Stats 310A Session 8

December 10, 2019

In this session, we will go through some practice problems. These problems fall in the scope of Stats 310A and involves a lot of what we learned comprehensively.

Problem 1 Let X be a set, B be a countably generated σ -algebra of subsets of X. Let $\mathcal{P}(\mathcal{X}, \mathcal{B})$ be the set of all probability measures on $(\mathcal{X}, \mathcal{B})$. Make $\mathcal{P}(\mathcal{X}, \mathcal{B})$ into a measurable space by declaring that the map $P \mapsto P(A)$ is Borel measurable for each $A \in \mathcal{B}$. Call the associated σ -algebra \mathcal{B}^* .

- (a) Show that \mathcal{B}^* is countably generated.
- (b) For $\mu \in \mathcal{P}(\mathcal{X}, \mathcal{B})$, show that $\{\mu\} \in \mathcal{B}^*$.
- (c) For $\mu, \nu \in \mathcal{P}(\mathcal{X}, \mathcal{B})$, let

$$
\|\mu - \nu\| = \sup_{A \in \mathcal{B}} |\mu(A) - \nu(A)|.
$$

Show that the map $(\mu, \nu) \mapsto ||\mu - \nu||$ is $\mathcal{B}^* \times \mathcal{B}^*$ measurable.

Solution

(a) We have by the definition of \mathcal{B}^* that

$$
\mathcal{B}^* = \sigma\left(\left\{\left\{P \in \mathcal{P}(\mathcal{X}, \mathcal{B}) : P(A) \leq p\right\} : A \in \mathcal{B}, p \in [0, 1]\right\}\right).
$$

As B is countably generated, there exists some countable \mathcal{B}_0 such that $\mathcal{B} = \sigma(\mathcal{B}_0)$. Without loss of generality, we can let \mathcal{B}_0 be an algebra (if not, consider the smallest algebra containing \mathcal{B}_0 : this also generates $\sigma(\mathcal{B}_0)$ and is a countable set, see Exercise 1.1.29(b) in Dembo's Notes). We now define

$$
\mathcal{B}^* = \sigma\left(\left\{\left\{P \in \mathcal{P}(\mathcal{X}, \mathcal{B}) : P(A) \leq p\right\} : A \in \mathcal{B}_0, p \in [0, 1] \cap \mathbb{Q}\right\}\right),\
$$

which is the smallest σ -algebra that makes $f_A := P \mapsto P(A)$ measurable for all $A \in \mathcal{B}_0$.

Recalling that the total variation distance makes $\mathcal{P}(\mathcal{X}, \mathcal{B})$ into a metric space, let $\mathcal{B}_{\text{tv}}^*$ be the corresponding Borel σ -algebra. We will now show that

$$
\mathcal{B}_0^* \subseteq \mathcal{B}^* \subseteq \mathcal{B}_{\mathrm{tv}}^* \subseteq \mathcal{B}_0^*
$$

The first inclusion is trivial and the second follows from the fact that

$$
|f_A(P) - f_A(P')| = |P(A) - P'(A)| \le ||P - P'||_{\text{tv}},
$$

rendering each f_A Lipschitz, so continuous, and thus $\mathcal{B}_{\text{tv}}^*$ -measurable.

For the last inclusion, a slight modification of Exercise 1.2.15(a) in Dembo's notes yields that for any $P, P' \in \mathcal{P}$ and $A \in \mathcal{B}$,

$$
\inf_{B \in \mathcal{B}_0} (P(A \Delta B) \vee P'(A \Delta B)) = 0.
$$

In particular, for any $B \in \mathcal{B}$ and $\epsilon > 0$, we can take $A_{\epsilon} \in \mathcal{B}_0$ such that $P(A_{\epsilon} \Delta A), P'(A_{\epsilon} \Delta A) < \epsilon$, which renders

$$
|P(A) - P(A_{\epsilon})| = |P(A \cup A_{\epsilon}) - P(A_{\epsilon}) - P(A \cup A_{\epsilon}) + P(A)|
$$

