convergence theorem states that X, % X, and | Xy <Y for some integrable Y

implies that X, Ly X and E[X,] — E[Xy]. In this section, we explore uniform integrability,
a useful concept that allows us to relax both conditions assumed in the dominated convergence
theorem and still get L; convergence. We will follow Section 1.3.4 in Dembo’s Notes.

Definition 1 (Uniform integrability). A collection of R.V.-s {X,,a € I} is called uniformly inte-
grable (U.L) if
lim sup E[|X,|1{|X4| > M}] =0.
n—oo acl
Let us show that U.L is indeed a relaxation of that | X,| <Y for some integrable Y.

Lemma 1.1. Let Y be integrable and suppose that | X,| <Y for all o, then {X,} is U.L. In partic-
ular, any finite collection of integrable R.V.-s is U.I.. Further, if X4 is U.L then sup, E[|X4|] < oc.

Proof That {X,} is U.L follows from that

sup E[| X |1{| Xo| > M} <E[[Y|I{]Y| > M}] -0 as M — oc.

If we have a finite collection {Xj};_, that are integrable, then Y = }"}'_, | X} is integrable and
dominates Xj. Suppose {X,} is U.L, then for all M we have

Sup E[| Xal) < M + sup E[|Xo1{| Xa| > M}].
« (e}

The second term goes to zero as M — oo, so has to be finite for some M. This M yields a finite
value on the RHS, so gives a finite upper bound on sup, E[| X,|]. O

To further understand U.I., consider the following example, which shows sup,, E[|X,|] < oo does
not necessarily give U.I..
Example 1: Let X,, be binary R.V.-s with P(X,, = 0) = 1 — 1/n and P(X,, = n) = 1/n.
Then E[|X,|] = E[X,] = 1 for all n but X,, is not U.L: for any M, take n = [M], we have
E[|Xn|1{[Xn| = M}] = E[[Xp[] = 1. ©

We are now ready to state the main convergence theorem.

Theorem 1 (Vitali’s convergence theorem). Suppose X, LN X, then the following are equivalent:

(a) {X,} is U.L.



) X, 8 X
(c) X, is integrable for all n < oo and E[| X, |] = E[|Xl]-

Proof “(a) = (b)”. We first deal with the case that |X,,| < M for some finite M. For all n
and € > 0, define
Bne =A{w: [Xn(w) = Xoo(w)| > €}

As X, % X, we have P(B,,.) — 0 as n — oo for all e. In particular, we have P(|Xoo| > M +¢) <
P(By ). Letting n — oo gives | Xo| < M + ¢ almost surely, which after taking e — 0 gives that
| Xoo| < M almost surely. Hence, |X,, — Xo| < 2M, which allows us to bound

E[| X, — Xoo|] = E[| Xy, — Xoo|1{ By o} + E[| X}, — Xooll{Bfm}} <2MP(Bpe) +e.

Taking n — oo, we conclude that limsup,_,. E[|X, — X«|] < €, so as € is arbitrary we get
E[| X, — Xl] — 0.
We now show the general case where {X,,} is U.I. by applying a truncation argument. Define

the truncation function
pm(z) = 21{|z| < M}.

As X, & X, and wnr is continuous, we have ¢ (Xy,) N oM (Xoo). The R.V.-s o (X,,) are
bounded in [—M, M], so by the bounded case, we get E[|¢ar(Xyn) — om(Xoo)|] — 0.
As {X,} is U.L, we have sup, E[|X,|] = ¢ < co by Lemma[L.1] which gives that

= SUpE[|X) = supEllear (X)) = lim Ellas (Xa)l) = Elas (X))

The R.V.-s | (Xoo)| is an increasing sequence as M 1 oo and converges to | X |. By the monotone
convergence theorem, we have

B[ Xool] = Jim Eflon(Xo) | <

so X is integrable.
As {X,} is UL and X, is integrable, for any € > 0, there exists some M such that

sup E[[ Xn[1{|Xn| > M}] <e,
n

and E[| X |1{|Xo| > M}] < e. By the triangle inequality, we have

E[| X, — Xool] <E[|1Xn — oar(Xn)[] + Elloam (Xn) = @m(Xoo)[] + Ellpar(Xoo) — Xool]
<2+ EH(PM(Xn) - SDM(XOO)H
Letting n — 00, we get limsup, o B[| X, ~ Xool] < 2¢. Taking & |0 gives that E[|X, — Xocl] = 0,

the desired result.
That (b) = (c) is immediate, and we will skip the proof of (¢) = (a). O



2 Kolmogorov’s extension theorem

We state and prove the Kolmogorov’s extension theorem when the index set is T = {1,2,3,...} = N.

