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1 The Law of iterated logarithm

In this note we prove the law of iterated logarithm, mainly following [? , Chapter 9]. Let Xi

be independent R.V.-s with mean 0 and variance 1. The central limit theorem characterizes the
behavior of Sn = X1 + · · ·+Xn and states that Sn = Op(

√
n). The law of iterated algorithm refines

this result dramatically, precisely characterizing the scalings of the extrema of Sn.

Theorem 1 (Law of iterated logarithm). We have

P
(

lim sup
n→∞

Sn√
2n log logn

= 1

)
= 1.

Equivalently, the theorem states the following: for all ε > 0,

P
(
Sn ≥ (1 + ε)

√
2n log log n i.o.

)
= 0, (1)

P
(
Sn ≥ (1− ε)

√
2n log log n i.o.

)
= 1. (2)

Hence, showing LIL requires estimating the probability P(Sn/
√
n ≥ t) very accurately, for t on the

order of
√

log log n. The following lemma presents such a result.

Lemma 1.1. Let an →∞ and an/
√
n→ 0, then

P
(
Sn√
n
≥ an

)
= exp

(
−1

2
a2n(1 + ξn)

)
,

where ξn → 0.

We will also need a variant of Kolmogorov’s maximal inequality. Let Mn = max1≤k≤n Sk be
the maximum process.

Lemma 1.2. For α ≥
√

2, we have

P
(
Mn√
n
≥ α

)
≤ 2P

(
Sn√
n
≥ α−

√
2

)
.

Proof of Theorem ?? We prove the result by looking at a subsequence Snk
where nk = θk for

some carefully chosen θ > 1. We bound the deviation probability carefully and use Borel-Cantelli
to show that Snk

exceeds the desired threshold infinitely often with probability zero or one. We
then show that Sn has the same behavior as the subsequence.
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Proof of (??) Fixing ε > 0, choose θ such that 1 < θ2 < 1 + ε. Define

nk =
⌊
θk
⌋
, xk = θ

√
2 log log nk.

Note that xk = (1 + o(1))θ
√

2 log k. Applying Lemmas ??, ??, we obtain

P
(
Mnk√
nk
≥ xk

)
≤ 2P

(
Snk√
nk
≥ xk −

√
2

)
= 2 exp

(
−1

2
(xk −

√
2)2(1 + ξk)

)
= 2 exp

(
−1

2
· 2θ2 log k(1 + o(1))

)
≤ 2

kθ2
,

the last bound holding for all large k. As θ2 > 1, the RHS is summable, so by Borel-Cantelli I we
have

P
(
Mnk√
nk
≥ xk i.o.

)
= 0.

We now argue that Sn ≥ (1 + ε)
√

2n log log n infinitely often will happen with probability zero.
Suppose it happens infinitely often, let n be an index where it happens. Let k be such that
nk−1 < n ≤ nk. We then have

Mnk

xk
√
nk

=
Mnk

θ
√

2nk log log nk
≥ Sn

θ
√

2n log logn
·

√
2nk−1 log lognk−1

2nk log lognk

≥ 1 + ε

θ
·

√
2θk−1 · log(k − 1)

2θk log k
(1 + o(1))

≥ 1 + ε

θ3/2
(1 + o(1)).

As 1 + ε > θ2 > θ3/2, for sufficiently large k, the above quantity will be greater than one. Hence,
Mnk

/
√
nk ≥ xk will happen infinitely often. As this has probability zero, we must have P(Sn ≥

(1 + ε)
√

2n log log n i.o.) = 0, thereby showing (??).

Proof of (??) Let θ be an integer such that 3/
√
θ < ε and nk = θk. Define

ak = xk/
√
nk − nk−1 with xk = (1− θ−1)

√
2nk log lognk.

As Sn are sums of independent R.V.-s, we can apply Lemma ?? to Snk
− Snk−1

and get

P
(
Snk
− Snk−1

≥ xk
)

= exp

(
−

x2k
2(nk − nk−1)

(1 + ξk)

)
= exp

(
−(1− θ−1)22θk log k

2(1− θ−1)θk
(1 + o(1))

)
= exp

(
−(1− θ−1) log k(1 + o(1))

)
≤ 2

k1−θ−1 ,
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the last bound holding for all large k. As the RHS sums up to infinity and the events are indepen-
dent, by Borel-Cantelli II we get that

P
(
Snk
− Snk−1

≥ xk i.o.
)

= 1.

We now argue that the above implies Snk
> (1 − ε)

√
2nk log log nk happens infinitely often with

probability one, thereby showing the result. Indeed, applying the established result (??) to −Snk

with ε = 1, we get −Snk−1
≤ 2
√

2nk−1 log log nk−1 for all large k. Combined with the above result,
we get that with probability one,

Snk
≥ xk − 2

√
2nk−1 log lognk−1 ≥ xk −

2√
θ

√
2nk log log nk =

(
1− 1

θ
− 2√

θ

)√
2nk log lognk

≥
(

1− 3√
θ

)√
2nk log log nk ≥ (1− ε)

√
2nk log log nk.

For completeness, we also provide the proof of Lemma ??.
Proof of Lemma ?? Suppose Mn/

√
n ≥ α, then either Sn/

√
n ≥ α −

√
2, or Sn/

√
n <

α −
√

2 and one of the following happens: Mj−1 < α
√
n but Mj ≥ α

√
n. Defining Aj =

{Mj−1 < α
√
n ≤Mj}, then

P
(
Mn√
n
≥ α

)
≤ P

(
Sn√
n
≥ α−

√
2

)
+
n−1∑
j=1

P
(
Aj ∩

{
Sn√
n
≤ α−

√
2

})
.

On each of the event Aj ∩ {· · ·}, we have Sj ≥ α
√
n and Sn ≤ (α −

√
2)
√
n, which implies

(Sn − Sj)/
√
n ≤ −

√
2. This event is independent of Aj , and Sn − Sj has variance n− j, so we get

P
(
Aj ∩

{
Sn√
n
≤ α−

√
2

})
≤ P

(
Aj ∩

{
Sn − Sj√

n
≤ −
√

2

})
= P(Aj)P

(
Sn − Sj√

n
≤ −
√

2

)
≤ n− j

2n
P(Aj).

Plugging into the preceding bound gives

P
(
Mn√
n
≥ α

)
≤ P

(
Sn√
n
≥ α−

√
2

)
+
n−1∑
j=1

n− j
2n

P(Aj) ≤ P
(
Sn√
n
≥ α−

√
2

)
+

1

2

n−1∑
j=1

P(Aj).

As Aj are disjoint and
⋃
Aj implies {Mn/

√
n ≥ α}, we get

P
(
Mn√
n
≥ α

)
≤ P

(
Sn√
n
≥ α−

√
2

)
+

1

2
P
(
Mn√
n
≥ α

)
,

from which the result follows.
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