\n
$$
\leq P(A \setminus A_{\epsilon}) + P(A_{\epsilon} \setminus A)
$$

\n
$$
\leq 2\epsilon,
$$

and similarly for P'. We thus have that, for any $\epsilon > 0$,

$$
\sup_{A \in \mathcal{B}_0} |P(A) - P'(A)| \le \sup_{A \in \mathcal{B}} |P(A) - P'(A)|
$$

$$
\le \sup_{A \in \mathcal{B}} |P(A_{\epsilon}) - P'(A_{\epsilon})| + 4\epsilon
$$

$$
\le \sup_{A \in \mathcal{B}_0} |P(A) - P'(A)| + 4\epsilon,
$$

from which we have that

$$
\sup_{A \in \mathcal{B}} |P(A) - P'(A)| = \sup_{A \in \mathcal{B}_0} |P(A) - P'(A)|.
$$

But now, we can write any TV-open ball as

$$
\{P : ||P - P_0||_{\text{tv}} < r\} = \bigcup_{q < r, q \in \mathbb{Q}} \{P : \sup_{A \in \mathcal{B}} |P(A) - P_0(A)| \le q\}
$$
\n
$$
= \bigcup_{q < r, q \in \mathbb{Q}} \{P : \sup_{A \in \mathcal{B}_0} |P(A) - P_0(A)| \le q\}
$$
\n
$$
= \bigcup_{q < r, q \in \mathbb{Q}} \bigcap_{r=1}^{\infty} \bigcap_{A \in \mathcal{B}_0} \{P : |P(A) - P_0(A)| < q + 1/r\}
$$
\n
$$
\in \mathcal{B}_0^*.
$$

We thus have our chain of set inclusions and in particular, $\mathcal{B}^* = \mathcal{B}_0^*$, which is finitely-generated.

(b) Given any $\mu \in \mathcal{P}(\mathcal{X}, \mathcal{B})$, we clearly have

$$
\{\mu\} \subseteq \{P : P(A) = \mu(A), \text{ for all } A \in \mathcal{B}_0\} = \bigcap_{A \in \mathcal{B}_0} \{P : P(A) = \mu(A)\}.
$$

Our goal is to show the converse direction, thereby showing that $\{\mu\}$ is the intersection of countably many generating sets and thus $\{\mu\} \in \mathcal{B}^*$. This is to say that any two measures that coincide on the generating set \mathcal{B}_0 has to coincide on \mathcal{B} , which is guaranteed by the uniqueness of the Caratheodory extension.

(c) From the working in part (a), it suffices to show that for any $t \in \mathbb{R}$,

$$
\{(\mu, \nu) : ||\mu - \nu||_{\text{tv}} \le t\} = \bigcap_{A \in \mathcal{B}_0} \{(\mu, \nu) : |\mu(A) - \nu(A)| \le t\}
$$

is a measurable subset of $\mathcal{B}^* \times \mathcal{B}^*$. But note that each set on the RHS is $\mathcal{B}^* \times \mathcal{B}^*$ -measuable as the function $(\mu, \nu) \rightarrow |\mu(A) - \nu(A)|$ is measurable for all A, so the result follows.

 \Box

Problem 2 Let $\{X_n\}_n$ be iid symmetric random variables such that

$$
\lim_{y \to \infty} \frac{y^2 \Pr(|X_1| > y)}{\mathbb{E}(X_1^2; |X_1| < y)} = 0.
$$
\n(1)

Show that there exists a sequence ${b_n}_n$ of positive constants such that

$$
\frac{1}{b_n} \sum_{k=1}^n X_k \xrightarrow{d} \mathcal{N}(0, 1). \tag{2}
$$

Solution We will be truncating the random variables at some $c_n \to \infty$, but we will leave the specification of this sequence for later. Define

$$
\sigma_n^2 = \mathbb{E}(X_1^2; |X_1| < c_n) \tag{3}
$$

so that $\sigma_n^2 \to \mathbb{E} X_1^2 \in (0,\infty]$. Next, we define the truncations

$$
\tilde{X}_{n,k} = \frac{1}{\sigma_n \sqrt{n}} X_k \mathbf{1}_{\{|X_k| \le c_n\}}.\tag{4}
$$

Defining

$$
S_n = \frac{1}{\sigma_n \sqrt{n}} \sum_{k=1}^n X_k,\tag{5}
$$

$$
\tilde{S}_n = \sum_{k=1}^n X_{n,k},\tag{6}
$$

we verify the Lindeberg condition, so for any $\epsilon > 0$, we have

$$
\mathbb{E}(\tilde{X}_{n,k}^2; |\tilde{X}_{n,k} \ge \epsilon) = \frac{1}{n\sigma_n^2} \mathbb{E}(X_1^2; \epsilon \sigma_n \sqrt{n} \le |X_1| < c_n),\tag{7}
$$

$$
g_n(\epsilon) = \frac{1}{\sigma_n^2} \mathbb{E}(X_1^2; \epsilon \sigma_n \sqrt{n} \le |X_1| < c_n). \tag{8}
$$

Notice that if $c_n \ll \sigma_n \sqrt{n}$, then for large enough n, the condition in the expectation fails and $g_n(\epsilon) = 0$. The Lindeberg CLT thus yields that $\tilde{S}_n \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$.

