
Stats 310A Session 8

December 10, 2019

In this session, we will go through some practice problems. These problems fall in the scope of
Stats 310A and involves a lot of what we learned comprehensively.

Problem 1 Let X be a set, B be a countably generated σ-algebra of subsets of X . Let P(X ,B) be
the set of all probability measures on (X ,B). Make P(X ,B) into a measurable space by declaring
that the map P 7→ P (A) is Borel measurable for each A ∈ B. Call the associated σ-algebra B∗.

(a) Show that B∗ is countably generated.

(b) For µ ∈ P(X ,B), show that {µ} ∈ B∗.

(c) For µ, ν ∈ P(X ,B), let
‖µ− ν‖ = sup

A∈B
|µ(A)− ν(A)|.

Show that the map (µ, ν) 7→ ‖µ− ν‖ is B∗ × B∗ measurable.

Solution

(a) We have by the definition of B∗ that

B∗ = σ ({{P ∈ P(X ,B) : P (A) ≤ p} : A ∈ B, p ∈ [0, 1]}) .

As B is countably generated, there exists some countable B0 such that B = σ(B0). Without
loss of generality, we can let B0 be an algebra (if not, consider the smallest algebra containing
B0: this also generates σ(B0) and is a countable set, see Exercise 1.1.29(b) in Dembo’s Notes).

We now define

B∗ = σ ({{P ∈ P(X ,B) : P (A) ≤ p} : A ∈ B0, p ∈ [0, 1] ∩Q}) ,

which is the smallest σ-algebra that makes fA := P 7→ P (A) measurable for all A ∈ B0.

Recalling that the total variation distance makes P(X ,B) into a metric space, let B∗tv be the
corresponding Borel σ-algebra. We will now show that

B∗0 ⊆ B∗ ⊆ B∗tv ⊆ B∗0

The first inclusion is trivial and the second follows from the fact that

|fA(P )− fA(P ′)| = |P (A)− P ′(A)| ≤ ‖P − P ′‖tv,

rendering each fA Lipschitz, so continuous, and thus B∗tv-measurable.
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For the last inclusion, a slight modification of Exercise 1.2.15(a) in Dembo’s notes yields that
for any P, P ′ ∈ P and A ∈ B,

inf
B∈B0

(P (A∆B) ∨ P ′(A∆B)) = 0.

In particular, for any B ∈ B and ε > 0, we can take Aε ∈ B0 such that P (Aε∆A), P ′(Aε∆A) < ε,
which renders

|P (A)− P (Aε)| = |P (A ∪Aε)− P (Aε)− P (A ∪Aε) + P (A)|
≤ P (A \Aε) + P (Aε \A)

≤ 2ε,

and similarly for P ′. We thus have that, for any ε > 0,

sup
A∈B0

|P (A)− P ′(A)| ≤ sup
A∈B
|P (A)− P ′(A)|

≤ sup
A∈B
|P (Aε)− P ′(Aε)|+ 4ε

≤ sup
A∈B0

|P (A)− P ′(A)|+ 4ε,

from which we have that

sup
A∈B
|P (A)− P ′(A)| = sup

A∈B0
|P (A)− P ′(A)|.

But now, we can write any TV-open ball as

{P : ‖P − P0‖tv < r} =
⋃

q<r,q∈Q
{P : sup

A∈B
|P (A)− P0(A)| ≤ q}

=
⋃

q<r,q∈Q
{P : sup

A∈B0
|P (A)− P0(A)| ≤ q}

=
⋃

q<r,q∈Q

∞⋂
r=1

⋂
A∈B0

{P : |P (A)− P0(A)| < q + 1/r}

∈ B∗0.

We thus have our chain of set inclusions and in particular, B∗ = B∗0, which is finitely-generated.

(b) Given any µ ∈ P(X ,B), we clearly have

{µ} ⊆ {P : P (A) = µ(A), for all A ∈ B0} =
⋂
A∈B0

{P : P (A) = µ(A)}.

