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1 The Law of iterated logarithm

In this note we prove the law of iterated logarithm, mainly following [? , Chapter 9]. Let X;
be independent R.V.-s with mean 0 and variance 1. The central limit theorem characterizes the
behavior of S,, = X1 +---+ X, and states that S, = O,(y/n). The law of iterated algorithm refines
this result dramatically, precisely characterizing the scalings of the extrema of .5,,.

Theorem 1 (Law of iterated logarithm). We have

S,
P (limsup —————m-o— =1 = 1.
n—oo V2nloglogn
Equivalently, the theorem states the following: for all € > 0,

P (S, > (14 ¢)v2nloglogn i.0.) =0, (1)
P (S, > (1 —¢)y2nloglogn io.) = 1. (2)

Hence, showing LIL requires estimating the probability P(S,,/y/n > t) very accurately, for ¢ on the
order of y/loglogn. The following lemma presents such a result.

Lemma 1.1. Let a,, — oo and an//n — 0, then

where &, — 0.

We will also need a variant of Kolmogorov’s maximal inequality. Let M,, = maxj<g<, Sk be
the maximum process.

Lemma 1.2. For a > \@, we have

(2 20) s (oo 3

Proof of Theorem 7?7  We prove the result by looking at a subsequence S,,, where n; = 6" for
some carefully chosen 6 > 1. We bound the deviation probability carefully and use Borel-Cantelli
to show that S, exceeds the desired threshold infinitely often with probability zero or one. We
then show that S,, has the same behavior as the subsequence.



Proof of (??) Fixing € > 0, choose 6 such that 1 < #2 < 1 +¢. Define

ng = LH’CJ , = 0+/2loglogng.

Note that xx = (1 4 o(1))8v/2log k. Applying Lemmas ?7, 7?7, we obtain
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the last bound holding for all large k. As
have

2 > 1, the RHS is summable, so by Borel-Cantelli I we

M, .
IP’< k> 1.0.):0.

NG

We now argue that S, > (1 + €)v/2nloglogn infinitely often will happen with probability zero.
Suppose it happens infinitely often, let n be an index where it happens. Let k be such that
ne_1 <n <ny. We then have

My, _ M, S Sh ‘ 2ni_1 loglogng_q
Tr\/nE - 0+/2ngloglogng, — 6v/2nloglogn 2ny, log log ny,

S 1+e 20F=1 . log(k — 1)
=79 26F log k

1+¢
> W(l +o(1)).

(1+0(1))

As 14 ¢ > 62 > 03/2, for sufficiently large k, the above quantity will be greater than one. Hence,
My, /\/ni; > x1 will happen infinitely often. As this has probability zero, we must have P(S,, >
(1+¢)v2nloglogn i.0.) = 0, thereby showing (77).

Proof of (??) Let 0 be an integer such that 3/v/0 < ¢ and ny = 6*. Define

ap = xp/\/nk —np—1  with 2, = (1 — 671)y/2n; loglog ny.

As §,, are sums of independent R.V.-s, we can apply Lemma ?? to S,, — Sp, , and get
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P (Snk —Spy_y 2 xk) = exp <_2(nkfknk—1)(1 + 5k)>

1—6-1220%log k
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= exp (—(1 — 9_1) 10g k‘(l + 0(1)))
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the last bound holding for all large k. As the RHS sums up to infinity and the events are indepen-
dent, by Borel-Cantelli II we get that

P (Snk — Sy = Tk i.o.) =1.

We now argue that the above implies S,, > (1 — €)v/2ny loglog ni, happens infinitely often with
probability one, thereby showing the result. Indeed, applying the established result (?7) to —Sp,
with e =1, we get =5, |, < 2\/2nk,1 loglog ny_1 for all large k. Combined with the above result,

we get that with probability one,
Spy > a1 — 24/2n_1loglogng_1 > x —i\/Qn lo lon(l—l—
n, = Tk k—110g810gNE—1 = Tk NG k 10g 108 1k 0
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For completeness, we also provide the proof of Lemma 77.
Proof of Lemma 77?7 Suppose M,/\/n > a, then either S,/\/n > a — /2, or S,/v/n <
« — /2 and one of the following happens: M;_1 < ay/n but M; > ay/n. Defining 4; =
{Mj_l < a\/ﬁ < Mj}, then

(th20)sr (20 ) Er(an{o0 1)

On each of the event A; N {---}, we have S; > ay/n and S, < (o — v/2)y/n, which implies
(Sp — S;)/v/n < —V/2. This event is independent of A;, and S,, — S; has variance n — j, so we get

(oo {=a-a)) (unf25% )

Sn— S, n—j
=P(4))P L < V2] < P(A;).
Plugging into the preceding bound gives
M S n—j S 1=
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As A; are disjoint and |J A; implies {M,,/\/n > a}, we get
M, Sh 1_ (M,
Pl— > <P|—=>a-+Vv2 —P|{—=>
<w€—a>— (ﬁ—o‘ f>+2 <ﬁ—a>’
from which the result follows. O



