Lecture Notes on Statistics and Information Theory

John Duchi

September 25, 2023
Contents

1 **Introduction and setting**
 1.1 Information theory 8
 1.2 Moving to statistics 9
 1.3 A remark about measure theory 10
 1.4 Outline and chapter discussion 10

2 **An information theory review** 12
 2.1 Basics of Information Theory 12
 2.1.1 Definitions 12
 2.1.2 Chain rules and related properties 17
 2.1.3 Data processing inequalities: 19
 2.2 General divergence measures and definitions 20
 2.2.1 Partitions, algebras, and quantizers 20
 2.2.2 KL-divergence 21
 2.2.3 f-divergences 22
 2.2.4 Properties of divergence measures 27
 2.3 First steps into optimal procedures: testing inequalities 28
 2.3.1 Le Cam’s inequality and binary hypothesis testing 29
 2.3.2 Fano’s inequality and multiple hypothesis testing 30
 2.4 A first operational result: entropy and source coding 32
 2.4.1 The source coding problem 32
 2.4.2 The Kraft-McMillan inequalities 33
 2.4.3 Entropy rates and longer codes 36
 2.5 Deferred proofs 38
 2.5.1 Proof of Proposition 2.11 38
 2.6 Bibliography 39
 2.7 Exercises 39

3 **Exponential families and statistical modeling** 44
 3.1 Exponential family models 44
 3.2 Why exponential families? 46
 3.2.1 Fitting an exponential family model 48
 3.3 Divergence measures and information for exponential families 49
 3.4 A first optimality result: testing a parameter 50
 3.5 Generalized linear models and regression 50
 3.6 Deferred proofs 51
Privacy and disclosure limitation

7.1 Disclosure limitation, privacy, and definitions .. 121
 7.1.1 Basic mechanisms ... 123
 7.1.2 Resilience to side information, Bayesian perspectives, and data processing 127
7.2 Weakenings of differential privacy ... 129
 7.2.1 Basic mechanisms ... 130
 7.2.2 Connections between privacy measures .. 132
 7.2.3 Side information protections under weakened notions of privacy 135
7.3 Composition and privacy based on divergence .. 137
 7.3.1 Composition of Rényi-private channels 138
 7.3.2 Privacy games and composition .. 138
7.4 Additional mechanisms and privacy-preserving algorithms 141
 7.4.1 The exponential mechanism .. 141
 7.4.2 Local sensitivities and the inverse sensitivity mechanism 144
 7.4.3 Stochastic gradient methods and local privacy 144
7.5 Deferred proofs .. 147
 7.5.1 Proof of Lemma 7.18 .. 147
7.6 Bibliography .. 150
7.7 Exercises ... 150

II Fundamental limits and optimality

8 Minimax lower bounds: the Fano and Le Cam methods 158
 8.1 Basic framework and minimax risk ... 158
 8.2 Preliminaries on methods for lower bounds ... 160
 8.2.1 From estimation to testing ... 161
 8.2.2 Inequalities between divergences and product distributions 162
 8.2.3 Metric entropy and packing numbers ... 164
 8.3 Le Cam’s method .. 166
 8.4 Fano’s method ... 168
 8.4.1 The classical (local) Fano method .. 168
 8.4.2 A distance-based Fano method .. 173
 8.5 Proofs of results .. 176
 8.5.1 Proof of Proposition 8.13 ... 176
 8.5.2 Proof of Corollary 8.14 .. 176
 8.6 Exercises .. 177

9 Assouad’s method ... 183
 9.1 The method .. 183
 9.1.1 Well-separated problems ... 183
 9.1.2 From estimation to multiple binary tests 184
 9.1.3 Proof of Lemma 9.2 ... 185
 9.2 Example applications of Assouad’s method .. 185
 9.3 Exercises .. 188
10 Nonparametric regression: minimax upper and lower bounds 190

10.1 Introduction .. 190
10.2 Kernel estimates of the function 191
10.3 Minimax lower bounds on estimation with Assouad’s method 194

11 Global Fano Method 197

11.1 A mutual information bound based on metric entropy 197
11.2 Minimax bounds using global packings 199
11.3 Example: non-parametric regression 200

12 Constrained risk inequalities 202

12.1 Strong data processing inequalities ... 202
12.2 Local privacy ... 205
12.3 Communication complexity .. 205
 12.3.1 Direct sum communication bounds 207
 12.3.2 Data processing for single-variable communication 208
 12.3.3 Data processing and Assouad’s method for multiple variables 212
12.4 Applications, examples, and lower bounds 213
 12.4.1 Communication lower bounds 214
 12.4.2 Lower bounds in locally private estimation 215
12.5 Technical proofs and arguments ... 215
 12.5.1 Proof of Lemma 12.9 .. 215
12.6 Bibliography ... 216
12.7 Exercises .. 216

13 Estimation of functionals 221

13.1 A useful divergence calculation .. 222
13.2 A few useful lemmas ... 223

III Entropy, predictions, divergences, and information 229

14 Predictions, loss functions, and entropies 230

14.1 Proper losses, scoring rules, and generalized entropies 231
 14.1.1 A convexity primer .. 232
 14.1.2 From a proper loss to an entropy 233
 14.1.3 The “information” in an experiment 234
14.2 Characterizing proper losses and Bregman divergences 234
 14.2.1 Characterizing proper losses for Y taking finitely many values ... 235
 14.2.2 General proper losses .. 237
 14.2.3 Proper losses and vector-valued Y 238
14.3 Link functions, convex losses, and arbitrary predictions 241
 14.3.1 Convex conjugate linkages 242
 14.3.2 Convex conjugate linkages with affine constraints 244
14.4 On uniqueness of losses and entropies 247
14.5 Technical and deferred proofs .. 247
 14.5.1 Finalizing the proof of Theorem 14.10 247
14.6 Exercises .. 248
15 Calibration and Proper Losses

15.1 Proper losses and calibration error .. 250
15.2 Continuous calibration measures ... 252
 15.2.1 Distances to calibration ... 253
 15.2.2 Weak calibration .. 254
15.3 Auditing and improving calibration .. 256
 15.3.1 The post-processing gap and calibration audits for squared error 256
 15.3.2 Calibration audits for losses based on conjugate linkages 258
 15.3.3 An algorithm for calibration .. 260
15.4 Equivalent calibration measures ... 262
 15.4.1 Partition-based calibration measures and lifting to random variables .. 262
 15.4.2 The equivalence between calibration error and the calibration distance . 264
15.5 Deferred technical proofs .. 267
 15.5.1 Proof of Lemma 15.4 .. 267
 15.5.2 Proof of Lemma 15.8 .. 269
 15.5.3 Proof of Theorem 15.17 ... 269
15.6 Bibliography ... 272
15.7 Exercises .. 272

16 Surrogate Risk Consistency: the Classification Case

16.1 General results ... 279
16.2 Proofs of convex analytic results ... 279
 16.2.1 Proof of Lemma 16.4 .. 279
 16.2.2 Proof of Lemma 16.4 .. 280
 16.2.3 Proof of Lemma 16.6 .. 280
16.3 Exercises .. 280

17 Exponential families and maximum entropy

17.1 Shannon entropy ... 283
17.2 Maximizing Entropy ... 284
 17.2.1 The maximum entropy problem .. 284
 17.2.2 Examples of maximum entropy ... 286
 17.2.3 Generalization to inequality constraints 286
17.3 Deferred proofs .. 288
17.4 Exercises .. 288

18 Robustness, duality, maximum entropy, and exponential families

18.1 The existence of maximum entropy distributions 289
18.2 I-projections and maximum likelihood ... 290
18.3 Basics of minimax game playing with log loss 292

19 Divergences, classification, and risk

19.1 Generalized entropies .. 300
19.2 From entropy to losses ... 300
 19.2.1 Classification case ... 300
 19.2.2 Structured prediction case .. 300
19.3 Predictions, calibration, and scoring rules ... 301
19.4 Surrogate risk consistency ... 301
 19.4.1 Uniformly convex case ... 301
 19.4.2 Structured prediction (discrete) case 301
 19.4.3 Proof of Theorem 19.5 302
19.5 Loss equivalence ... 303
19.6 Proof of Theorem 19.7 ... 305
 19.6.1 Proof of Lemma 19.9 .. 307
 19.6.2 Proof of Lemma 19.11 .. 308
19.7 Bibliography ... 308
19.8 Exercises ... 308

20 Fisher Information ... 309
 20.1 Fisher information: definitions and examples 309
 20.2 Estimation and Fisher information: elementary considerations . 311
 20.3 Connections between Fisher information and divergence measures . 312

IV Online game playing and compression 315

21 Universal prediction and coding 316
 21.1 Universal and sequential prediction 316
 21.2 Minimax strategies for regret 318
 21.3 Mixture (Bayesian) strategies and redundancy 320
 21.3.1 Bayesian redundancy and objective, reference, and Jeffreys priors . 323
 21.3.2 Redundancy capacity duality 325
 21.4 Asymptotic normality and Theorem 21.5 326
 21.4.1 Heuristic justification of asymptotic normality 326
 21.4.2 Heuristic calculations of posterior distributions and redundancy . 327
 21.5 Proof of Theorem 21.9 ... 328
 21.6 Exercises ... 329

22 Universal prediction with other losses 332
 22.1 Redundancy and expected regret 332
 22.1.1 Universal prediction via the log loss 333
 22.1.2 Examples .. 335
 22.2 Individual sequence prediction and regret 337

23 Online convex optimization 342
 23.1 The problem of online convex optimization 342
 23.2 Online gradient and non-Euclidean gradient (mirror) descent 344
 23.2.1 Proof of Theorem 23.8 348
 23.3 Online to batch conversions 350
 23.4 More refined convergence guarantees 350
 23.4.1 Proof of Proposition 23.13 351
24 Exploration, exploitation, and bandit problems

24.1 Confidence-based algorithms .. 354
24.2 Bayesian approaches to bandits .. 357
 24.2.1 Posterior (Thompson) sampling 358
 24.2.2 An information-theoretic analysis 362
 24.2.3 Information and exploration .. 362
24.3 Online gradient descent approaches 362
24.4 Further notes and references .. 363
24.5 Technical proofs .. 364
 24.5.1 Proof of Claim (24.1.1) .. 364

V Appendices

A Convex Analysis .. 366
 A.1 Convex sets ... 366
 A.1.1 Operations preserving convexity 368
 A.1.2 Representation and separation of convex sets 370
 A.2 Sublinear and support functions ... 373
 A.3 Convex functions .. 376
 A.3.1 Equivalent definitions of convex functions 377
 A.3.2 Continuity properties of convex functions 379
 A.3.3 Operations preserving convexity 384
 A.3.4 Smoothness properties, first-order developments for convex functions, and subdifferentiability 386
 A.3.5 Calculus rules of subgradients 391

B Optimality, stability, and duality .. 394
 B.1 Optimality conditions and stability properties 395
 B.1.1 Subgradient characterizations for optimality 395
 B.1.2 Stability properties of minimizers 397
 B.2 Conjugacy and duality properties 401
 B.2.1 Gradient dualities and the Fenchel-Young inequality 402
 B.2.2 Smoothness and strict convexity of conjugates 404
 B.3 Exercises ... 409
Chapter 1

Introduction and setting

This set of lecture notes explores some of the (many) connections relating information theory, statistics, computation, and learning. Signal processing, machine learning, and statistics all revolve around extracting useful information from signals and data. In signal processing and information theory, a central question is how to best design signals—and the channels over which they are transmitted—to maximally communicate and store information, and to allow the most effective decoding. In machine learning and statistics, by contrast, it is often the case that there is a fixed data distribution that nature provides, and it is the learner’s or statistician’s goal to recover information about this (unknown) distribution.

A central aspect of information theory is the discovery of fundamental results: results that demonstrate that certain procedures are optimal. That is, information theoretic tools allow a characterization of the attainable results in a variety of communication and statistical settings. As we explore in these notes in the context of statistical, inferential, and machine learning tasks, this allows us to develop procedures whose optimality we can certify—no better procedure is possible. Such results are useful for a myriad of reasons; we would like to avoid making bad decisions or false inferences, we may realize a task is impossible, and we can explicitly calculate the amount of data necessary for solving different statistical problems.

1.1 Information theory

Information theory is a broad field, but focuses on several main questions: what is information, how much information content do various signals and data hold, and how much information can be reliably transmitted over a channel. We will vastly oversimplify information theory into two main questions with corresponding chains of tasks.

1. How much information does a signal contain?

2. How much information can a noisy channel reliably transmit?

In this context, we provide two main high-level examples, one for each of these tasks.

Example 1.1 (Source coding): The source coding, or data compression problem, is to take information from a source, compress it, decompress it, and recover the original message. Graphically, we have

\[\text{Source} \rightarrow \text{Compressor} \rightarrow \text{Decompressor} \rightarrow \text{Receiver} \]
The question, then, is how to design a compressor (encoder) and decompressor (decoder) that uses the fewest number of bits to describe a source (or a message) while preserving all the information, in the sense that the receiver receives the correct message with high probability. This fewest number of bits is then the information content of the source (signal).

Example 1.2: The channel coding, or data transmission problem, is the same as the source coding problem of Example 1.1, except that between the compressor and decompressor is a source of noise, a channel. In this case, the graphical representation is

$\text{Source} \rightarrow \text{Compressor} \rightarrow \text{Channel} \rightarrow \text{Decompressor} \rightarrow \text{Receiver}$

Here the question is the maximum number of bits that may be sent per each channel use in the sense that the receiver may reconstruct the desired message with low probability of error. Because the channel introduces noise, we require some redundancy, and information theory studies the exact amount of redundancy and number of bits that must be sent to allow such reconstruction.

1.2 Moving to statistics

Statistics and machine learning can—broadly—be studied with the same views in mind. Broadly, statistics and machine learning can be thought of as (perhaps shoehorned into) source coding and a channel coding problems.

In the analogy with source coding, we observe a sequence of data points X_1, \ldots, X_n drawn from some (unknown) distribution P on a space \mathcal{X}. For example, we might be observing species that biologists collect. Then the analogue of source coding is to construct a model (often a generative model) that encodes the data using relatively few bits: that is,

$\text{Source } (P) \xrightarrow{X_1, \ldots, X_n} \text{Compressor } \xrightarrow{\hat{P}} \text{Decompressor} \rightarrow \text{Receiver}$

Here, we estimate \hat{P}—an empirical version of the distribution P that is easier to describe than the original signal X_1, \ldots, X_n, with the hope that we learn information about the generating distribution P, or at least describe it efficiently.

In our analogy with channel coding, we make a connection with estimation and inference. Roughly, the major problem in statistics we consider is as follows: there exists some unknown function f on a space \mathcal{X} that we wish to estimate, and we are able to observe a noisy version of $f(X_i)$ for a series of X_i drawn from a distribution P. Recalling the graphical description of Example 1.2, we now have a channel $P(Y \mid f(X))$ that gives us noisy observations of $f(X)$ for each X_i, but we may (generally) now longer choose the encoder/compressor. That is, we have

$\text{Source } (P) \xrightarrow{X_1, \ldots, X_n} \text{Compressor } \xrightarrow{f(X_1), \ldots, f(X_n)} \text{Channel } P(Y \mid f(X)) \xrightarrow{Y_1, \ldots, Y_n} \text{Decompressor}$

The estimation—decompression—problem is to either estimate f, or, in some cases, to estimate other aspects of the source probability distribution P. In general, in statistics, we do not have any choice in the design of the compressor f that transforms the original signal X_1, \ldots, X_n, which makes it somewhat different from traditional ideas in information theory. In some cases that we explore later—such as experimental design, randomized controlled trials, reinforcement learning and bandits (and associated exploration/exploitation tradeoffs)—we are also able to influence the compression part of the above scheme.
Example 1.3: A classical example of the statistical paradigm in this lens is the usual linear regression problem. Here the data X_i belong to \mathbb{R}^d, and the compression function $f(x) = \theta^\top x$ for some vector $\theta \in \mathbb{R}^d$. Then the channel is often of the form

$$Y_i = \theta^\top X_i + \varepsilon_i,$$

where $\varepsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$ are independent mean zero normal perturbations. The goal is, given a sequence of pairs $(X_i; Y_i)$, to recover the true θ in the linear model.

In active learning or active sensing scenarios, also known as (sequential) experimental design, we may choose the sequence X_i so as to better explore properties of θ. Later in the course we will investigate whether it is possible to improve estimation by these strategies. As one concrete idea, if we allow infinite power, which in this context corresponds to letting $\|X_i\| \to \infty$—choosing very “large” vectors x_i—then the signal of $\theta^\top X_i$ should swamp any noise and make estimation easier. ◊

For the remainder of the class, we explore these ideas in substantially more detail.

1.3 A remark about measure theory

As this book focuses on a number of fundamental questions in statistics, machine learning, and information theory, fully general statements of the results often require measure theory. Thus, formulae such as $\int f(x)dP(x)$ or $\int f(x)d\mu(x)$ appear. While knowledge of measure theory is certainly useful and may help appreciate the results, it is completely inessential to developing the intuition and, I hope, understanding the proofs and main results. Indeed, the best strategy (for a reader unfamiliar with measure theory) is to simply replace every instance of a formula such as $d\mu(x)$ with dx. The most frequent cases we encounter will be the following: we wish to compute the expectation of a function f of random variable X following distribution P, that is, $E_P[f(X)]$. Normally, we would write $E_P[f(X)] = \int f(x)dP(x)$, or sometimes $E_P[f(X)] = \int f(x)p(x)d\mu(x)$, saying that “$P$ has density p with respect to the underlying measure μ.” Instead, one may simply (and intuitively) assume that x really has density p over the reals, and instead of computing the integral

$$E_P[f(X)] = \int f(x)dP(x) \quad \text{or} \quad E_P[f(X)] = \int f(x)p(x)d\mu(x),$$

assume we may write

$$E_P[f(X)] = \int f(x)p(x)dx.$$

Nothing will be lost.

1.4 Outline and chapter discussion

We divide the lecture notes into four distinct parts, each of course interacting with the others, but it is possible to read each as a reasonably self-contained unit. The lecture notes begin with a review (Chapter 2) that introduces the basic information-theoretic quantities that we discuss: mutual information, entropy, and divergence measures. It is required reading for all the chapters that follow.
Part I of the notes covers what I term “stability” based results. At a high level, this means that we ask what can be gained by considering situations where individual observations in a sequence of random variables X_1, \ldots, X_n have little effect on various functions of the sequence. We begin in Chapter 4 with basic concentration inequalities, discussing how sums and related quantities can converge quickly; while this material is essential for the remainder of the lectures, it does not depend on particular information-theoretic techniques. We discuss some heuristic applications to problems in statistical learning—empirical risk minimization—in this section of the notes. We provide a treatment of more advanced ideas in Chapter 6, including some approaches to concentration via entropy methods. We then turn in Chapter 5 carefully investigate generalization and convergence guarantees—arguing that functions of a sample X_1, \ldots, X_n are representative of the full population P from which the sample is drawn—based on controlling different information-theoretic quantities. In this context, we develop PAC-Bayesian bounds, and we also use the same framework to present tools to control generalization and convergence in interactive data analyses. These types of analyses reflect modern statistics, where one performs some type of data exploration before committing to a fuller analysis, but which breaks classical statistical approaches, because the analysis now depends on the sample. Finally, we provide a chapter (Chapter 7) on disclosure limitation and privacy techniques, all of which repose on different notions of stability in distribution.

Part II studies fundamental limits, using information-theoretic techniques to derive lower bounds on the possible rates of convergence for various estimation, learning, and other statistical problems.

Part III revisits all of our information theoretic notions from Chapter 2, but instead of simply giving definitions and a few consequences, provides operational interpretations of the different information-theoretic quantities, such as entropy. Of course this includes Shannon’s original results on the relationship between coding and entropy (Chapter ??), but we also provide an interpretation of entropy and information as measures of uncertainty in statistical experiments and statistical learning, which is a perspective typically missing from information-theoretic treatments of entropy (Chapters TBD). We also relate these ideas to game-playing and maximum likelihood estimation. Finally, we relate generic divergence measures to questions of optimality and consistency in statistical and machine learning problems, which allows us to delineate when (at least in asymptotic senses) it is possible to computationally efficiently learn good predictors and design good experiments.
Chapter 2

An information theory review

In this first introductory chapter, we discuss and review many of the basic concepts of information theory in effort to introduce them to readers unfamiliar with the tools. Our presentation is relatively brisk, as our main goal is to get to the meat of the chapters on applications of the inequalities and tools we develop, but these provide the starting point for everything in the sequel. One of the main uses of information theory is to prove what, in an information theorist’s lexicon, are known as converse results: fundamental limits that guarantee no procedure can improve over a particular benchmark or baseline. We will give the first of these here to preview more of what is to come, as these fundamental limits form one of the core connections between statistics and information theory. The tools of information theory, in addition to their mathematical elegance, also come with strong operational interpretations: they give quite precise answers and explanations for a variety of real engineering and statistical phenomena. We will touch on one of these here (the connection between source coding, or lossless compression, and the Shannon entropy), and much of the remainder of the book will explore more.

2.1 Basics of Information Theory

In this section, we review the basic definitions in information theory, including (Shannon) entropy, KL-divergence, mutual information, and their conditional versions. Before beginning, I must make an apology to any information theorist reading these notes: any time we use a log, it will always be base-e. This is more convenient for our analyses, and it also (later) makes taking derivatives much nicer.

In this first section, we will assume that all distributions are discrete; this makes the quantities somewhat easier to manipulate and allows us to completely avoid any complicated measure-theoretic quantities. In Section 2.2 of this note, we show how to extend the important definitions (for our purposes)—those of KL-divergence and mutual information—to general distributions, where basic ideas such as entropy no longer make sense. However, even in this general setting, we will see we essentially lose no generality by assuming all variables are discrete.

2.1.1 Definitions

Here, we provide the basic definitions of entropy, information, and divergence, assuming the random variables of interest are discrete or have densities with respect to Lebesgue measure.
Entropy: We begin with a central concept in information theory: the entropy. Let \(P \) be a distribution on a finite (or countable) set \(\mathcal{X} \), and let \(p \) denote the probability mass function associated with \(P \). That is, if \(X \) is a random variable distributed according to \(P \), then \(P(X = x) = p(x) \). The entropy of \(X \) (or of \(P \)) is defined as

\[
H(X) := -\sum_x p(x) \log p(x).
\]

Because \(p(x) \leq 1 \) for all \(x \), it is clear that this quantity is positive. We will show later that if \(\mathcal{X} \) is finite, the maximum entropy distribution on \(\mathcal{X} \) is the uniform distribution, setting \(p(x) = 1/|\mathcal{X}| \) for all \(x \), which has entropy \(\log(|\mathcal{X}|) \).

Later in the class, we provide a number of operational interpretations of the entropy. The most common interpretation—which forms the beginning of Shannon’s classical information theory [133]—is via the source-coding theorem. We present Shannon’s source coding theorem in Chapter ??, where we show that if we wish to encode a random variable \(X \), distributed according to \(P \), with a \(k \)-ary string (i.e. each entry of the string takes on one of \(k \) values), then the minimal expected length of the encoding is given by \(H(X) = -\sum_x p(x) \log_k p(x) \). Moreover, this is achievable (to within a length of at most 1 symbol) by using Huffman codes (among many other types of codes). As an example of this interpretation, we may consider encoding a random variable \(X \) with equi-probable distribution on \(m \) items, which has \(H(X) = \log(m) \). In base-2, this makes sense: we simply assign an integer to each item and encode each integer with the natural (binary) integer encoding of length \(\lceil \log m \rceil \).

We can also define the conditional entropy, which is the amount of information left in a random variable after observing another. In particular, we define

\[
H(X \mid Y = y) = -\sum_x p(x \mid y) \log p(x \mid y) \quad \text{and} \quad H(X \mid Y) = \sum_y p(y) H(X \mid Y = y),
\]

where \(p(x \mid y) \) is the p.m.f. of \(X \) given that \(Y = y \).

Let us now provide a few examples of the entropy of various discrete random variables

Example 2.1 (Uniform random variables): As we noted earlier, if a random variable \(X \) is uniform on a size \(m \), then \(H(X) = \log m \).

Example 2.2 (Bernoulli random variables): Let \(h_2(p) = -p \log p - (1 - p) \log(1 - p) \) denote the binary entropy, which is the entropy of a Bernoulli\((p)\) random variable.

Example 2.3 (Geometric random variables): A random variable \(X \) is Geometric\((p)\), for some \(p \in (0, 1) \), if it is supported on \(\{1, 2, \ldots\} \), and \(P(X = k) = (1 - p)^{k-1} p \); this is the probability distribution of the number of \(\text{Bernoulli}(p) \) trials until a single success. The entropy of such a random variable is

\[
H(X) = -\sum_{k=1}^{\infty} (1 - p)^{k-1} p \left[(k - 1) \log(1 - p) + \log p\right] = -\sum_{k=0}^{\infty} (1 - p)^k p \left[k \log(1 - p) + \log p\right].
\]

As \(\sum_{k=0}^{\infty} \alpha^k = \frac{1}{1 - \alpha} \) and \(\frac{d}{d\alpha} \frac{1}{(1 - \alpha)^2} = \sum_{k=1}^{\infty} k \alpha^{k-1} \), we have

\[
H(X) = -p \log(1 - p) \cdot \sum_{k=1}^{\infty} k (1 - p)^k - p \log p \cdot \sum_{k=1}^{\infty} (1 - p)^k = -\frac{1 - p}{p} \log(1 - p) - (1 - p) \log p.
\]

As \(p \downarrow 0 \), we see that \(H(X) \uparrow \infty \).
Example 2.4 (A random variable with infinite entropy): While most “reasonable” discrete random variables have finite entropy, it is possible to construct distributions with infinite entropy. Indeed, let X have p.m.f. on $\{2, 3, \ldots\}$ defined by

$$p(k) = \frac{A}{k \log^2 k}$$

where $A^{-1} = \sum_{k=2}^{\infty} \frac{1}{k \log^2 k} < \infty$,

the last sum finite as $\int_{2}^{\infty} \frac{1}{x \log^2 x} \, dx < \infty$ if and only if $\alpha > 1$: for $\alpha = 1$, we have $\int_{e}^{\infty} \frac{1}{t \log t} = \log \log x$, while for $\alpha > 1$, we have

$$\frac{d}{dx} (\log x)^{1-\alpha} = (1-\alpha) \frac{1}{x \log^\alpha x}$$

so that $\int_{e}^{\infty} \frac{1}{t \log^\alpha t} \, dt = \frac{1}{e(1-\alpha)}$. To see that the entropy is infinite, note that

$$H(X) = A \sum_{k \geq 2} \frac{\log A + \log k + 2 \log \log k}{k \log^2 k} \geq A \sum_{k \geq 2} \frac{\log k}{k \log^2 k} - C = \infty,$$

where C is a numerical constant. \diamond

KL-divergence: Now we define two additional quantities, which are actually much more fundamental than entropy: they can always be defined for any distributions and any random variables, as they measure distance between distributions. Entropy simply makes no sense for non-discrete random variables, let alone random variables with continuous and discrete components, though it proves useful for some of our arguments and interpretations.

Before defining these quantities, we recall the definition of a convex function $f : \mathbb{R}^k \to \mathbb{R}$ as any bowl-shaped function, that is, one satisfying

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \quad (2.1.1)$$

for all $\lambda \in [0, 1]$, all x, y. The function f is strictly convex if the convexity inequality (2.1.1) is strict for $\lambda \in (0, 1)$ and $x \neq y$. We recall a standard result:

Proposition 2.5 (Jensen’s inequality). Let f be convex. Then for any random variable X,

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

Moreover, if f is strictly convex, then $f(\mathbb{E}[X]) < \mathbb{E}[f(X)]$ unless X is constant.

Now we may define and provide a few properties of the KL-divergence. Let P and Q be distributions defined on a discrete set \mathcal{X}. The KL-divergence between them is

$$D_{kl} (P || Q) := \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

We observe immediately that $D_{kl} (P || Q) \geq 0$. To see this, we apply Jensen’s inequality (Proposition 2.5) to the function $-\log$ and the random variable $q(X)/p(X)$, where X is distributed according to P:

$$D_{kl} (P || Q) = -\mathbb{E} \left[\log \frac{q(X)}{p(X)} \right] \geq -\log \mathbb{E} \left[\frac{q(X)}{p(X)} \right]$$

$$= -\log \left(\sum_{x} p(x) \frac{q(x)}{p(x)} \right) = -\log(1) = 0.$$
Moreover, as log is strictly convex, we have $D_{\text{KL}} (P \| Q) > 0$ unless $P = Q$. Another consequence of the positivity of the KL-divergence is that whenever the set \mathcal{X} is finite with cardinality $|\mathcal{X}| < \infty$, for any random variable X supported on \mathcal{X} we have $H(X) \leq \log |\mathcal{X}|$. Indeed, letting $m = |\mathcal{X}|$, Q be the uniform distribution on \mathcal{X} so that $q(x) = \frac{1}{m}$, and X have distribution P on \mathcal{X}, we have

$$0 \leq D_{\text{KL}} (P \| Q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = -H(X) - \sum_x p(x) \log q(x) = -H(X) + \log m, \quad (2.1.2)$$

so that $H(X) \leq \log m$. Thus, the uniform distribution has the highest entropy over all distributions on the set \mathcal{X}.

Mutual information: Having defined KL-divergence, we may now describe the information content between two random variables X and Y. The mutual information $I(X; Y)$ is the KL-divergence between their joint distribution and their products (marginal) distributions. More mathematically,

$$I(X; Y) := \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}. \quad (2.1.3)$$

We can rewrite this in several ways. First, using Bayes’ rule, we have $p(x, y)/p(y) = p(x \mid y)$, so

$$I(X; Y) = \sum_{x,y} p(y)p(x \mid y) \log \frac{p(x \mid y)}{p(x)}$$

$$= -\sum_x \sum_y p(y)p(x \mid y) \log p(x) + \sum_y p(y) \sum_x p(x \mid y) \log p(x \mid y)$$

$$= H(X) - H(X \mid Y).$$

Similarly, we have $I(X; Y) = H(Y) - H(Y \mid X)$, so mutual information can be thought of as the amount of entropy removed (on average) in X by observing Y. We may also think of mutual information as measuring the similarity between the joint distribution of X and Y and their distribution when they are treated as independent.

Comparing the definition (2.1.3) to that for KL-divergence, we see that if P_{XY} is the joint distribution of X and Y, while P_X and P_Y are their marginal distributions (distributions when X and Y are treated independently), then

$$I(X; Y) = D_{\text{KL}} (P_{XY} \| P_X \times P_Y) \geq 0.$$

Moreover, we have $I(X; Y) > 0$ unless X and Y are independent.

As with entropy, we may also define the conditional information between X and Y given Z, which is the mutual information between X and Y when Z is observed (on average). That is,

$$I(X; Y \mid Z) := \sum_z I(X; Y \mid Z = z)p(z) = H(X \mid Z) - H(X \mid Y, Z) = H(Y \mid Z) - H(Y \mid X, Z).$$

Entropies of continuous random variables For continuous random variables, we may define an analogue of the entropy known as differential entropy, which for a random variable X with density p is defined by

$$h(X) := -\int p(x) \log p(x) dx. \quad (2.1.4)$$
Note that the differential entropy may be negative—it is no longer directly a measure of the number of bits required to describe a random variable \(X \) (on average), as was the case for the entropy. We can similarly define the conditional entropy

\[
h(X \mid Y) = -\int p(y) \left(\int p(x \mid y) \log p(x \mid y) \, dx \right) dy.
\]

We remark that the conditional differential entropy of \(X \) given \(Y \) for arbitrary distribution—so long as \(X \) has a density—is

\[
h(X \mid Y) = \mathbb{E} \left[-\int p(x \mid Y) \log p(x \mid Y) \, dx \right],
\]

where \(p(x \mid y) \) denotes the conditional density of \(X \) when \(Y = y \). The KL divergence between distributions \(P \) and \(Q \) with densities \(p \) and \(q \) becomes

\[
D_{\text{kl}}(P \| Q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx,
\]

and similarly, we have the analogues of mutual information as

\[
I(X; Y) = \int p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \, dx \, dy = h(X) - h(X \mid Y) = h(Y) - h(Y \mid X).
\]

As we show in the next subsection, we can define the KL-divergence between arbitrary distributions (and mutual information between arbitrary random variables) more generally without requiring discrete or continuous distributions. Before investigating these issues, however, we present a few examples. We also see immediately that for \(X \) uniform on a set \([a, b]\), we have \(h(X) = \log(b - a) \).

