Stats 310A Session 8

December 10, 2019

In this session, we will go through some practice problems. These problems fall in the scope of
Stats 310A and involves a lot of what we learned comprehensively.

Problem 1 Let X be a set, B be a countably generated o-algebra of subsets of X'. Let P(X, B) be
the set of all probability measures on (X, B). Make P(X, B) into a measurable space by declaring
that the map P +— P(A) is Borel measurable for each A € B. Call the associated o-algebra B*.

(a) Show that B* is countably generated.
(b) For u € P(X,B), show that {u} € B*.

(c) For p,v € P(X,B), let
|1 = vl = sup [u(A) — v(A)].
AeB

Show that the map (u,v) — [|u — v|| is B* x B* measurable.
Solution
(a) We have by the definition of B* that
B*=c({{PePX,B): P(A) <p}:AeB,pe|0,1]}).

As B is countably generated, there exists some countable By such that B = o(By). Without
loss of generality, we can let By be an algebra (if not, consider the smallest algebra containing
Byo: this also generates o(By) and is a countable set, see Exercise 1.1.29(b) in Dembo’s Notes).

We now define
B*=0({{PeP(X,B): P(A) <p}:AecBype(0,1]NnQ}),

which is the smallest o-algebra that makes f4 := P — P(A) measurable for all A € By.

Recalling that the total variation distance makes P(X, B) into a metric space, let By, be the
corresponding Borel o-algebra. We will now show that

By C B' C B;, C B}
The first inclusion is trivial and the second follows from the fact that
|fa(P) = fa(P")| = |[P(A) = P'(A)| < |P = Pl

rendering each f4 Lipschitz, so continuous, and thus Bf,-measurable.



For the last inclusion, a slight modification of Exercise 1.2.15(a) in Dembo’s notes yields that
for any P,P' € P and A € B,

inf (P(AAB)V P'(AAB)) = 0.
BlgBO(( )V P( ) =0

In particular, for any B € B and € > 0, we can take A, € By such that P(A.AA), P'(AAA) <,
which renders

|P(A)_P(AE)‘ = ’P(AUAs) _P(Ae) _P(AUAE)+P(A)|
< P(A\ A+ P(Ac\ A)
< 2e,

and similarly for P’. We thus have that, for any € > 0,

sup |P(A) — P'(A)| < sup |[P(A) — P'(4)|

AeBg AeB
< sup |P(A.) — P'(AJ)| + 4e

AeB
< sup [P(A) — P/(A)] + 4e,

AeBy

from which we have that

sup |[P(A) — P'(A)] = sup [P(A) — P'(A)].
AeB A€eBy

But now, we can write any TV-open ball as

{P:|P-Pllw<r}= |J {P:sup|P(A) - R(A)| <q}

q<r,q€Q AeB
= U {P: 5w [P(A) - R(A)| < )
q<r,qeQ A€Bo

= U N N{P:|IPA) - Py(A)] <q+1/r}

q<r,q€Qr=1 AeBy
%
€ By.

We thus have our chain of set inclusions and in particular, B* = B, which is finitely-generated.

Given any pu € P(X, B), we clearly have

{pu} C{P: P(A) = u(A), for all A € By} = ﬂ {P:P(A) =pu(A)}.
A€eBy

Our goal is to show the converse direction, thereby showing that {u} is the intersection of
countably many generating sets and thus {u} € B*. This is to say that any two measures that
coincide on the generating set By has to coincide on B, which is guaranteed by the uniqueness
of the Caratheodory extension.



(c¢) From the working in part (a), it suffices to show that for any t € R,

{mv)lp=vly <th = () {(v) : [u(4) = v(4) < 1}

A€eBy

is a measurable subset of B* x B*. But note that each set on the RHS is B* x B*-measuable as
the function (u,v) — |pu(A) — v(A)| is measurable for all A, so the result follows.

O]

Problem 2 Let {X,}, be iid symmetric random variables such that

m Y Pr(lXi| >y) _
y—oo B(XZ | X1 < y)

Show that there exists a sequence {by,},, of positive constants such that

bi X 5 N(0,1). (2)
" k=1

Solution We will be truncating the random variables at some ¢, — oo, but we will leave the
specification of this sequence for later. Define

on = E(XT; | X1| < ¢n) 3)

so that 02 — EX? € (0,00]. Next, we define the truncations

~ 1
Xng = Un\/ﬁXkl{|Xk|§cn}- (4)

Defining

n

1
n — X,
S Um/ﬁ; k (5)

gn = Z X’:l,kv (6)
k=1

we verify the Lindeberg condition, so for any ¢ > 0, we have

~ ~ 1
E(Xik; ‘Xn,k > 6) = WE(X%;EOWL\/E < |X1| < Cn)7 (7)
1
gn(€) = EE(X%;ean\/ﬁ < |Xi| < ep). (8)

n

Notice that if ¢, < o,4/n, then for large enough n, the condition in the expectation fails and
gn(€) = 0. The Lindeberg CLT thus yields that S, % A7(0,1).