Next, we use the usual truncation trick to write

$$
\Pr(S_n \neq \tilde{S}_n) \le \sum_{k=1}^n \Pr(|X_n| > c_n)
$$
\n(9)

$$
= n \Pr(|X_1| > c_n) \tag{10}
$$

$$
= \frac{n}{c_n^2} \cdot c_n^2 \Pr(|X_1| > c_n)
$$
\n(11)

$$
= \frac{n}{c_n^2} \mathbb{E}(X_1^2; |X_1| < c_n) f(c_n),\tag{12}
$$

where $f(y)$ is the function tending to 0 defined in eq. [\(3\)](#page-2-0).

Suppose now that $c_n \geq \sigma_n n^{1/4}$ and define

$$
\bar{f}(x) = \sup_{y \ge x} f(y). \tag{13}
$$

This function dominates f, is decreasing and tends to 0 as $x \to \infty$. In particular, we can define

$$
a_n = \bar{f}(\sigma_n n^{1/4}) \ge f(c_n),\tag{14}
$$

so that

$$
\Pr(S_n \neq \tilde{S}_n) \le \frac{n\sigma_n^2 a_n}{c_n^2},\tag{15}
$$

which converges to 0 as long as

$$
a_n \sigma_n \sqrt{n} \ll c_n. \tag{16}
$$

At last, we can define

$$
c_n = \sigma_n(\sqrt{a_n} \vee n^{-1/4})\sqrt{n} \tag{17}
$$

Notice that this satisfies $c_n \to \infty$, $c_n \geq \sigma_n n^{1/4}$ and $c_n \gg a_n \sigma_n \sqrt{n}$ so that $Pr(S_n \neq \tilde{S}_n) \to 0$, and also satisfies $c_n \ll \sigma_n \sqrt{n}$ so that $\widetilde{S}_n \stackrel{d}{\to} \mathcal{N}(0, 1)$. Therefore, we conclude that $S_n \stackrel{d}{\to} \mathcal{N}(0, 1)$.

Problem 3 Recall that given two measures μ , ν on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, a coupling of μ and ν is any probability measure γ on $(\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2})$ such that, for any Borel set A, we have $\gamma(A \times \mathbb{R}) = \mu(A), \gamma(\mathbb{R} \times A) = \nu(A)$. (In words, the one-dimensional marginals of γ are –respectively– μ and ν .) We denote by $\Gamma(\mu,\nu)$ the set of couplings of μ and ν . For $p \geq 1$, let \mathcal{P}_p be the space of probability measures μ such that $\int |x|^p \mu(dx) < \infty$. For $\mu, \nu \in \mathcal{P}_p$, their p-th Wasserstein distance is

$$
W_p(\mu, \nu) = \left\{ \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(\mathrm{d}x, \mathrm{d}y) \right\}^{1/p} \tag{18}
$$

- 1. For $\mu = \mathcal{N}(0, 1)$ and $\nu = \mathcal{N}(a, 1)$, prove that $W_2(\mu, \nu) = |a|$.
- 2. For $\mu = \mathcal{N}(0, 1)$ and $\nu = \mathcal{N}(0, v)$, $v > 1$, prove that $W_2(\mu, \nu) = \sqrt{v} 1$.
- 3. Prove that $\Gamma(\mu, \nu)$ is uniformly tight.
- 4. Fix $p \ge 1$. Prove that there exists a sequence of probability measures $\{\gamma_n\}_{n \in \mathbb{R}} \subseteq \Gamma(\mu, \nu)$ amd $\gamma \in \Gamma(\mu, \nu)$ such that $\gamma_n \stackrel{w}{\Rightarrow} \gamma$, and

$$
\lim_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma_n(\mathrm{d}x, \mathrm{d}y) = W_p(\mu, \nu)^p. \tag{19}
$$