Example 2.6 (Entropy of normal random variables): The differential entropy (2.1.4) of a normal random variable is straightforward to compute. Indeed, for \(X \sim \mathcal{N}(\mu, \sigma^2) \) we have\(p(x) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp(-\frac{1}{2\sigma^2}(x - \mu)^2) \), so that

\[
h(X) = -\int p(x) \left[\frac{1}{2} \log \frac{1}{2\pi\sigma^2} - \frac{1}{2\sigma^2} (x - \mu)^2 \right] = \frac{1}{2} \log(2\pi\sigma^2) + \mathbb{E}[\frac{(X - \mu)^2}{2\sigma^2}] = \frac{1}{2} \log(2\pi\sigma^2).
\]

For a general multivariate Gaussian, where \(X \sim \mathcal{N}(\mu, \Sigma) \) for a vector \(\mu \in \mathbb{R}^n \) and \(\Sigma > 0 \) with density \(p(x) = \frac{1}{(2\pi)^{n/2}\det(\Sigma)} \exp(-\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu)) \), we similarly have

\[
h(X) = \frac{1}{2} \mathbb{E} \left[n \log(2\pi) + \log \det(\Sigma) + (X - \mu)^\top \Sigma^{-1}(X - \mu) \right]
\]

\[
= \frac{n}{2} \log(2\pi) + \frac{1}{2} \log \det(\Sigma) + \frac{1}{2} \text{tr}(\Sigma^{-1}) = \frac{n}{2} \log(2\pi\epsilon) + \frac{1}{2} \log \det(\epsilon \Sigma).
\]

\(\diamond \)

Continuing our examples with normal distributions, we may compute the divergence between two multivariate Gaussian distributions:

Example 2.7 (Divergence between Gaussian distributions): Let \(P \) be the multivariate normal \(\mathcal{N}(\mu_1, \Sigma) \), and \(Q \) be the multivariate normal distribution with mean \(\mu_2 \) and identical covariance \(\Sigma > 0 \). Then we have that

\[
D_{\text{kl}}(P \| Q) = \frac{1}{2} (\mu_1 - \mu_2)^\top \Sigma^{-1}(\mu_1 - \mu_2).
\]

We leave the computation of the identity (2.1.5) to the reader. \(\diamond \)
An interesting consequence of Example 2.7 is that if a random vector \(X \) has a given covariance \(\Sigma \in \mathbb{R}^{n \times n} \), then the multivariate Gaussian with identical covariance has larger differential entropy. Put another way, differential entropy for random variables with second moments is always maximized by the Gaussian distribution.

Proposition 2.8. Let \(X \) be a random vector on \(\mathbb{R}^n \) with a density, and assume that \(\text{Cov}(X) = \Sigma \). Then for \(Z \sim \mathcal{N}(0, \Sigma) \), we have

\[
 h(X) \leq h(Z).
\]

Proof Without loss of generality, we assume that \(X \) has mean 0. Let \(P \) be the distribution of \(X \) with density \(p \), and let \(Q \) be multivariate normal with mean 0 and covariance \(\Sigma \); let \(Z \) be this random variable. Then

\[
 D_{\text{KL}}(P \| Q) = \int p(x) \log \frac{p(x)}{q(x)} dx = -h(X) + \int p(x) \left[\frac{n}{2} \log(2\pi) - \frac{1}{2} x^\top \Sigma^{-1} x \right] dx
\]

\[
 = -h(X) + h(Z),
\]

because \(Z \) has the same covariance as \(X \). As \(0 \leq D_{\text{KL}}(P \| Q) \), we have \(h(Z) \geq h(X) \) as desired. \(\square \)

We remark in passing that the fact that Gaussian random variables have the largest entropy has been used to prove stronger variants of the central limit theorem; see the original results of Barron \[18\], as well as later quantitative results on the increase of entropy of normalized sums by Artstein et al. \[9\] and Madiman and Barron \[113\].

2.1.2 Chain rules and related properties

We now illustrate several of the properties of entropy, KL divergence, and mutual information; these allow easier calculations and analysis.

Chain rules: We begin by describing relationships between collections of random variables \(X_1, \ldots, X_n \) and individual members of the collection. (Throughout, we use the notation \(X_{ij} = (X_i, X_{i+1}, \ldots, X_j) \) to denote the sequence of random variables from indices \(i \) through \(j \).)

For the entropy, we have the simplest chain rule:

\[
 H(X_1, \ldots, X_n) = H(X_1) + H(X_2 \mid X_1) + \ldots + H(X_n \mid X_1^{n-1}).
\]

This follows from the standard decomposition of a probability distribution \(p(x, y) = p(x)p(y \mid x) \).

To see the chain rule, then, note that

\[
 H(X, Y) = - \sum_{x,y} p(x)p(y \mid x) \log p(x)p(y \mid x)
\]

\[
 = - \sum_x p(x) \sum_y p(y \mid x) \log p(x) - \sum_x p(x) \sum_y p(y \mid x) \log p(y \mid x) = H(X) + H(Y \mid X).
\]

Now set \(X = X_{1}^{n-1}, Y = X_n \), and simply induct.

A related corollary of the definitions of mutual information is the well-known result that conditioning reduces entropy:

\[
 H(X \mid Y) \leq H(X) \quad \text{because} \quad I(X; Y) = H(X) - H(X \mid Y) \geq 0.
\]

So on average, knowing about a variable \(Y \) can only decrease your uncertainty about \(X \). That conditioning reduces entropy for continuous random variables is also immediate, as for \(X \) continuous we have \(I(X; Y) = h(X) - h(X \mid Y) \geq 0 \), so that \(h(X) \geq h(X \mid Y) \).
Chain rules for information and divergence: As another immediate corollary to the chain rule for entropy, we see that mutual information also obeys a chain rule:

\[I(X; Y^n) = \sum_{i=1}^{n} I(X; Y_i | Y_1^{i-1}). \]

Indeed, we have

\[I(X; Y^n) = H(Y^n) - H(Y^n | X) = \sum_{i=1}^{n} [H(Y_i | Y_1^{i-1}) - H(Y_i | X, Y_1^{i-1})] = \sum_{i=1}^{n} I(X; Y_i | Y_1^{i-1}). \]

The KL-divergence obeys similar chain rules, making mutual information and KL-divergence measures useful tools for evaluation of distances and relationships between groups of random variables.

As a second example, suppose that the distribution \(P = P_1 \times P_2 \times \cdots \times P_n \), and \(Q = Q_1 \times \cdots \times Q_n \), that is, that \(P \) and \(Q \) are product distributions over independent random variables \(X_i \sim P_i \) or \(X_i \sim Q_i \). Then we immediately have the tensorization identity

\[D_{\text{kl}}(P|Q) = D_{\text{kl}}(P_1 \times \cdots \times P_n \| Q_1 \times \cdots \times Q_n) = \sum_{i=1}^{n} D_{\text{kl}}(P_i \| Q_i). \]

We remark in passing that these two identities hold for arbitrary distributions \(P_i \) and \(Q_i \) or random variables \(X, Y \). As a final tensorization identity, we consider a more general chain rule for KL-divergences, which will frequently be useful. We abuse notation temporarily, and for random variables \(X \) and \(Y \) with distributions \(P \) and \(Q \), respectively, we denote

\[D_{\text{kl}}(X \| Y) := D_{\text{kl}}(P \| Q). \]

In analogy to the entropy, we can also define the conditional KL divergence. Let \(X \) and \(Y \) have distributions \(P_{X|z} \) and \(P_{Y|z} \) conditioned on \(Z = z \), respectively. Then we define

\[D_{\text{kl}}(X \| Y \| Z) = \mathbb{E}_Z[D_{\text{kl}}(P_{X|Z} \| P_{Y|Z})], \]

so that if \(Z \) is discrete we have
\[
D_{\text{kl}}(X \| Y \| Z) = \sum_z p(z) D_{\text{kl}}(P_{X|z} \| P_{Y|z}).
\]

With this notation, we have the chain rule

\[D_{\text{kl}}(X_1, \ldots, X_n \| Y_1, \ldots, Y_n) = \sum_{i=1}^{n} D_{\text{kl}}(X_i | Y_i \| X_1^{i-1}), \quad (2.1.6) \]

because (in the discrete case, which—as we discuss presently—is fully general for this purpose) for distributions \(P_{XY} \) and \(Q_{XY} \) we have

\[
D_{\text{kl}}(P_{XY} \| Q_{XY}) = \sum_{x,y} p(x, y) \log \frac{p(x, y)}{q(x, y)} = \sum_{x,y} p(x)p(y \| x) \left[\log \frac{p(y \| x)}{q(y \| x)} + \log \frac{p(x)}{q(x)} \right]
\]

\[
= \sum_x p(x) \log \frac{p(x)}{q(x)} + \sum_y p(y) \sum_x p(y \| x) \log \frac{p(y \| x)}{q(y \| x)},
\]

where the final equality uses that \(\sum_y p(y \| x) = 1 \) for all \(x \).

Expanding upon this, we give several tensorization identities, showing how to transform questions about the joint distribution of many random variables to simpler questions about their
marginals. As a first example, we see that as a consequence of the fact that conditioning decreases entropy, we see that for any sequence of (discrete or continuous, as appropriate) random variables, we have

$$H(X_1, \ldots, X_n) \leq H(X_1) + \cdots + H(X_n) \quad \text{and} \quad h(X_1, \ldots, X_n) \leq h(X_1) + \cdots + h(X_n).$$

Both equalities hold with equality if and only if X_1, \ldots, X_n are mutually independent. (The only if follows because $I(X; Y) > 0$ whenever X and Y are not independent, by Jensen’s inequality and the fact that $D_{kl}(P||Q) > 0$ unless $P = Q$.)

We return to information and divergence now. Suppose that random variables Y_i are independent conditional on X, meaning that

$$P(Y_1 = y_1, \ldots, Y_n = y_n | X = x) = P(Y_1 = y_1 | X = x) \cdots P(Y_n = y_n | X = x).$$

Such scenarios are common—as we shall see—when we make multiple observations from a fixed distribution parameterized by some X. Then we have the inequality

$$I(X; Y_1, \ldots, Y_n) = \sum_{i=1}^{n} [H(Y_i | Y_1^{i-1}) - H(Y_i | X, Y_1^{i-1})]$$

$$= \sum_{i=1}^{n} [H(Y_i | Y_1^{i-1}) - H(Y_i | X)] \leq \sum_{i=1}^{n} [H(Y_i) - H(Y_i | X)] = \sum_{i=1}^{n} I(X; Y_i),$$

where the inequality follows because conditioning reduces entropy.

2.1.3 Data processing inequalities:

A standard problem in information theory (and statistical inference) is to understand the degradation of a signal after it is passed through some noisy channel (or observation process). The simplest of such results, which we will use frequently, is that we can only lose information by adding noise. In particular, assume we have the Markov chain

$$X \to Y \to Z.$$

Then we obtain the classical data processing inequality.

Proposition 2.9. With the above Markov chain, we have $I(X; Z) \leq I(X; Y)$.

Proof We expand the mutual information $I(X; Y, Z)$ in two ways:

$$I(X; Y, Z) = I(X; Z) + I(X; Y | Z)$$

$$= I(X; Y) + \underbrace{I(X; Z | Y)}_{=0},$$

where we note that the final equality follows because X is independent of Z given Y:

$$I(X; Z | Y) = H(X | Y) - H(X | Y, Z) = H(X | Y) - H(X | Y) = 0.$$
There are related data processing inequalities for the KL-divergence—which we generalize in the next section—as well. In this case, we may consider a simple Markov chain \(X \rightarrow Z \). If we let \(P_1 \) and \(P_2 \) be distributions on \(X \) and \(Q_1 \) and \(Q_2 \) be the induced distributions on \(Z \), that is, \(Q_i(A) = \int P(Z \in A \mid x) dP_i(x) \), then we have

\[
D_{\text{kl}}(Q_1 || Q_2) \leq D_{\text{kl}}(P_1 || P_2),
\]

the basic KL-divergence data processing inequality. A consequence of this is that, for any function \(f \) and random variables \(X \) and \(Y \) on the same space, we have

\[
D_{\text{kl}}(f(X) || f(Y)) \leq D_{\text{kl}}(X || Y).
\]

We explore these data processing inequalities more when we generalize KL-divergences in the next section and in the exercises.

2.2 General divergence measures and definitions

Having given our basic definitions of mutual information and divergence, we now show how the definitions of KL-divergence and mutual information extend to arbitrary distributions \(P \) and \(Q \) and arbitrary sets \(\mathcal{X} \). This requires a bit of setup, including defining set algebras (which, we will see, simply correspond to quantization of the set \(\mathcal{X} \)), but allows us to define divergences in full generality.

2.2.1 Partitions, algebras, and quantizers

Let \(\mathcal{X} \) be an arbitrary space. A quantizer on \(\mathcal{X} \) is any function that maps \(\mathcal{X} \) to a finite collection of integers. That is, fixing \(m < \infty \), a quantizer is any function \(q : \mathcal{X} \rightarrow \{1, \ldots, m\} \). In particular, a quantizer \(q \) partitions the space \(\mathcal{X} \) into the subsets of \(x \in \mathcal{X} \) for which \(q(x) = i \), or \(A_i = q^{-1}(\{i\}) \). Then we may define an algebra \(A_q \) as the collection of all finite set operations performed on the partition \(A_1, \ldots, A_m \) (note that this is a finite collection, as finite set operations performed on the partition \(A_1, \ldots, A_m \) induce only a finite collection of sets).

For the other direction, consider a finite algebra \(A \) over the set \(\mathcal{X} \). We can then construct a quantizer \(q_A \) that corresponds to this algebra. To do so, we define an atom of \(A \) as any non-empty set \(A \in A \) such that if \(B \subset A \) and \(B \in A \), then \(B = A \) or \(B = \emptyset \). That is, the atoms of \(A \) are the “smallest” sets in \(A \). We claim there is a unique partition of \(\mathcal{X} \) with atomic sets from \(A \); we prove this inductively.

1 Pedantically, this one-to-one correspondence holds up to permutations of the partition induced by the quantizer.
Base case: There is at least 1 atomic set, as \(\mathcal{A} \) is finite; call it \(A_1 \).

Induction step: Assume we have atomic sets \(A_1, \ldots, A_k \in \mathcal{A} \). Let \(B = (A_1 \cup \cdots \cup A_k) \cap \mathcal{A} \) be their complement, which we assume is non-empty (otherwise we have a partition of \(\mathcal{X} \) into atomic sets). The complement \(B \) is either atomic, in which case the sets \(\{A_1, A_2, \ldots, A_k, B\} \) are a partition of \(\mathcal{X} \) consisting of atoms of \(\mathcal{A} \), or \(B \) is not atomic. If \(B \) is not atomic, consider all the sets of the form \(A \cap B \) for \(A \in \mathcal{A} \). Each of these belongs to \(\mathcal{A} \), and at least one of them is atomic, as there is a finite number of them. This means there is a non-empty set \(A_{k+1} \subset B \) such that \(A_{k+1} \) is atomic.

By repeating this induction, which must stop at some finite index \(m \) as \(\mathcal{A} \) is finite, we construct a collection \(A_1, \ldots, A_m \) of disjoint atomic sets in \(\mathcal{A} \) for which \(\bigcup_{i=1}^m A_i = \mathcal{X} \). (The uniqueness is an exercise for the reader.) Thus we may define the quantizer \(q_{\mathcal{A}} \) via

\[
q_{\mathcal{A}}(x) = i \quad \text{when} \quad x \in A_i.
\]

2.2.2 KL-divergence

In this section, we present the general definition of a KL-divergence, which holds for any pair of distributions. Let \(P \) and \(Q \) be distributions on a space \(\mathcal{X} \). Now, let \(\mathcal{A} \) be a finite algebra on \(\mathcal{X} \) (as in the previous section, this is equivalent to picking a partition of \(\mathcal{X} \) and then constructing the associated algebra), and assume that its atoms are \(atoms(\mathcal{A}) \). The KL-divergence between \(P \) and \(Q \) conditioned on \(\mathcal{A} \) is

\[
D_{\text{kl}}(P \| Q \mid \mathcal{A}) := \sum_{A \in \text{atoms}(\mathcal{A})} P(A) \log \frac{P(A)}{Q(A)}.
\]

That is, we simply sum over the partition of \(\mathcal{X} \). Another way to write this is as follows. Let \(q : \mathcal{X} \to \{1, \ldots, m\} \) be a quantizer, and define the sets \(A_i = q^{-1}(\{i\}) \) to be the pre-images of each \(i \) (i.e. the different quantization regions, or the partition of \(\mathcal{X} \) that \(q \) induces). Then the quantized KL-divergence between \(P \) and \(Q \) is

\[
D_{\text{kl}}(P \| Q \mid q) := \sum_{i=1}^m P(A_i) \log \frac{P(A_i)}{Q(A_i)}.
\]

We may now give the fully general definition of KL-divergence: the KL-divergence between \(P \) and \(Q \) is defined as

\[
D_{\text{kl}}(P \| Q) := \sup \{ D_{\text{kl}}(P \| Q \mid A) \mid \mathcal{A} \text{ is a finite algebra on } \mathcal{X} \}
\]

\[
= \sup \{ D_{\text{kl}}(P \| Q \mid q) \mid q \text{ quantizes } \mathcal{X} \}. \quad (2.2.1)
\]

This also gives a rigorous definition of mutual information. Indeed, if \(X \) and \(Y \) are random variables with joint distribution \(P_{XY} \) and marginal distributions \(P_X \) and \(P_Y \), we simply define

\[
I(X; Y) = D_{\text{kl}}(P_{XY} \| P_X \times P_Y).
\]

When \(P \) and \(Q \) have densities \(p \) and \(q \), the definition (2.2.1) reduces to

\[
D_{\text{kl}}(P \| Q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx,
\]
while if P and Q both have probability mass functions p and q, then—as we see in Exercise 2.6—the definition (2.2.1) is equivalent to
\[
D_{\text{KL}}(P\|Q) = \sum_x p(x) \log \frac{p(x)}{q(x)},
\]
precisely as in the discrete case.

We remark in passing that if the set X is a product space, meaning that $X = X_1 \times X_2 \times \cdots \times X_n$ for some $n < \infty$ (this is the case for mutual information, for example), then we may assume our quantizer always quantizes sets of the form $A = A_1 \times A_2 \times \cdots \times A_n$, that is, Cartesian products. Written differently, when we consider algebras on X, the atoms of the algebra may be assumed to be Cartesian products of sets, and our partitions of X can always be taken as Cartesian products. (See Gray [79, Chapter 5].) Written slightly differently, if P and Q are distributions on $X = X_1 \times \cdots \times X_n$ and q^i is a quantizer for the set X_i (inducing the partition $A_1^i, \ldots, A_{m_i}^i$ of X_i) we may define
\[
D_{\text{KL}}(P\|Q | q^1, \ldots, q^n) = \sum_{j_1, \ldots, j_n} P(A_{j_1}^1 \times A_{j_2}^2 \times \cdots \times A_{j_n}^n) \log \frac{P(A_{j_1}^1 \times A_{j_2}^2 \times \cdots \times A_{j_n}^n)}{Q(A_{j_1}^1 \times A_{j_2}^2 \times \cdots \times A_{j_n}^n)}.
\]
Then the general definition (2.2.1) of KL-divergence specializes to
\[
D_{\text{KL}}(P\|Q) = \sup \{ D_{\text{KL}}(P\|Q | q^1, \ldots, q^n) \text{ such that } q^i \text{ quantizes } X_i \}.
\]
So we only need consider “rectangular” sets in the definitions of KL-divergence.

Measure-theoretic definition of KL-divergence If you have never seen measure theory before, skim this section; while the notation may be somewhat intimidating, it is fine to always consider only continuous or fully discrete distributions. We will describe an interpretation that will mean for our purposes that one never needs to really think about measure theoretic issues.

The general definition (2.2.1) of KL-divergence is equivalent to the following. Let μ be a measure on X, and assume that P and Q are absolutely continuous with respect to μ, with densities p and q, respectively. (For example, take $\mu = P + Q$.) Then
\[
D_{\text{KL}}(P\|Q) = \int_X p(x) \log \frac{p(x)}{q(x)} d\mu(x). \tag{2.2.2}
\]
The proof of this fact is somewhat involved, requiring the technology of Lebesgue integration. (See Gray [79, Chapter 5].)

For those who have not seen measure theory, the interpretation of the equality (2.2.2) should be as follows. When integrating a function $f(x)$, replace $\int f(x)d\mu(x)$ with one of two pairs of symbols: one may simply think of $d\mu(x)$ as dx, so that we are performing standard integration $\int f(x)dx$, or one should think of the integral operation $\int f(x)d\mu(x)$ as summing the argument of the integral, so $d\mu(x) = 1$ and $\int f(x)d\mu(x) = \sum_x f(x)$. (This corresponds to μ being “counting measure” on X.)

2.2.3 f-divergences

A more general notion of divergence is the so-called f-divergence, or Ali-Silvey divergence [4, 50] (see also the alternate interpretations in the article by Liese and Vajda [110]). Here, the definition is as follows. Let P and Q be probability distributions on the set X, and let $f : \mathbb{R}_+ \to \mathbb{R}$ be a
convex function satisfying \(f(1) = 0 \). If \(\mathcal{X} \) is a discrete set, then the \(f \)-divergence between \(P \) and \(Q \) is
\[
D_f(P\|Q) := \sum_x q(x) f \left(\frac{p(x)}{q(x)} \right).
\]
More generally, for any set \(\mathcal{X} \) and a quantizer \(q : \mathcal{X} \to \{1, \ldots, m\} \), letting \(A_i = q^{-1}(\{i\}) = \{x \in \mathcal{X} \mid q(x) = i\} \) be the partition the quantizer induces, we can define the quantized divergence
\[
D_f(P\|Q|q) = \sum_{i=1}^m Q(A_i) f \left(\frac{P(A_i)}{Q(A_i)} \right),
\]
and the general definition of an \(f \) divergence is (in analogy with the definition (2.2.1) of general KL divergences)
\[
D_f(P\|Q) := \sup \{D_f(P\|Q|q) \mid \text{such that } q \text{ quantizes } \mathcal{X}\}. \quad (2.2.3)
\]
The definition (2.2.3) shows that, any time we have computations involving \(f \)-divergences—such as KL-divergence or mutual information—it is no loss of generality, when performing the computations, to assume that all distributions have finite discrete support. There is a measure-theoretic version of the definition (2.2.3) which is frequently easier to use. Assume w.l.o.g. that \(P \) and \(Q \) are absolutely continuous with respect to the base measure \(\mu \). The \(f \) divergence between \(P \) and \(Q \) is then
\[
D_f(P\|Q) := \int_{\mathcal{X}} q(x) f \left(\frac{p(x)}{q(x)} \right) d\mu(x). \quad (2.2.4)
\]
This definition, it turns out, is not quite as general as we would like—in particular, it is unclear how we should define the integral for points \(x \) such that \(q(x) = 0 \). With that in mind, we recall that the perspective transform (see Appendices A.1.1 and A.3.3) of a function \(f : \mathbb{R} \to \mathbb{R} \) is defined by \(\text{pers}(f)(t, u) = uf(t/u) \) if \(u > 0 \) and by \(+\infty \) if \(u \leq 0 \). This function is convex in its arguments (Proposition A.31). In fact, this is not quite enough for the fully correct definition. The closure of a convex function \(f \) is \(\text{cl } f(x) = \sup\{\ell(x) \mid \ell \leq f, \ell \text{ linear}\} \), the supremum over all linear functions that globally lower bound \(f \). Then [89, Proposition IV.2.2.2] the closer of \(\text{pers}(f) \) is defined, for any \(t' \in \text{int } \text{dom } f \), by
\[
\text{cl pers}(f)(t, u) = \begin{cases} uf(t/u) & \text{if } u > 0 \\ \lim_{\alpha \downarrow 0} \alpha f(t' - t + t/\alpha) & \text{if } u = 0 \\ +\infty & \text{if } u < 0. \end{cases}
\]
(The choice of \(t' \) does not affect the definition.) Then the fully general formula expressing the \(f \)-divergence is
\[
D_f(P\|Q) = \int_{\mathcal{X}} \text{cl pers}(f)(p(x), q(x)) d\mu(x). \quad (2.2.5)
\]
This is what we mean by equation (2.2.4), which we use without comment.

In the exercises, we explore several properties of \(f \)-divergences, including the quantized representation (2.2.3), showing different data processing inequalities and orderings of quantizers based on the fineness of their induced partitions. Broadly, \(f \)-divergences satisfy essentially the same properties as KL-divergence, such as data-processing inequalities, and they provide a generalization of mutual information. We explore \(f \)-divergences from a non-standard perspective later—they are important both for optimality in estimation and related to consistency and prediction problems, as we discuss in Chapter 19.
Examples We give three examples of f-divergences here; in Section 8.2.2 we provide a few examples of their uses as well as providing a few natural inequalities between them.

JCD Comment: Tighten up the preceding paragraph, and put links in appropriate places

1. KL-divergence: by taking $f(t) = t \log t$, which is convex and satisfies $f(1) = 0$, we obtain $D_f (P\|Q) = D_{\text{kl}} (P\|Q)$.

2. KL-divergence, reversed: by taking $f(t) = -\log t$, we obtain $D_f (P\|Q) = D_{\text{kl}} (Q\|P)$.

3. The total variation distance between probability distributions P and Q defined on a set \mathcal{X} is defined as the maximum difference between probabilities they assign on subsets of \mathcal{X}:

\[
\|P - Q\|_{\text{TV}} := \sup_{A \subseteq \mathcal{X}} |P(A) - Q(A)|. \tag{2.2.6}
\]

Note that (by considering compliments $P(A^c) = 1 - P(A)$) the absolute value on the right hand side is unnecessary. The total variation distance, as we shall see later, is important for verifying the optimality of different tests, and appears in the measurement of difficulty of solving hypothesis testing problems. An important inequality, known as Pinsker’s inequality, relates the variation distance to the KL-divergence:

\[
\|P - Q\|^2_{\text{TV}} \leq \frac{1}{2} D_{\text{kl}} (P\|Q). \tag{2.2.7}
\]

(We return to prove this inequality, along with a few related identities, soon.)

By taking $f(t) = \frac{1}{2} |t - 1|$, we obtain the total variation distance. Even more, we can provide several alternative characterizations of the variation distance, which state in passing as a lemma:

Lemma 2.10. Let P,Q be probability measures with densities p,q with respect to a base measure μ and $f(t) = \frac{1}{2} |t - 1|$. Then

\[
\|P - Q\|_{\text{TV}} = D_f (P\|Q) = \frac{1}{2} \int |p(x) - q(x)| d\mu(x)
\]

\[
= \int [p(x) - q(x)]_+ d\mu(x) = \int [q(x) - p(x)]_+ d\mu(x)
\]

\[
= P(dP/dQ > 1) - Q(dP/dQ > 1) = Q(dQ/dP > 1) - P(dQ/dP > 1).
\]

In particular, the set $A = \{x \mid p(x)/q(x) \geq 1\}$ maximizes $P(B) - Q(B)$ over $B \subseteq \mathcal{X}$ and so achieves $\|P - Q\|_{\text{TV}} = P(A) - Q(A)$.

Proof Eliding the measure-theoretic details,\(^2\) we immediately have

\[
D_f (P\|Q) = \frac{1}{2} \int \frac{|p(x)|}{q(x)} - 1 |q(x)| d\mu(x) = \frac{1}{2} \int |p(x) - q(x)| d\mu(x)
\]

\[
= \frac{1}{2} \int_{x:p(x) > q(x)} |p(x) - q(x)| d\mu(x) + \frac{1}{2} \int_{x:q(x) > p(x)} |q(x) - p(x)| d\mu(x)
\]

\[
= \frac{1}{2} \int [p(x) - q(x)]_+ d\mu(x) + \frac{1}{2} \int [q(x) - p(x)]_+ d\mu(x).
\]

\(^2\)To make this fully rigorous, we would use the Hahn decomposition of the signed measure $P - Q$ to recognize that $\int f(dP - dQ) = \int f [dP - dQ]_+ - \int f [dQ - dP]_+$ for any integrable $f.$
Considering the last integral \(\int [q(x) - p(x)]_+ d\mu(x) \), we see that the set \(A = \{ x : q(x) > p(x) \} \) satisfies

\[
Q(A) - P(A) = \int_A (q(x) - p(x)) d\mu(x) \geq \int_B (q(x) - p(x)) d\mu(x) = Q(B) - P(B)
\]

for any set \(B \), as any \(x \in B \setminus A \) clearly satisfies \(q(x) - p(x) \leq 0 \).

4. The **Hellinger distance** between probability distributions \(P \) and \(Q \) defined on a set \(\mathcal{X} \) is generated by the function \(f(t) = (\sqrt{t} - 1)^2 = t - 2\sqrt{t} + 1 \). The Hellinger distance is then

\[
d_{\text{hel}}(P, Q)^2 := \int (\sqrt{p(x)} - \sqrt{q(x)})^2 d\mu(x). \tag{2.2.8}
\]

5. The \(\chi^2 \)-divergence is generated by taking \(f(t) = (t - 1)^2 \), so that

\[
D_{\chi^2}(P\|Q) := \int \left(\frac{p(x)}{q(x)} - 1 \right)^2 q(x) d\mu(x) = \int \frac{p(x)^2}{q(x)} d\mu(x) - 1, \tag{2.2.9}
\]

where the equality is immediate because \(\int pd\mu = \int qd\mu = 1 \).

There are a variety of inequalities relating different \(f \)-divergences, which are often convenient for analyzing the properties of product distributions (as will become apparent in Chapter 8). We enumerate a few of the most important inequalities here, which provide inequalities relating variation distance to the others.

Proposition 2.11. The total variation distance satisfies the following relationships:

(a) For the Hellinger distance,

\[
\frac{1}{2} d_{\text{hel}}(P, Q)^2 \leq \|P - Q\|_{TV} \leq \frac{1}{2} d_{\text{hel}}(P, Q) \sqrt{2 - d_{\text{hel}}^2(P, Q)}.
\]

(b) Pinsker’s inequality: for any distributions \(P, Q \),

\[
\|P - Q\|_{TV}^2 \leq \frac{1}{2} D_{\text{kl}}(P\|Q).
\]

(c) A stronger version of Pinsker’s inequality: for any distributions \(P, Q \),

\[
d_{\text{hel}}^2(P, Q) \leq D_{\text{kl}}(P\|Q),
\]

and so \(\|P - Q\|_{TV}^2 \leq \frac{1}{2} d_{\text{hel}}^2(P, Q)(1 - d_{\text{hel}}^2(P, Q)/2) \leq \frac{1}{2} D_{\text{kl}}(P\|Q). \)

We provide the proof of Proposition 2.11 in Section 2.5.1. We also have the following bounds on the KL-divergence in terms of the \(\chi^2 \)-divergence.

Proposition 2.12. For any distributions \(P, Q \),

\[
D_{\text{kl}}(P\|Q) \leq \log(1 + D_{\chi^2}(P\|Q)) \leq D_{\chi^2}(P\|Q).
\]
We claim that the second inequality is immediate as $\log(1 + t) \leq t$ for all $t > -1$. \hfill \Box

It is also possible to relate mutual information between distributions to f-divergences, and even to bound the mutual information above and below by the Hellinger distance for certain problems. In this case, we consider the following situation: let $V \in \{0, 1\}$ uniformly at random, and conditional on $V = v$, draw $X \sim P_v$ for some distribution P_v on a space \mathcal{X}. Then we have that

$$I(X; V) = \frac{1}{2} D_{\text{kl}}(P_0||P) + \frac{1}{2} D_{\text{kl}}(P_1||P)$$

where $P = \frac{1}{2} P_0 + \frac{1}{2} P_1$. The divergence measure on the right side of the preceding identity is a special case of the Jenson-Shannon divergence, defined for $\lambda \in [0, 1]$ by

$$D_{js, \lambda}(P||Q) := \lambda D_{\text{kl}}(P||\lambda P + (1 - \lambda)Q) + D_{\text{kl}}(Q||\lambda P + (1 - \lambda)Q),$$

which is a symmetrized and bounded variant of the typical KL-divergence (we use the shorthand $D_{js}(P||Q) := D_{js, \frac{1}{2}}(P||Q)$ for the symmetric case). As a consequence, we also have

$$I(X; V) = \frac{1}{2} D_f(P_0||P_1) + \frac{1}{2} D_f(P_1||P_0),$$

where $f(t) = -t \log(\frac{1}{2} + \frac{1}{2} t) = t \log \frac{2t}{1+t}$, so that the mutual information is a particular f-divergence. This form—as we see in the later chapters—is frequently convenient because it gives an object with similar tensorization properties to KL-divergence while enjoying the boundedness properties of Hellinger and variation distances. The following proposition captures the latter properties.

Proposition 2.13. Let (X, V) be distributed as above. Then

$$\frac{\log 2}{2} d_{\text{hel}}^2(P_0, P_1) \leq I(X; V) = D_{js}(P_0||P_1) \leq \min \left\{ \frac{\log 2}{2} \cdot \|P_0 - P_1\|_{\text{TV}}, \frac{d_{\text{hel}}^2(P_0, P_1)}{2} \right\}.$$

Proof The lower bound and upper bound involving the variation distance both follow from analytic bounds on the binary entropy functional $h_2(p) = -p \log p - (1 - p) \log(1 - p)$. Indeed, by expanding the mutual information and letting p_0 and p_1 be densities of P_0 and P_1 with respect to some base measure μ, we have

$$2I(X; V) = 2 D_{js}(P_0||P_1) = \int p_0 \log \frac{2p_0}{p_0 + p_1} d\mu + \int p_1 \log \frac{2p_1}{p_0 + p_1} d\mu = 2 \log 2 + \int (p_0 + p_1) \left[\frac{p_0}{p_1 + p_1} \log \frac{p_0}{p_0 + p_1} + \frac{p_1}{p_1 + p_1} \log \frac{p_1}{p_0 + p_1} \right] d\mu = 2 \log 2 - \int (p_0 + p_1) h_2 \left(\frac{p_0}{p_1 + p_0} \right) d\mu.$$

We claim that

$$2 \log 2 \cdot \min\{p, 1 - p\} \leq h_2(p) \leq 2 \log 2 \cdot \sqrt{p(1 - p)}$$
for all \(p \in [0, 1] \) (see Questions 2.17 and 2.18). Then the upper and lower bounds on the information become nearly immediate.