Next, we use the usual truncation trick to write

Pr(S, £ 5 < S PHIX] > ) )
= Z:;r(|X1| > cp) (10)
=z AP > ) (11)
= SEX X < en)flea), (12)

n

where f(y) is the function tending to 0 defined in eq. .
Suppose now that ¢, > o,nt/4 and define

f(z) = sup f(y). (13)

y>w

This function dominates f, is decreasing and tends to 0 as  — oco. In particular, we can define

an = flonn!") = f(en), (14)

so that )
Pr(Sy # S,) < =57, (15)

which converges to 0 as long as '
anan\/ﬁ < ¢p. (16)

At last, we can define
en = on(/an vV n V) /n (17)
Notice that this satisfies ¢, — 00, ¢, > o,n'/* and ¢, > ano,/n so that Pr(S, # S'n) — 0,
and also satisfies ¢, < op+/n so that S, 4 N(0,1). Therefore, we conclude that S, 4 N(0,1). O

Problem 3 Recall that given two measures p, v on (R, Bg), a coupling of 1 and v is any probabil-
ity measure v on (R?, Bg2) such that, for any Borel set A, we have v(AxR) = u(A), y(Rx A) = v(A).
(In words, the one-dimensional marginals of v are —respectively— p and v.) We denote by I'(u, )
the set of couplings of  and v. For p > 1, let P, be the space of probability measures p such that
[ |z|P p(dx) < oo. For p,v € Py, their p-th Wasserstein distance is

T e ) (19
el (1v) JRxR

1. For u=N(0,1) and v = N(a, 1), prove that Wa(u,v) = |a|.

2. For p=N(0,1) and v = N(0,v), v > 1, prove that Wa(u,v) = /v — 1.

3. Prove that I'(u, v) is uniformly tight.

4. Fix p > 1. Prove that there exists a sequence of probability measures {7, }ner C I'(u, v) amd
v € I'(u, v) such that v, = ~, and

lim |z = y|P y(de, dy) = Wy(u, v)". (19)

n—o0 RxR



5. Prove that (for {7, }nen, 7 constructed as in the previous point)

hnlnﬁt/ h*—wpmxd%dy)zm/ @ — ylPy(de, dy) (20)
RxR RxR

n—oo

and deduce that
1/p
Wyt) ={ [l = ypatanan] (21)
RxR

Solution

1. For any X ~ p and Y ~ v, we have by Jensen’s inequality that

VE(X —Y)2 > |[EX — EY| = |d], (22)

and this lower bound is achieved by taking Z ~ N (0,1) and X = Z,Y = Z + a so that

VE(X —Y)2 = E(Z — (Z +a))? = |al. (23)
Hence, Wa(u,v) = |al.
2. For any X ~ p and Y ~ v, we have by Cauchy-Schwarz that
E(X —-Y)2=EX? - 2EXY +EY?>0v—2v+ 1= (Vv —1)? (24)

and this lower bound is achieved by taking Z ~ N (0,1) and X = Z,Y = \/vZ so that

VEX — Y = \[E[(Vo - 1)22] = /o - 1. (25)
Hence, Wy (p,v) = /v — 1.

3. Let € > 0 and let K. be such that u([—K, K]V),v([-K, K]¢) < €/2. We then have that
[~ K, K]? is compact such that, for any v € ', we have that

V([-K,K]*)*) =Pr({X ¢ [-K, K]} U{Y ¢ [-K,K]}) (26)
< Pr(X ¢ [-K,K]) + Pr(Y ¢ [-K, K)) (27)
<e. (28)

That is, I' is uniformly tight.

4. Since W} (p,v) = infier [po |2 — y[Py(da, dy), choose a sequence v, € I' such that

lim |z — y|Pyn(dz, dy) = W) (u,v). (29)

n—o0 RxR

By the uniform tightness of I', Prokhorov’s theorem allows us to choose a subsequence ny, such
that 7,, = 7. Joint weak convergence implying marginal weak convergence (since coordinate
projections are continuous) allows us to conclude that v € I'.



5. Since vy, = 7, Skorokhod’s representation theorem yields a sequence of random variables
(X%, X}) ~ vn, converging almost surely to some (X, X’) ~ v. Fatou’s lemma then gives

lim inf/ |z — y|Pyn, (dz, dy) = lim inf E| X}, — X}| (30)
k—o0 RxR k—o0
>E|X — X'| (31)
= [l yPytda,dy) (32)
RxR

Since v € I', we combine this with the previous result to conclude

WP () > /R o (e, dy) = W), (33)
X

from which we conclude that the infimum in the definition of W) (11, ) is necessarily achieved.

O