Our goal is to show the converse direction, thereby showing that {µ} is the intersection of
countably many generating sets and thus {µ} ∈ B∗. This is to say that any two measures that
coincide on the generating set B0 has to coincide on B, which is guaranteed by the uniqueness
of the Caratheodory extension.
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(c) From the working in part (a), it suffices to show that for any t ∈ R,

{(µ, ν) : ‖µ− ν‖tv ≤ t} =
⋂
A∈B0

{(µ, ν) : |µ(A)− ν(A)| ≤ t}

is a measurable subset of B∗×B∗. But note that each set on the RHS is B∗×B∗-measuable as
the function (µ, ν)→ |µ(A)− ν(A)| is measurable for all A, so the result follows.

Problem 2 Let {Xn}n be iid symmetric random variables such that

lim
y→∞

y2 Pr(|X1| > y)

E(X2
1 ; |X1| < y)

= 0. (1)

Show that there exists a sequence {bn}n of positive constants such that

1

bn

n∑
k=1

Xk
d−→ N (0, 1). (2)

Solution We will be truncating the random variables at some cn → ∞, but we will leave the
specification of this sequence for later. Define

σ2
n = E(X2

1 ; |X1| < cn) (3)

so that σ2
n → EX2

1 ∈ (0,∞]. Next, we define the truncations

X̃n,k =
1

σn
√
n
Xk1{|Xk|≤cn}. (4)

Defining

Sn =
1

σn
√
n

n∑
k=1

Xk, (5)

S̃n =

n∑
k=1

˜Xn,k, (6)

we verify the Lindeberg condition, so for any ε > 0, we have

E(X̃2
n,k; |X̃n,k ≥ ε) =

1

nσ2
n

E(X2
1 ; εσn

√
n ≤ |X1| < cn), (7)

gn(ε) =
1

σ2
n

E(X2
1 ; εσn

√
n ≤ |X1| < cn). (8)

Notice that if cn � σn
√
n, then for large enough n, the condition in the expectation fails and

gn(ε) = 0. The Lindeberg CLT thus yields that S̃n
d−→ N (0, 1).
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Next, we use the usual truncation trick to write

Pr(Sn 6= S̃n) ≤
n∑
k=1

Pr(|Xn| > cn) (9)

= nPr(|X1| > cn) (10)

=
n

c2
n

· c2
n Pr(|X1| > cn) (11)

=
n

c2
n

E(X2
1 ; |X1| < cn)f(cn), (12)

where f(y) is the function tending to 0 defined in eq. (3).
Suppose now that cn ≥ σnn1/4 and define

f̄(x) = sup
y≥x

f(y). (13)

This function dominates f , is decreasing and tends to 0 as x→∞. In particular, we can define

an = f̄(σnn
1/4) ≥ f(cn), (14)

so that

Pr(Sn 6= S̃n) ≤ nσ2
nan
c2
n

, (15)

which converges to 0 as long as
anσn

√
n� cn. (16)

At last, we can define
cn = σn(

√
an ∨ n−1/4)

√
n (17)

Notice that this satisfies cn → ∞, cn ≥ σnn
1/4 and cn � anσn

√
n so that Pr(Sn 6= S̃n) → 0,

and also satisfies cn � σn
√
n so that S̃n

d−→ N (0, 1). Therefore, we conclude that Sn
d−→ N (0, 1).