For the variation-based upper bound on \(I(X; V) \), we use the lower bound \(h_2(p) \geq 2 \log 2 \cdot \min\{p, 1 - p\} \) to write

\[
\frac{2}{\log 2} I(X; V) \leq 2 - \int (p_0(x) + p_1(x)) \min \left\{ \frac{p_0(x)}{p_0(x) + p_1(x)}, \frac{p_1(x)}{p_0(x) + p_1(x)} \right\} d\mu(x)
\]

\[
= 2 - 2 \int \min\{p_0(x), p_1(x)\} d\mu(x)
\]

\[
= 2 \int (p_1(x) - \min\{p_0(x), p_1(x)\}) d\mu(x) = 2 \int_{p_1 > p_0} (p_1(x) - p_0(x)) d\mu(x).
\]

But of course the final integral is \(\|P_1 - P_0\|_{TV} \), giving the result. Conversely, for the lower bound on \(D_{js}(P_0\|P_1) \), we use the upper bound \(h_2(p) \leq 2 \log 2 \cdot \sqrt{p(1 - p)} \) to obtain

\[
\frac{2}{\log 2} I(X; V) \geq 2 - 2 \int (p_0 + p_1) \sqrt{\frac{p_0}{p_1 + p_0} \left(1 - \frac{p_0}{p_1 + p_0} \right)} d\mu
\]

\[
= 2 - 2 \int \sqrt{p_0 p_1} d\mu = \int (\sqrt{p_0} - \sqrt{p_1})^2 d\mu = d_{hel}^2(P_0, P_1)
\]

as desired.

The Hellinger-based upper bound is simpler: by Proposition 2.12, we have

\[
D_{js}(P_0\|P_1) = \frac{1}{2} D_{kl}(P_0\|(P_0 + P_1)/2) + \frac{1}{2} D_{kl}(P_1\|(P_0 + P_1)/2)
\]

\[
\leq \frac{1}{2} D_{\chi^2}(P_0\|(P_0 + P_1)/2) + \frac{1}{2} D_{\chi^2}(P_1\|(P_0 + P_1)/2)
\]

\[
= \frac{1}{2} \int \frac{(p_0 - p_1)^2}{p_0 + p_1} d\mu = \frac{1}{2} \int \frac{(\sqrt{p_0} - \sqrt{p_1})^2}{p_0 + p_1} d\mu.
\]

Now note that \((a + b)^2 \leq 2a^2 + 2b^2\) for any \(a, b \in \mathbb{R} \), and so \((\sqrt{p_0} + \sqrt{p_1})^2 \leq 2(p_0 + p_1) \), and thus the final integral has bound \(\int (\sqrt{p_0} - \sqrt{p_1})^2 d\mu = d_{hel}^2(P_0, P_1) \).

\[\Box\]

2.2.4 Properties of divergence measures

\(f \)-divergences satisfy a number of very useful properties, which we use repeatedly throughout the lectures. As the KL-divergence is an \(f \)-divergence, it of course satisfies these conditions; however, we state them in fuller generality, treating the KL-divergence results as special cases and corollaries.

We begin by exhibiting the general data processing properties and convexity properties of \(f \)-divergences, each of which specializes to KL divergence. We leave the proof of each of these as exercises. First, we show that \(f \)-divergences are jointly convex in their arguments.

Proposition 2.14. Let \(P_1, P_2, Q_1, Q_2 \) be distributions on a set \(\mathcal{X} \) and \(f : \mathbb{R}_+ \to \mathbb{R} \) be convex. Then for any \(\lambda \in [0, 1] \),

\[
D_f(\lambda P_1 + (1 - \lambda) P_2| \lambda Q_1 + (1 - \lambda) Q_2) \leq \lambda D_f(P_1|Q_1) + (1 - \lambda) D_f(P_2|Q_2).
\]
The proof of this proposition we leave as an exercise (Q. 2.11), which we treat as a consequence of the more general “log-sum” like inequalities of Question 2.8. It is, however, an immediate consequence of the fully specified definition (2.2.5) of an \(f \)-divergence, because \(\text{pers}(f) \) is jointly convex. As an immediate corollary, we see that the same result is true for KL-divergence as well.

Corollary 2.15. The KL-divergence \(D_{\text{kl}}(P\|Q) \) is jointly convex in its arguments \(P \) and \(Q \).

We can also provide more general data processing inequalities for \(f \)-divergences, paralleling those for the KL-divergence. In this case, we consider random variables \(X \) and \(Z \) on spaces \(\mathcal{X} \) and \(\mathcal{Z} \), respectively, and a Markov transition kernel \(K \) giving the Markov chain \(X \rightarrow Z \). That is, \(K(\cdot \mid x) \) is a probability distribution on \(\mathcal{Z} \) for each \(x \in \mathcal{X} \), and conditioned on \(X = x \), \(Z \) has distribution \(K(\cdot \mid x) \) so that \(K(A \mid x) = P(Z \in A \mid X = x) \). Certainly, this includes the situation when \(Z = \phi(X) \) for some function \(\phi \), and more generally when \(Z = \phi(X, U) \) for a function \(\phi \) and some additional randomness \(U \). For a distribution \(P \) on \(X \), we then define the marginals

\[
K_P(A) := \int_{\mathcal{X}} K(A, x) dP(x).
\]

We then have the following proposition.

Proposition 2.16. Let \(P \) and \(Q \) be distributions on \(X \) and let \(K \) be any Markov kernel. Then

\[
D_f(K_P \| K_Q) \leq D_f(P \| Q).
\]

The proof of this proposition is Question 2.10.

As a corollary, we obtain the following data processing inequality for KL-divergences, where we abuse notation to write \(D_{\text{kl}}(X \| Y) = D_{\text{kl}}(P \| Q) \) for random variables \(X \sim P \) and \(Y \sim Q \).

Corollary 2.17. Let \(X, Y \in \mathcal{X} \) be random variables, let \(U \in \mathcal{U} \) be independent of \(X \) and \(Y \), and let \(\phi : \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{Z} \) for some spaces \(\mathcal{X}, \mathcal{U}, \mathcal{Z} \). Then

\[
D_{\text{kl}}(\phi(X, U) \| \phi(Y, U)) \leq D_{\text{kl}}(X \| Y).
\]

Thus, further processing of random variables can only bring them “closer” in the space of distributions; downstream processing of signals cannot make them further apart as distributions.

2.3 First steps into optimal procedures: testing inequalities

As noted in the introduction, a central benefit of the information theoretic tools we explore is that they allow us to certify the optimality of procedures—that no other procedure could (substantially) improve upon the one at hand. The main tools for these certifications are often inequalities governing the best possible behavior of a variety of statistical tests. Roughly, we put ourselves in the following scenario: nature chooses one of a possible set of (say) \(k \) worlds, indexed by probability distributions \(P_1, P_2, \ldots, P_k \), and conditional on nature’s choice of the world—the distribution \(P^* \in \{P_1, \ldots, P_k\} \) chosen—we observe data \(X \) drawn from \(P^* \). Intuitively, it will be difficult to decide which distribution \(P_i \) is the true \(P^* \) if all the distributions are similar—the divergence between the \(P_i \) is small, or the information between \(X \) and \(P^* \) is negligible—and easy if the distances between the distributions \(P_i \) are large. With this outline in mind, we present two inequalities, and first examples of their application, to make concrete these connections to the notions of information and divergence defined in this section.
2.3.1 Le Cam’s inequality and binary hypothesis testing

The simplest instantiation of the above setting is the case when there are only two possible distributions, P_1 and P_2, and our goal is to make a decision on whether P_1 or P_2 is the distribution generating data we observe. Concretely, suppose that nature chooses one of the distributions P_1 or P_2 at random, and let $V \in \{1, 2\}$ index this choice. Conditional on $V = v$, we then observe a sample X drawn from P_v. Denoting by \mathbb{P} the joint distribution of V and X, we have for any test $\Psi : \mathcal{X} \to \{1, 2\}$ that the probability of error is then

$$\mathbb{P}(\Psi(X) \neq V) = \frac{1}{2}P_1(\Psi(X) \neq 1) + \frac{1}{2}P_2(\Psi(X) \neq 2).$$

We can give an exact expression for the minimal possible error in the above hypothesis test. Indeed, a standard result of Le Cam (see [106, 147, Lemma 1]) is the following variational representation of the total variation distance (2.2.6), which is the f-divergence associated with $f(t) = \frac{1}{2}|t-1|$, as a function of testing error.

Proposition 2.18. Let \mathcal{X} be an arbitrary set. For any distributions P_1 and P_2 on \mathcal{X}, we have

$$\inf_\Psi \{P_1(\Psi(X) \neq 1) + P_2(\Psi(X) \neq 2)\} = 1 - \|P_1 - P_2\|_{TV},$$

where the infimum is taken over all tests $\Psi : \mathcal{X} \to \{1, 2\}$.

Proof. Any test $\Psi : \mathcal{X} \to \{1, 2\}$ has an acceptance region, call it $A \subset \mathcal{X}$, where it outputs 1 and a region A^c where it outputs 2.

$$P_1(\Psi \neq 1) + P_2(\Psi \neq 2) = P_1(A^c) + P_2(A) = 1 - P_1(A) + P_2(A).$$

Taking an infimum over such acceptance regions, we have

$$\inf_\Psi \{P_1(\Psi \neq 1) + P_2(\Psi \neq 2)\} = \inf_{A \subset \mathcal{X}} \{1 - (P_1(A) - P_2(A))\} = 1 - \sup_{A \subset \mathcal{X}} (P_1(A) - P_2(A)),$$

which yields the total variation distance as desired. \qed

In the two-hypothesis case, we also know that the optimal test, by the Neyman-Pearson lemma, is a likelihood ratio test. That is, assuming that P_1 and P_2 have densities p_1 and p_2, the optimal test is of the form

$$\Psi(X) = \begin{cases} 1 & \text{if } \frac{p_1(X)}{p_2(X)} \geq t \\ 2 & \text{if } \frac{p_1(X)}{p_2(X)} < t \end{cases}$$

for some threshold $t \geq 0$. In the case that the prior probabilities on P_1 and P_2 are each $\frac{1}{2}$, then $t = 1$ is optimal.

We give one example application of Proposition 2.18 to the problem of testing a normal mean.

Example 2.19 (Testing a normal mean): Suppose we observe $X_1, \ldots, X_n \overset{iid}{\sim} P$ for $P = P_1$ or $P = P_2$, where P_v is the normal distribution $N(\mu_v, \sigma^2)$, where $\mu_1 \neq \mu_2$. We would like to understand the sample size n necessary to guarantee that no test can have small error, that is, say, that

$$\inf_\Psi \{P_1(\Psi(X_1, \ldots, X_n) \neq 1) + P_2(\Psi(X_1, \ldots, X_n) \neq 2)\} \geq \frac{1}{2}.$$
By Proposition 2.18, we have that
\[
\inf_{\Psi} \{ P_1(\Psi(X_1, \ldots, X_n) \neq 1) + P_2(\Psi(X_1, \ldots, X_n) \neq 2) \} \geq 1 - \| P_1^n - P_2^n \|_{TV},
\]
where \(P_1^n \) denotes the \(n \)-fold product of \(P_1 \), that is, the distribution of \(X_1, \ldots, X_n \) \(\text{iid} \sim P_1 \).

The interaction between total variation distance and product distributions is somewhat subtle, so it is often advisable to use a divergence measure more attuned to the i.i.d. nature of the sampling scheme. Two such measures are the KL-divergence and Hellinger distance, both of which we explore in the coming chapters. With that in mind, we apply Pinsker’s inequality (2.2.7) to see that
\[
1 - \| P_1^n - P_2^n \|_{TV} \geq 1 - \sqrt{\frac{n}{2}} D_{TV}(P_1^n \| P_2^n) = \frac{n}{2} D_{kl}(P_1 \| P_2),
\]
which implies that
\[
1 - \| P_1^n - P_2^n \|_{TV} \geq 1 - \sqrt{\frac{n}{2}} \left(\frac{1}{2\sigma^2}(\mu_1 - \mu_2)^2 \right)^{\frac{1}{2}} = 1 - \sqrt{\frac{n}{2}} \frac{\mid \mu_1 - \mu_2 \mid}{\sigma}.
\]
In particular, if \(n \leq \frac{\sigma^2}{(\mu_1 - \mu_2)^2} \), then we have our desired lower bound of \(\frac{1}{2} \).

Conversely, a calculation yields that \(n \geq \frac{C\sigma^2}{(\mu_1 - \mu_2)^2} \), for some numerical constant \(C \geq 1 \), implies small probability of error. We leave this calculation to the reader. \(\diamond \)

2.3.2 Fano’s inequality and multiple hypothesis testing

There are of course situations in which we do not wish to simply test two hypotheses, but have multiple hypotheses present. In such situations, Fano’s inequality, which we present shortly, is the most common tool for proving fundamental limits, lower bounds on probability of error, and converses (to results on achievability of some performance level) in information theory. We write this section in terms of general random variables, ignoring the precise setting of selecting an index in a family of distributions, though that is implicit in what we do.

Let \(X \) be a random variable taking values in a finite set \(\mathcal{X} \), and assume that we observe a (different) random variable \(Y \), and then must estimate or guess the true value of \(\hat{X} \). That is, we have the Markov chain
\[
X \to Y \to \hat{X},
\]
and we wish to provide lower bounds on the probability of error—that is, that \(\hat{X} \neq X \). If we let the function \(h_2(p) = -p \log p - (1 - p) \log(1 - p) \) denote the binary entropy (entropy of a Bernoulli random variable with parameter \(p \)), Fano’s inequality takes the following form [e.g. 49, Chapter 2]:

Proposition 2.20 (Fano inequality). For any Markov chain \(X \to Y \to \hat{X} \), we have
\[
h_2(\mathbb{P}(\hat{X} \neq X)) + \mathbb{P}(\hat{X} \neq X) \log(|\mathcal{X}|-1) \geq H(X \mid \hat{X}). \tag{2.3.1}
\]

Proof This proof follows by expanding an entropy functional in two different ways. Let \(E \) be the indicator for the event that \(\hat{X} \neq X \), that is, \(E = 1 \) if \(\hat{X} \neq X \) and is 0 otherwise. Then we have
\[
H(X, E \mid \hat{X}) = H(X \mid E, \hat{X}) + H(E \mid \hat{X})
= \mathbb{P}(E = 1)H(X \mid E = 1, \hat{X}) + \mathbb{P}(E = 0)H(X \mid E = 0, \hat{X}) + H(E \mid \hat{X}),
\]
where the zero follows because given there is no error, \(X \) has no variability given \(\hat{X} \). Expanding the entropy by the chain rule in a different order, we have
\[
H(X, E \mid \hat{X}) = H(X \mid \hat{X}) + H(E \mid \hat{X}, X).
\]
because E is perfectly predicted by \hat{X} and X. Combining these equalities, we have

$$H(X \mid \hat{X}) = H(X, E \mid \hat{X}) = P(E = 1)H(X \mid E = 1, \hat{X}) + H(E \mid X).$$

Noting that $H(E \mid X) \leq H(E) = h_2(P(E = 1))$, as conditioning reduces entropy, and that $H(X \mid E = 1, \hat{X}) \leq \log(|X| - 1)$, as X can take on at most $|X| - 1$ values when there is an error, completes the proof.

We can rewrite Proposition 2.20 in a convenient way when X is uniform in \mathcal{X}. Indeed, by definition of the mutual information, we have $I(X; \hat{X}) = H(X) - H(X \mid \hat{X})$, so Proposition 8.8 implies that in the canonical hypothesis testing problem from Section 8.2.1, we have

Corollary 2.21. Assume that X is uniform on \mathcal{X}. For any Markov chain $X \rightarrow Y \rightarrow \hat{X}$,

$$P(\hat{X} \neq X) \geq 1 - \frac{I(X; Y) + \log 2}{\log(|\mathcal{X}|)}.$$ \tag{2.3.2}

Proof Let $P_{\text{error}} = P(X \neq \hat{X})$ denote the probability of error. Noting that $h_2(p) \leq \log 2$ for any $p \in [0, 1]$ (recall inequality (2.1.2), that is, that uniform random variables maximize entropy), then using Proposition 8.8, we have

$$\log 2 + P_{\text{error}} \log(|\mathcal{X}|) \geq h_2(P_{\text{error}}) + P_{\text{error}} \log(|\mathcal{X}| - 1) \overset{(i)}{=} H(X \mid \hat{X}) \overset{(ii)}{=} H(X) - I(X; \hat{X}).$$

Here step (i) uses Proposition 2.20 and step (ii) uses the definition of mutual information, that $I(X; \hat{X}) = H(X) - H(X \mid \hat{X})$. The data processing inequality implies that $I(X; \hat{X}) \leq I(X; Y)$, and using $H(X) = \log(|\mathcal{X}|)$ completes the proof.

In particular, Corollary 2.21 shows that when X is chosen uniformly at random and we observe Y, we have

$$\inf_{\Psi} P(\Psi(Y) \neq X) \geq 1 - \frac{I(X; Y) + \log 2}{\log |\mathcal{X}|},$$

where the infimum is taken over all testing procedures Ψ. Some interpretation of this quantity is helpful. If we think roughly of the number of bits it takes to describe a variable X uniformly chosen from \mathcal{X}, then we expect that $\log_2 |\mathcal{X}|$ bits are necessary (and sufficient). Thus, until we collect enough information that $I(X; Y) \approx \log |\mathcal{X}|$, so that $I(X; Y) / \log |\mathcal{X}| \approx 1$, we are unlikely to be unable to identify the variable X with any substantial probability. So we must collect enough bits to actually discover X.

Example 2.22 (20 questions game): In the 20 questions game—a standard children’s game—there are two players, the “chooser” and the “guesser,” and an agreed upon universe \mathcal{X}. The chooser picks an element $x \in \mathcal{X}$, and the guesser’s goal is to find x by using a series of yes/no questions about x. We consider optimal strategies for each player in this game, assuming that \mathcal{X} is finite and letting $m = |\mathcal{X}|$ be the universe size for shorthand.

For the guesser, it is clear that at most $\lceil \log_2 m \rceil$ questions are necessary to guess the item X that the chooser has picked—at each round of the game, the guesser asks a question that eliminates half of the remaining possible items. Indeed, let us assume that $m = 2^l$ for some
$l \in \mathbb{N}$; if not, the guesser can always make her task more difficult by increasing the size of X until it is a power of 2. Thus, after k rounds, there are $m2^{-k}$ items left, and we have

$$m \left(\frac{1}{2} \right)^k \leq 1 \text{ if and only if } k \geq \log_2 m.$$

For the converse—the chooser’s strategy—let Y_1, Y_2, \ldots, Y_k be the sequence of yes/no answers given to the guesser. Assume that the chooser picks X uniformly at random in X. Then Fano’s inequality (2.3.2) implies that for the guess b_X the guesser makes,

$$\mathbb{P}(\hat{X} \neq X) \geq 1 - \frac{I(X; Y_1, \ldots, Y_k) + \log 2}{\log m}.$$

By the chain rule for mutual information, we have

$$I(X; Y_1, \ldots, Y_k) = \sum_{i=1}^{k} I(X; Y_i | Y_1; i-1) = \sum_{i=1}^{k} H(Y_i | Y_1; i-1) - H(Y_i | Y_1; i-1, X) \leq \sum_{i=1}^{k} H(Y_i).$$

As the answers Y_i are yes/no, we have $H(Y_i) \leq \log 2$, so that $I(X; Y_1; k) \leq k \log 2$. Thus we find

$$\mathbb{P}(\hat{X} \neq X) \geq 1 - \frac{(k + 1) \log 2}{\log m} = \frac{\log_2 m - 1}{\log_2 m} - \frac{k}{\log_2 m},$$

so that we the guesser must have $k \geq \log_2 (m/2)$ to be guaranteed that she will make no mistakes. ◇

2.4 A first operational result: entropy and source coding

The final section of this chapter explores the basic results in source coding. Source coding—in its simplest form—tells us precisely the number of bits (or some other form of information storage) are necessary to perfectly encode a sequence of random variables X_1, X_2, \ldots drawn according to a known distribution P.

2.4.1 The source coding problem

Assume we receive data consisting of a sequence of symbols X_1, X_2, \ldots, drawn from a known distribution P on a finite or countable space \mathcal{X}. We wish to choose an encoding, represented by a d-ary code function C that maps \mathcal{X} to finite strings consisting of the symbols $\{0, 1, \ldots, d-1\}$. We denote this by $C : \mathcal{X} \to \{0, 1, \ldots, d-1\}^*$, where the superscript * denotes the length may change from input to input, and use $\ell_C(x)$ to denote the length of the string $C(x)$.

In general, we will consider a variety of types of codes; we define each in order of complexity of their decoding.

Definition 2.1. A d-ary code $C : \mathcal{X} \to \{0, \ldots, d-1\}^*$ is non-singular if for each $x, x' \in \mathcal{X}$ we have $C(x) \neq C(x')$ if $x \neq x'$.

While Definition 2.1 is natural, generally speaking, we wish to transmit or encode a variety of codewords simultaneously, that is, we wish to encode a sequence X_1, X_2, \ldots using the natural extension of the code C as the string $C(X_1)C(X_2)C(X_3)\cdots$, where $C(x_1)C(x_2)$ denotes the concatenation of the strings $C(x_1)$ and $C(x_2)$. In this case, we require that the code be uniquely decodable:
Definition 2.2. A d-ary code $C : \mathcal{X} \to \{0, \ldots, d-1\}^*$ is uniquely decodable if for all sequences $x_1, \ldots, x_n \in \mathcal{X}$ and $x'_1, \ldots, x'_n \in \mathcal{X}$ we have

$$C(x_1)C(x_2)\cdots C(x_n) = C(x'_1)C(x'_2)\cdots C(x'_n) \text{ if and only if } x_1 = x'_1, \ldots, x_n = x'_n.$$

That is, the extension of the code C to sequences is non-singular.

While more useful (generally) than simply non-singular codes, uniquely decodable codes may require inspection of an entire string before recovering the first element. With that in mind, we now consider the easiest to use codes, which can always be decoded instantaneously.

Definition 2.3. A d-ary code $C : \mathcal{X} \to \{0, \ldots, d-1\}^*$ is uniquely decodable or instantaneous if no codeword is the prefix to another codeword.

As is hopefully apparent from the definitions, all prefix/instantaneous codes are uniquely decodable, which are in turn non-singular. The converse is not true, though we will see a sense in which—as long as we care only about encoding sequences—using prefix instead of uniquely decodable codes has negligible consequences.

For example, written English, with periods (.) and spaces () included at the ends of words (among other punctuation) is an instantaneous encoding of English into the symbols of the alphabet and punctuation, as punctuation symbols enforce that no “codeword” is a prefix of any other. A few more concrete examples may make things more clear.

Example 2.23 (Encoding strategies): Consider the encoding schemes below, which encode the letters a, b, c, and d.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$C_1(x)$</th>
<th>$C_2(x)$</th>
<th>$C_3(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>00</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>000</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>d</td>
<td>0000</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

By inspection, it is clear that C_1 is non-singular but certainly not uniquely decodable (does the sequence 0000 correspond to aaaa, bb, aab, aba, baa, ca, ac, or d?), while C_3 is a prefix code. We leave showing that C_2 is uniquely decodable as an exercise.

2.4.2 The Kraft-McMillan inequalities

We now turn to a few results on the connections between source-coding and entropy. Our first result, the *Kraft-McMillan inequality*, is an essential result that—as we shall see—essentially says that there is no difference in code-lengths attainable by prefix codes and uniquely decodable codes.

Theorem 2.24. Let \mathcal{X} be a finite or countable set, and let $\ell : \mathcal{X} \to \mathbb{N}$ be a function. If $\ell(x)$ is the length of the encoding of the symbol x in a uniquely decodable d-ary code, then

$$\sum_{x \in \mathcal{X}} d^{-\ell(x)} \leq 1.$$ \hspace{1cm} (2.4.1)

Conversely, given any function $\ell : \mathcal{X} \to \mathbb{N}$ satisfying inequality (2.4.1), there is a prefix code whose codewords have length $\ell(x)$ for each $x \in \mathcal{X}$.
Proof We prove the first statement of the theorem first by a counting and asymptotic argument.

We begin by assuming that \mathcal{X} is finite; we eliminate this assumption subsequently. As a consequence, there is some maximum length ℓ_{max} such that $\ell(x) \leq \ell_{\text{max}}$ for all $x \in \mathcal{X}$. For a sequence $x_1, \ldots, x_n \in \mathcal{X}$, we have by the definition of our encoding strategy that $\ell(x_1, \ldots, x_n) = \sum_{i=1}^{n} \ell(x_i)$. In addition, for each m we let $E_n(m) := \{x_{1:n} \in \mathcal{X}^n \text{ such that } \ell(x_{1:n}) = m\}$ denote the symbols x encoded with codewords of length m in our code, then as the code is uniquely decodable we certainly have $\text{card}(E_n(m)) \leq d^m$ for all n and m. Moreover, for all $x_{1:n} \in \mathcal{X}^n$ we have $\ell(x_{1:n}) \leq n\ell_{\text{max}}$. We thus re-index the sum $\sum_x d^{-\ell(x)}$ and compute

$$
\sum_{x_{1, \ldots, n} \in \mathcal{X}^n} d^{-\ell(x_{1, \ldots, n})} = \sum_{m=1}^{n\ell_{\text{max}}} \text{card}(E_n(m)) d^{-m} \\
\leq \sum_{m=1}^{n\ell_{\text{max}}} d^{m-m} = n\ell_{\text{max}}.
$$

The preceding relation is true for all $n \in \mathbb{N}$, so that

$$
\left(\sum_{x_{1:n} \in \mathcal{X}^n} d^{-\ell(x_{1:n})} \right)^{1/n} \leq n^{1/n} \ell_{\text{max}}^{1/n} \rightarrow 1
$$

as $n \rightarrow \infty$. In particular, using that

$$
\sum_{x_{1:n} \in \mathcal{X}^n} d^{-\ell(x_{1:n})} = \sum_{x_1, \ldots, x_n \in \mathcal{X}^n} d^{-\ell(x_1)} \cdots d^{-\ell(x_n)} = \left(\sum_{x \in \mathcal{X}} d^{-\ell(x)} \right)^n,
$$

we obtain $\sum_{x \in \mathcal{X}} d^{-\ell(x)} \leq 1$.

\[\text{Figure 2.1.} \text{ Prefix-tree encoding of a set of symbols. The encoding for } x_1 \text{ is } 0, \text{ for } x_2 \text{ is } 10, \text{ for } x_3 \text{ is } 11, \text{ for } x_4 \text{ is } 12, \text{ for } x_5 \text{ is } 20, \text{ for } x_6 \text{ is } 21, \text{ and nothing is encoded as } 1, 2, \text{ or } 22. \]
Returning to the case that \(\text{card}(\mathcal{X}) = \infty \), by defining the sequence
\[
D_k := \sum_{x \in \mathcal{X}, \ell(x) \leq k} d^{-\ell(x)}
\]
as each subset \(\{ x \in \mathcal{X} : \ell(x) \leq k \} \) is uniquely decodable, we have \(D_k \leq 1 \) for all \(k \). Then \(1 \geq \lim_{k \to \infty} D_k = \sum_{x \in \mathcal{X}} d^{-\ell(x)} \).

The achievability of such a code is straightforward by a pictorial argument (recall Figure 2.1), so we sketch the result non-rigorously. Indeed, let \(T_d \) be an (infinite) \(d \)-ary tree. Then, at each level \(m \) of the tree, assign one of the nodes at that level to each symbol \(x \in \mathcal{X} \) such that \(\ell(x) = m \). Eliminate the subtree below that node, and repeat with the remaining symbols. The codeword corresponding to symbol \(x \) is then the path to the symbol in the tree.

JCD Comment: Fill out this proof, potentially deferring it.

With the Kraft-McMillan theorem in place, we may directly relate the entropy of a random variable to the length of possible encodings for the variable; in particular, we show that the entropy is essentially the best possible code length of a uniquely decodable source code. In this theorem, we use the shorthand
\[
H_d(X) := - \sum_{x \in \mathcal{X}} p(x) \log_d p(x).
\]

Theorem 2.25. Let \(X \in \mathcal{X} \) be a discrete random variable distributed according to \(P \) and let \(\ell_C \) be the length function associated with a \(d \)-ary encoding \(\mathcal{C} : \mathcal{X} \to \{0, \ldots, d - 1\}^* \). In addition, let \(\mathcal{C} \) be the set of all uniquely decodable \(d \)-ary codes for \(\mathcal{X} \). Then
\[
H_d(X) \leq \inf \{ \mathbb{E}_P[\ell_C(X)] : \mathcal{C} \in \mathcal{C} \} \leq H_d(X) + 1.
\]

Proof The lower bound is an argument by convex optimization, while for the upper bound we give an explicit length function and (implicit) prefix code attaining the bound. For the lower bound, we assume for simplicity that \(\mathcal{X} \) is finite, and we identify \(\mathcal{X} = \{1, \ldots, |\mathcal{X}|\} \) (let \(m = |\mathcal{X}| \) for shorthand). Then as \(\mathcal{C} \) consists of uniquely decodable codebooks, all the associated length functions must satisfy the Kraft-McMillan inequality (2.4.1). Letting \(\ell_i = \ell(i) \), the minimal encoding length is at least
\[
\inf_{\ell \in \mathbb{R}^m} \left\{ \sum_{i=1}^m p_i \ell_i : \sum_{i=1}^m d^{-\ell_i} \leq 1 \right\}.
\]

By introducing the Lagrange multiplier \(\lambda \geq 0 \) for the inequality constraint, we may write the Lagrangian for the preceding minimization problem as
\[
\mathcal{L}(\ell, \lambda) = p^\top \ell + \lambda \left(\sum_{i=1}^n d^{-\ell_i} - 1 \right)
\]
with \(\nabla_\ell \mathcal{L}(\ell, \lambda) = p - \lambda \left[d^{-\ell_i} \log d \right]_{i=1}^m \).

In particular, the optimal \(\ell \) satisfies \(\ell_i = \log_d \frac{\theta}{p_i} \) for some constant \(\theta \), and solving \(\sum_{i=1}^m d^{-\log_d \frac{\theta}{p_i}} = 1 \) gives \(\theta = 1 \) and \(\ell(i) = \log_d \frac{1}{p_i} \).

To attain the result, simply set our encoding to be \(\ell(x) = \left\lfloor \log_d \frac{1}{p(x)} \right\rfloor \), which satisfies the Kraft-McMillan inequality and thus yields a valid prefix code with
\[
\mathbb{E}_P[\ell(X)] = \sum_{x \in \mathcal{X}} p(x) \left\lfloor \log_d \frac{1}{p(x)} \right\rfloor \leq - \sum_{x \in \mathcal{X}} p(x) \log_d p(x) + 1 = H_d(X) + 1
\]
Theorem 2.25 thus shows that, at least to within an additive constant of 1, the entropy both upper and lower bounds the expected length of a uniquely decodable code for the random variable \(X \). This is the first of our promised "operational interpretations" of the entropy.

2.4.3 Entropy rates and longer codes

Theorem 2.25 is a bit unsatisfying in that the additive constant 1 may be quite large relative to the entropy. By allowing encoding longer sequences, we can (asymptotically) eliminate this error factor. To that end, we here show that it is possible, at least for appropriate distributions on random variables \(X_i \), to achieve a per-symbol encoding length that approaches a limiting version of the Shannon entropy of a random variable. We give two definitions capturing the limiting entropy properties of sequences of random variables.

Definition 2.4. The *entropy rate* of a sequence \(X_1, X_2, \ldots \) of random variables is

\[
H(\{X_i\}) := \lim_{n \to \infty} \frac{1}{n} H(X_1, \ldots, X_n) \tag{2.4.2}
\]

whenever the limit exists.

In some situations, the limit (2.4.2) may not exist. However, there are a variety of situations in which it does, and we focus generally on a specific but common instance in which the limit does exist. First, we recall the definition of a stationary sequence of random variables.

Definition 2.5. We say a sequence \(X_1, X_2, \ldots \) of random variable is stationary if for all \(n \) and all \(k \in \mathbb{N} \) and all measurable sets \(A_1, \ldots, A_k \subset \mathcal{X} \) we have

\[
P(X_1 \in A_1, \ldots, X_k \in A_k) = P(X_{n+1} \in A_1, \ldots, X_{n+k} \in A_k).
\]

With this definition, we have the following result.

