Stats 310A Session 6

Novermber 15, 2019

1 The Law of iterated logarithm

In this note we prove the law of iterated logarithm, mainly following [?, Chapter 9]. Let X_i be independent R.V.-s with mean 0 and variance 1. The central limit theorem characterizes the behavior of $S_n = X_1 + \cdots + X_n$ and states that $S_n = O_p(\sqrt{n})$. The law of iterated algorithm refines this result dramatically, precisely characterizing the scalings of the extrema of S_n .

Theorem 1 (Law of iterated logarithm). We have

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1\right) = 1.$$

Equivalently, the theorem states the following: for all $\varepsilon > 0$,

$$\mathbb{P}\left(S_n \ge (1+\varepsilon)\sqrt{2n\log\log n} \text{ i.o.}\right) = 0,\tag{1}$$

$$\mathbb{P}\left(S_n \ge (1-\varepsilon)\sqrt{2n\log\log n} \text{ i.o.}\right) = 1.$$
(2)

Hence, showing LIL requires estimating the probability $\mathbb{P}(S_n/\sqrt{n} \ge t)$ very accurately, for t on the order of $\sqrt{\log \log n}$. The following lemma presents such a result.

Lemma 1.1. Let $a_n \to \infty$ and $a_n/\sqrt{n} \to 0$, then

$$\mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge a_n\right) = \exp\left(-\frac{1}{2}a_n^2(1+\xi_n)\right),\,$$

where $\xi_n \to 0$.

We will also need a variant of Kolmogorov's maximal inequality. Let $M_n = \max_{1 \le k \le n} S_k$ be the maximum process.

Lemma 1.2. For $\alpha \geq \sqrt{2}$, we have

$$\mathbb{P}\left(\frac{M_n}{\sqrt{n}} \ge \alpha\right) \le 2\mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge \alpha - \sqrt{2}\right).$$

Proof of Theorem ?? We prove the result by looking at a subsequence S_{n_k} where $n_k = \theta^k$ for some carefully chosen $\theta > 1$. We bound the deviation probability carefully and use Borel-Cantelli to show that S_{n_k} exceeds the desired threshold infinitely often with probability zero or one. We then show that S_n has the same behavior as the subsequence.

Proof of (??) Fixing $\varepsilon > 0$, choose θ such that $1 < \theta^2 < 1 + \varepsilon$. Define

$$n_k = \left\lfloor \theta^k \right\rfloor, \quad x_k = \theta \sqrt{2 \log \log n_k}.$$

Note that $x_k = (1 + o(1))\theta\sqrt{2\log k}$. Applying Lemmas ??, ??, we obtain

$$\begin{split} \mathbb{P}\left(\frac{M_{n_k}}{\sqrt{n_k}} \ge x_k\right) &\leq 2\mathbb{P}\left(\frac{S_{n_k}}{\sqrt{n_k}} \ge x_k - \sqrt{2}\right) \\ &= 2\exp\left(-\frac{1}{2}(x_k - \sqrt{2})^2(1+\xi_k)\right) \\ &= 2\exp\left(-\frac{1}{2} \cdot 2\theta^2 \log k(1+o(1))\right) \\ &\leq \frac{2}{k^{\theta^2}}, \end{split}$$

the last bound holding for all large k. As $\theta^2 > 1$, the RHS is summable, so by Borel-Cantelli I we have

$$\mathbb{P}\left(\frac{M_{n_k}}{\sqrt{n_k}} \ge x_k \text{ i.o.}\right) = 0.$$

We now argue that $S_n \ge (1 + \varepsilon)\sqrt{2n \log \log n}$ infinitely often will happen with probability zero. Suppose it happens infinitely often, let n be an index where it happens. Let k be such that $n_{k-1} < n \le n_k$. We then have

$$\begin{split} \frac{M_{n_k}}{x_k\sqrt{n_k}} &= \frac{M_{n_k}}{\theta\sqrt{2n_k\log\log n_k}} \geq \frac{S_n}{\theta\sqrt{2n\log\log n}} \cdot \sqrt{\frac{2n_{k-1}\log\log n_{k-1}}{2n_k\log\log n_k}}\\ \geq \frac{1+\varepsilon}{\theta} \cdot \sqrt{\frac{2\theta^{k-1}\cdot\log(k-1)}{2\theta^k\log k}}(1+o(1))\\ \geq \frac{1+\varepsilon}{\theta^{3/2}}(1+o(1)). \end{split}$$

As $1 + \varepsilon > \theta^2 > \theta^{3/2}$, for sufficiently large k, the above quantity will be greater than one. Hence, $M_{n_k}/\sqrt{n_k} \ge x_k$ will happen infinitely often. As this has probability zero, we must have $\mathbb{P}(S_n \ge (1 + \varepsilon)\sqrt{2n \log \log n} \text{ i.o.}) = 0$, thereby showing (??).

