Stats 310A Session 8

December 10, 2019

In this session, we will go through some practice problems. These problems fall in the scope of Stats 310A and involves a lot of what we learned comprehensively.

Problem 1 Let \mathcal{X} be a set, \mathcal{B} be a countably generated σ -algebra of subsets of \mathcal{X} . Let $\mathcal{P}(\mathcal{X}, \mathcal{B})$ be the set of all probability measures on $(\mathcal{X}, \mathcal{B})$. Make $\mathcal{P}(\mathcal{X}, \mathcal{B})$ into a measurable space by declaring that the map $P \mapsto P(A)$ is Borel measurable for each $A \in \mathcal{B}$. Call the associated σ -algebra \mathcal{B}^* .

- (a) Show that \mathcal{B}^* is countably generated.
- (b) For $\mu \in \mathcal{P}(\mathcal{X}, \mathcal{B})$, show that $\{\mu\} \in \mathcal{B}^*$.
- (c) For $\mu, \nu \in \mathcal{P}(\mathcal{X}, \mathcal{B})$, let

$$\|\mu - \nu\| = \sup_{A \in \mathcal{B}} |\mu(A) - \nu(A)|.$$

Show that the map $(\mu, \nu) \mapsto \|\mu - \nu\|$ is $\mathcal{B}^* \times \mathcal{B}^*$ measurable.

Problem 2 Let $\{X_n\}_n$ be iid symmetric random variables such that

$$\lim_{y \to \infty} \frac{y^2 \Pr(|X_1| > y)}{\mathbb{E}(X_1^2; |X_1| < y)} = 0.$$
 (1)

Show that there exists a sequence $\{b_n\}_n$ of positive constants such that

$$\frac{1}{b_n} \sum_{k=1}^n X_k \xrightarrow{d} \mathcal{N}(0,1). \tag{2}$$

Problem 3 Recall that given two measures μ , ν on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, a coupling of μ and ν is any probability measure γ on $(\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2})$ such that, for any Borel set A, we have $\gamma(A \times \mathbb{R}) = \mu(A)$, $\gamma(\mathbb{R} \times A) = \nu(A)$. (In words, the one-dimensional marginals of γ are –respectively– μ and ν .) We denote by $\Gamma(\mu, \nu)$ the set of couplings of μ and ν . For $p \geq 1$, let \mathcal{P}_p be the space of probability measures μ such that $\int |x|^p \mu(\mathrm{d}x) < \infty$. For $\mu, \nu \in \mathcal{P}_p$, their p-th Wasserstein distance is

$$W_p(\mu, \nu) = \left\{ \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma(\mathrm{d}x, \mathrm{d}y) \right\}^{1/p} \tag{3}$$

- 1. For $\mu = \mathcal{N}(0,1)$ and $\nu = \mathcal{N}(a,1)$, prove that $W_2(\mu,\nu) = |a|$.
- 2. For $\mu = \mathcal{N}(0,1)$ and $\nu = \mathcal{N}(0,v), v > 1$, prove that $W_2(\mu,\nu) = \sqrt{v} 1$.
- 3. Prove that $\Gamma(\mu, \nu)$ is uniformly tight.

4. Fix $p \geq 1$. Prove that there exists a sequence of probability measures $\{\gamma_n\}_{n \in \mathbb{R}} \subseteq \Gamma(\mu, \nu)$ amd $\gamma \in \Gamma(\mu, \nu)$ such that $\gamma_n \stackrel{w}{\Rightarrow} \gamma$, and

$$\lim_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_n(\mathrm{d}x, \mathrm{d}y) = W_p(\mu, \nu)^p.$$
 (4)

5. Prove that (for $\{\gamma_n\}_{n\in\mathbb{N}}$, γ constructed as in the previous point)

$$\lim \inf_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma_n(\mathrm{d}x, \mathrm{d}y) \ge \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma(\mathrm{d}x, \mathrm{d}y) \,, \tag{5}$$

and deduce that

$$W_p(\mu, \nu) = \left\{ \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma(\mathrm{d}x, \mathrm{d}y) \right\}^{1/p} \tag{6}$$