Proposition 2.26. Let the sequence of random variables \(\{X_i\} \), taking values in the discrete space \(\mathcal{X} \), be stationary. Then

\[
H(\{X_i\}) = \lim_{n \to \infty} H(X_n \mid X_1, \ldots, X_{n-1})
\]

and the limits (2.4.2) and above exist.

Proof We begin by making the following standard observation of Cesàro means: if \(c_n = \frac{1}{n} \sum_{i=1}^{n} a_i \) and \(a_i \to a \), then \(c_n \to a \).\(^3\) Now, we note that for a stationary sequence, we have that

\[
H(X_n \mid X_{1:n-1}) = H(X_{n+1} \mid X_{2:n}).
\]

\(^3\)Indeed, let \(\epsilon > 0 \) and take \(N \) such that \(n \geq N \) implies that \(|a_i - a| < \epsilon \). Then for \(n \geq N \), we have

\[
c_n - a = \frac{1}{n} \sum_{i=1}^{n} (a_i - a) = \frac{N(c_N - a)}{n} + \frac{1}{n} \sum_{i=N+1}^{n} (a_i - a) \in \frac{N(c_N - a)}{n} \pm \epsilon.
\]

Taking \(n \to \infty \) yields that the term \(N(c_N - a)/n \to 0 \), which gives that \(c_n - a \in [-\epsilon, \epsilon] \) eventually for any \(\epsilon > 0 \), which is our desired result.
and using that conditioning decreases entropy, we have

\[H(X_{n+1} \mid X_{1:n}) \leq H(X_n \mid X_{1:n-1}). \]

Thus the sequence \(a_n := H(X_n \mid X_{1:n-1}) \) is non-increasing and bounded below by 0, so that it has some limit \(\lim_{n \to \infty} H(X_n \mid X_{1:n-1}) \). As \(H(X_1, \ldots, X_n) = \sum_{i=1}^{n} H(X_i \mid X_{1:i-1}) \) by the chain rule for entropy, we achieve the result of the proposition.

Finally, we present a result showing that it is possible to achieve average code length of at most the entropy rate, which for stationary sequences is smaller than the entropy of any single random variable \(X_i \). To do so, we require the use of a block code, which (while it may be prefix code) treats sets of random variables \((X_1, \ldots, X_m) \in X^m \) as a single symbol to be jointly encoded.

Proposition 2.27. Let the sequence of random variables \(X_1, X_2, \ldots \) be stationary. Then for any \(\epsilon > 0 \), there exists an \(m \in \mathbb{N} \) and a \(d \)-ary (prefix) block encoder \(C : X^m \to \{0, \ldots, d-1\}^* \) such that

\[
\lim_{n} \frac{1}{n} \mathbb{E}[\ell_C(X_{1:n})] \leq H(\{X_i\}) + \epsilon = \lim_{n} H(X_n \mid X_1, \ldots, X_{n-1}) + \epsilon.
\]

Proof Let \(C : X^m \to \{0, 1, \ldots, d-1\}^* \) be any prefix code with

\[\ell_C(x_{1:m}) \leq \left\lceil \log \frac{1}{P(X_{1:m} = x_{1:m})} \right\rceil. \]

Then whenever \(n/m \) is an integer, we have

\[
\mathbb{E}[\ell_C(X_{1:n})] = \sum_{i=1}^{n/m} \mathbb{E}[\ell_C(X_{mi+1}, \ldots, X_{m(i+1)})] \leq \sum_{i=1}^{n/m} [H(X_{mi+1}, \ldots, X_{m(i+1)}) + 1] = \frac{n}{m} + \frac{n}{m} H(X_1, \ldots, X_m).
\]

Dividing by \(n \) gives the result by taking \(m \) suitably large that \(\frac{1}{m} + \frac{1}{m} H(X_1, \ldots, X_m) \leq \epsilon + H(\{X_i\}) \).

Note that if the \(m \) does not divide \(n \), we may also encode the length of the sequence of encoded words in each block of length \(m \); in particular, if the block begins with a 0, it encodes \(m \) symbols, while if it begins with a 1, then the next \(\lceil \log_d m \rceil \) bits encode the length of the block. This would yields an increase in the expected length of the code to

\[
\mathbb{E}[\ell_C(X_{1:n})] \leq \frac{2n}{m} + \frac{\lceil \log_2 m \rceil}{m} + \frac{n}{m} H(X_1, \ldots, X_m).
\]

Dividing by \(n \) and letting \(n \to \infty \) gives the result, as we can always choose \(m \) large.
2.5 Deferred proofs

2.5.1 Proof of Proposition 2.11

For part (a), we begin with the upper bound. We have by Hölder’s inequality that
\[
\int |p(x) - q(x)|d\mu(x) = \int |\sqrt{p(x)} - \sqrt{q(x)}| \cdot |\sqrt{p(x)} + \sqrt{q(x)}| d\mu(x)
\]
\[
\leq \left(\int (\sqrt{p(x)} - \sqrt{q(x)})^2 d\mu(x) \right)^{\frac{1}{2}} \left(\int (\sqrt{p(x)} + \sqrt{q(x)})^2 d\mu(x) \right)^{\frac{1}{2}}
\]
\[
= d_{\text{hel}}(P, Q) \left(2 + 2 \int \sqrt{p(x)q(x)} d\mu(x) \right)^{\frac{1}{2}}.
\]

But of course, we have \(d_{\text{hel}}(P, Q)^2 = 2 - 2 \int \sqrt{p(x)q(x)} d\mu(x) \), so this implies
\[
\int |p(x) - q(x)|d\mu(x) \leq d_{\text{hel}}(P, Q)(2 - d_{\text{hel}}^2(P, Q))^{\frac{1}{2}}.
\]

Dividing both sides by 2 gives the upper bound on \(\|P - Q\|_{\text{TV}} \). For the lower bound on total variation, note that for any \(a, b \in \mathbb{R}_+ \), we have \(a + b - 2\sqrt{ab} \leq |a - b| \) (check the cases \(a > b \) and \(a < b \) separately); thus
\[
d_{\text{hel}}^2(P, Q) = \int \left[p(x) + q(x) - 2\sqrt{p(x)q(x)} \right] d\mu(x) \leq \int |p(x) - q(x)|d\mu(x).
\]

For part (b) we present a proof based on the Cauchy-Schwarz inequality, which differs from standard arguments [49, 139]. Using the definition (2.2.3) (or (2.2.1)), we may assume without loss of generality that \(P \) and \(Q \) are finitely supported, say with p.m.f.s \(p_1, \ldots, p_m \) and \(q_1, \ldots, q_m \). Define the negative entropy function \(h(p) = \sum_{i=1}^{m} p_i \log p_i \). Then showing that \(D_{\text{kl}}(P \| Q) \geq 2 \|P - Q\|^2_{\text{TV}} = \frac{1}{2} \|p - q\|^2_1 \) is equivalent to showing that
\[
h(p) \geq h(q) + \langle \nabla h(q), p - q \rangle + \frac{1}{2} \|p - q\|^2_1,
\]

because by inspection \(h(p) - h(q) - \langle \nabla h(q), p - q \rangle = \sum_i p_i \log \frac{p_i}{q_i} \). We do this via a Taylor expansion: we have
\[
\nabla h(p) = [\log p_i + 1]_{i=1}^{m} \quad \text{and} \quad \nabla^2 h(p) = \text{diag}([1/p_i]_{i=1}^{m}).
\]

By Taylor’s theorem, there is some \(\tilde{p} = (1 - t)p + tq \), where \(t \in [0, 1] \), such that
\[
h(p) = h(q) + \langle \nabla h(q), p - q \rangle + \frac{1}{2} \langle p - q, \nabla^2 h(\tilde{p})(p - q) \rangle.
\]

But looking at the final quadratic, we have for any vector \(v \) and any \(p \geq 0 \) satisfying \(\sum_i p_i = 1 \),
\[
\langle v, \nabla^2 h(\tilde{p}) v \rangle = \sum_{i=1}^{m} \frac{v_i^2}{p_i} = \|p\|_1 \sum_{i=1}^{m} \frac{v_i^2}{p_i} \geq \left(\sum_{i=1}^{m} \sqrt{p_i} \frac{|v_i|}{\sqrt{p_i}} \right)^2 = \|v\|_1^2,
\]

where the inequality follows from Cauchy-Schwarz applied to the vectors \([\sqrt{p_i}]_i \) and \([|v_i|/\sqrt{p_i}]_i \). Thus inequality (2.5.1) holds.
For part (c), we recognize that for any $t \in \mathbb{R}$, we have $\log(1 + t) \leq t$. Thus
\[
\frac{1}{2} D_{\text{KL}}(P\|Q) = \frac{1}{2} \int p(x) \log \frac{q(x)}{p(x)} d\mu(x) = -\int p(x) \log \sqrt{\frac{q(x)}{p(x)}} d\mu(x)
\]
\[
= -\int p(x) \log \left[1 + \sqrt{\frac{q(x)}{p(x)}} - 1 \right] d\mu(x)
\]
\[
\geq -\int p(x) \left[\sqrt{\frac{q(x)}{p(x)}} - 1 \right] d\mu(x) = 1 - \int \sqrt{p(x)q(x)}d\mu(x) = \frac{1}{2} d_{\text{hel}}^2(P, Q).
\]
This is the desired inequality.

\[\blacksquare \]

2.6 Bibliography

The material in this chapter is classical in information theory. For all of our treatment of mutual information, entropy, and KL-divergence in the discrete case, Cover and Thomas provide an essentially complete treatment in Chapter 2 of their book [49]. Gray [79] provides a more advanced (measure-theoretic) version of these results, with Chapter 5 covering most of our results (or Chapter 7 in the newer addition of the same book). [?] is the classic reference for coding theorems and results on communication, including stronger converse results.

The f-divergence was independently discovered by Ali and Silvey [4] and Csiszár [50], and is consequently sometimes called an Ali-Silvey divergence or Csiszár divergence. Liese and Vajda [110] provide a survey of f-divergences and their relationships with different statistical concepts (taking a Bayesian point of view), and various authors have extended the pairwise divergence measures to divergence measures between multiple distributions [83], making connections to experimental design and classification [75, 63], which we investigate later in the lectures. For a proof that equality (2.2.4) is equivalent to the definition (2.2.3) with the appropriate closure operations, see the paper [63, Proposition 1]. We borrow the proof of the upper bound in Proposition 2.13 from [111].

2.7 Exercises

Our first few questions investigate properties of a divergence between distributions that is weaker than the KL-divergence, but is intimately related to optimal testing. Let P_1 and P_2 be arbitrary distributions on a space \mathcal{X}. The total variation distance between P_1 and P_2 is defined as
\[
\|P_1 - P_2\|_{\text{TV}} := \sup_{A \subseteq \mathcal{X}} |P_1(A) - P_2(A)|.
\]

Question 2.1: Prove the following identities about total variation. Throughout, let P_1 and P_2 have densities p_1 and p_2 on a (common) set \mathcal{X}.

(a) \[2\|P_1 - P_2\|_{\text{TV}} = \int |p_1(x) - p_2(x)| dx. \]

(b) For functions $f : \mathcal{X} \to \mathbb{R}$, define the supremum norm $\|f\|_\infty = \sup_{x \in \mathcal{X}} |f(x)|$. Show that \[2\|P_1 - P_2\|_{\text{TV}} = \sup_{\|f\|_\infty \leq 1} \int_\mathcal{X} f(x)(p_1(x) - p_2(x)) dx. \]

(c) \[\|P_1 - P_2\|_{\text{TV}} = \int \max\{p_1(x), p_2(x)\} dx - 1. \]
(d) \(\|P_1 - P_2\|_{TV} = 1 - \int \min\{p_1(x), p_2(x)\} dx.\)

(e) For functions \(f, g : \mathcal{X} \to \mathbb{R},\)
\[
\inf \left\{ \int f(x)p_1(x)dx + \int g(x)p_2(x)dx : f + g \geq 1, f \geq 0, g \geq 0 \right\} = 1 - \|P_1 - P_2\|_{TV}.
\]

Question 2.2 (Divergence between multivariate normal distributions): Let \(P_1\) be \(N(\theta_1, \Sigma)\) and \(P_2\) be \(N(\theta_2, \Sigma),\) where \(\Sigma > 0\) is a positive definite matrix. What is \(D_{kl}(P_1\|P_2)\)?

Question 2.3 (The optimal test between distributions): Prove Le-Cam’s inequality: for any function \(\psi \) with \(\dom \psi \supset \mathcal{X}\) and any distributions \(P_1, P_2,\)
\[P_1(\psi(X) \neq 1) + P_2(\psi(X) \neq 2) \geq 1 - \|P_1 - P_2\|_{TV}.
\]

Thus, the sum of the probabilities of error in a hypothesis testing problem, where based on a sample \(X\) we must decide whether \(P_1\) or \(P_2\) is more likely, has value at least \(1 - \|P_1 - P_2\|_{TV}.\) Given \(P_1\) and \(P_2\) is this risk attainable?

Question 2.4: A random variable \(X\) has \(\text{Laplace}(\lambda, \mu)\) distribution if it has density \(p(x) = \frac{\lambda}{2} \exp(-\lambda |x-\mu|).\) Consider the hypothesis test of \(P_1\) versus \(P_2,\) where \(X\) has distribution \(\text{Laplace}(\lambda, \mu_1)\) under \(P_1\) and distribution \(\text{Laplace}(\lambda, \mu_2)\) under \(P_2,\) where \(\mu_1 < \mu_2.\) Show that the minimal value over all tests \(\psi\) of \(P_1\) versus \(P_2\) is
\[
\inf_{\psi} \{P_1(\psi(X) \neq 1) + P_2(\psi(X) \neq 2)\} = \exp \left(-\frac{\lambda}{2} |\mu_1 - \mu_2| \right).
\]

Question 2.5 (Log-sum inequality): Let \(a_1, \ldots, a_n\) and \(b_1, \ldots, b_n\) be non-negative reals. Show that
\[
\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^{n} a_i \right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}.
\]
(Hint: use the convexity of the function \(x \mapsto -\log(x).\))

Question 2.6: Given quantizers \(g_1\) and \(g_2,\) we say that \(g_1\) is a finer quantizer than \(g_2\) under the following condition: assume that \(g_1\) induces the partition \(A_1, \ldots, A_n\) and \(g_2\) induces the partition \(B_1, \ldots, B_m;\) then for any of the sets \(B_i,\) there are exists some \(k\) and sets \(A_{i_1}, \ldots, A_{i_k}\) such that \(B_i = \bigcup_{j=1}^{k} A_{i_j}.\) We let \(g_1 \prec g_2\) denote that \(g_1\) is a finer quantizer than \(g_2.\) Prove

(a) Finer partitions increase the KL divergence: if \(g_1 \prec g_2,\)
\[D_{kl}(P\|Q \mid g_2) \leq D_{kl}(P\|Q \mid g_1).
\]

(b) If \(\mathcal{X}\) is discrete (so \(P\) and \(Q\) have p.m.f.s \(p\) and \(q\) then
\[D_{kl}(P\|Q) = \sum_x p(x) \log \frac{p(x)}{q(x)}.
\]

Question 2.7 (\(f\)-divergences generalize standard divergences): Show the following properties of \(f\)-divergences:
(a) If \(f(t) = |t - 1| \), then \(D_f \left(P \| Q \right) = 2 \| P - Q \|_{TV} \).

(b) If \(f(t) = t \log t \), then \(D_f \left(P \| Q \right) = D_{\text{kl}} \left(P \| Q \right) \).

(c) If \(f(t) = t \log t - \log t \), then \(D_f \left(P \| Q \right) = D_{\text{kl}} \left(P \| Q \right) + D_{\text{kl}} \left(Q \| P \right) \).

(d) For any convex \(f \) satisfying \(f(1) = 0 \), \(D_f \left(P \| Q \right) \geq 0 \). (Hint: use Jensen’s inequality.)

Question 2.8 (Generalized “log-sum” inequalities): Let \(f : \mathbb{R}_+ \to \mathbb{R} \) be an arbitrary convex function.

(a) Let \(a_i, b_i, i = 1, \ldots, n \) be non-negative reals. Prove that
\[
\left(\sum_{i=1}^n a_i \right) f \left(\frac{\sum_{i=1}^n b_i}{\sum_{i=1}^n a_i} \right) \leq \sum_{i=1}^n a_i f \left(\frac{b_i}{a_i} \right).
\]

(b) Generalizing the preceding result, let \(a : \mathcal{X} \to \mathbb{R}_+ \) and \(b : \mathcal{X} \to \mathbb{R}_+ \), and let \(\mu \) be a finite measure on \(\mathcal{X} \). Show that
\[
\int a(x) d\mu(x) f \left(\frac{\int b(x) d\mu(x)}{\int a(x) d\mu(x)} \right) \leq \int a(x) f \left(\frac{b(x)}{a(x)} \right) d\mu(x).
\]

If you are unfamiliar with measure theory, prove the following essentially equivalent result: let \(u : \mathcal{X} \to \mathbb{R}_+ \) satisfy \(\int u(x) dx < \infty \). Show that
\[
\int a(x) u(x) dx f \left(\frac{\int b(x) u(x) dx}{\int a(x) u(x) dx} \right) \leq \int a(x) f \left(\frac{b(x)}{a(x)} \right) u(x) dx.
\]

(Hint: use the fact that the perspective of a function \(f \), defined by \(h(x, t) = tf(x/t) \) for \(t > 0 \), is jointly convex in \(x \) and \(t \) [e.g. \(33 \), Chapter 3.2.6].)

Question 2.9 (Data processing and \(f \)-divergences I): As with the KL-divergence, given a quantizer \(g \) of the set \(\mathcal{X} \), where \(g \) induces a partition \(A_1, \ldots, A_m \) of \(\mathcal{X} \), we define the \(f \)-divergence between \(P \) and \(Q \) conditioned on \(g \) as
\[
D_f \left(P \| Q \mid g \right) = \sum_{i=1}^m Q(A_i) f \left(\frac{P(A_i)}{Q(A_i)} \right) = \sum_{i=1}^m Q(g^{-1}(\{i\})) f \left(\frac{P(g^{-1}(\{i\}))}{Q(g^{-1}(\{i\}))} \right).
\]

Given quantizers \(g_1 \) and \(g_2 \), we say that \(g_1 \) is a *finer* quantizer than \(g_2 \) under the following condition: assume that \(g_1 \) induces the partition \(A_1, \ldots, A_n \) and \(g_2 \) induces the partition \(B_1, \ldots, B_m \); then for any of the sets \(B_i \), there are exists some \(k \) and sets \(A_{i_1}, \ldots, A_{i_k} \) such that \(B_i = \bigcup_{j=1}^k A_{i_j} \). We let \(g_1 \prec g_2 \) denote that \(g_1 \) is a finer quantizer than \(g_2 \).

(a) Let \(g_1 \) and \(g_2 \) be quantizers of the set \(\mathcal{X} \), and let \(g_1 \prec g_2 \), meaning that \(g_1 \) is a finer quantization than \(g_2 \). Prove that
\[
D_f \left(P \| Q \mid g_2 \right) \leq D_f \left(P \| Q \mid g_1 \right).
\]

Equivalently, show that whenever \(A \) and \(B \) are collections of sets partitioning \(\mathcal{X} \), but \(A \) is a finer partition of \(\mathcal{X} \) than \(B \), that
\[
\sum_{B \in \mathcal{B}} Q(B) f \left(\frac{P(B)}{Q(B)} \right) \leq \sum_{A \in \mathcal{A}} Q(A) f \left(\frac{P(A)}{Q(A)} \right).
\]

(Hint: Use the result of Question 2.8(a)).
(b) Suppose that X is countable (or finite) so that P and Q have p.m.f.s p and q. Show that

$$D_f(P\|Q) = \sum_x q(x)f\left(\frac{p(x)}{q(x)}\right),$$

where on the left we are using the partition definition (2.2.3); you should show that the partition into discrete parts of X achieves the supremum. You may assume that X is finite. (Though feel free to prove the result in the case that X is infinite.)

Question 2.10 (General data processing inequalities): Let f be a convex function satisfying $f(1) = 0$. Let K be a Markov transition kernel from X to Z, that is, $K(\cdot, x)$ is a probability distribution on Z for each $x \in X$. (Written differently, we have $X \rightarrow Z$, and conditioned on $X = x$, Z has distribution $K(\cdot, x)$, so that $K(A, x)$ is the probability that $Z \in A$ given $X = x$.)

(a) Define the marginals $K_P(A) = \int K(A, x)p(x)dx$ and $K_Q(A) = \int K(A, x)q(x)dx$. Show that

$$D_f(K_P\|K_Q) \leq D_f(P\|Q).$$

Hint: by equation (2.2.3), w.l.o.g. we may assume that Z is finite and $Z = \{1, \ldots, m\}$; also recall Question 2.8.

(b) Let X and Y be random variables with joint distribution P_{XY} and marginals P_X and P_Y. Define the f-information between X and Y as

$$I_f(X; Y) := D_f(P_{XY}\|P_X \times P_Y).$$

Use part (a) to show the following general data processing inequality: if we have the Markov chain $X \rightarrow Y \rightarrow Z$, then

$$I_f(X; Z) \leq I_f(X; Y).$$

Question 2.12 (Variational forms of KL divergence): Let P and Q be arbitrary distributions on a common space \mathcal{X}. Prove the following variational representation, known as the Donsker-Varadhan theorem, of the KL divergence:

$$D_{\text{kl}}(P\|Q) = \sup_{f : \mathbb{E}_Q[f(X)] < \infty} \{\mathbb{E}_P[f(X)] - \log \mathbb{E}_Q[\exp(f(X))]\}.$$

You may assume that P and Q have densities.

Question 2.13: Let P and Q have densities p and q with respect to the base measure μ over the set \mathcal{X}. (Recall that this is no loss of generality, as we may take $\mu = P + Q$.) Define the support $\text{supp} P := \{x \in \mathcal{X} : p(x) > 0\}$. Show that

$$D_{\text{kl}}(P\|Q) \geq \log \frac{1}{Q(\text{supp} P)}.$$

Question 2.14: Let P_1 be $N(\theta_1, \Sigma_1)$ and P_2 be $N(\theta_2, \Sigma_2)$, where $\Sigma_i > 0$ are positive definite matrices. Give $D_{\text{kl}}(P_1\|P_2)$.

Question 2.15: Let $\{P_v\}_{v \in V}$ be an arbitrary collection of distributions on a space \mathcal{X} and μ be a probability measure on \mathcal{V}. Show that if $V \sim \mu$ and conditional on $V = v$, we draw $X \sim P_v$, then
(a) \(I(X; V) = \int D_{\text{KL}}(P_v \| \overline{P}) \, d\mu(v) \), where \(\overline{P} = \int P_v \, d\mu(v) \) is the (weighted) average of the \(P_v \). You may assume that \(V \) is discrete if you like.

(b) For any distribution \(Q \) on \(X \), \(I(X; V) = \int D_{\text{KL}}(P_v \| Q) \, d\mu(v) - D_{\text{KL}}(P \| Q) \). Conclude that \(I(X; V) \leq \int D_{\text{KL}}(P_v \| Q) \, d\mu(v) \), or, equivalently, \(P \) minimizes \(\int D_{\text{KL}}(P_v \| Q) \, d\mu(v) \) over all probabilities \(Q \).

Question 2.16 (The triangle inequality for variation distance): Let \(P \) and \(Q \) be distributions on \(X^n = (X_1, \ldots, X_n) \in X^n \), and let \(P_i(\cdot \mid X_i^{i-1}) \) be the conditional distribution of \(X_i \) given \(X_i^{i-1} = x_i^{i-1} \) (and similarly for \(Q_i \)). Show that

\[
\|P - Q\|_{TV} \leq \sum_{i=1}^n \mathbb{E}_P \left[\|P_i(\cdot \mid X_i^{i-1}) - Q_i(\cdot \mid X_i^{i-1})\|_{TV} \right],
\]

where the expectation is taken over \(X_i^{i-1} \) distributed according to \(P \).

Question 2.17: Let \(h(p) = -p \log p - (1 - p) \log(1 - p) \). Show that \(h(p) \geq 2 \log 2 \cdot \min\{p, 1 - p\} \).

Question 2.18 (Lin [111], Theorem 8): Let \(h(p) = -p \log p - (1 - p) \log(1 - p) \). Show that \(h(p) \leq 2 \log 2 \cdot \sqrt{p(1 - p)} \).

JCD Comment: Below are a few potential questions.

Question 2.19: Use the paper “A New Metric for Probability Distributions” by Dominik Endres and Johannes Schindelin to prove that if \(V \sim \text{Uniform}\{0, 1\} \) and \(X \mid V = v \sim P_v \), then \(\sqrt{I(X; V)} \) is a metric on distributions. (Said differently, \(D_{\text{JS}}(P\|Q)^{1/2} \) is a metric on distributions, and it generates the same topology as the TV-distance.)

Question 2.20: Relate the generalized Jensen-Shannon divergence between \(m \) distributions to redundancy in encoding.
Chapter 3

Exponential families and statistical modeling

Our second introductory chapter focuses on readers who may be less familiar with statistical modeling methodology and the how and why of fitting different statistical models. As in the preceding introductory chapter on information theory, this chapter will be a fairly terse blitz through the main ideas. Nonetheless, the ideas and distributions here should give us something on which to hang our hats, so to speak, as the distributions and models provide the basis for examples throughout the book. Exponential family models form the basis of much of statistics, as they are a natural step away from the most basic families of distributions—Gaussians—which admit exact computations but are brittle, to a more flexible set of models that retain enough analytical elegance to permit careful analyses while giving power in modeling.

3.1 Exponential family models

We begin by defining exponential family distributions, giving several examples to illustrate a few of their properties. There are three key objects when defining a d-dimensional exponential family distribution on an underlying space \mathcal{X}: the sufficient statistic $\phi : \mathcal{X} \to \mathbb{R}^d$ representing what we model, a canonical parameter vector $\theta \in \mathbb{R}^d$, and a carrier $h : \mathcal{X} \to \mathbb{R}_+$.

In the discrete case, where \mathcal{X} is a discrete set, the exponential family associated with the sufficient statistic ϕ and carrier h has probability mass function

$$p_\theta(x) = h(x) \exp \left(\langle \theta, \phi(x) \rangle - A(\theta) \right),$$

where A is the log-partition-function, sometimes called the cumulant generating function, with

$$A(\theta) := \log \sum_{x \in \mathcal{X}} h(x) \exp(\langle \theta, \phi(x) \rangle).$$

In the continuous case, p_θ is instead a density on $\mathcal{X} \subset \mathbb{R}^k$, and p_θ takes the identical form above but

$$A(\theta) = \log \int_{\mathcal{X}} h(x) \exp(\langle \theta, \phi(x) \rangle) dx.$$

We can abstract away from this distinction between discrete and continuous distributions by making the definition measure-theoretic, which we do here for completeness. (But recall the remarks in Section 1.3.)
With our notation, we have the following definition.

Definition 3.1. The exponential family associated with the function \(\phi \) and base measure \(\mu \) is defined as the set of distributions with densities \(p_{\theta} \) with respect to \(\mu \), where

\[
p_{\theta}(x) = \exp\left(\langle \theta, \phi(x) \rangle - A(\theta)\right),
\]

and the function \(A \) is the log-partition-function (or cumulant function)

\[
A(\theta) := \log \int_X \exp\left(\langle \theta, \phi(x) \rangle\right) d\mu(x)
\]

whenever \(A \) is finite (and is \(+\infty \) otherwise).

In Definition 3.1, we have included the carrier \(h \) in the base measure \(\mu \), and frequently we will give ourselves the general notation

\[
p_{\theta}(x) = h(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta)).
\]

In some scenarios, it may be convenient to re-parameterize the problem in terms of some function \(\eta(\theta) \) instead of \(\theta \) itself; we will not worry about such issues and simply use the formulae that are most convenient.

We now give a few examples of exponential family models.

Example 3.1 (Bernoulli distribution): In this case, we have \(X \in \{0,1\} \) and \(P(X = 1) = p \) for some \(p \in [0,1] \) in the classical version of a Bernoulli. Thus we take \(\mu \) to be the counting measure on \(\{0,1\} \), and by setting \(\theta = \log \frac{p}{1-p} \) to obtain a canonical representation, we have

\[
P(X = x) = p(x) = p^x (1 - p)^{1-x} = \exp(x \log p - x \log(1 - p))
\]

\[
= \exp\left(x \log \frac{p}{1-p} + \log(1 - p)\right) = \exp\left(x \theta - \log(1 + e^\theta)\right).
\]

The Bernoulli family thus has log-partition function \(A(\theta) = \log(1 + e^\theta) \).

Example 3.2 (Poisson distribution): The Poisson distribution (for count data) is usually parameterized by some \(\lambda > 0 \), and for \(x \in \mathbb{N} \) has distribution \(P_\lambda(X = x) = (1/x!) \lambda^x e^{-\lambda} \). Thus by taking \(\mu \) to be counting (discrete) measure on \(\{0,1,\ldots\} \) and setting \(\theta = \log \lambda \), we find the density (probability mass function in this case)

\[
p(x) = \frac{1}{x!} \lambda^x e^{-\lambda} = \exp(x \log \lambda - \lambda) \frac{1}{x!} = \exp(x \theta - e^\theta) \frac{1}{x!}.
\]

Notably, taking \(h(x) = (x!)^{-1} \) and log-partition \(A(\theta) = e^\theta \), we have probability mass function \(p_{\theta}(x) = h(x) \exp(\theta x - A(\theta)) \).

Example 3.3 (Normal distribution, mean parameterization): For the \(d \)-dimensional normal distribution, we take \(\mu \) to be Lebesgue measure on \(\mathbb{R}^d \). If we fix the covariance and vary only the mean \(\mu \) in the family \(\mathcal{N}(\mu, \Sigma) \), then \(X \sim \mathcal{N}(\mu, \Sigma) \) has density

\[
p_{\mu}(x) = \exp\left(-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) - \frac{1}{2} \log \det(2\pi \Sigma)\right).
\]
Then obtain the important expectation and covariance relationships that we assume that we exchange differentiation and integration. Assuming that this is the case, we

\[p_\theta(x) = \exp \left(-\frac{1}{2} x^\top \Sigma^{-1} x - \frac{1}{2} \log \det(2\pi \Sigma) \right) \exp \left(x^\top \theta - \frac{1}{2} \theta^\top \Sigma \theta \right). \]

In particular, we have carrier \(h(x) = \exp(-\frac{1}{2} x^\top \Sigma^{-1} x)/(2\pi)^{d/2} \det(\Sigma) \), sufficient statistic \(\phi(x) = x \), and log partition \(A(\theta) = \frac{1}{2} \theta^\top \Sigma^{-1} \theta \). \(\diamond \)

Example 3.4 (Normal distribution): Then \(N(\mu, \Sigma) \) can be re-parameterized as as \(\Theta = \Sigma^{-1} \) and \(\theta = \Sigma^{-1} \mu \), and we have density

\[p_{\theta,\phi}(x) \propto \exp \left(\langle \theta, x \rangle - \frac{1}{2} \langle xx^\top, \Theta \rangle \right), \]

where \(\langle \cdot , \cdot \rangle \) denotes the Euclidean inner product. See Exercise 3.1. \(\diamond \)

3.2 Why exponential families?

There are many reasons for us to study exponential families. The first major reason is their analytical tractability: as the normal distribution does, they often admit relatively straightforward computation, therefore forming a natural basis for modeling decisions. Their analytic tractability has made them the objects of substantial study for nearly the past hundred years; Brown [36] provides a deep and elegant treatment. Moreover, as we see later, they arise as the solutions to several natural optimization problems on the space of probability distributions, and they also enjoy certain robustness properties related to optimal Bayes’ procedures (there is, of course, more to come on this topic).

Here, we enumerate a few of their key analytical properties, focusing on the cumulant generating (or log partition) function \(A(\theta) = \log \int e^{\langle \theta, \phi(x) \rangle} d\mu(x) \). We begin with a heuristic calculation, where we assume that we exchange differentiation and integration. Assuming that this is the case, we then obtain the important expectation and covariance relationships that

\[\nabla A(\theta) = \frac{1}{\int e^{\langle \theta, \phi(x) \rangle} d\mu(x)} \int \nabla_\theta e^{\langle \theta, \phi(x) \rangle} d\mu(x) \]

\[= e^{-A(\theta)} \int \nabla_\theta e^{\langle \theta, \phi(x) \rangle} d\mu(x) = \int \phi(x)e^{\langle \theta, \phi(x) \rangle - A(\theta)} d\mu(x) = \mathbb{E}_\theta[\phi(X)] \]

because \(e^{\langle \theta, \phi(x) \rangle - A(\theta)} = p_\theta(x) \). A completely similar (and still heuristic, at least at this point) calculation gives

\[\nabla^2 A(\theta) = \mathbb{E}_\theta[\phi(X)\phi(X)^\top] - \mathbb{E}_\theta[\phi(X)]\mathbb{E}_\theta[\phi(X)]^\top = \text{Cov}_\theta(\phi(X)). \]

That these identities hold is no accident and is central to the appeal of exponential family models.