Problem 3 Recall that given two measures µ, ν on (R,BR), a coupling of µ and ν is any probabil-
ity measure γ on (R2,BR2) such that, for any Borel setA, we have γ(A×R) = µ(A), γ(R×A) = ν(A).
(In words, the one-dimensional marginals of γ are –respectively– µ and ν.) We denote by Γ(µ, ν)
the set of couplings of µ and ν. For p ≥ 1, let Pp be the space of probability measures µ such that∫
|x|p µ(dx) <∞. For µ, ν ∈ Pp, their p-th Wasserstein distance is

Wp(µ, ν) =

{
inf

γ∈Γ(µ,ν)

∫
R×R
|x− y|p γ(dx,dy)

}1/p

(18)

1. For µ = N (0, 1) and ν = N (a, 1), prove that W2(µ, ν) = |a|.

2. For µ = N (0, 1) and ν = N (0, v), v > 1, prove that W2(µ, ν) =
√
v − 1.

3. Prove that Γ(µ, ν) is uniformly tight.

4. Fix p ≥ 1. Prove that there exists a sequence of probability measures {γn}n∈R ⊆ Γ(µ, ν) amd
γ ∈ Γ(µ, ν) such that γn

w⇒ γ, and

lim
n→∞

∫
R×R
|x− y|p γn(dx,dy) = Wp(µ, ν)p . (19)
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5. Prove that (for {γn}n∈N, γ constructed as in the previous point)

lim inf
n→∞

∫
R×R
|x− y|p γn(dx,dy) ≥

∫
R×R
|x− y|p γ(dx,dy) , (20)

and deduce that

Wp(µ, ν) =

{∫
R×R
|x− y|p γ(dx,dy)

}1/p

(21)

Solution

1. For any X ∼ µ and Y ∼ ν, we have by Jensen’s inequality that√
E(X − Y )2 ≥ |EX − EY | = |a|, (22)

and this lower bound is achieved by taking Z ∼ N (0, 1) and X = Z, Y = Z + a so that√
E(X − Y )2 =

√
E(Z − (Z + a))2 = |a|. (23)

Hence, W2(µ, ν) = |a|.

2. For any X ∼ µ and Y ∼ ν, we have by Cauchy-Schwarz that

E(X − Y )2 = EX2 − 2EXY + EY 2 ≥ v − 2
√
v + 1 = (

√
v − 1)2 (24)

and this lower bound is achieved by taking Z ∼ N (0, 1) and X = Z, Y =
√
vZ so that√

E(X − Y )2 =

√
E[(
√
v − 1)2Z] =

√
v − 1. (25)

Hence, W2(µ, ν) =
√
v − 1.

3. Let ε > 0 and let Kε be such that µ([−K,K]v), ν([−K,K]c) < ε/2. We then have that
[−K,K]2 is compact such that, for any γ ∈ Γ, we have that

γ(([−K,K]2)c) = Pr({X /∈ [−K,K]} ∪ {Y /∈ [−K,K]}) (26)

≤ Pr(X /∈ [−K,K]) + Pr(Y /∈ [−K,K]) (27)

< ε. (28)

That is, Γ is uniformly tight.

4. Since W p
p (µ, ν) = infγ∈Γ

∫
R2 |x− y|pγ(dx,dy), choose a sequence γn ∈ Γ such that

lim
n→∞

∫
R×R
|x− y|pγn(dx,dy) = W p

p (µ, ν). (29)

By the uniform tightness of Γ, Prokhorov’s theorem allows us to choose a subsequence nk such
that γnk

⇒ γ. Joint weak convergence implying marginal weak convergence (since coordinate
projections are continuous) allows us to conclude that γ ∈ Γ.
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5. Since γnk
⇒ γ, Skorokhod’s representation theorem yields a sequence of random variables

(Xk, X
′
k) ∼ γnk

converging almost surely to some (X,X ′) ∼ γ. Fatou’s lemma then gives

lim inf
k→∞

∫
R×R
|x− y|pγnk

(dx, dy) = lim inf
k→∞

E|Xk −X ′k| (30)

≥ E|X −X ′| (31)

=

∫
R×R
|x− y|pγ(dx, dy). (32)

Since γ ∈ Γ, we combine this with the previous result to conclude

W p
p (µ, ν) ≥

∫
R×R
|x− y|pγ(dx, dy) ≥W p

p (µ, ν), (33)

from which we conclude that the infimum in the definition of W p
p (µ, ν) is necessarily achieved.
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