Theorem 2 (Theorem 1.4.22, Dembo’s Notes). Suppose we are give probability measures pi, on
(R™, Brn) that are consistent, that is,

un+1(31X-"XBRXR):/Ln(le‘--XBn) VBiEB,izl,...,n<OO. (1)
Then, there exists a unique probability measure P on (RN, B.) such that
Plw:w;€ Bi,i=1,...,n}) =up(B1 x---xBy) VB;€eB,i=1,...,n< oc.

Remark  Kolmogorov’s extension theorem builds the foundation on which stochastic processes
are defined: namely, for any index set T, to define the distribution of a stochastic process Xr,
it suffices to give a consistent collection of joint distributions of (Xj,,...,X;,) on finitely many
coordinates. The measure of X7 on (R”,B.), then, by the extension theorem, is guaranteed to
exist and is unique.

The theorem is trivial when 7" = {1,...,n} is finite: just take P = p,. T = N is the first
non-trivial case of the theorem. This case can give us, for example, the probability measure of
countably many i.i.d. R.V.-s (X1, Xo,...).

Proof of Theorem The proof mainly follows that of [T, Chapter 36]. Let RY be the collection
of cylindral sets of the form

A:{xGRN:(xl,...,xn)EH}, (2)

where n € N and H € Brr. That is, we consider sets that require the first n coordinates lie in
some Borel set H C R™. By definition of the cylindral o-algebra, we have B, = U(RON). On this
collection, define the set function

P(A) = jin(H).

We are going to use Caratheodory’s extension theorem to extend P to B., which we divide into the
following steps.

P is well-defined To show this, we need to verify that if a cylindral set A has two representations
of the form then they give coinciding values of P(A). Consider

A={z:(x1,...,2n,) € H1} ={z: (x1,...,2n,) € Ha}

for some nj > ng, then it is easy to see that H; = Hy x R™ "2, (Check this!) It remains to show
that
fny (H1) = pin, (Ha x R™77"2) = i, (Ha). (3)

Repeating the consistency condition (1f) gives that pip,, (B1 X - - X By, xR™M™"2) = p,. (B X+ X Bp,),
and a standard extension argument shows that i, (- x R™7"2) = i, (-), verifying (3).



RON is an algebra; P finitely additive on RON Clearly 0 € Rg’ . For any cylindral set A, we have
A = {:U eRN: (zq,...,2,) € HC}, so A¢ € RON. Let A, B be two cylindral sets:

A={x:(x1,...,2n,) € H1}, B={z:(21,...,2n,) € Ha}.
Without loss of generality, let ny > ns. We then have
AUB={z:(v1,...,2y,) € HHU(Hy x R"™)} € R{. (4)
This shows that RE‘ is an algebra. If A and B are disjoint, then Ho x R™ "2 H; = (), giving that
P(AU B) = jiny (H1 U (Hy X R" ")) = 1, (Hy) + jua (Hy x R™ ") = P(A) + P(B),

so P is finitely additive.

P is a probability measure on R} Clearly P > 0 and P(()) = 0. Let A be a cylindral set, then
P(A?) = pn(H®) =1 — pn(H) = 1 — P(A).

It remains to show countable additivity. As it is finitely additive, it suffices to show that Ay € RON
with Ay | 0 implies P(Ag) — 0. (See the Remark in Dembo notes, page 14). As we can always
make the defining index non-decreasing, we can let

Ak:{aj‘ : (xl,...,:vnk) EHk}

where ny € N is increasing and Hy C R"™k.

Suppose P(A) 4 0, then P(Ay) > € holds for all k, for some ¢ > 0. This means p,, (Hy) > €.
Applying [I, Theorem 12.3], there exists compact sets Ky C Hy, such that p,, (Hy \ Kj) < /281,
Define

By ={x: (z1,...,2p,) € Ki},
then P(A,\ By,) < ¢/2F+1. Define Cy, = ﬂle Bj, then we have C}, C By, C Ay and P(A\Cy) < /2,
so P(Cy) > ¢/2, and thus C} is non-empty.

Now, for all k, choose a point z¥) € Cy. As Cj is the intersection of {Bj}j§k7 we have
(a:gk),...,x%)) € Kj for all j < k. In other words, the first n; indices of {a:(k)}kzj lie in the

(ki) (ki)

compact set K;. Hence, there exists a subsequence k; such that (z; "/, ..., 2, ) converges. By the
diagonal method, we can find a subsequence k; such that (xgki), e ,:Ugji)) converges for all j. Let
x be the point in RY such that (z1,..., Tp,) is the limit of the above sequence (as the limits are
consistent, = exists). The closedness of K; implies that (x1,...,7,;) € Kj, so x € A;. Thus we
have found a point z € ﬂ;’il Aj;, contradictory to that A; | (). Hence our assumption is wrong so
we must have P(A;) — 0. O
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