The first and, from our perspective, most important result about exponential family models is their convexity. While (assuming the differentiation relationships above hold) the differentiation identity that \(\nabla^2 A(\theta) = \text{Cov}_\theta(\phi(X)) \succeq 0 \) makes convexity of \(A \) immediate, one can also provide a direct argument without appealing to differentiation.

Proposition 3.5. The cumulant-generating function \(\theta \mapsto A(\theta) \) is convex, and it is strictly convex if and only if \(\text{Cov}_\theta(\phi(X)) \) is positive definite for all \(\theta \in \text{dom} A \).
Proof. Let \(\theta_\lambda = \lambda \theta_1 + (1 - \lambda) \theta_2 \), where \(\theta_1, \theta_2 \in \Theta \). Then \(1/\lambda \geq 1 \) and \(1/(1 - \lambda) \geq 1 \), and Hölder’s inequality implies

\[
\log \int \exp(\langle \theta_\lambda, \phi(x) \rangle) d\mu(x) = \log \int \exp(\langle \theta_1, \phi(x) \rangle)^\lambda \exp(\langle \theta_2, \phi(x) \rangle)^{1-\lambda} d\mu(x) \\
\quad \leq \log \left(\int \exp(\langle \theta_1, \phi(x) \rangle)^{\frac{1}{\lambda}} d\mu(x) \right)^\lambda \left(\int \exp(\langle \theta_2, \phi(x) \rangle)^{\frac{1}{1-\lambda}} d\mu(x) \right)^{1-\lambda} \\
= \lambda \log \int \exp(\langle \theta_1, \phi(x) \rangle) d\mu(x) + (1 - \lambda) \log \int \exp(\langle \theta_2, \phi(x) \rangle) d\mu(x),
\]

as desired. The strict convexity will be a consequence of Proposition 3.6 to come, as there we formally show that \(\nabla^2 A(\theta) = \text{Cov}_\theta(\phi(X)) \). \(\square \)

We now show that \(A(\theta) \) is indeed infinitely differentiable and how it generates the moments of the sufficient statistics \(\phi(x) \). To describe the properties, we provide a bit of notation related to tensor products: for a vector \(x \in \mathbb{R}^d \), we let

\[
x^{\otimes k} := x \otimes x \otimes \cdots \otimes x \quad \text{\{\text{k times}\}}
\]
denote the \(k \)th order tensor, or multilinear operator, that for \(v_1, \ldots, v_k \in \mathbb{R}^d \) satisfies

\[
x^{\otimes k}(v_1, \ldots, v_k) := \langle x, v_1 \rangle \cdots \langle x, v_k \rangle = \prod_{i=1}^k \langle x, v_i \rangle.
\]

When \(k = 2 \), this is the familiar outer product \(x^{\otimes 2} = xx^T \). (More generally, one may think of \(x^{\otimes k} \) as a \(d \times d \times \cdots \times d \) box, where the \((i_1, \ldots, i_k)\) entry is \([x^{\otimes k}]_{i_1, \ldots, i_k} = x_{i_1} \cdots x_{i_k}\).) With this notation, our first key result regards the differentiability of \(A \), where we can compute (all) derivatives of \(e^{A(\theta)} \) by interchanging integration and differentiation.

Proposition 3.6. The cumulant-generating function \(\theta \mapsto A(\theta) \) is infinitely differentiable on the open domain \(\Theta := \{ \theta \in \mathbb{R}^d : A(\theta) < \infty \} \). The moment-generating function

\[
M(\theta) := \int \exp(\langle \theta, \phi(x) \rangle) d\mu(x)
\]
is analytic on the set \(\Theta_C := \{ z \in \mathbb{C}^d \mid \text{Re } z \in \Theta \} \). Additionally, the derivatives of \(M \) are computed by passing through the integral, that is,

\[
\nabla_\theta^k M(\theta) = \nabla_\theta^k \int e^{\langle \theta, \phi(x) \rangle} d\mu(x) = \int \nabla_\theta^k e^{\langle \theta, \phi(x) \rangle} d\mu(x) \\
= \int \phi(x)^{\otimes k} \exp(\langle \theta, \phi(x) \rangle) d\mu(x).
\]

The proof of the proposition is involved and requires complex analysis, so we defer it to Sec. 3.6.1. As particular consequences of Proposition 3.6, we can rigorously demonstrate the expectation and covariance relationships that

\[
\nabla A(\theta) = \frac{1}{\int e^{\langle \theta, \phi(x) \rangle} d\mu(x)} \int \nabla e^{\langle \theta, \phi(x) \rangle} d\mu(x) = \int \phi(x)p_\theta(x) d\mu(x) = \mathbb{E}_\theta[\phi(X)]
\]
and
\[
\nabla^2 A(\theta) = \frac{1}{\int e^{\langle \theta, \phi(x) \rangle} d\mu(x)} \int \phi(x) \otimes^2 e^{\langle \theta, \phi(x) \rangle} d\mu(x) - \frac{(\int e^{\langle \theta, \phi(x) \rangle} d\mu(x))^\otimes^2}{(\int e^{\langle \theta, \phi(x) \rangle} d\mu(x))^2}
\]
\[
= \mathbb{E}_\theta[\phi(X) \phi(X)'] - \mathbb{E}_\theta[\phi(X)]\mathbb{E}_\theta[\phi(X)]'
\]
\[
= \text{Cov}_\theta(\phi(X)).
\]

3.2.1 Fitting an exponential family model

The convexity and differentiability properties make exponential family models especially attractive from a computational perspective. A major focus in statistics is the convergence of estimates of different properties of a population distribution \(P \) and whether these estimates are computable. We will develop tools to address the first of these questions, and attendant optimality guarantees, throughout this book. To set the stage for what follows, let us consider what this entails in the context of exponential family models.

Suppose we have a population \(P \) (where, for simplicity, we assume \(P \) has a density \(p \)), and for a given exponential family \(P \) with densities \(\{p_\theta\} \), we wish to find the model closest to \(P \). Then it is natural (if we take on faith that the information-theoretic measures we have developed are the “right” ones) find the distribution \(P_{\theta} \in P \) closest to \(P \) in KL-divergence, that is, to solve

\[
\text{minimize}_{\theta} \quad D_{\text{KL}}(P||P_{\theta}) = \int p(x) \log \frac{p(x)}{p_\theta(x)} dx.
\]

(3.2.1)

This is evidently equivalent to minimizing

\[
-\int p(x) \log p_\theta(x) dx = \int p(x) [-\langle \theta, \phi(x) \rangle + A(\theta)] dx = -\langle \theta, \mathbb{E}_P[\phi(X)] \rangle + A(\theta).
\]

This is always a convex optimization problem (see Appendices A and B for much more on this), as \(A \) is convex and the first term is linear, and so has no non-global optima and is in principle easy to solve.

Of course, we never have access to the population \(P \) fully; instead, we receive a sample \(X_1, \ldots, X_n \) from \(P \). In this case, a natural approach is to replace the expected (negative) log likelihood above with its empirical version and solve

\[
\text{minimize}_{\theta} \quad -\sum_{i=1}^n \log p_\theta(X_i) = \sum_{i=1}^n [-\langle \theta, \phi(X_i) \rangle + A(\theta)],
\]

(3.2.2)

which is still a convex optimization problem (as the objective is convex in \(\theta \)). The maximum likelihood estimate is any vector \(\hat{\theta}_n \) minimizing the negative log likelihood (3.2.2), which by setting gradients to 0 is evidently any vector satisfying

\[
\nabla A(\hat{\theta}_n) = \mathbb{E}_{\hat{\theta}_n}[\phi(X)] = \frac{1}{n} \sum_{i=1}^n \phi(X_i).
\]

(3.2.3)

In particular, we need only find a parameter \(\hat{\theta}_n \) matching moments of \(P \). This \(\hat{\theta}_n \) is unique whenever \(\text{Cov}_\theta(\phi(X)) \succ 0 \) for all \(\theta \), that is, when the covariance of \(\phi \) is full rank in the exponential family model.
Let us proceed heuristically for a moment, and assume a bit of knowledge (the central limit theorem) of classical statistics. Then we can see how minimizers of the problem (3.2.2) converge to their population counterparts. Assume that the data X_i are i.i.d. from an exponential family model P_{θ^*}. Then we expect that the maximum likelihood estimate $\hat{\theta}_n$ should converge to θ^*, and so

$$\frac{1}{n} \sum_{i=1}^{n} \phi(X_i) = \nabla A(\hat{\theta}_n) = \nabla A(\theta^*) + \frac{1}{n} \sum_{i=1}^{n} \left(\phi(X_i) - \nabla A(\theta^*) \right).$$

But of course, $\nabla A(\theta^*) = \mathbb{E}_{\theta^*}[\phi(X)]$, and so the central limit theorem gives that

$$\frac{1}{n} \sum_{i=1}^{n} \left(\phi(X_i) - \nabla A(\theta^*) \right) \sim N \left(0, n^{-1} \text{Cov}_{\theta^*}(\phi(X)) \right),$$

where \sim means “is approximately distributed as.” Multiplying by $(\nabla^2 A(\theta^*) + o(1))^{-1} \approx \nabla^2 A(\theta^*)^{-1}$, we thus see (still working in our heuristic)

$$\hat{\theta}_n - \theta^* = \left(\nabla^2 A(\theta^*) + o(1) \right)^{-1} \frac{1}{n} \sum_{i=1}^{n} \left(\phi(X_i) - \nabla A(\theta^*) \right) \sim N \left(0, n^{-1} \cdot \nabla^2 A(\theta^*)^{-1} \right), \quad (3.2.4)$$

where we use that $BZ \sim N(0, B\Sigma B^\top)$ if $Z \sim N(0, \Sigma)$. (It is possible to make each of these steps fully rigorous.) Thus the cumulant generating function A governs the error we expect in $\hat{\theta}_n - \theta^*$.

Much of the rest of this book explores properties of these types of minimization problems: at what rates do we expect $\hat{\theta}_n$ to converge to a global minimizer of problem (3.2.1)? Can we show that these rates are optimal? Is this the “right” strategy for choosing a parameter? Exponential families form a particular working example to motivate this development.

3.3 Divergence measures and information for exponential families

Their nice analytic properties mean that exponential family models also play nicely with the information theoretic tools we develop. Indeed, consider the KL-divergence between two exponential family distributions P_θ and $P_{\theta^*+\Delta}$, where $\Delta \in \mathbb{R}^d$. Then we have

$$D_{kl}(P_\theta \| P_{\theta+\Delta}) = \mathbb{E}_\theta [\langle \theta, \phi(X) \rangle - A(\theta) - \langle \theta + \Delta, \phi(X) \rangle + A(\theta + \Delta)]$$

$$= A(\theta + \Delta) - A(\theta) - \mathbb{E}_\theta[\langle \Delta, \phi(X) \rangle]$$

$$= A(\theta + \Delta) - A(\theta) - \nabla A(\theta)^\top \Delta.$$

Similarly, we have

$$D_{kl}(P_{\theta+\Delta} \| P_{\theta}) = \mathbb{E}_{\theta+\Delta} [\langle \theta + \Delta, \phi(X) \rangle - A(\theta + \Delta) - \langle \theta, \phi(X) \rangle + A(\theta)]$$

$$= A(\theta) - A(\theta + \Delta) + \mathbb{E}_{\theta+\Delta}[\langle \Delta, \phi(X) \rangle]$$

$$= A(\theta) - A(\theta + \Delta) - \nabla A(\theta + \Delta)^\top (-\Delta).$$

These identities give an immediate connection with convexity. Indeed, for a differentiable convex function h, the Bregman divergence associate with h is

$$D_h(u, v) = h(u) - h(v) - \langle \nabla h(v), u - v \rangle,$$
which is always nonnegative, and is the gap between the linear approximation to the (convex)
function h and its actual value. These divergences will appear frequently.

JCD Comment: Put in a picture of a Bregman divergence

We catalog these results as the following proposition.

Proposition 3.7. Let $\{P_\theta\}$ be an exponential family model with cumulant generating function $A(\theta)$. Then

$$D_{\text{kl}}(P_\theta || P_{\theta + \Delta}) = D_A(\theta + \Delta, \theta) \quad \text{and} \quad D_{\text{kl}}(P_{\theta + \Delta} || P_\theta) = D_A(\theta, \theta + \Delta).$$

Additionally, there exists a $t \in [0, 1]$ such that

$$D_{\text{kl}}(P_\theta || P_{\theta + \Delta}) = \frac{1}{2} \Delta^T \nabla^2 A(\theta + t\Delta) \Delta,$$

and similarly, there exists a $t \in [0, 1]$ such that

$$D_{\text{kl}}(P_{\theta + \Delta} || P_\theta) = \frac{1}{2} \Delta^T \nabla^2 A(\theta + t\Delta).$$

Proof We have already shown the first two statements; the second two are applications of Taylor’s theorem.

When the perturbation Δ is small, that A is infinitely differentiable then gives that

$$D_{\text{kl}}(P_\theta || P_{\theta + \Delta}) = \frac{1}{2} \Delta^T \nabla^2 A(\theta) \Delta + O(||\Delta||^3),$$

so that the Hessian $\nabla^2 A(\theta)$ tells quite precisely how the KL divergence changes as θ varies (locally). As we saw already in Example 2.19 (and see the next section), when the KL-divergence between two distributions is small, it is hard to test between them, and in the sequel, we will show converses to this. The Hessian $\nabla^2 A(\theta^*)$ also governs the error in the estimate $\hat{\theta}_n - \theta^*$ in our heuristic (3.2.4).

When the Hessian $\nabla^2 A(\theta)$ is quite positive semidefinite, the KL divergence $D_{\text{kl}}(P_\theta || P_{\theta + \Delta})$ is large, and the asymptotic covariance (3.2.4) is small. For this—and other reasons we address later—for exponential family models, we call

$$\nabla^2 A(\theta) = \text{Cov}_\theta(\phi(X)) = \mathbb{E}_\theta[\nabla \log p_\theta(X) \nabla \log p_\theta(X)^T]$$

the *Fisher information* of the parameter θ in the model $\{P_\theta\}$.

3.4 A first optimality result: testing a parameter

JCD Comment: Do something to relate to KL

3.5 Generalized linear models and regression

JCD Comment: Discuss regression, binary logistic regression, multiclass logistic regression, and ordinal regression
3.6 Deferred proofs

We collect proofs that rely on background we do not assume for this book here.

3.6.1 Proof of Proposition 3.6

We follow Brown [36]. We demonstrate only the first-order differentiability using Lebesgue’s dominated convergence theorem, as higher orders and the interchange of integration and differentiation are essentially identical. Demonstrating first-order complex differentiability is of course enough to show that A is analytic.\footnote{For complex functions, Osgood’s lemma shows that if A is continuous and holomorphic in each variable individually, it is holomorphic. For a treatment of such ideas in an engineering context, see, e.g. [78, Ch. 1].} As the proof of Proposition 3.5 does not rely on analyticity of A, we may use its results. Thus, let $\Theta = \text{dom } A(\cdot)$ in \mathbb{R}^d, which is convex. We assume Θ has non-empty interior (if the interior is empty, then the convexity of Θ means that it must lie in a lower dimensional subspace; we simply take the interior relative to that subspace and may proceed). We claim the following lemma, which is the key to applying dominated convergence; we state it first for \mathbb{R}^d.

Lemma 3.8. Consider any collection $\{\theta_1, \ldots, \theta_m\} \subset \Theta$, and let $\Theta_0 = \text{Conv}\{\theta_i\}_{i=1}^m$ and $C \subset \text{int } \Theta_0$. Then for any $k \in \mathbb{N}$, there exists a constant $K = K(C, k, \{\theta_i\})$ such that for all $\theta_0 \in C$,\footnote{\label{footnote}}

$$\|x\|^k \exp(\langle \theta_0, x \rangle) \leq K \max_{j \leq m} \exp(\langle \theta_j, x \rangle).$$

Proof. Let $B = \{u \in \mathbb{R}^d \mid \|u\| \leq 1\}$ be the unit ball in \mathbb{R}^d. For any $\epsilon > 0$, there exists a $K = K(\epsilon)$ such that $\|x\|^k \leq K \epsilon^{\|x\|}$ for all $x \in \mathbb{R}^d$. As $C \subset \text{int } \text{Conv}(\Theta_0)$, there exists an $\epsilon > 0$ such that for all $\theta_0 \in C$, $\theta_0 + 2\epsilon B \subset \Theta_0$, and by construction, for any $u \in B$ we can write $\theta_0 + 2\epsilon u = \sum_{j=1}^m \lambda_j \theta_j$ for some $\lambda \in \mathbb{R}_+^m$ with $1^\top \lambda = 1$. We therefore have

$$\|x\|^k \exp(\langle \theta_0, x \rangle) \leq \|x\|^k \sup_{u \in B} \exp(\langle \theta_0 + \epsilon u, x \rangle)$$

$$= \|x\|^k \exp(\epsilon \|x\|) \exp(\langle \theta_0, x \rangle) \leq K \exp(2\epsilon \|x\|) \exp(\langle \theta_0, x \rangle)$$

$$= K \sup_{u \in B} \exp(\langle \theta_0 + 2\epsilon u, x \rangle).$$

But using the convexity of $t \mapsto \exp(t)$ and that $\theta_0 + 2\epsilon u \in \Theta_0$, the last quantity has upper bound

$$\sup_{u \in B} \exp(\langle \theta_0 + 2\epsilon u, x \rangle) \leq \max_{j \leq m} \exp(\langle \theta_j, x \rangle).$$

This gives the desired claim.\hfill\Box

A similar result is possible with differences of exponentials:

Lemma 3.9. Under the conditions of Lemma 3.8, there exists a K such that for any $\theta, \theta_0 \in C$

$$\frac{e^{\langle \theta, x \rangle} - e^{\langle \theta_0, x \rangle}}{\| \theta - \theta_0 \|} \leq K \max_{j \leq m} e^{\langle \theta_j, x \rangle}.$$

Proof. We write

$$\frac{\exp(\langle \theta, x \rangle) - \exp(\langle \theta_0, x \rangle)}{\| \theta - \theta_0 \|} = \frac{\exp(\langle \theta - \theta_0, x \rangle) - 1}{\| \theta - \theta_0 \|} \exp(\langle \theta_0, x \rangle)$$

$$\leq \max_{j \leq m} e^{\langle \theta_j, x \rangle}.$$
so that the lemma is equivalent to showing that
\[
\frac{|e^{(\theta - \theta_0, x)} - 1|}{||\theta - \theta_0||} \leq K \max_j \exp(\langle \theta_j - \theta_0, x \rangle).
\]
From this, we can assume without loss of generality that \(\theta_0 = 0 \) (by shifting). Now note that by convexity \(e^{-a} \geq 1 - a \) for all \(a \in \mathbb{R} \), so \(1 - e^a \leq |a| \) when \(a \leq 0 \). Conversely, if \(a > 0 \), then \(ae^a \geq e^a - 1 \) (note that \(\frac{d}{da}(ae^a) = ae^a + e^a \geq e^a \)), so dividing by \(||x|| \), we see that
\[
\frac{|e^{(\theta, x)} - 1|}{||\theta|| ||x||} \leq \frac{|e^{(\theta, x)} - 1|}{||\theta||} \leq \max\{\langle \theta, x \rangle e^{(\theta, x)} , |\langle \theta, x \rangle|\} \leq e^{(\theta, x)} + 1.
\]
As \(\theta \in C \), Lemmas 3.8 then implies that
\[
\frac{|e^{(\theta, x)} - 1|}{||\theta||} \leq ||x|| e^{(\theta, x)} + 1 \leq K \max_j e^{(\theta_j, x)},
\]
as desired. \(\square \)

With the lemmas in hand, we can demonstrate a dominating function for the derivatives. Indeed, fix \(\theta_0 \in \text{int} \Theta \) and for \(\theta \in \Theta \), define
\[
g(\theta, x) = \frac{\exp(\langle \theta, x \rangle) - \exp(\langle \theta_0, x \rangle)}{||\theta - \theta_0||} - \frac{\exp(\langle \theta_0, x \rangle)(x, \theta - \theta_0) - \langle \nabla \exp(\langle \theta_0, x \rangle), \theta - \theta_0 \rangle}{||\theta - \theta_0||}.
\]
Then \(\lim_{x \to \theta_0} g(\theta, x) = 0 \) by the differentiability of \(t \mapsto e^t \). Lemmas 3.8 and 3.9 show that if we take any collection \(\{\theta_j\}_{j=1}^m \subset \Theta \) for which \(\theta_j \in \text{int Conv}\{\theta_j\} \), then for \(C \subset \text{int Conv}\{\theta_j\} \), there exists a constant \(K \) such that
\[
|g(\theta, x)| \leq \frac{|\exp(\langle \theta, x \rangle) - \exp(\langle \theta_0, x \rangle)|}{||\theta - \theta_0||} + ||x|| \exp(\langle \theta_0, x \rangle) \leq K \max_j \exp(\langle \theta_j, x \rangle)
\]
for all \(\theta \in C \). As \(\int \max_j e^{(\theta_j, x)} d\mu(x) \leq \sum_{j=1}^m \int e^{(\theta_j, x)} d\mu(x) < \infty \), the dominated convergence theorem thus implies that
\[
\lim_{\theta \to \theta_0} \int g(\theta, x) d\mu(x) = 0,
\]
and so \(M(\theta) = \exp(A(\theta)) \) is differentiable in \(\theta \), as
\[
M(\theta) = M(\theta_0) + \left(\int xe^{(\theta_0, x)} d\mu(x), \theta - \theta_0 \right) + o(||\theta - \theta_0||).
\]
It is evident that we have the derivative
\[
\nabla M(\theta) = \int \nabla \exp(\langle \theta, x \rangle) d\mu(x).
\]

Analyticity Over the subset \(\Theta_C := \{\theta + iz \mid \theta \in \Theta, z \in \mathbb{R}^d\} \) (where \(i = \sqrt{-1} \) is the imaginary unit), we can extend the preceding results to demonstrate that \(A \) is analytic on \(\Theta_C \). Indeed, we first simply note that for \(a, b \in \mathbb{R} \), \(\exp(a + ib) = \exp(a) \exp(ib) \) and \(|\exp(a + ib)| = |\exp(a)| \), i.e. \(|e^z| = e^z \) for \(z \in \mathbb{C} \), and so Lemmas 3.8 and 3.9 follow *mutatis-mutandis* as in the real case. These are enough for the application of the dominated convergence theorem above, and we use that \(\exp(\cdot) \) is analytic to conclude that \(\theta \mapsto M(\theta) \) is analytic on \(\Theta_C \).
3.7 Bibliography

3.8 Exercises

Question 3.1: In Example 3.4, give the sufficient statistic ϕ and an explicit formula for the log partition function $A(\theta, \Theta)$ so that we can write $p_{\theta, \Theta}(x) = \exp(\langle \theta, \phi_1(x) \rangle + \langle \Theta, \phi_2(x) \rangle - A(\theta, \Theta))$.
Part I

Concentration, information, stability, and generalization
Chapter 4

Concentration Inequalities

In many scenarios, it is useful to understand how a random variable X behaves by giving bounds on the probability that it deviates far from its mean or median. This can allow us to give prove that estimation and learning procedures will have certain performance, that different decoding and encoding schemes work with high probability, among other results. In this chapter, we give several tools for proving bounds on the probability that random variables are far from their typical values. We conclude the section with a discussion of basic uniform laws of large numbers and applications to empirical risk minimization and statistical learning, though we focus on the relatively simple cases we can treat with our tools.

4.1 Basic tail inequalities

In this first section, we have a simple to state goal: given a random variable X, how does X concentrate around its mean? That is, assuming w.l.o.g. that $\mathbb{E}[X] = 0$, how well can we bound $\Pr(X \geq t)$?

We begin with the three most classical three inequalities for this purpose: the Markov, Chebyshev, and Chernoff bounds, which are all instances of the same technique.

The basic inequality off of which all else builds is Markov’s inequality.

Proposition 4.1 (Markov’s inequality). Let X be a nonnegative random variable, meaning that $X \geq 0$ with probability 1. Then

$$\Pr(X \geq t) \leq \frac{\mathbb{E}[X]}{t}.$$

Proof For any random variable, $\Pr(X \geq t) = \mathbb{E}[1 \{X \geq t\}] \leq \mathbb{E}[(X/t)1 \{X \geq t\}] \leq \mathbb{E}[X]/t$, as $X/t \geq 1$ whenever $X \geq t$. \qed

When we know more about a random variable than that its expectation is finite, we can give somewhat more powerful bounds on the probability that the random variable deviates from its typical values. The first step in this direction, Chebyshev’s inequality, requires two moments, and when we have exponential moments, we can give even stronger results. As we shall see, each of these results is but an application of Proposition 4.1.
Proposition 4.2 (Chebyshev’s inequality). Let X be a random variable with $\text{Var}(X) < \infty$. Then
\[
\mathbb{P}(X - \mathbb{E}[X] \geq t) \leq \frac{\text{Var}(X)}{t^2} \quad \text{and} \quad \mathbb{P}(X - \mathbb{E}[X] \leq -t) \leq \frac{\text{Var}(X)}{t^2}
\]
for all $t \geq 0$.

Proof We prove only the upper tail result, as the lower tail is identical. We first note that $X - \mathbb{E}[X] \geq t$ implies that $(X - \mathbb{E}[X])^2 \geq t^2$. But of course, the random variable $Z = (X - \mathbb{E}[X])^2$ is nonnegative, so Markov’s inequality gives $\mathbb{P}(X - \mathbb{E}[X] \geq t) \leq \mathbb{P}(Z \geq t^2) \leq \mathbb{E}[Z]/t^2$, and $\mathbb{E}[Z] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \text{Var}(X)$.

If a random variable has a moment generating function—exponential moments—we can give bounds that enjoy very nice properties when combined with sums of random variables. First, we recall that
\[
\varphi_X(\lambda) := \mathbb{E}[e^{\lambda X}]
\]
is the moment generating function of the random variable X. Then we have the Chernoff bound.

Proposition 4.3. For any random variable X, we have
\[
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda t}} = \varphi_X(\lambda)e^{-\lambda t}
\]
for all $\lambda \geq 0$.

Proof This is another application of Markov’s inequality: for $\lambda > 0$, we have $e^{\lambda X} \geq e^{\lambda t}$ if and only if $X \geq t$, so that $\mathbb{P}(X \geq t) = \mathbb{P}(e^{\lambda X} \geq e^{\lambda t}) \leq \mathbb{E}[e^{\lambda X}]/e^{\lambda t}$.

In particular, taking the infimum over all $\lambda \geq 0$ in Proposition 4.3 gives the more standard Chernoff (large deviation) bound
\[
\mathbb{P}(X \geq t) \leq \exp \left(\inf_{\lambda \geq 0} \log \varphi_X(\lambda) - \lambda t \right).
\]

Example 4.4 (Gaussian random variables): When X is a mean-zero Gaussian variable with variance σ^2, we have
\[
\varphi_X(\lambda) = \mathbb{E}[e^{\lambda X}] = \exp \left(\frac{\lambda^2 \sigma^2}{2} \right).
\]

To see this, we compute the integral; we have
\[
\mathbb{E}[e^{\lambda X}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} e^{\lambda x - \frac{1}{2\sigma^2}x^2} \, dx
\]
\[
= e^{\frac{\lambda^2 \sigma^2}{2}} \left[\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma^2} e^{\frac{-1}{2\sigma^2}(x - \lambda \sigma^2 x)^2} \, dx \right]_1 = 1,
\]
because this is simply the integral of the Gaussian density.

As a consequence of the equality (4.1.1) and the Chernoff bound technique (Proposition 4.3), we see that for X Gaussian with variance σ^2, we have
\[
\mathbb{P}(X \geq \mathbb{E}[X] + t) \leq \exp \left(-\frac{t^2}{2\sigma^2} \right) \quad \text{and} \quad \mathbb{P}(X \leq \mathbb{E}[X] - t) \leq \exp \left(-\frac{t^2}{2\sigma^2} \right)
\]
for all $t \geq 0$. Indeed, we have $\log \varphi_{X-\mathbb{E}[X]}(\lambda) = \frac{\lambda^2 \sigma^2}{2}$, and $\inf_{\lambda \geq 0} \left\{ \frac{\lambda^2 \sigma^2}{2} - \lambda \right\} = -\frac{t^2}{2\sigma^2}$, which is attained by $\lambda = \frac{t}{\sigma^2}$. \top
4.1.1 Sub-Gaussian random variables

Gaussian random variables are convenient for their nice analytical properties, but a broader class of random variables with similar moment generating functions are known as sub-Gaussian random variables.

Definition 4.1. A random variable X is sub-Gaussian with parameter σ^2 if
\[
E[\exp(\lambda(X - E[X]))] \leq \exp\left(\frac{\lambda^2\sigma^2}{2}\right)
\]
for all $\lambda \in \mathbb{R}$. We also say such a random variable is σ^2-sub-Gaussian.

Of course, Gaussian random variables satisfy Definition 4.1 with equality. This would be uninteresting if only Gaussian random variables satisfied this property; happily, that is not the case, and we detail several examples.

Example 4.5 (Random signs (Rademacher variables)): The random variable X taking values $\{-1, 1\}$ with equal property is 1-sub-Gaussian. Indeed, we have
\[
E[\exp(\lambda X)] = \frac{1}{2} e^\lambda + \frac{1}{2} e^{-\lambda} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-\lambda)^k}{k!} = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!} \leq \sum_{k=0}^{\infty} \frac{(\lambda^2)^k}{2^k k!} = \exp\left(\frac{\lambda^2}{2}\right),
\]
as claimed. ◇

Bounded random variables are also sub-Gaussian; indeed, we have the following example.

Example 4.6 (Bounded random variables): Suppose that X is bounded, say $X \in [a, b]$. Then Hoeffding’s lemma states that
\[
E[\exp(\lambda(X - E[X]))] \leq \exp\left(\frac{\lambda^2(b - a)^2}{8}\right),
\]
so that X is $(b - a)^2/4$-sub-Gaussian.

We prove a somewhat weaker statement with a simpler argument, while Question 4.1 gives one approach to proving the above statement. First, let $\varepsilon \in \{-1, 1\}$ be a Rademacher variable, so that $P(\varepsilon = 1) = P(\varepsilon = -1) = \frac{1}{2}$. We apply a so-called symmetrization technique—a common technique in probability theory, statistics, concentration inequalities, and Banach space research—to give a simpler bound. Indeed, let X' be an independent copy of X, so that $E[X'] = E[X]$. We have
\[
\varphi_{X - E[X]}(\lambda) = E[\exp(\lambda(X - E[X]))] \leq E[\exp(\lambda(X - X'))] = E[\exp(\lambda\varepsilon(X - X'))],
\]
where the inequality follows from Jensen’s inequality and the last equality is a consequence of the fact that $X - X'$ is symmetric about 0. Using the result of Example 4.5,
\[
E[\exp(\lambda\varepsilon(X - X'))] \leq E\left[\exp\left(\frac{\lambda^2(X - X')^2}{2}\right)\right] \leq \exp\left(\frac{\lambda^2(b - a)^2}{2}\right),
\]
where the final inequality is immediate from the fact that $|X - X'| \leq b - a$. ◇
While Example 4.6 shows how a symmetrization technique can give sub-Gaussian behavior, more sophisticated techniques involving explicitly bounding the logarithm of the moment generating function of X, often by calculations involving exponential tilts of its density. In particular, letting X be mean zero for simplicity, if we let

$$\psi(\lambda) = \log \varphi_X(\lambda) = \log \mathbb{E}[e^{\lambda X}],$$

then

$$\psi'(\lambda) = \mathbb{E}\left[\frac{X e^{\lambda X}}{e^{\lambda X}} \right] \quad \text{and} \quad \psi''(\lambda) = \mathbb{E}\left[\frac{X^2 e^{\lambda X}}{e^{\lambda X}} \right] - \mathbb{E}\left[\frac{X e^{\lambda X}}{e^{\lambda X}} \right]^2,$$

where we can interchange the order of taking expectations and derivatives whenever $\psi(\lambda)$ is finite.

Notably, if X has density p_X (with respect to any base measure) then the random variable Y_λ with density

$$p_\lambda(y) = \frac{e^{\lambda y}}{\mathbb{E}[e^{\lambda X}]} p_X(y)$$

(with respect to the same base measure) satisfies

$$\psi'(\lambda) = \mathbb{E}[Y_\lambda] \quad \text{and} \quad \psi''(\lambda) = \mathbb{E}[Y_\lambda^2] - \mathbb{E}[Y_\lambda]^2 = \text{Var}(Y_\lambda).$$

One can exploit this in many ways, which the exercises and coming chapters do. As a particular example, we can give sharper sub-Gaussian constants for Bernoulli random variables.