5. Prove that (for $\{\gamma_n\}_{n\in\mathbb{N}}$, γ constructed as in the previous point)

$$
\liminf_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma_n(\mathrm{d}x, \mathrm{d}y) \ge \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \, \gamma(\mathrm{d}x, \mathrm{d}y),\tag{20}
$$

and deduce that

$$
W_p(\mu, \nu) = \left\{ \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(\mathrm{d}x, \mathrm{d}y) \right\}^{1/p} \tag{21}
$$

Solution

1. For any $X \sim \mu$ and $Y \sim \nu$, we have by Jensen's inequality that

$$
\sqrt{\mathbb{E}(X - Y)^2} \ge |\mathbb{E}X - \mathbb{E}Y| = |a|,\tag{22}
$$

and this lower bound is achieved by taking $Z \sim \mathcal{N}(0, 1)$ and $X = Z, Y = Z + a$ so that

$$
\sqrt{\mathbb{E}(X - Y)^2} = \sqrt{\mathbb{E}(Z - (Z + a))^2} = |a|.
$$
 (23)

Hence, $W_2(\mu, \nu) = |a|$.

2. For any $X \sim \mu$ and $Y \sim \nu$, we have by Cauchy-Schwarz that

$$
\mathbb{E}(X - Y)^2 = \mathbb{E}X^2 - 2\mathbb{E}XY + \mathbb{E}Y^2 \ge v - 2\sqrt{v} + 1 = (\sqrt{v} - 1)^2
$$
 (24)

and this lower bound is achieved by taking $Z \sim \mathcal{N}(0, 1)$ and $X = Z, Y = \sqrt{\nu}Z$ so that

$$
\sqrt{\mathbb{E}(X-Y)^2} = \sqrt{\mathbb{E}[(\sqrt{v}-1)^2 Z]} = \sqrt{v} - 1.
$$
\n(25)

Hence, $W_2(\mu, \nu) = \sqrt{\nu} - 1$.

3. Let $\epsilon > 0$ and let K_{ϵ} be such that $\mu([-K,K]^v), \nu([-K,K]^c) < \epsilon/2$. We then have that $[-K, K]^2$ is compact such that, for any $\gamma \in \Gamma$, we have that

$$
\gamma(([-K,K]^2)^c) = \Pr(\{X \notin [-K,K]\} \cup \{Y \notin [-K,K]\})
$$
\n(26)

$$
\leq \Pr(X \notin [-K, K]) + \Pr(Y \notin [-K, K]) \tag{27}
$$

$$
\langle \epsilon. \tag{28}
$$

That is, Γ is uniformly tight.

4. Since $W_p^p(\mu, \nu) = \inf_{\gamma \in \Gamma} \int_{\mathbb{R}^2} |x - y|^p \gamma(dx, dy)$, choose a sequence $\gamma_n \in \Gamma$ such that

$$
\lim_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_n(\mathrm{d}x, \mathrm{d}y) = W_p^p(\mu, \nu).
$$
 (29)

By the uniform tightness of Γ, Prokhorov's theorem allows us to choose a subsequence n_k such that $\gamma_{n_k} \Rightarrow \gamma$. Joint weak convergence implying marginal weak convergence (since coordinate projections are continuous) allows us to conclude that $\gamma \in \Gamma$.

5. Since $\gamma_{n_k} \Rightarrow \gamma$, Skorokhod's representation theorem yields a sequence of random variables $(X_k, X'_k) \sim \gamma_{n_k}$ converging almost surely to some $(X, X') \sim \gamma$. Fatou's lemma then gives

$$
\liminf_{k \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_{n_k}(\mathrm{d}x, \mathrm{d}y) = \liminf_{k \to \infty} \mathbb{E}|X_k - X'_k| \tag{30}
$$

$$
\geq \mathbb{E}|X - X'| \tag{31}
$$

$$
= \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(\mathrm{d}x, \mathrm{d}y). \tag{32}
$$

Since $\gamma \in \Gamma$, we combine this with the previous result to conclude

$$
W_p^p(\mu, \nu) \ge \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(\mathrm{d}x, \mathrm{d}y) \ge W_p^p(\mu, \nu),\tag{33}
$$

from which we conclude that the infimum in the definition of $W_p^p(\mu, \nu)$ is necessarily achieved.