Proof of (??) Let θ be an integer such that $3/\sqrt{\theta} < \varepsilon$ and $n_k = \theta^k$. Define

$$a_k = x_k / \sqrt{n_k - n_{k-1}}$$
 with $x_k = (1 - \theta^{-1}) \sqrt{2n_k \log \log n_k}$

As S_n are sums of independent R.V.-s, we can apply Lemma ?? to $S_{n_k} - S_{n_{k-1}}$ and get

$$\mathbb{P}\left(S_{n_{k}} - S_{n_{k-1}} \ge x_{k}\right) = \exp\left(-\frac{x_{k}^{2}}{2(n_{k} - n_{k-1})}(1+\xi_{k})\right)$$
$$= \exp\left(-\frac{(1-\theta^{-1})^{2}2\theta^{k}\log k}{2(1-\theta^{-1})\theta^{k}}(1+o(1))\right)$$
$$= \exp\left(-(1-\theta^{-1})\log k(1+o(1))\right)$$
$$\leq \frac{2}{k^{1-\theta^{-1}}},$$

the last bound holding for all large k. As the RHS sums up to infinity and the events are independent, by Borel-Cantelli II we get that

$$\mathbb{P}\left(S_{n_k} - S_{n_{k-1}} \ge x_k \text{ i.o.}\right) = 1.$$

We now argue that the above implies $S_{n_k} > (1 - \varepsilon)\sqrt{2n_k \log \log n_k}$ happens infinitely often with probability one, thereby showing the result. Indeed, applying the established result (??) to $-S_{n_k}$ with $\varepsilon = 1$, we get $-S_{n_{k-1}} \leq 2\sqrt{2n_{k-1} \log \log n_{k-1}}$ for all large k. Combined with the above result, we get that with probability one,

$$S_{n_k} \ge x_k - 2\sqrt{2n_{k-1}\log\log n_{k-1}} \ge x_k - \frac{2}{\sqrt{\theta}}\sqrt{2n_k\log\log n_k} = \left(1 - \frac{1}{\theta} - \frac{2}{\sqrt{\theta}}\right)\sqrt{2n_k\log\log n_k}$$
$$\ge \left(1 - \frac{3}{\sqrt{\theta}}\right)\sqrt{2n_k\log\log n_k} \ge (1 - \varepsilon)\sqrt{2n_k\log\log n_k}.$$

For completeness, we also provide the proof of Lemma ??.

Proof of Lemma ?? Suppose $M_n/\sqrt{n} \ge \alpha$, then either $S_n/\sqrt{n} \ge \alpha - \sqrt{2}$, or $S_n/\sqrt{n} < \alpha - \sqrt{2}$ and one of the following happens: $M_{j-1} < \alpha\sqrt{n}$ but $M_j \ge \alpha\sqrt{n}$. Defining $A_j = \{M_{j-1} < \alpha\sqrt{n} \le M_j\}$, then

$$\mathbb{P}\left(\frac{M_n}{\sqrt{n}} \ge \alpha\right) \le \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge \alpha - \sqrt{2}\right) + \sum_{j=1}^{n-1} \mathbb{P}\left(A_j \cap \left\{\frac{S_n}{\sqrt{n}} \le \alpha - \sqrt{2}\right\}\right).$$

On each of the event $A_j \cap \{\cdots\}$, we have $S_j \ge \alpha \sqrt{n}$ and $S_n \le (\alpha - \sqrt{2})\sqrt{n}$, which implies $(S_n - S_j)/\sqrt{n} \le -\sqrt{2}$. This event is independent of A_j , and $S_n - S_j$ has variance n - j, so we get

$$\mathbb{P}\left(A_j \cap \left\{\frac{S_n}{\sqrt{n}} \le \alpha - \sqrt{2}\right\}\right) \le \mathbb{P}\left(A_j \cap \left\{\frac{S_n - S_j}{\sqrt{n}} \le -\sqrt{2}\right\}\right)$$
$$= \mathbb{P}(A_j)\mathbb{P}\left(\frac{S_n - S_j}{\sqrt{n}} \le -\sqrt{2}\right) \le \frac{n - j}{2n}\mathbb{P}(A_j).$$

Plugging into the preceding bound gives

$$\mathbb{P}\left(\frac{M_n}{\sqrt{n}} \ge \alpha\right) \le \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge \alpha - \sqrt{2}\right) + \sum_{j=1}^{n-1} \frac{n-j}{2n} \mathbb{P}(A_j) \le \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge \alpha - \sqrt{2}\right) + \frac{1}{2} \sum_{j=1}^{n-1} \mathbb{P}(A_j).$$

As A_j are disjoint and $\bigcup A_j$ implies $\{M_n/\sqrt{n} \ge \alpha\}$, we get

$$\mathbb{P}\left(\frac{M_n}{\sqrt{n}} \ge \alpha\right) \le \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge \alpha - \sqrt{2}\right) + \frac{1}{2}\mathbb{P}\left(\frac{M_n}{\sqrt{n}} \ge \alpha\right),$$

from which the result follows.