Example 4.7 (Bernoulli random variables): Let X be Bernoulli(p), so that $X = 1$ with probability p and $X = 0$ otherwise. Then a strengthening of Hoeffding’s lemma (also, essentially, due to Hoeffding) is that

$$\log \mathbb{E}[e^{\lambda(X-p)}] \leq \frac{\sigma^2(p)}{2} \lambda^2$$

for $\sigma^2(p) := \frac{1 - 2p}{2 \log \frac{1}{1-p}}$.

Here we take the limits as $p \to \{0, \frac{1}{2}, 1\}$ and have $\sigma^2(0) = 0$, $\sigma^2(1) = 0$, and $\sigma^2(\frac{1}{2}) = \frac{1}{4}$.

Because $p \mapsto \sigma^2(p)$ is concave and symmetric about $p = \frac{1}{2}$, this inequality is always sharper than that of Example 4.6. Question 4.9 gives one proof of this bound exploiting exponential tilting. \(\diamond\)

Chernoff bounds for sub-Gaussian random variables are immediate; indeed, they have the same concentration properties as Gaussian random variables, a consequence of the nice analytical properties of their moment generating functions (that their logarithms are at most quadratic). Thus, using the technique of Example 4.4, we obtain the following proposition.

Proposition 4.8. Let X be a σ^2-sub-Gaussian. Then for all $t \geq 0$ we have

$$\mathbb{P}(X - \mathbb{E}[X] \geq t) \vee \mathbb{P}(X - \mathbb{E}[X] \leq -t) \leq \exp \left(-\frac{t^2}{2 \sigma^2} \right).$$

Chernoff bounds extend naturally to sums of independent random variables, because moment generating functions of sums of independent random variables become products of moment generating functions.
Proposition 4.9. Let X_1, X_2, \ldots, X_n be independent σ_i^2-sub-Gaussian random variables. Then
\[
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right) \right] \leq \exp \left(\frac{\lambda^2 \sum_{i=1}^{n} \sigma_i^2}{2} \right) \text{ for all } \lambda \in \mathbb{R},
\]
that is, $\sum_{i=1}^{n} X_i$ is $\sum_{i=1}^{n} \sigma_i^2$-sub-Gaussian.

Proof. We assume w.l.o.g. that the X_i are mean zero. We have by independence that and sub-Gaussianity that
\[
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n} X_i \right) \right] = \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n-1} X_i \right) \right] \mathbb{E}[\exp(\lambda X_n)] \leq \exp \left(\frac{\lambda^2 \sigma_n^2}{2} \right) \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n-1} X_i \right) \right].
\]
Applying this technique inductively to X_{n-1}, \ldots, X_1, we obtain the desired result.

Two immediate corollary to Propositions 4.8 and 4.9 show that sums of sub-Gaussian random variables concentrate around their expectations. We begin with a general concentration inequality.

Corollary 4.10. Let X_i be independent σ_i^2-sub-Gaussian random variables. Then for all $t \geq 0$
\[
\max \left\{ \mathbb{P} \left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \geq t \right), \mathbb{P} \left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \leq -t \right) \right\} \leq \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} \sigma_i^2} \right).
\]
Additionally, the classical Hoeffding bound, follows when we couple Example 4.6 with Corollary 4.10: if $X_i \in [a_i, b_i]$, then
\[
\mathbb{P} \left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \geq t \right) \leq \exp \left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right).
\]
To give another interpretation of these inequalities, let us assume that X_i are independent and σ^2-sub-Gaussian. Then we have that
\[
\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \geq t \right) \leq \exp \left(-\frac{nt^2}{2\sigma^2} \right),
\]
or, for $\delta \in (0, 1)$, setting $\exp(-\frac{nt^2}{2\sigma^2}) = \delta$ or $t = \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta}}{n}}$, we have that
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \leq \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta}}{n}} \text{ with probability at least } 1 - \delta.
\]

There are a variety of other conditions equivalent to sub-Gaussianity, which we relate by defining the sub-Gaussian norm of a random variable. In particular, we define the sub-Gaussian norm (sometimes known as the ψ_2-Orlicz norm in the literature) as
\[
\|X\|_{\psi_2} := \sup_{k \geq 1} \frac{1}{\sqrt{k}} \mathbb{E}[|X|^k]^{1/k} \quad (4.1.2)
\]
Then we have the following various characterizations of sub-Gaussianity.
Theorem 4.11. Let X be a mean-zero random variable and $\sigma^2 \geq 0$ be a constant. The following statements are all equivalent, meaning that there are numerical constant factors K_j such that if one statement (i) holds with parameter K_i, then statement (j) holds with parameter $K_j \leq CK_i$, where C is a numerical constant.

(1) Sub-gaussian tails: $\mathbb{P}(|X| \geq t) \leq 2 \exp\left(-\frac{t^2}{K_1 \sigma^2}\right)$ for all $t \geq 0$.

(2) Sub-gaussian moments: $\mathbb{E}[|X|^k]^{1/k} \leq K_2 \sigma \sqrt{k}$ for all k.

(3) Super-exponential moment: $\mathbb{E}[\exp(X^2/(K_3 \sigma^2))] \leq e$.

(4) Sub-gaussian moment generating function: $\mathbb{E}[\exp(\lambda X)] \leq \exp(K_4 \lambda^2 \sigma^2)$ for all $\lambda \in \mathbb{R}$.

Particularly, (1) implies (2) with $K_1 = 1$ and $K_2 \leq e^{1/e}$; (2) implies (3) with $K_2 = 1$ and $K_3 = e\sqrt{\frac{2}{e-1}} < 3$; (3) implies (4) with $K_3 = 1$ and $K_4 \leq \frac{3}{4}$; and (4) implies (1) with $K_4 = \frac{1}{2}$ and $K_1 \leq 2$.

This result is standard in the literature on concentration and random variables; our proof is based on Vershynin [141]. See Appendix 4.4.1 for a proof of this theorem. We note in passing that in each of the statements of Theorem 4.11, we may take $\sigma = \|X\|_{\psi_2}$, and (in general) these are the sharpest possible results except for numerical constants.

For completeness, we can give a tighter result than part (3) of the preceding theorem, giving a concrete upper bound on squares of sub-Gaussian random variables. The technique used in the example, to introduce an independent random variable for auxiliary randomization, is a common and useful technique in probabilistic arguments (similar to our use of symmetrization in Example 4.6).

Example 4.12 (Sub-Gaussian squares): Let X be a mean-zero σ^2-sub-Gaussian random variable. Then

$$
\mathbb{E}[\exp(\lambda X^2)] \leq \frac{1}{[1-2\sigma^2\lambda]^\frac{3}{4}},
$$

expression (4.1.3) holds with equality for $X \sim \mathcal{N}(0, \sigma^2)$.

To see this result, we focus on the Gaussian case first and assume (for this case) without loss of generality (by scaling) that $\sigma^2 = 1$. Assuming that $\lambda < \frac{1}{2}$, we have

$$
\mathbb{E}[\exp(\lambda Z^2)] = \int \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{1}{2}-\lambda\right)z^2}dz = \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1-2\lambda}{2}z^2}dz = \frac{\sqrt{2\pi}}{\sqrt{1-2\lambda}} \frac{1}{\sqrt{2\pi}},
$$

the final equality a consequence of the fact that (as we know for normal random variables) $\int e^{-\frac{t^2}{2\sigma^2}}dz = \sqrt{2\pi}\sigma^2$. When $\lambda \geq \frac{1}{2}$, the above integrals are all infinite, giving the equality in expression (4.1.3).

For the more general inequality, we recall that if Z is an independent $\mathcal{N}(0, 1)$ random variable, then $\mathbb{E}[\exp(tZ)] = \exp\left(\frac{t^2}{2}\right)$, and so

$$
\mathbb{E}[\exp(\lambda X^2)] = \mathbb{E}[\exp(\sqrt{2\lambda XZ})] \leq \mathbb{E}\left[\exp(\lambda \sigma^2 Z^2)\right] \leq \frac{1}{[1-2\sigma^2\lambda]^\frac{3}{4}},
$$

where inequality (i) follows because X is sub-Gaussian, and inequality (ii) because $Z \sim \mathcal{N}(0, 1)$. \hfill \Box
4.1.2 Sub-exponential random variables

A slightly weaker condition than sub-Gaussianity is for a random variable to be sub-exponential, which—for a mean-zero random variable—means that its moment generating function exists in a neighborhood of zero.

Definition 4.2. A random variable X is sub-exponential with parameters (τ^2, b) if for all λ such that $|\lambda| \leq 1/b$,

$$\mathbb{E}[e^{\lambda (X - \mathbb{E}[X])}] \leq \exp \left(\frac{\lambda^2 \tau^2}{2} \right).$$

It is clear from Definition 4.2 that a σ^2-sub-Gaussian random variable is $(\sigma^2, 0)$-sub-exponential.

A variety of random variables are sub-exponential. As a first example, χ^2-random variables are sub-exponential with constant values for τ and b:

Example 4.13: Let $X = Z^2$, where $Z \sim N(0, 1)$. We claim that

$$\mathbb{E}[\exp(\lambda (X - \mathbb{E}[X]))] \leq \exp(2 \lambda^2) \text{ for } \lambda \leq \frac{1}{4}. \quad (4.1.4)$$

Indeed, for $\lambda < \frac{1}{2}$ we have that

$$\mathbb{E}[\exp(\lambda (Z^2 - \mathbb{E}[Z^2]))] = \exp \left(- \frac{1}{2} \log(1 - 2\lambda) - \lambda \right) \overset{(i)}{\leq} \exp \left(\lambda + 2\lambda^2 - \lambda \right)$$

where inequality (i) holds for $\lambda \leq \frac{1}{4}$, because $-\log(1 - 2\lambda) \leq 2\lambda + 4\lambda^2$ for $\lambda \leq \frac{1}{4}$. ◇

As a second example, we can show that bounded random variables are sub-exponential. It is clear that this is the case as they are also sub-Gaussian; however, in many cases, it is possible to show that their parameters yield much tighter control over deviations than is possible using only sub-Gaussian techniques.

Example 4.14 (Bounded random variables are sub-exponential): Suppose that X is a mean zero random variable taking values in $[-b, b]$ with variance $\sigma^2 = \mathbb{E}[X^2]$ (note that we are guaranteed that $\sigma^2 \leq b^2$ in this case). We claim that

$$\mathbb{E}[\exp(\lambda X)] \leq \exp \left(\frac{3\lambda^2 \sigma^2}{5} \right) \text{ for } |\lambda| \leq \frac{1}{2b}. \quad (4.1.5)$$

To see this, note first that for $k \geq 2$ we have $\mathbb{E}[|X|^k] \leq \mathbb{E}[X^2 b^{k-2}] = \sigma^2 b^{k-2}$. Then by an expansion of the exponential, we find

$$\mathbb{E}[\exp(\lambda X)] = 1 + \mathbb{E}[\lambda X] + \frac{\lambda^2 \mathbb{E}[X^2]}{2} + \sum_{k=3}^{\infty} \frac{\lambda^k \mathbb{E}[X^k]}{k!} \leq 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \frac{\lambda^k \sigma^2 b^{k-2}}{k!}$$

$$= 1 + \frac{\lambda^2 \sigma^2}{2} + \lambda^2 \sigma^2 \sum_{k=1}^{\infty} \frac{(\lambda b)^k}{(k+2)!} \overset{(i)}{\leq} 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{10} \overset{(i)}{\leq} 1 + \frac{\sigma^2}{b^2} \left(e^{\lambda b} - 1 - \lambda b \right).$$

It is possible to give a slightly tighter result for $\lambda \geq 0$. In this case, we have the bound

$$\mathbb{E}[\exp(\lambda X)] \leq 1 + \frac{\lambda^2 \sigma^2}{2} + \lambda^2 \sigma^2 \sum_{k=3}^{\infty} \frac{\lambda^k b^{k-2}}{k!} = 1 + \frac{\sigma^2}{b^2} \left(e^{\lambda b} - 1 - \lambda b \right).$$
Then using that $1 + x \leq e^x$, we obtain Bennett’s moment generating inequality, which is that

$$\mathbb{E}[e^{\lambda X}] \leq \exp \left(\frac{\sigma^2}{b^2} \left(e^{\lambda b} - 1 - \lambda b \right) \right) \quad \text{for} \ \lambda \geq 0. \quad (4.1.6)$$

Inequality (4.1.6) always holds, and for λb near 0, we have $e^{\lambda b} - 1 - \lambda b \approx \lambda^2 b^2 / 2$. In particular, if the variance $\sigma^2 \ll b^2$, the absolute bound on X, inequality (4.1.5) gives much tighter control on the moment generating function of X than typical sub-Gaussian bounds based only on the fact that $X \in [-b, b]$ allow.

We can give a broader characterization, as with sub-Gaussian random variables in Theorem 4.11. First, we define the sub-exponential norm (in the literature, there is an equivalent norm often called the Orlicz ψ_1-norm)

$$\|X\|_{\psi_1} := \sup_{k \geq 1} \frac{1}{k} \mathbb{E}[|X|^k]^{1/k}.$$

For any sub-Gaussian random variable—whether it has mean-zero or not—we have that sub-exponential is sub-Gaussian squared:

$$\|X\|_{\psi_2}^2 \leq \|X\|_{\psi_1} \leq 2 \|X\|_{\psi_2}^2, \quad (4.1.7)$$

which is immediate from the definitions. More broadly, we can show a result similar to Theorem 4.11.

Theorem 4.15. Let X be a random variable and $\sigma \geq 0$. Then—in the sense of Theorem 4.11—the following statements are all equivalent for suitable numerical constants K_1, \ldots, K_4.

1. **Sub-exponential tails:** $\mathbb{P}(|X| \geq t) \leq 2 \exp(-\frac{t^2}{K_1 \sigma})$ for all $t \geq 0$

2. **Sub-exponential moments:** $\mathbb{E}[|X|^k]^{1/k} \leq K_2 \sigma k$ for all $k \geq 1$.

3. **Existence of moment generating function:** $\mathbb{E}[\exp(X/(K_3 \sigma))] \leq e$.

4. If, in addition, $\mathbb{E}[X] = 0$, then $\mathbb{E}[\exp(\lambda X)] \leq \exp(K_4 \lambda^2 \sigma^2)$ for all $|\lambda| \leq K_4' / \sigma$.

In particular, if (2) holds with $K_2 = 1$, then (4) holds with $K_4 = 2e^2$ and $K_4' = \frac{1}{2e}$.

The proof, which is similar to that for Theorem 4.11, is presented in Section 4.4.2.

While the concentration properties of sub-exponential random variables are not quite so nice as those for sub-Gaussian random variables (recall Hoeffding’s inequality, Corollary 4.10), we can give sharp tail bounds for sub-exponential random variables. We first give a simple bound on deviation probabilities.

Proposition 4.16. Let X be a mean-zero (τ^2, b)-sub-exponential random variable. Then for all $t \geq 0$,

$$\mathbb{P}(X \geq t) \vee \mathbb{P}(X \leq -t) \leq \exp \left(-\frac{1}{2} \min \left\{ \frac{t^2}{\tau^2}, \frac{t}{b} \right\} \right).$$

Proof The proof is an application of the Chernoff bound technique; we prove only the upper tail as the lower tail is similar. We have

$$\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda t}} \leq \exp \left(\frac{\lambda^2 \tau^2}{2} - \lambda t \right),$$
inequality (i) holding for $|\lambda| \leq 1/b$. To minimize the last term in λ, we take $\lambda = \min\{t, 1/b\}$, which gives the result.

Comparing with sub-Gaussian random variables, which have $b = 0$, we see that Proposition 4.16 gives a similar result for small t—essentially the same concentration sub-Gaussian random variables—while for large t, the tails decrease only exponentially in t.

We can also give a tensorization identity similar to Proposition 4.9.

Proposition 4.17. Let X_1, \ldots, X_n be independent mean-zero sub-exponential random variables, where X_i is (σ_i^2, b_i)-sub-exponential. Then for any vector $a_i \in \mathbb{R}^n$, we have

$$
E \left[\exp \left(\lambda \sum_{i=1}^n a_i X_i \right) \right] \leq \exp \left(\frac{\lambda^2 \sum_{i=1}^n a_i^2 \sigma_i^2}{2} \right) \text{ for } |\lambda| \leq \frac{1}{b_*},
$$

where $b_* = \max_i b_i |a_i|$. That is, $\langle a, X \rangle$ is $(\sum_{i=1}^n a_i^2 \sigma_i^2, \min_i \frac{1}{b_i |a_i|})$-sub-exponential.

Proof We apply an inductive technique similar to that used in the proof of Proposition 4.9. First, for any fixed i, we know that if $|\lambda| \leq \frac{1}{b_i |a_i|}$, then $|a_i \lambda| \leq \frac{1}{b_i}$ and so

$$
E[\exp(\lambda a_i X_i)] \leq \exp \left(\frac{\lambda^2 a_i^2 \sigma_i^2}{2} \right).
$$

Now, we inductively apply the preceding inequality, which applies so long as $|\lambda| \leq \frac{1}{b_i |a_i|}$ for all i. We have

$$
E \left[\exp \left(\lambda \sum_{i=1}^n a_i X_i \right) \right] = \prod_{i=1}^n E[\exp(\lambda a_i X_i)] \leq \prod_{i=1}^n \exp \left(\frac{\lambda^2 a_i^2 \sigma_i^2}{2} \right),
$$

which is our desired result. \hfill \square

As in the case of sub-Gaussian random variables, a combination of the tensorization property—that the moment generating functions of sums of sub-exponential random variables are well-behaved—of Proposition 4.17 and the concentration inequality (4.16) immediately yields the following Bernstein-type inequality. (See also Vershynin [141].)

Corollary 4.18. Let X_1, \ldots, X_n be independent mean-zero (σ_i^2, b_i)-sub-exponential random variables (Definition 4.2). Define $b_* := \max_i b_i$. Then for all $t \geq 0$ and all vectors $a \in \mathbb{R}^n$, we have

$$
P \left(\sum_{i=1}^n a_i X_i \geq t \right) \lor P \left(\sum_{i=1}^n a_i X_i \leq -t \right) \leq \exp \left(-\frac{t^2}{2} \min \left\{ \frac{\sum_{i=1}^n a_i^2 \sigma_i^2}{b_* \|a\|_{\infty}} \right\} \right).
$$

It is instructive to study the structure of the bound of Corollary 4.18. Notably, the bound is similar to the Hoeffding-type bound of Corollary 4.10 (holding for σ^2-sub-Gaussian random variables) that

$$
P \left(\sum_{i=1}^n a_i X_i \geq t \right) \leq \exp \left(-\frac{t^2}{2 \|a\|^2_{2}\sigma^2} \right),
$$
so that for small \(t \), Corollary 4.18 gives sub-Gaussian tail behavior. For large \(t \), the bound is weaker. However, in many cases, Corollary 4.18 can give finer control than naive sub-Gaussian bounds. Indeed, suppose that the random variables \(X_i \) are i.i.d., mean zero, and satisfy \(X_i \in [-b, b] \) with probability 1, but have variance \(\sigma^2 = \mathbb{E}[X_i^2] \leq b^2 \) as in Example 4.14. Then Corollary 4.18 implies that

\[
P\left(\sum_{i=1}^{n} a_i X_i \geq t \right) \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{5}{6} \sigma^2 \|a\|^2_2, \frac{t^2}{2b \|a\|_\infty} \right\} \right). \tag{4.1.8}
\]

When applied to a standard mean (and with a minor simplification that \(5/12 < 1/3 \)) with \(a_i = \frac{1}{n} \), we obtain the bound that \(1/n \sum_{i=1}^{n} X_i \leq t \) with probability at least \(1 - \exp(-n \min\{\frac{t^2}{3 \sigma^2}, \frac{t}{b} \}) \). Written differently, we take \(t = \max\{\sqrt{\frac{3 \log \frac{1}{\delta}}{n}}, \frac{4b \log \frac{1}{\delta}}{n} \} \) to obtain

\[
\frac{1}{n} \sum_{i=1}^{n} X_i \leq \max\left\{ \sigma \sqrt{\frac{3 \log \frac{1}{\delta}}{n}}, \frac{4b \log \frac{1}{\delta}}{n} \right\} \text{ with probability } 1 - \delta.
\]

The sharpest such bound possible via more naive Hoeffding-type bounds is \(b \sqrt{2 \log \frac{1}{\delta}} / \sqrt{n} \), which has substantially worse scaling.

Further conditions and examples

There are a number of examples and conditions sufficient for random variables to be sub-exponential. One common condition, the so-called *Bernstein* condition, controls the higher moments of a random variable \(X \) by its variance. In this case, we say that \(X \) satisfies the \(b \)-Bernstein condition if

\[
|\mathbb{E}[(X - \mu)^k]| \leq k! \frac{\sigma^2 b^{k-2}}{2} \quad \text{for } k = 3, 4, \ldots, \tag{4.1.9}
\]

where \(\mu = \mathbb{E}[X] \) and \(\sigma^2 = \text{Var}(X) = \mathbb{E}[X^2] - \mu^2 \). In this case, the following lemma controls the moment generating function of \(X \). This result is essentially present in Theorem 4.15, but it provides somewhat tighter control with precise constants.

Lemma 4.19. Let \(X \) be a random variable satisfying the Bernstein condition (4.1.9). Then

\[
\mathbb{E}\left[e^{\lambda (X - \mu)} \right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2(1 - b|\lambda|)} \right) \quad \text{for } |\lambda| \leq \frac{1}{b}.
\]

Said differently, a random variable satisfying Condition (4.1.9) is \((\sqrt{2\sigma}, b/2)\)-sub-exponential.

Proof Without loss of generality we assume \(\mu = 0 \). We expand the moment generating function by noting that

\[
\mathbb{E}[e^{\lambda X}] = 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \frac{\lambda^k \mathbb{E}[X^k]}{k!} \leq 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} |\lambda b|^{k-2}
\]

\[
= 1 + \frac{\lambda^2 \sigma^2}{2} \left[1 - b|\lambda| \right]_+
\]

where inequality (i) used the Bernstein condition (4.1.9). Noting that \(1+x \leq e^x \) gives the result. \(\square \)

As one final example, we return to Bennett’s inequality (4.1.6) from Example 4.14.
Proposition 4.20 (Bennett’s inequality). Let X_i be independent mean-zero random variables with $\text{Var}(X_i) = \sigma_i^2$ and $|X_i| \leq b$. Then for $h(t) := (1 + t) \log(1 + t) - t$ and $\sigma^2 := \sum_{i=1}^{n} \sigma_i^2$, we have
\[
\Pr \left(\sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(-\frac{\sigma^2}{b^2} h \left(\frac{bt}{\sigma^2} \right) \right).
\]

Proof. We assume without loss of generality that $E[X] = 0$. Using the standard Chernoff bound argument coupled with inequality (4.1.6), we see that
\[
\Pr \left(\sum_{i=1}^{n} X_i \geq t \sum_{i=1}^{n} \sigma_i^2 \right) \leq \exp \left(\sum_{i=1}^{n} \sigma_i^2 \left(e^{\lambda b} - 1 - \lambda b \right) - \lambda t \right).
\]
Letting $h(t) = (1 + t) \log(1 + t) - t$ as in the statement of the proposition and $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$, we minimize over $\lambda \geq 0$, setting $\lambda = \frac{1}{b} \log(1 + \frac{bt}{\sigma^2})$. Substituting into our Chernoff bound application gives the proposition.

A slightly more intuitive writing of Bennett’s inequality is to use averages, in which case for $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2$ the average of the variances,
\[
\Pr \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(-\frac{n \sigma^2}{b} h \left(\frac{bt}{\sigma^2} \right) \right).
\]
It is possible to show that
\[
\frac{n \sigma^2}{b} h \left(\frac{bt}{\sigma^2} \right) \geq \frac{nt^2}{2\sigma^2 + \frac{2}{3}bt},
\]
which gives rise to the classical Bernstein inequality that
\[
\Pr \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(-\frac{nt^2}{2\sigma^2 + \frac{2}{3}bt} \right).
\]

4.1.3 First applications of concentration: random projections

In this section, we investigate the use of concentration inequalities in random projections. As motivation, consider nearest-neighbor (or k-nearest-neighbor) classification schemes. We have a sequence of data points as pairs (u_i, y_i), where the vectors $u_i \in \mathbb{R}^d$ have labels $y_i \in \{1, \ldots, L\}$, where L is the number of possible labels. Given a new point $u \in \mathbb{R}^d$ that we wish to label, we find the k-nearest neighbors to u in the sample $\{(u_i, y_i)\}_{i=1}^{n}$, then assign u the majority label of these k-nearest neighbors (ties are broken randomly). Unfortunately, it can be prohibitively expensive to store high-dimensional vectors and search over large datasets to find near vectors; this has motivated a line of work in computer science on fast methods for nearest neighbors based on reducing the dimension while preserving essential aspects of the dataset. This line of research begins with Indyk and Motwani [95], and continuing through a variety of other works, including Indyk [94] and work on locality-sensitive hashing by Andoni et al. [6], among others. The original approach is due to Johnson and Lindenstrauss, who used the results in the study of Banach spaces [99]; our proof follows a standard argument.
The most specific variant of this problem is as follows: we have \(n \) points \(u_1, \ldots, u_n \), and we could like to construct a mapping \(\Phi : \mathbb{R}^d \to \mathbb{R}^m \), where \(m \ll d \), such that

\[
\|\Phi u_i - \Phi u_j\|^2 \in (1 \pm \epsilon) \|u_i - u_j\|^2.
\]

Depending on the norm chosen, this task may be impossible; for the Euclidean (\(\ell_2 \)) norm, however, such an embedding is easy to construct using Gaussian random variables and with \(m = O(\frac{1}{\epsilon^2} \log n) \). This embedding is known as the Johnson-Lindenstrauss embedding. Note that this size \(m \) is independent of the dimension \(d \), only depending on the number of points \(n \).

Example 4.21 (Johnson-Lindenstrauss): Let the matrix \(\Phi \in \mathbb{R}^{m \times d} \) be defined as follows:

\[
\Phi_{ij} \overset{i.i.d.}{\sim} \mathcal{N}(0, 1/m),
\]

and let \(\Phi_i \in \mathbb{R}^d \) denote the \(i \)th row of this matrix. We claim that

\[
m \geq \frac{8}{\epsilon^2} \left[2 \log n + \log \frac{1}{\delta} \right] \implies \|\Phi u_i - \Phi u_j\|^2 \in (1 \pm \epsilon) \|u_i - u_j\|^2
\]

for all pairs \(u_i, u_j \) with probability at least \(1 - \delta \). In particular, \(m \geq \frac{\log n}{\epsilon^2} \) is sufficient to achieve accurate dimension reduction with high probability.

To see this, note that for any fixed vector \(u \),

\[
\frac{\langle \Phi_i, u \rangle}{\|u\|_2} \sim \mathcal{N}(0, 1/m), \quad \text{and} \quad \frac{\|\Phi u\|_2}{\|u\|_2} = \sum_{i=1}^{m} \langle \Phi_i, u/\|u\|_2 \rangle^2
\]

is a sum of independent scaled \(\chi^2 \)-random variables. In particular, we have \(\mathbb{E}[\|\Phi u/\|u\|_2\|^2] = 1 \), and using the \(\chi^2 \)-concentration result of Example 4.13 yields

\[
P \left(\left| \frac{\|\Phi u\|_2^2}{\|u\|_2^2} - 1 \right| \geq \epsilon \right) = P \left(m \left| \frac{\|\Phi u\|_2^2}{\|u\|_2^2} - 1 \right| \geq m\epsilon \right) \leq 2 \inf_{|\lambda| \leq \frac{1}{8}} \exp \left(2m\lambda^2 - \lambda m\epsilon \right) = 2 \exp \left(-\frac{m\epsilon^2}{8} \right).
\]

the last inequality holding for \(\epsilon \in [0, 1] \). Now, using the union bound applied to each of the pairs \((u_i, u_j) \) in the sample, we have

\[
P \left(\text{there exist } i \neq j \text{ s.t. } \left| \|\Phi(u_i - u_j)\|_2^2 - \|u_i - u_j\|_2^2 \right| \geq \epsilon \|u_i - u_j\|_2^2 \right) \leq 2 \left(\frac{n}{2} \right) \exp \left(-\frac{m\epsilon^2}{8} \right).
\]

Taking \(m \geq \frac{8}{\epsilon^2} \log \frac{n^2}{\delta} = \frac{16}{\epsilon^2} \log n + \frac{8}{\epsilon^2} \log \frac{1}{\delta} \) yields that with probability at least \(1 - \delta \), we have \(\|\Phi u_i - \Phi u_j\|_2^2 \in (1 \pm \epsilon) \|u_i - u_j\|_2^2 \).

Computing low-dimensional embeddings of high-dimensional data is an area of active research, and more recent work has shown how to achieve sharper constants [53] and how to use more structured matrices to allow substantially faster computation of the embeddings \(\Phi u \) (see, for example, Achlioptas [1] for early work in this direction, and Ailon and Chazelle [3] for the so-called “Fast Johnson-Lindenstrauss transform”).

66
4.1.4 A second application of concentration: codebook generation

We now consider a (very simplified and essentially un-implementable) view of encoding a signal for transmission and generation of a codebook for transmitting said signal. Suppose that we have a set of words, or signals, that we wish to transmit; let us index them by \(i \in \{1, \ldots, m\} \), so that there are \(m \) total signals we wish to communicate across a binary symmetric channel \(Q \), meaning that given an input bit \(x \in \{0, 1\} \), \(Q \) outputs a \(z \in \{0, 1\} \) with \(Q(Z = x \mid x) = 1 - \epsilon \) and \(Q(Z = 1 - x \mid x) = \epsilon \), for some \(\epsilon < \frac{1}{2} \). (For simplicity, we assume \(Q \) is memoryless, meaning that when the channel is used multiple times on a sequence \(x_1, \ldots, x_n \), its outputs \(Z_1, \ldots, Z_n \) are conditionally independent:

\[
Q(Z_{1:n} = z_{1:n} \mid x_{1:n}) = Q(Z_1 = z_1 \mid x_1) \cdots Q(Z_n = z_n \mid x_n).
\]

We consider a simplified block coding scheme, where we for each \(i \) we associate a codeword \(x_i \in \{0, 1\}^d \), where \(d \) is a dimension (block length) to be chosen. Upon sending the codeword over the channel, and receiving some \(z_{\text{rec}} \in \{0, 1\}^d \), we decode by choosing

\[
i^* \in \arg\max_{i \in [m]} Q(Z = z_{\text{rec}} \mid x_i) = \arg\min_{i \in [m]} \|z_{\text{rec}}x_i\|_1,
\]

the maximum likelihood decoder. We now investigate how to choose a collection \(\{x_1, \ldots, x_m\} \) of such codewords and give finite sample bounds on its probability of error. In fact, by using concentration inequalities, we can show that a randomly drawn codebook of fairly small dimension is likely to enjoy good performance.

Intuitively, if our codebook \(\{x_1, \ldots, x_m\} \subset \{0, 1\}^d \) is well-separated, meaning that each pair of words \(x_i, x_k \) satisfies \(\|x_i - x_k\|_1 \geq cd \) for some numerical constant \(c > 0 \), we should be unlikely to make a mistake. Let us make this precise. We mistake word \(i \) for word \(k \) only if the received signal \(Z \) satisfies \(\|Z - x_i\|_1 \geq \|Z - x_k\|_1 \), and letting \(J = \{j \in [d] : x_{ij} \neq x_{kj}\} \) denote the set of at least \(c \cdot d \) indices where \(x_i \) and \(x_k \) differ, we have

\[
\|Z - x_i\|_1 \geq \|Z - x_k\|_1 \quad \text{if and only if} \quad \sum_{j \in J} |Z_j - x_{ij}| - |Z_j - x_{kj}| \geq 0.
\]

If \(x_i \) is the word being sent and \(x_i \) and \(x_k \) differ in position \(j \), then \(|Z_j - x_{ij}| - |Z_j - x_{kj}| \in \{-1, 1\} \), and is equal to \(-1\) with probability \((1 - \epsilon)\) and \(1\) with probability \(\epsilon\). That is, we have \(\|Z - x_i\|_1 \geq \|Z - x_k\|_1 \) if and only if

\[
\sum_{j \in J} |Z_j - x_{ij}| - |Z_j - x_{kj}| + |J|(1 - 2\epsilon) \geq |J|(1 - 2\epsilon) \geq cd(1 - 2\epsilon),
\]

and the expectation \(\mathbb{E}_Q|Z_j - x_{ij}| - |Z_j - x_{kj}| \mid x_i = -(1 - 2\epsilon) \) when \(x_{ij} \neq x_{kj} \). Using the Hoeffding bound, then, we have

\[
Q(\|Z - x_i\|_1 \geq \|Z - x_k\|_1 \mid x_i) \leq \exp\left(-\frac{|J|(1 - 2\epsilon)^2}{2}\right) \leq \exp\left(-\frac{cd(1 - 2\epsilon)^2}{2}\right),
\]

where we have used that there are at least \(|J| \geq cd \) indices differing between \(x_i \) and \(x_k \). The probability of making a mistake at all is thus at most \(m \exp(-\frac{1}{2}cd(1 - 2\epsilon)^2) \) if our codebook has separation \(c \cdot d \).

For low error decoding to occur with extremely high probability, it is thus sufficient to choose a set of code words \(\{x_1, \ldots, x_m\} \) that is well separated. To that end, we state a simple lemma.
Lemma 4.22. Let $X_i, i = 1, \ldots, m$ be drawn independently and uniformly on the d-dimensional hypercube $\mathcal{H}_d := \{0, 1\}^d$. Then for any $t \geq 0$,

$$\mathbb{P} \left(\exists i, j \text{ s.t. } \|X_i - X_j\|_1 < \frac{d}{2} - dt \right) \leq \left(\frac{m}{2} \right) \exp \left(- \frac{2d t^2}{2} \right) \leq \frac{m^2}{2} \exp \left(- \frac{2d t^2}{2} \right).$$

Proof. First, let us consider two independent draws X and X' uniformly on the hypercube. Let $Z = \sum_{j=1}^{d} 1 \{X_j \neq X'_j\} = d_{\text{ham}}(X, X') = \|X - X'\|_1$. Then $\mathbb{E}[Z] = \frac{d}{2}$. Moreover, Z is an i.i.d. sum of Bernoulli $\frac{1}{2}$ random variables, so that by our concentration bounds of Corollary 4.10, we have

$$\mathbb{P} \left(\|X - X'\|_1 \leq \frac{d}{2} - t \right) \leq \exp \left(- \frac{2t^2}{d} \right).$$

Using a union bound gives the remainder of the result.

Rewriting the lemma slightly, we may take $\delta \in (0, 1)$. Then

$$\mathbb{P} \left(\exists i, j \text{ s.t. } \|X_i - X_j\|_1 < \frac{d}{2} - \sqrt{d \log \frac{1}{\delta} + d \log m} \right) \leq \delta.$$

As a consequence of this lemma, we see two things:

(i) If $m \leq \exp(d/16)$, or $d \geq 16 \log m$, then taking $\delta \uparrow 1$, there at least exists a codebook $\{x_1, \ldots, x_m\}$ of words that are all separated by at least $d/4$, that is, $\|x_i - x_j\|_1 \geq \frac{d}{4}$ for all i, j.

(ii) By taking $m \leq \exp(d/32)$, or $d \geq 32 \log m$, and $\delta = e^{-d/32}$, then with probability at least $1 - e^{-d/32}$—exponentially large in d—a randomly drawn codebook has all its entries separated by at least $\|x_i - x_j\|_1 \geq \frac{d}{4}$.

Summarizing, we have the following result: choose a codebook of m codewords x_1, \ldots, x_m uniformly at random from the hypercube $\mathcal{H}_d = \{0, 1\}^d$ with

$$d \geq \max \left\{ 32 \log m, \frac{8 \log m}{(1 - 2\epsilon)^2} \right\}.$$

Then with probability at least $1 - 1/m$ over the draw of the codebook, the probability we make a mistake in transmission of any given symbol i over the channel Q is at most δ.

4.2 Martingale methods

The next set of tools we consider constitute our first look at argument based on stability, that is, how quantities that do not change very much when a single observation changes should concentrate. In this case, we would like to understand more general quantities than sample means, developing a few of the basic tools to understand when functions $f(X_1, \ldots, X_n)$ of independent random variables X_i concentrate around their expectations. Roughly, we expect that if changing the value of one x_i does not significantly change $f(x_i^n)$ much—it is stable—then it should exhibit good concentration properties.

To develop the tools to do this, we go through an approach based on martingales, a deep subject in probability theory. We give a high-level treatment of martingales, taking an approach that does not require measure-theoretic considerations, providing references at the end of the chapter. We begin by providing a definition.
Definition 4.3. Let M_1, M_2, \ldots be an \mathbb{R}-valued sequence of random variables. They are a martingale if there exist another sequence of random variables $\{Z_1, Z_2, \ldots\} \subset \mathbb{Z}$ and sequence of functions $f_n : \mathbb{Z}^n \to \mathbb{R}$ such that
\[
\mathbb{E}[M_n \mid Z_{i-1}^n] = M_{n-1} \quad \text{and} \quad M_n = f_n(Z_1^n)
\]
for all $n \in \mathbb{N}$. We say that the sequence M_n is adapted to $\{Z_n\}$.

In general, the sequence Z_1, Z_2, \ldots is a sequence of increasing σ-fields F_1, F_2, \ldots, and M_n is F_n-measurable, but Definition 4.3 is sufficient for our purposes. We also will find it convenient to study differences of martingales, so that we make the following

Definition 4.4. Let D_1, D_2, \ldots be a sequence of random variables. They form a martingale difference sequence if $M_n := \sum_{i=1}^n D_i$ is a martingale.

Equivalently, there is a sequence of random variables Z_n and functions $g_n : \mathbb{Z}^n \to \mathbb{R}$ such that
\[
\mathbb{E}[D_n \mid Z_{i-1}^n] = 0 \quad \text{and} \quad D_n = g_n(Z_1^n)
\]
for all $n \in \mathbb{N}$.

There are numerous examples of martingale sequences. The classical one is the symmetric random walk.

Example 4.23: Let $D_n \in \{\pm 1\}$ be uniform and independent. Then D_n form a martingale difference sequence adapted to themselves (that is, we may take $Z_n = D_n$), and $M_n = \sum_{i=1}^n D_i$ is a martingale. ◇

A more sophisticated example, to which we will frequently return and that suggests the potential usefulness of martingale constructions, is the Doob martingale associated with a function f.

Example 4.24 (Doob martingales): Let $f : \mathcal{X}^n \to \mathbb{R}$ be an otherwise arbitrary function, and let X_1, \ldots, X_n be arbitrary random variables. The Doob martingale is defined by the difference sequence
\[
D_i := \mathbb{E}[f(X_1^n) \mid X_i] - \mathbb{E}[f(X_1^n) \mid X_i^{i-1}].
\]
By inspection, the D_i are functions of X_i^1, and we have
\[
\mathbb{E}[D_i \mid X_i^{i-1}] = \mathbb{E}[\mathbb{E}[f(X_1^n) \mid X_i] \mid X_i^{i-1}] - \mathbb{E}[\mathbb{E}[f(X_1^n) \mid X_i^{i-1}]]
= \mathbb{E}[f(X_1^n) \mid X_i^{i-1}] - \mathbb{E}[f(X_1^n) \mid X_i^{i-1}] = 0
\]
by the tower property of expectations. Thus, the D_i satisfy Definition 4.4 of a martingale difference sequence, and moreover, we have
\[
\sum_{i=1}^n D_i = f(X_1^n) - \mathbb{E}[f(X_1^n)],
\]
and so the Doob martingale captures exactly the difference between f and its expectation. ◇
4.2.1 Sub-Gaussian martingales and Azuma-Hoeffding inequalities

With these motivating ideas introduced, we turn to definitions, providing generalizations of our concentration inequalities for sub-Gaussian sums to sub-Gaussian martingales, which we define.

Definition 4.5. Let \(\{D_n\} \) be a martingale difference sequence adapted to \(\{Z_n\} \). Then \(D_n \) is a \(\sigma_n^2 \)-sub-Gaussian martingale difference if

\[
\mathbb{E}[\exp(\lambda D_n) \mid Z_1^{n-1}] \leq \exp\left(\frac{\lambda^2 \sigma_n^2}{2}\right)
\]

for all \(n \) and \(\lambda \in \mathbb{R} \).

Immediately from the definition, we have the Azuma-Hoeffding inequalities, which generalize the earlier tensorization identities for sub-Gaussian random variables.

Theorem 4.25 (Azuma-Hoeffding). Let \(\{D_n\} \) be a \(\sigma_n^2 \)-sub-Gaussian martingale difference sequence. Then \(M_n = \sum_{i=1}^{n} D_i \) is \(\sum_{i=1}^{n} \sigma_i^2 \)-sub-Gaussian, and moreover,

\[
\max\{\mathbb{P}(M_n \geq t), \mathbb{P}(M_n \leq -t)\} \leq \exp\left(-\frac{nt^2}{2\sum_{i=1}^{n} \sigma_i^2}\right) \quad \text{for all } t \geq 0.
\]

Proof The proof is essentially immediate: letting \(Z_n \) be the sequence to which the \(D_n \) are adapted, we write

\[
\mathbb{E}[\exp(\lambda M_n)] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda D_i} \right] = \mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda D_i} \mid Z_1^{n-1} \right] \right] = \mathbb{E}\left[\prod_{i=1}^{n-1} e^{\lambda D_i} \mid Z_1^{n-1} \right] \mathbb{E}[e^{\lambda D_n} \mid Z_1^{n-1}]
\]

because \(D_1, \ldots, D_{n-1} \) are functions of \(Z_1^{n-1} \). Then we use Definition 4.5, which implies that \(\mathbb{E}[e^{\lambda D_n} \mid Z_1^{n-1}] \leq e^{\lambda^2 \sigma_n^2/2} \), and we obtain

\[
\mathbb{E}[\exp(\lambda M_n)] \leq \mathbb{E}\left[\prod_{i=1}^{n-1} e^{\lambda D_i} \right] \exp\left(\frac{\lambda^2 \sigma_n^2}{2}\right).
\]

Repeating the same argument for \(n-1, n-2, \ldots, 1 \) gives that

\[
\log \mathbb{E}[\exp(\lambda M_n)] \leq \frac{\lambda^2}{2} \sum_{i=1}^{n} \sigma_i^2
\]

as desired.

The second claims are simply applications of Chernoff bounds via Proposition 4.8 and that \(\mathbb{E}[M_n] = 0 \).

As an immediate corollary, we recover Proposition 4.9, as sums of independent random variables form martingales via \(M_n = \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \). A second corollary gives what is typically termed the Azuma inequality:
Corollary 4.26. Let D_i be a bounded difference martingale difference sequence, meaning that $|D_i| \leq c$. Then $M_n = \sum_{i=1}^n D_i$ satisfies

$$\mathbb{P}(n^{-1/2}M_n \geq t) \vee \mathbb{P}(n^{-1/2}M_n \leq -t) \leq \exp\left(-\frac{t^2}{2c^2}\right) \text{ for } t \geq 0.$$

Thus, bounded random walks are (with high probability) within $\pm \sqrt{n}$ of their expectations after n steps.

There exist extensions of these inequalities to the cases where we control the variance of the martingales; see Freedman [73].

4.2.2 Examples and bounded differences

We now develop several example applications of the Azuma-Hoeffding inequalities (Theorem 4.25), applying them most specifically to functions satisfying certain stability conditions.

We first define the collections of functions we consider.

Definition 4.6 (Bounded differences). Let $f : \mathcal{X}^n \to \mathbb{R}$ for some space \mathcal{X}. Then f satisfies bounded differences with constants c_i if for each $i \in \{1, \ldots, n\}$, all $x^n_i \in \mathcal{X}^n$, and $x'_i \in \mathcal{X}$ we have

$$|f(x^n_i, x^n_{i+1}) - f(x^n_i, x'_i, x^n_{i+1})| \leq c_i.$$

The classical inequality relating bounded differences and concentration is McDiarmid’s inequality, or the bounded differences inequality.

Proposition 4.27 (Bounded differences inequality). Let $f : \mathcal{X}^n \to \mathbb{R}$ satisfy bounded differences with constants c_i, and let X_i be independent random variables. $f(X^n_1) - \mathbb{E}[f(X^n_1)]$ is $\frac{1}{4} \sum_{i=1}^n c_i^2$-sub-Gaussian, and

$$\mathbb{P}(f(X^n_1) - \mathbb{E}[f(X^n_1)] \geq t) \vee \mathbb{P}(f(X^n_1) - \mathbb{E}[f(X^n_1)] \leq -t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

Proof The basic idea is to show that the Doob martingale (Example 4.24) associated with f is $c_i^2/4$-sub-Gaussian, and then to simply apply the Azuma-Hoeffding inequality. To that end, define $D_i = \mathbb{E}[f(X^n_1) \mid X^n_1] - \mathbb{E}[f(X^n_1) \mid X^{i-1}_1]$ as before, and note that $\sum_{i=1}^n D_i = f(X^n_1) - \mathbb{E}[f(X^n_1)]$. The random variables

$$L_i := \inf_x \mathbb{E}[f(X^n_1) \mid X^{i-1}_1, X_i = x] - \mathbb{E}[f(X^n_1) \mid X^{i-1}_1]$$

$$U_i := \sup_x \mathbb{E}[f(X^n_1) \mid X^{i-1}_1, X_i = x] - \mathbb{E}[f(X^n_1) \mid X^{i-1}_1]$$

evidently satisfy $L_i \leq D_i \leq U_i$, and moreover, we have

$$U_i - L_i \leq \sup_{x, x'} \{\mathbb{E}[f(X^n_1) \mid X^{i-1}_1 = x^{i-1}, X_i = x] - \mathbb{E}[f(X^n_1) \mid X^{i-1}_1 = x^{i-1}, X_i = x']\}$$

$$= \sup_{x, x'} \int \{(f(x^{i-1}_1, x, x^n_{i+1}) - f(x^{i-1}_1, x', x^n_{i+1})) \mid dP(x^n_{i+1}) \leq c_i,$$

where we have used the independence of the X_i and Definition 4.6 of bounded differences. Consequently, we have by Hoeffding’s Lemma (Example 4.6) that $\mathbb{E}[e^{\lambda D_i} \mid X^{i-1}_1] \leq \exp(\lambda^2 c_i^2/8)$, that is, the Doob martingale is $c_i^2/4$-sub-Gaussian.
The remainder of the proof is simply Theorem 4.25.

A number of quantities satisfy the conditions of Proposition 4.27, and we give two examples here; we will revisit them more later.

Example 4.28 (Bounded random vectors): Let \mathbb{B} be a Banach space—a complete normed vector space—with norm $\|\cdot\|$. Let X_i be independent bounded random vectors in \mathbb{B} satisfying $E[X_i] = 0$ and $\|X_i\| \leq c$. We claim that the quantity

$$f(X^n_1) := \left\| \frac{1}{n} \sum_{i=1}^{n} X_i \right\|$$

satisfies bounded differences. Indeed, we have by the triangle inequality that

$$|f(x_1^{i-1}, x, x_{i+1}^n) - f(x_1^{i-1}, x', x_{i+1}^n)| \leq \frac{1}{n} \|x - x'\| \leq \frac{2c}{n}.$$

Consequently, if X_i are independent, we have

$$P\left(\left\| \frac{1}{n} \sum_{i=1}^{n} X_i \right\| - E\left[\left\| \frac{1}{n} \sum_{i=1}^{n} X_i \right\| \right] \geq t \right) \leq 2 \exp\left(-\frac{nt^2}{2c^2} \right) \quad (4.2.1)$$

for all $t \geq 0$. That is, the norm of (bounded) random vectors in an essentially arbitrary vector space concentrates extremely quickly about its expectation.

The challenge becomes to control the expectation term in the concentration bound (4.2.1), which can be a bit challenging. In certain cases—for example, when we have a Euclidean structure on the vectors X_i—it can be easier. Indeed, let us specialize to the case that $X_i \in \mathcal{H}$, a (real) Hilbert space, so that there is an inner product $\langle \cdot, \cdot \rangle$ and the norm satisfies $\|x\|^2 = \langle x, x \rangle$ for $x \in \mathcal{H}$. Then Cauchy-Schwarz implies that

$$E\left[\left\| \sum_{i=1}^{n} X_i \right\|^2 \right] \leq E\left[\left\| \sum_{i=1}^{n} X_i \right\|^2 \right] = \sum_{i,j} E[\langle X_i, X_j \rangle] = \sum_{i=1}^{n} E[\|X_i\|^2].$$

That is assuming the X_i are independent and $E[\|X_i\|^2] \leq \sigma^2$, inequality (4.2.1) becomes

$$P\left(\|X_n\| \geq \frac{\sigma}{\sqrt{n}} + t \right) + P\left(\|X_n\| \leq -\frac{\sigma}{\sqrt{n}} - t \right) \leq 2 \exp\left(-\frac{nt^2}{2c^2} \right)$$

where $X_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. \hfill \Box

We can specialize Example 4.28 to a situation that is very important for treatments of concentration, sums of random vectors, and generalization bounds in machine learning.

Example 4.29 (Rademacher complexities): This example is actually a special case of Example 4.28, but its frequent uses justify a more specialized treatment and consideration. Let \mathcal{X} be some space, and let \mathcal{F} be some collection of functions $f : \mathcal{X} \to \mathbb{R}$. Let $\varepsilon_i \in \{-1, 1\}$ be a collection of independent random sign vectors. Then the empirical Rademacher complexity of \mathcal{F} is

$$R_n(\mathcal{F} \mid x^n_1) := \frac{1}{n} E\left[\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} \varepsilon_i f(x_i) \right].$$

72
where the expectation is over only the random signs ε_i. (In some cases, depending on context and convenience, one takes the absolute value $|\sum \varepsilon_i f(x_i)|$.) The Rademacher complexity of \mathcal{F} is

$$R_n(\mathcal{F}) := \mathbb{E}[R_n(\mathcal{F} \mid X^n_i)] ,$$

the expectation of the empirical Rademacher complexities.

If $f : \mathcal{X} \to [b_0, b_1]$ for all $f \in \mathcal{F}$, then the Rademacher complexity satisfies bounded differences, because for any two sequences x^n_i and z^n_i differing in only element j, we have

$$n|R_n(\mathcal{F} \mid x^n_i) - R_n(\mathcal{F} \mid z^n_i)| \leq \mathbb{E} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \varepsilon_i (f(x_i) - f(z_i)) \right] = \mathbb{E} \left[\sup_{f \in \mathcal{F}} \varepsilon_i (f(z_j) - f(z_j)) \right] \leq b_1 - b_0 .$$

Consequently, the empirical Rademacher complexity satisfies $R_n(\mathcal{F} \mid X^n_i) - R_n(\mathcal{F})$ is $\frac{(b_1 - b_0)^2}{4n}$-sub-Gaussian by Theorem 4.25.

These examples warrant more discussion, and it is possible to argue that many variants of these random variables are well-concentrated. For example, instead of functions we may simply consider an arbitrary set $A \subset \mathbb{R}^n$ and define the random variable

$$Z(A) := \sup_{a \in A} \langle a, \varepsilon \rangle = \sup_{a \in A} \sum_{i=1}^n a_i \varepsilon_i .$$

As a function of the random signs ε_i, we may write $Z(A) = f(\varepsilon)$, and this is then a function satisfying $|f(\varepsilon) - f(\varepsilon')| \leq \sup_{a \in A} |\langle a, \varepsilon - \varepsilon' \rangle|$, so that if ε and ε' differ in index i, we have $|f(\varepsilon) - f(\varepsilon')| \leq 2 \sup_{a \in A} |a_i|$. That is, $Z(A) - \mathbb{E}[Z(A)]$ is $\sum_{i=1}^n \sup_{a \in A} |a_i|^2$-sub-Gaussian.

Example 4.30 (Rademacher complexity as a random vector): This view of Rademacher complexity shows how we may think of Rademacher complexities as norms on certain spaces. Indeed, if we consider a vector space \mathcal{L} of linear functions on \mathcal{F}, then we can define the \mathcal{F}-seminorm on \mathcal{L} by $\|L\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |L(f)|$. In this case, we may consider the symmetrized empirical distributions

$$P_n^0 := \frac{1}{n} \sum_{i=1}^n \varepsilon_i 1_{X_i} \quad f \mapsto P_n^0 f := \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i)$$

as elements of this vector space \mathcal{L}. (Here we have used 1_{X_i} to denote the point mass at X_i.) Then the Rademacher complexity is nothing more than the expected norm of P_n^0, a random vector, as in Example 4.28. This view is somewhat sophisticated, but it shows that any general results we may prove about random vectors, as in Example 4.28, will carry over immediately to versions of the Rademacher complexity.

4.3 Uniformity, basic generalization bounds, and complexity classes

Now that we have explored a variety of concentration inequalities, we show how to put them to use in demonstrating that a variety of estimation, learning, and other types of procedures have nice convergence properties. We first give a somewhat general collection of results, then delve deeper by focusing on some standard tasks from machine learning.
4.3.1 Symmetrization and uniform laws

The first set of results we consider are uniform laws of large numbers, where the goal is to bound means uniformly over different classes of functions. Frequently, such results are called Glivenko-Cantelli laws, after the original Glivenko-Cantelli theorem, which shows that empirical distributions uniformly converge. We revisit these ideas in the next chapter, where we present a number of more advanced techniques based on ideas of metric entropy (or volume-like considerations); here we present the basic ideas using our stability and bounded differencing tools.

The starting point is to define what we mean by a uniform law of large numbers. To do so, we adopt notation (as in Example 4.30) we will use throughout the remainder of the book, reminding readers as we go. For a sample X_1, \ldots, X_n on a space \mathcal{X}, we let

$$P_n := \frac{1}{n} \sum_{i=1}^{n} 1_{X_i}$$

denote the empirical distribution on $\{X_i\}_{i=1}^{n}$, where 1_{X_i} denotes the point mass at X_i. Then for functions $f : \mathcal{X} \to \mathbb{R}$ (or more generally, any function f defined on \mathcal{X}), we let

$$P_n f := \mathbb{E}_{P_n} [f(X)] = \frac{1}{n} \sum_{i=1}^{n} f(X_i)$$

denote the empirical expectation of f evaluated on the sample, and we also let

$$P f := \mathbb{E}_{P} [f(X)] = \int f(x) dP(x)$$

denote general expectations under a measure P. With this notation, we study uniform laws of large numbers, which consist of proving results of the form

$$\sup_{f \in \mathcal{F}} |P_n f - P f| \to 0,$$ \hspace{1cm} (4.3.1)

where convergence is in probability, expectation, almost surely, or with rates of convergence. When we view P_n and P as (infinite-dimensional) vectors on the space of maps from $\mathcal{F} \to \mathbb{R}$, then we may define the (semi)norm $\|\cdot\|_{\mathcal{F}}$ for any $L : \mathcal{F} \to \mathbb{R}$ by

$$\|L\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |L(f)|,$$

in which case Eq. (4.3.1) is equivalent to proving

$$\|P_n - P\|_{\mathcal{F}} \to 0.$$

Thus, roughly, we are simply asking questions about when random vectors converge to their expectations.\footnote{Some readers may worry about measurability issues here. All of our applications will be in separable spaces, so that we may take suprema with abandon without worrying about measurability, and consequently we ignore this from now on.}

The starting point of this investigation considers bounded random functions, that is, \mathcal{F} consists of functions $f : \mathcal{X} \to [a, b]$ for some $-\infty < a \leq b < \infty$. In this case, the bounded differences inequality (Proposition 4.27) immediately implies that expectations of $\|P_n - P\|_{\mathcal{F}}$ provide strong guarantees on concentration of $\|P_n - P\|_{\mathcal{F}}$.

1 Some readers may worry about measurability issues here. All of our applications will be in separable spaces, so that we may take suprema with abandon without worrying about measurability, and consequently we ignore this from now on.
Proposition 4.31. Let \mathcal{F} be as above. Then
\[P(\|P_n - P\|_F \geq \mathbb{E}[\|P_n - P\|_F] + t) \leq \exp \left(-\frac{2nt^2}{(b-a)^2} \right) \text{ for } t \geq 0. \]

Proof. Let P_n and P_n' be two empirical distributions, differing only in observation i (with X_i and X_i'). We observe that
\[
\sup_{f \in \mathcal{F}} |P_n f - Pf| - \sup_{f \in \mathcal{F}} |P_n' f - Pf| \leq \sup_{f \in \mathcal{F}} \{ |P_n f - Pf| - |P_n' f - Pf| \} \\
\leq \frac{1}{n} \sup_{f \in \mathcal{F}} |f(X_i) - f(X_i')| \leq \frac{b-a}{n}
\]
by the triangle inequality. An entirely parallel argument gives the converse lower bound of $-\frac{b-a}{n}$, and thus Proposition 4.27 gives the result.

Proposition 4.31 shows that, to provide control over high-probability concentration of $\|P_n - P\|_F$, it is (at least in cases where \mathcal{F} is bounded) sufficient to control the expectation $\mathbb{E}[\|P_n - P\|_F]$. We take this approach through the remainder of this section, developing tools to simplify bounding this quantity.

Our starting points consist of a few inequalities relating expectations to symmetrized quantities, which are frequently easier to control than their non-symmetrized parts. This symmetrization technique is widely used in probability theory, theoretical statistics, and machine learning. The key is that for centered random variables, symmetrized quantities have, to within numerical constants, similar expectations to their non-symmetrized counterparts. Thus, in many cases, it is equivalent to analyze the symmetrized quantity and the initial quantity.

Proposition 4.32. Let X_i be independent random vectors on a (Banach) space with norm $\| \cdot \|$ and let $\varepsilon_i \{-1, 1\}$ be independent random signs. Then for any $p \geq 1$,
\[2^{-p} \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i(X_i - \mathbb{E}[X_i]) \right\|^p \right] \leq \mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\|^p \right] \leq 2^p \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\|^p \right]. \]

In the proof of the upper bound, we could also show the bound
\[\mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\|^p \right] \leq 2^p \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i (X_i - \mathbb{E}[X_i]) \right\|^p \right], \]
so we may analyze whichever is more convenient.

Proof. We prove the right bound first. We introduce independent copies of the X_i and use these to symmetrize the quantity. Indeed, let X_i' be an independent copy of X_i, and use Jensen’s inequality and the convexity of $\| \cdot \|^p$ to observe that
\[\mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\|^p \right] = \mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\|^p \right] \leq \mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - X_i') \right\|^p \right]. \]

Now, note that the distribution of $X_i - X_i'$ is symmetric, so that $X_i - X_i' \overset{\text{dist}}{=} \varepsilon_i(X_i - X_i')$, and thus
\[\mathbb{E} \left[\left\| \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \right\|^p \right] \leq \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i(X_i - X_i') \right\|^p \right]. \]
Multiplying and dividing by 2^p, Jensen’s inequality then gives
\[
E \left[\left\| \sum_{i=1}^{n} (X_i - E[X_i]) \right\|^p \right] \leq 2^p E \left[\left\| \frac{1}{2} \sum_{i=1}^{n} \varepsilon_i (X_i - X'_i) \right\|^p \right]
\]
\[
\leq 2^{p-1} \left(E \left[\left\| \sum_{i=1}^{n} \varepsilon_i X_i \right\|^p \right] + E \left[\left\| \sum_{i=1}^{n} \varepsilon_i X'_i \right\|^p \right] \right)
\]
as desired.

For the left bound in the proposition, let $Y_i = X_i - E[X_i]$ be the centered version of the random variables. We break the sum over random variables into two parts, conditional on whether $\varepsilon_i = \pm 1$, using repeated conditioning. We have
\[
E \left[\left\| \sum_{i=1}^{n} \varepsilon_i Y_i \right\|^p \right] = E \left[\sum_{i: \varepsilon_i = 1} Y_i - \sum_{i: \varepsilon_i = -1} Y_i \right]^p
\]
\[
\leq E \left[2^{p-1} E \left[\left\| \sum_{i: \varepsilon_i = 1} Y_i \right\|^p \mid \varepsilon \right] + 2^{p-1} E \left[\left\| \sum_{i: \varepsilon_i = -1} Y_i \right\|^p \mid \varepsilon \right] \right]
\]
\[
= 2^{p-1} E \left[E \left[\left\| \sum_{i: \varepsilon_i = 1} Y_i + \sum_{i: \varepsilon_i = -1} E[Y_i] \right\|^p \mid \varepsilon \right] + E \left[\left\| \sum_{i: \varepsilon_i = -1} Y_i + \sum_{i: \varepsilon_i = 1} E[Y_i] \right\|^p \mid \varepsilon \right] \right]
\]
\[
\leq 2^{p-1} E \left[E \left[\left\| \sum_{i: \varepsilon_i = 1} Y_i + \sum_{i: \varepsilon_i = -1} Y_i \right\|^p \mid \varepsilon \right] + E \left[\left\| \sum_{i: \varepsilon_i = -1} Y_i + \sum_{i: \varepsilon_i = 1} Y_i \right\|^p \mid \varepsilon \right] \right]
\]
\[
= 2^p E \left[\left\| \sum_{i=1}^{n} Y_i \right\|^p \right].
\]

We obtain as an immediate corollary a symmetrization bound for supremum norms on function spaces. In this corollary, we use the symmetrized empirical measure
\[
P^0_n := \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i 1_{X_i}, \quad P^0_n f = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i).
\]
The expectation of $\|P^0_n\|_F$ is of course the Rademacher complexity (Examples 4.29 and 4.30), and we have the following corollary.

Corollary 4.33. Let \mathcal{F} be a class of functions $f : \mathcal{X} \to \mathbb{R}$ and X_i be i.i.d. Then $E[\|P_n - P\|_F] \leq 2E[\|P^0_n\|_F]$.

From Corollary 4.33, it is evident that by controlling the expectation of the symmetrized process $E[\|P^0_n\|_F]$ we can derive concentration inequalities and uniform laws of large numbers. For example, we immediately obtain that
\[
P \left(\|P_n - P\|_F \geq 2E[\|P^0_n\|_F] + t \right) \leq \exp \left(-\frac{2nt^2}{(b-a)^2} \right).
\]
for all $t \geq 0$ whenever \mathcal{F} consists of functions $f : \mathcal{X} \to [a, b]$.

There are numerous examples of uniform laws of large numbers, many of which reduce to developing bounds on the expectation $\mathbb{E}[\|P_0^n\|_{\mathcal{F}}]$, which is frequently possible via more advanced techniques we develop in Chapter 6. A frequent application of these symmetrization ideas is to risk minimization problems, as we discuss in the coming section; for these, it will be useful for us to develop a few analytic and calculus tools. To better match the development of these ideas, we return to the notation of Rademacher complexities, so that $R_n(\mathcal{F}) := \mathbb{E}[\|P_0^n\|_{\mathcal{F}}]$. The first is a standard result, which we state for its historical value and the simplicity of its proof.

Proposition 4.34 (Massart’s finite class bound). Let \mathcal{F} be any collection of functions with $f : \mathcal{X} \to \mathbb{R}$, and assume that $\sigma_n^2 := n^{-1}\mathbb{E}[\max_{f \in \mathcal{F}} \sum_{i=1}^n f(X_i)^2] < \infty$. Then

$$R_n(\mathcal{F}) \leq \frac{\sqrt{2\sigma_n^2 \log |\mathcal{F}|}}{\sqrt{n}}.$$

Proof For each fixed x_i^n, the random variable $\sum_{i=1}^n \varepsilon_i f(x_i)$ is $\sum_{i=1}^n f(x_i)^2$-sub-Gaussian. Now, define $\sigma^2(x_i^n) := n^{-1} \max_{f \in \mathcal{F}} \sum_{i=1}^n f(x_i)^2$. Using the results of Exercise 4.7, that is, that $\mathbb{E}[\max_{j \leq n} Z_j] \leq \sqrt{2\sigma^2 \log n}$ if the Z_j are each σ^2-sub-Gaussian, we see that

$$R_n(\mathcal{F} | x_i^n) \leq \frac{\sqrt{2\sigma^2(x_i^n) \log |\mathcal{F}|}}{\sqrt{n}}.$$

Jensen’s inequality that $\mathbb{E}[\sqrt{\cdot}] \leq \sqrt{\mathbb{E}[\cdot]}$ gives the result.

A refinement of Massart’s finite class bound applies when the classes are infinite but, on a collection X_1, \ldots, X_n, the functions $f \in \mathcal{F}$ may take on only a (smaller) number of values. In this case, we define the empirical shatter coefficient of a collection of points x_1, \ldots, x_n by $S_{\mathcal{F}}(x_1^n) := \text{card}\{(f(x_1), \ldots, f(x_n)) | f \in \mathcal{F}\}$, the number of distinct vectors of values $(f(x_1), \ldots, f(x_n))$ the functions $f \in \mathcal{F}$ may take. The shatter coefficient is the maximum of the empirical shatter coefficients over $x_1^n \in \mathcal{X}^n$, that is, $S_{\mathcal{F}}(n) := \sup_{x_1^n} S_{\mathcal{F}}(x_1^n)$. It is clear that $S_{\mathcal{F}}(n) \leq |\mathcal{F}|$ always, but by only counting distinct values, we have the following corollary.

Corollary 4.35 (A sharper variant of Massart’s finite class bound). Let \mathcal{F} be any collection of functions with $f : \mathcal{X} \to \mathbb{R}$, and assume that $\sigma_n^2 := n^{-1}\mathbb{E}[\max_{f \in \mathcal{F}} \sum_{i=1}^n f(X_i)^2] < \infty$. Then

$$R_n(\mathcal{F}) \leq \frac{\sqrt{2\sigma_n^2 \log S_{\mathcal{F}}(n)}}{\sqrt{n}}.$$

Typical classes with small shatter coefficients include Vapnik-Chervonenkis classes of functions; we do not discuss these further here, instead referring to one of the many books in machine learning and empirical process theory in statistics.

The most important of the calculus rules we use are the comparison inequalities for Rademacher sums, which allow us to consider compositions of function classes and maintain small complexity measurers. We state the rule here; the proof is complex, so we defer it to Section 4.4.3

Theorem 4.36 (Ledoux-Talagrand Contraction). Let $T \subset \mathbb{R}^n$ be an arbitrary set and let $\phi_i : \mathbb{R} \to \mathbb{R}$ be 1-Lipschitz and satisfy $\phi_i(0) = 0$. Then for any nondecreasing convex function $\Phi : \mathbb{R} \to \mathbb{R}_+$,

$$\mathbb{E} \left[\Phi \left(\frac{1}{2} \sup_{t \in T} \left| \sum_{i=1}^n \phi_i(t_i) \varepsilon_i \right| \right) \right] \leq \mathbb{E} \left[\Phi \left(\sup_{t \in T} (t, \varepsilon) \right) \right].$$
A corollary to this theorem is suggestive of its power and applicability. Let \(\phi : \mathbb{R} \to \mathbb{R} \) be \(L \)-Lipschitz, and for a function class \(\mathcal{F} \) define \(\phi \circ \mathcal{F} = \{ \phi \circ f \mid f \in \mathcal{F} \} \). Then we have the following corollary about Rademacher complexities of contractive mappings.

Corollary 4.37. Let \(\mathcal{F} \) be an arbitrary function class and \(\phi \) be \(L \)-Lipschitz. Then

\[
R_n(\phi \circ \mathcal{F}) \leq 2LR_n(\mathcal{F}) + |\phi(0)|/\sqrt{n}.
\]

Proof The result is an almost immediate consequence of Theorem 4.36; we simply recenter our functions. Indeed, we have

\[
R_n(\phi \circ \mathcal{F} | x^n) = \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i(\phi(f(x_i)) - \phi(0)) \right| + \frac{1}{n} \sum_{i=1}^{n} \epsilon_i \phi(0) \right] \leq 2LR_n(\mathcal{F}) + |\phi(0)|/\sqrt{n},
\]

where the final inequality follows by Theorem 4.36 (as \(g(\cdot) = \phi(\cdot) - \phi(0) \) is Lipschitz and satisfies \(g(0) = 0 \)) and that \(\mathbb{E}[\| \sum_{i=1}^{n} \epsilon_i \|] \leq \sqrt{n} \).

4.3.2 Generalization bounds

We now build off of our ideas on uniform laws of large numbers and Rademacher complexities to demonstrate their applications in statistical machine learning problems, focusing on empirical risk minimization procedures and related problems. We consider a setting as follows: we have a sample \(Z_1, \ldots, Z_n \in \mathcal{Z} \) drawn i.i.d. according to some (unknown) distribution \(P \), and we have a collection of functions \(\mathcal{F} \) from which we wish to select an \(f \) that “fits” the data well, according to some loss measure \(\ell : \mathcal{F} \times \mathcal{Z} \to \mathbb{R} \). That is, we wish to find a function \(f \in \mathcal{F} \) minimizing the risk

\[
L(f) := \mathbb{E}_P[\ell(f, Z)].
\]

(4.3.2)

In general, however, we only have access to the risk via the empirical distribution of the \(Z_i \), and we often choose \(f \) by minimizing the empirical risk

\[
\hat{L}_n(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f, Z_i).
\]

(4.3.3)

As written, this formulation is quite abstract, so we provide a few examples to make it somewhat more concrete.

Example 4.38 (Binary classification problems): One standard problem—and still abstract—that motivates the formulation (4.3.2) is the binary classification problem. Here the data \(Z_i \) come in pairs \((X, Y) \), where \(X \in \mathcal{X} \) is some set of covariates (independent variables) and \(Y \in \{-1, 1\} \) is the label of example \(X \). The function class \(\mathcal{F} \) consists of functions \(f : \mathcal{X} \to \mathbb{R} \), and the goal is to find a function \(f \) such that

\[
P(\text{sign}(f(X)) \neq Y)
\]

is small, that is, minimizing the risk \(\mathbb{E}[\ell(f, Z)] \) where the loss is the 0-1 loss, \(\ell(f, (x, y)) = 1 \{ f(x)y \leq 0 \} \). \(\diamond \)
Example 4.39 (Multiclass classification): The multiclass classification problem is identical to the binary problem, but instead of $Y \in \{-1, 1\}$ we assume that $Y \in [k] = \{1, \ldots, k\}$ for some $k \geq 2$, and the function class \mathcal{F} consists of (a subset of) functions $f : \mathcal{X} \to \mathbb{R}^k$. The goal is to find a function f such that, if $Y = y$ is the correct label for a datapoint x, then $f_y(x) > f_l(x)$ for all $l \neq y$. That is, we wish to find $f \in \mathcal{F}$ minimizing
$$
P(\exists \ l \neq Y \text{ such that } f_l(X) \geq f_Y(X)).$$
In this case, the loss function is the zero-one loss $\ell(f, (x, y)) = 1 \{\max_{t \neq y} f_t(x) \geq f_y(x)\}$. ◊

Example 4.40 (Binary classification with linear functions): In the standard statistical learning setting, the data x belong to \mathbb{R}^d, and we assume that our function class \mathcal{F} is indexed by a set $\Theta \subset \mathbb{R}^d$, so that $\mathcal{F} = \{f_\theta : f_\theta(x) = \theta^\top x, \theta \in \Theta\}$. In this case, we may use the zero-one loss, the convex hinge loss, or the (convex) logistic loss, which are variously $\ell_{zo}(f_\theta, (x, y)) := 1 \{y\theta^\top x \leq 0\}$, and the convex losses
$$
\ell_{\text{hinge}}(f_\theta, (x, y)) = \left[1 - yx^\top \theta\right]^+ \quad \text{and} \quad \ell_{\text{logit}}(f_\theta, (x, y)) = \log(1 + \exp(-yx^\top \theta)).
$$
The hinge and logistic losses, as they are convex, are substantially computationally easier to work with, and they are common choices in applications. ◊

The main motivating question that we ask is the following: given a sample Z_1, \ldots, Z_n, if we choose some $\hat{f}_n \in \mathcal{F}$ based on this sample, can we guarantee that it generalizes to unseen data? In particular, can we guarantee that (with high probability) we have the empirical risk bound
$$
\hat{L}_n(\hat{f}_n) = \frac{1}{n} \sum_{i=1}^n \ell(\hat{f}_n, Z_i) \leq R(\hat{f}_n) + \epsilon
$$
(4.3.4)
for some small ϵ? If we allow \hat{f}_n to be arbitrary, then this becomes clearly impossible: consider the classification example 4.38, and set \hat{f}_n to be the “hash” function that sets $\hat{f}_n(x) = y$ if the pair (x, y) was in the sample, and otherwise $\hat{f}_n(x) = -1$. Then clearly $\hat{L}_n(\hat{f}_n) = 0$, while there is no useful bound on $R(\hat{f}_n)$.

Finite and countable classes of functions
In order to get bounds of the form (4.3.4), we require a few assumptions that are not too onerous. First, throughout this section, we will assume that for any fixed function f, the loss $\ell(f, Z)$ is σ^2-sub-Gaussian, that is,
$$
\mathbb{E}_P[\exp(\lambda(\ell(f, Z) - L(f)))] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right)
$$
(4.3.5)
for all $f \in \mathcal{F}$. (Recall that the risk functional $L(f) = \mathbb{E}_P[\ell(f, Z)]$.) For example, if the loss is the zero-one loss from classification problems, inequality (4.3.5) is satisfied with $\sigma^2 = \frac{1}{4}$ by Hoeffding’s lemma. In order to guarantee a bound of the form (4.3.5) for a function \hat{f} chosen dependent on the data, in this section we give uniform bounds, that is, we would like to bound
$$
P\left(\text{there exists } f \in \mathcal{F} \text{ s.t. } L(f) > \hat{L}_n(f) + t\right) \quad \text{or} \quad P\left(\sup_{f \in \mathcal{F}} |\hat{L}_n(f) - R(f)| > t\right).$$
Such uniform bounds are certainly sufficient to guarantee that the empirical risk is a good proxy for the true risk L, even when \hat{f}_n is chosen based on the data.

Now, recalling that our set of functions or predictors \mathcal{F} is finite or countable, let us suppose that for each $f \in \mathcal{F}$, we have a complexity measure $c(f)$—a penalty—such that

$$\sum_{f \in \mathcal{F}} e^{-c(f)} \leq 1. \quad (4.3.6)$$

This inequality should look familiar to the Kraft inequality—which we will see in the coming chapters—from coding theory. As soon as we have such a penalty function, however, we have the following result.

Theorem 4.41. Let the loss ℓ, distribution P on \mathcal{Z}, and function class \mathcal{F} be such that $\ell(f, Z)$ is σ^2-sub-Gaussian for each $f \in \mathcal{F}$, and assume that the complexity inequality $(4.3.6)$ holds. Then with probability at least $1 - \delta$ over the sample Z_1^n, $L(f) \leq \hat{L}_n(f) + \sqrt{2\sigma^2 \frac{\log \frac{1}{\delta} + c(f)}{n}}$ for all $f \in \mathcal{F}$.

Proof. First, we note that by the usual sub-Gaussian concentration inequality (Corollary 4.10) we have for any $t \geq 0$ and any $f \in \mathcal{F}$ that

$$\mathbb{P} \left(L(f) \geq \hat{L}_n(f) + t \right) \leq \exp \left(-\frac{nt^2}{2\sigma^2} \right).$$

Now, if we replace t by $\sqrt{t^2 + 2\sigma^2 c(f)/n}$, we obtain

$$\mathbb{P} \left(L(f) \geq \hat{L}_n(f) + \sqrt{t^2 + 2\sigma^2 c(f)/n} \right) \leq \exp \left(-\frac{nt^2}{2\sigma^2} - c(f) \right).$$

Then using a union bound, we have

$$\mathbb{P} \left(\exists f \in \mathcal{F} \text{ s.t. } L(f) \geq \hat{L}_n(f) + \sqrt{t^2 + 2\sigma^2 c(f)/n} \right) \leq \sum_{f \in \mathcal{F}} \exp \left(-\frac{nt^2}{2\sigma^2} - c(f) \right)$$

$$= \exp \left(-\frac{nt^2}{2\sigma^2} \right) \sum_{f \in \mathcal{F}} \exp(-c(f)) \leq 1.$$

Setting $t^2 = 2\sigma^2 \log \frac{1}{\delta}/n$ gives the result. \hfill \Box

As one classical example of this setting, suppose that we have a finite class of functions \mathcal{F}. Then we can set $c(f) = \log |\mathcal{F}|$, in which case we clearly have the summation guarantee $(4.3.6)$, and we obtain $L(f) \leq \hat{L}_n(f) + \sqrt{2\sigma^2 \frac{\log \frac{1}{\delta} + \log |\mathcal{F}|}{n}}$ uniformly for $f \in \mathcal{F}$ with probability at least $1 - \delta$. To make this even more concrete, consider the following example.
Example 4.42 (Floating point classifiers): We implement a linear binary classifier using double-precision floating point values, that is, we have $f_\theta(x) = \theta^T x$ for all $\theta \in \mathbb{R}^d$ that may be represented using d double-precision floating point numbers. Then for each coordinate of θ, there are at most 2^{64} representable numbers; in total, we must thus have $|F| \leq 2^{64d}$. Thus, for the zero-one loss $\ell_{zo}(f_\theta, (x, y)) = 1 \{ \theta^T x y \leq 0 \}$, we have

$$L(f_\theta) \leq \hat{L}_n(f_\theta) + \sqrt{\frac{\log \frac{1}{\delta} + 45d}{2n}}$$

for all representable classifiers simultaneously, with probability at least $1 - \delta$, as the zero-one loss is $1/4$-sub-Gaussian. (Here we have used that $64 \log 2 < 45$.)

We also note in passing that by replacing δ with $\delta/2$ in the bounds of Theorem 4.41, a union bound yields the following two-sided corollary.

Corollary 4.43. Under the conditions of Theorem 4.41, we have

$$\left| \hat{L}_n(f) - L(f) \right| \leq \sqrt{\frac{2\sigma^2 \log \frac{2}{\delta} + c(f)}{n}}$$

for all $f \in F$ with probability at least $1 - \delta$.

Large classes

When the collection of functions is (uncountably) infinite, it can be more challenging to obtain strong generalization bounds. There still exist numerous tools for these ideas, however, and we present a few of the more basic and common of them. We return in the next chapter to alternative approaches based on randomization and divergence measures, which provide guarantees with somewhat similar structure to those we present here.

Let us begin by considering a few examples, after which we provide examples showing how to derive explicit bounds using Rademacher complexities.

Example 4.44 (Rademacher complexity of the ℓ_2-ball): Let $\Theta = \{ \theta \in \mathbb{R}^d \mid \|\theta\|_2 \leq r \}$, and consider the class of linear functionals $F := \{ f_\theta(x) = \theta^T x, \theta \in \Theta \}$. Then

$$R_n(F \mid x_1^n) \leq \frac{r}{n} \sqrt{\sum_{i=1}^n \|x_i\|_2^2},$$

because we have

$$R_n(F \mid x_1^n) = \frac{r}{n} \mathbb{E} \left[\left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_2 \right] \leq \frac{r}{n} \mathbb{E} \left[\left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_2^2 \right] = \frac{r}{n} \sum_{i=1}^n \|x_i\|_2^2,$$

as desired.

In high-dimensional situations, it is sometimes useful to consider more restrictive function classes, for example, those indexed by vectors in an ℓ_1-ball.
Example 4.45 (Rademacher complexity of the ℓ_1-ball): In contrast to the previous example, suppose that $\Theta = \{\theta \in \mathbb{R}^d \mid \|\theta\|_1 \leq r\}$, and consider the linear class $\mathcal{F} := \{f_\theta(x) = \theta^T x, \theta \in \Theta\}$. Then

$$R_n(\mathcal{F} \mid x^n) = \frac{r}{n} \mathbb{E} \left[\left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_\infty \right].$$

Now, each coordinate j of $\sum_{i=1}^n \varepsilon_i x_i$ is $\sum_{i=1}^n x_{ij}^2$-sub-Gaussian, and thus using that $\mathbb{E} \left[\max_{j \leq d} Z_j \right] \leq \sqrt{2\sigma^2 \log d}$ for arbitrary σ^2-sub-Gaussian Z_j (see Exercise 4.7), we have

$$R_n(\mathcal{F} \mid x^n) \leq \frac{r}{n} \sqrt{2 \log(2d) \max_j \sum_{i=1}^n x_{ij}^2}.$$

To facilitate comparison with Example 4.45, suppose that the vectors x_i all satisfy $\|x_i\|_\infty \leq b$. In this case, the preceding inequality implies that $R_n(\mathcal{F} \mid x^n) \leq rb \sqrt{\log(2d)/\sqrt{n}}$. In contrast, the ℓ_2-norm of such x_i may satisfy $\|x_i\|_2 = b \sqrt{d}$, so that the bounds of Example 4.44 scale instead as $rb \sqrt{d}/\sqrt{n}$, which can be exponentially larger.

These examples are sufficient to derive a few sophisticated risk bounds. We focus on the case where we have a loss function applied to some class with reasonable Rademacher complexity, in which case it is possible to recenter the loss class and achieve reasonable complexity bounds. The coming proposition does precisely this in the case of margin-based binary classification. Consider points $(x, y) \in \mathcal{X} \times \{\pm 1\}$, and let \mathcal{F} be an arbitrary class of functions $f : \mathcal{X} \rightarrow \mathbb{R}$ and $\mathcal{L} = \{(x, y) \mapsto \ell(yf(x))\} \subseteq \mathcal{F}$ be the induced collection of losses. As a typical example, we might have $\ell(t) = [1 - t]^+_\epsilon$, $\ell(t) = e^{-t}$, or $\ell(t) = \log(1 + e^{-t})$. We have the following proposition.

Proposition 4.46. Let \mathcal{F} and \mathcal{X} be such that $\sup_{x \in \mathcal{X}} |f(x)| \leq M$ for $f \in \mathcal{F}$ and assume that ℓ is L-Lipschitz. Define the empirical and population risks $\hat{L}_n(f) := P_n\ell(Yf(X))$ and $L(f) := P\ell(Yf(X))$. Then

$$\mathbb{P} \left(\sup_{f \in \mathcal{F}} |\hat{L}_n(f) - L(f)| \geq 4LR_n(\mathcal{F}) + t \right) \leq 2 \exp \left(-\frac{nt^2}{2LM^2} \right) \text{ for } t \geq 0.$$

Proof. We may recenter the class \mathcal{L}, that is, replace $\ell(\cdot)$ with $\ell(\cdot) - \ell(0)$, without changing $\hat{L}_n(f) - L(f)$. Call this class \mathcal{L}_0, so that $\|P_n - P\|_{\mathcal{L}} = \|P_n - P\|_{\mathcal{L}_0}$. This recentered class satisfies bounded differences with constant $2ML$, as $|\ell(yf(x)) - \ell(y'f(x'))| \leq L|yf(x) - y'f(x')| \leq 2LM$, as in the proof of Proposition 4.31. Applying Proposition 4.31 and then Corollary 4.33 and gives that $\mathbb{P} \left(\sup_{f \in \mathcal{F}} |\hat{L}_n(f) - L(f)| \geq 2R_n(\mathcal{L}_0) + t \right) \leq \exp \left(-\frac{nt^2}{4LM^2} \right)$ for $t \geq 0$. Then applying the contraction inequality (Theorem 4.36) yields $R_n(\mathcal{L}_0) \leq 2LR_n(\mathcal{F})$, giving the result.

Let us give a few example applications of these ideas.

Example 4.47 (Support vector machines and hinge losses): In the support vector machine problem, we receive data $(X_i, Y_i) \in \mathbb{R}^d \times \{\pm 1\}$, and we seek to minimize average of the losses $\ell(\theta; (x, y)) = [1 - y\theta^T x]_+$. We assume that the space \mathcal{X} has $\|x\|_2 \leq b$ for $x \in \mathcal{X}$ and that $\Theta = \{\theta \in \mathbb{R}^d \mid \|\theta\|_2 \leq r\}$. Applying Proposition 4.46 gives

$$\mathbb{P} \left(\sup_{\theta \in \Theta} |P_n\ell(\theta; (X, Y)) - P\ell(\theta; (X, Y))| \geq 4R_n(\mathcal{F}_\Theta) + t \right) \leq \exp \left(-\frac{nt^2}{2r^2b^2} \right),$$

82
where \(\mathcal{F}_\Theta = \{ f_\theta(x) = \theta^T x \}_{\theta \in \Theta} \). Now, we apply Example 4.44, which implies that
\[
R_n(\phi \circ \mathcal{F}_\Theta) \leq 2R_n(\mathcal{F}_\theta) \leq \frac{2rb}{\sqrt{n}}.
\]
That is, we have
\[
P\left(\sup_{\theta \in \Theta} |P_n\ell(\theta; (X, Y)) - P\ell(\theta; (X, Y))| \geq \frac{4rb}{\sqrt{n}} + t \right) \leq \exp\left(-\frac{nt^2}{2(rb)^2} \right),
\]
so that \(P_n \) and \(P \) become close at rate roughly \(rb/\sqrt{n} \) in this case.

Example 4.47 is what is sometimes called a “dimension free” convergence result—there is no explicit dependence on the dimension \(d \) of the problem, except as the radii \(r \) and \(b \) make explicit.

One consequence of this is that if \(x \) and \(\theta \) instead belong to a Hilbert space (potential infinite dimensional) with inner product \(\langle \cdot, \cdot \rangle \) and norm \(\|x\| = \langle x, x \rangle \), but for which we are guaranteed that \(\|\theta\| \leq r \) and similarly \(\|x\| \leq b \), then the result still applies.

Extending this to other function classes is reasonably straightforward, and we present a few examples in the exercises.

4.3.3 Structural risk minimization and adaptivity

In general, for a given function class \(\mathcal{F} \), we can always decompose the excess risk into the approximation/estimation error decomposition. That is, let
\[
L^* = \inf_f L(f),
\]
where the preceding infimum is taken across all (measurable) functions. Then we have
\[
L(\hat{f}_n) - L^* = L(\hat{f}_n) - \inf_{f \in \mathcal{F}} L(f) + \inf_{f \in \mathcal{F}} L(f) - L^*. \tag{4.3.7}
\]
There is often a tradeoff between these two, analogous to the bias/variance tradeoff in classical statistics; if the approximation error is very small, then it is likely hard to guarantee that the estimation error converges quickly to zero, while certainly a constant function will have low estimation error, but may have substantial approximation error. With that in mind, we would like to develop procedures that, rather than simply attaining good performance for the class \(\mathcal{F} \), are guaranteed to trade-off in an appropriate way between the two types of error. This leads us to the idea of structural risk minimization.

In this scenario, we assume we have a sequence of classes of functions, \(\mathcal{F}_1, \mathcal{F}_2, \ldots \), of increasing complexity, meaning that \(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \). For example, in a linear classification setting with vectors \(x \in \mathbb{R}^d \), we might take a sequence of classes allowing increasing numbers of non-zeros in the classification vector \(\theta \):
\[
\mathcal{F}_1 := \left\{ f_\theta(x) = \theta^T x \text{ such that } \|\theta\|_0 \leq 1 \right\}, \quad \mathcal{F}_2 := \left\{ f_\theta(x) = \theta^T x \text{ such that } \|\theta\|_0 \leq 2 \right\}, \ldots .
\]
More broadly, let \(\{ \mathcal{F}_k \}_{k \in \mathbb{N}} \) be a (possibly infinite) increasing sequence of function classes. We assume that for each \(\mathcal{F}_k \) and each \(n \in \mathbb{N} \), there exists a constant \(C_{n,k}(\delta) \) such that we have the uniform generalization guarantee
\[
P\left(\sup_{f \in \mathcal{F}_k} \left| \hat{L}_n(f) - L(f) \right| \geq C_{n,k}(\delta) \right) \leq \delta \cdot 2^{-k}.
\]
For example, by Corollary 4.43, if \mathcal{F} is finite we may take

$$C_{n,k}(\delta) = \sqrt{2\sigma^2} \log |\mathcal{F}_k| + \log \frac{1}{\delta} + k \log 2 \frac{1}{n}.$$

(We will see in subsequent sections of the course how to obtain other more general guarantees.)

We consider the following structural risk minimization procedure. First, given the empirical risk \hat{L}_n, we find the model collection k minimizing the penalized risk

$$\hat{k} := \arg\min_{k \in \mathbb{N}} \left\{ \inf_{f \in \mathcal{F}_k} \hat{L}_n(f) + C_{n,k}(\delta) \right\}.$$

(4.3.8a)

We then choose \hat{f} to minimize the risk over the estimated “best” class $\mathcal{F}_{\hat{k}}$, that is, set

$$\hat{f} := \arg\min_{f \in \mathcal{F}_{\hat{k}}} \hat{L}_n(f).$$

(4.3.8b)

With this procedure, we have the following theorem.

Theorem 4.48. Let \hat{f} be chosen according to the procedure (4.3.8a)–(4.3.8b). Then with probability at least $1 - \delta$, we have

$$L(\hat{f}) \leq \inf_{k \in \mathbb{N}} \inf_{f \in \mathcal{F}_k} \{ L(f) + 2C_{n,k}(\delta) \}.$$

Proof
First, we have by the assumed guarantee on $C_{n,k}(\delta)$ that

$$\mathbb{P} \left(\exists k \in \mathbb{N} \text{ and } f \in \mathcal{F}_k \text{ such that } \sup_{f \in \mathcal{F}_k} \left| \hat{L}_n(f) - L(f) \right| \geq C_{n,k}(\delta) \right) \leq \sum_{k=1}^{\infty} \mathbb{P} \left(\exists f \in \mathcal{F}_k \text{ such that } \sup_{f \in \mathcal{F}_k} \left| \hat{L}_n(f) - L(f) \right| \geq C_{n,k}(\delta) \right) \leq \sum_{k=1}^{\infty} \delta \cdot 2^{-k} = \delta.$$

On the event that $\sup_{f \in \mathcal{F}_k} \left| \hat{L}_n(f) - L(f) \right| < C_{n,k}(\delta)$ for all k, which occurs with probability at least $1 - \delta$, we have

$$L(\hat{f}) \leq \hat{L}_n(f) + C_{n,k}(\delta) = \inf_{k \in \mathbb{N}} \inf_{f \in \mathcal{F}_k} \left\{ \hat{L}_n(f) + C_{n,k}(\delta) \right\} \leq \inf_{k \in \mathbb{N}} \inf_{f \in \mathcal{F}_k} \{ L(f) + 2C_{n,k}(\delta) \}$$

by our choice of \hat{f}. This is the desired result.

We conclude with a final example, using our earlier floating point bound from Example 4.42, coupled with Corollary 4.43 and Theorem 4.48.

Example 4.49 (Structural risk minimization with floating point classifiers): Consider again our floating point example, and let the function class \mathcal{F}_k consist of functions defined by at most k double-precision floating point values, so that $\log |\mathcal{F}_k| \leq 45d$. Then by taking

$$C_{n,k}(\delta) = \sqrt{\frac{\log \frac{1}{\delta} + 65k \log 2}{2n}}$$

84
we have that \(|\overline{L}_n(f) - L(f)| \leq \sigma_n(f)\) simultaneously for all \(f \in F_k\) and all \(F_k\), with probability at least \(1 - \delta\). Then the empirical risk minimization procedure (4.3.8) guarantees that

\[
L(f) \leq \inf_{k \in \mathbb{N}} \left\{ \inf_{f \in F_k} L(f) + \sqrt{\frac{2 \log \frac{1}{\delta} + 91k}{n}} \right\}.
\]

Roughly, we trade between small risk \(L(f)\)—as the risk \(\inf_{f \in F_k} L(f)\) must be decreasing in \(k\)—and the estimation error penalty, which scales as \(\sqrt{(k + \log \frac{1}{\delta})/n}\). \(\diamondsuit\)

4.4 Technical proofs

4.4.1 Proof of Theorem 4.11

1. **implies** 2. Let \(K_1 = 1\). Using the change of variables identity that for a nonnegative random variable \(Z\) and any \(k \geq 1\) we have \(E[Z^k] = k \int_0^\infty t^{k-1} \mathbb{P}(Z \geq t) dt\), we find

\[
E[X^k] = k \int_0^\infty t^{k-1} \mathbb{P}(|X| \geq t) dt \leq 2k \int_0^\infty t^{k-1} \exp\left(-\frac{\lambda^2}{2}\right) dt = k\sigma^k \int_0^\infty \exp(-u) du,
\]

where for the last inequality we made the substitution \(u = \frac{t^2}{\sigma^2}\). Noting that this final integral is \(\Gamma(k/2)\), we have \(E[X^k] \leq k\sigma^k \Gamma(k/2)\). Because \(\Gamma(s) \leq s^s\) for \(s \geq 1\), we obtain

\[
E[|X|^k]^{1/k} \leq k^{1/k} \sigma \sqrt{k/2} \leq e^{1/e} \sigma \sqrt{k}.
\]

Thus (2) holds with \(K_2 = e^{1/e}\).

2. **implies** 3. Let \(\sigma = \|X\|_{l_2} = \sup_{k \geq 1} k^{-\frac{1}{2}} E[|X|^k]^{1/k}\), so that \(K_2 = 1\) and \(E[|X|^k] \leq k^{\frac{k}{2}} \sigma\) for all \(k\). For \(K_3 \in \mathbb{R}_+\), we thus have

\[
E[\exp(X^2/(K_3 \sigma^2))] = \sum_{k=0}^{\infty} \frac{E[X^{2k}]}{k! K_3^{2k} \sigma^{2k}} \leq \sum_{k=0}^{\infty} \frac{\sigma^{2k}(2k)^k}{k! K_3^{2k} \sigma^{2k}} \leq \sum_{k=0}^{\infty} \left(\frac{2e}{K_3}\right)^k
\]

where inequality (i) follows because \(k! \geq (k/e)^k\), or \(1/k! \leq (e/k)^k\). Noting that \(\sum_{k=0}^{\infty} \alpha^k = \frac{1}{1-\alpha}\), we obtain (3) by taking \(K_3 = e \sqrt{2/(e - 1)} \approx 2.933\).

3. **implies** 4. Let us take \(K_3 = 1\). We claim that (4) holds with \(K_4 = \frac{3}{4}\). We prove this result for both small and large \(\lambda\). First, note the (highly non-standard, but true!) inequality that \(e^x \leq e + e^{\frac{9x^2}{16}}\) for all \(x\). Then we have

\[
E[\exp(\lambda X)] \leq E[\exp(\lambda X)] + E\left[\exp\left(\frac{9\lambda^2 X^2}{16}\right)\right]
\]

Now note that for \(|\lambda| \leq \frac{4}{3\alpha}\), we have \(9\lambda^2 \sigma^2/16 \leq 1\), and so by Jensen’s inequality,

\[
E\left[\exp\left(\frac{9\lambda^2 X^2}{16}\right)\right] = E\left[\exp(X^2/\sigma^2)\right] \leq e^{\frac{9\lambda^2 \sigma^2}{16}}.
\]
For large λ, we use the simpler Fenchel-Young inequality, that is, that $
abla x \leq \frac{\lambda^2}{2c} + \frac{c^2}{2}$, valid for all $c \geq 0$. Then we have for any $0 \leq c \leq 2$ that

$$
\mathbb{E}[\exp(\lambda X)] \leq e^{\frac{\lambda^2 X^2}{2c}} \mathbb{E} \left[\exp \left(\frac{cX^2}{2\sigma^2} \right) \right] \leq e^{\frac{\lambda^2}{2c}} e^{\frac{\lambda^2 c^2}{2}},
$$

where the final inequality follows from Jensen’s inequality. If $|\lambda| \geq \frac{4}{\sigma^2}$, then $\frac{1}{2} \leq \frac{9}{\sigma^2} \lambda^2 \sigma^2$, and we have

$$
\mathbb{E}[\exp(\lambda X)] \leq \inf_{c \in [0,2]} e^{\frac{1}{2} + \frac{9c}{\sigma^2}} \lambda^2 \sigma^2 = \exp \left(\frac{3\lambda^2 \sigma^2}{4} \right).
$$

(4) implies (1) This is the content of Proposition 4.8, with $K_1 = \frac{1}{2}$ and $K_1 = 1$.

4.4.2 Proof of Theorem 4.15

(1) implies (2) As in the proof of Theorem 4.11, we use that for a nonnegative random variable Z we have $\mathbb{E}[Z^k] = k \int_0^\infty t^{k-1} \mathbb{P}(Z \geq t)dt$. Let $K_1 = 1$. Then

$$
\mathbb{E}[|X|^k] = k \int_0^\infty t^{k-1} \mathbb{P}(|X| \geq t)dt \leq 2k \int_0^\infty t^{k-1} \exp(-t/\sigma)dt = 2k \sigma^k \int_0^\infty u^{k-1} \exp(-u)du,
$$

where we used the substitution $u = t/\sigma$. Thus we have $\mathbb{E}[|X|^k] \leq 2\Gamma(k+1)\sigma^k$, and using $\Gamma(k+1) \leq k^k$ yields $\mathbb{E}[|X|^k]^{1/k} \leq 2^{1/k}k\sigma$, so that (2) holds with $K_2 \leq 2$.

(2) implies (3) Let $K_2 = 1$, and note that

$$
\mathbb{E}[\exp(X/(K_3\sigma))] = \sum_{k=0}^\infty \frac{\mathbb{E}[X^k]}{K_3^k \sigma^k k!} \leq \sum_{k=0}^\infty \frac{k^k}{k!} \cdot \frac{1}{K_3^k} \leq \sum_{k=0}^\infty \left(\frac{e}{K_3} \right)^k,
$$

where inequality (i) used that $k! \geq (k/e)^k$. Taking $K_3 = e^2/(e-1) < 5$ gives the result.

(3) implies (1) If $\mathbb{E}[\exp(X/\sigma)] \leq e$, then for $t \geq 0$

$$
\mathbb{P}(X \geq t) \leq \mathbb{E}[\exp(X/\sigma)] e^{-t/\sigma} \leq e^{1-t/\sigma}.
$$

With the same result for the negative tail, we have

$$
\mathbb{P}(|X| \geq t) \leq 2e^{1-t/\sigma} \wedge 1 \leq 2e^{-\frac{2t}{\sigma^2}},
$$

so that (1) holds with $K_1 = \frac{5}{2}$.

(2) if and only if (4) Thus, we see that up to constant numerical factors, the definition $\|X\|_{\psi_1} = \sup_{k \geq 1} k^{-1} \mathbb{E}[|X|^k]^{1/k}$ has the equivalent statements

$$
\mathbb{P}(|X| \geq t) \leq 2\exp(-(t/(K_1 \|X\|_{\psi_1}))) \quad \text{and} \quad \mathbb{E}[\exp(X/(K_3 \|X\|_{\psi_1}))] \leq e.
$$

Now, let us assume that (2) holds with $K_2 = 1$, so that $\sigma = \|X\|_{\psi_1}$ and that $\mathbb{E}[X] = 0$. Then we have $\mathbb{E}[X^k] \leq k^k \|X\|_{\psi_1}^k$, and

$$
\mathbb{E}[\exp(\lambda X)] = 1 + \sum_{k=2}^\infty \frac{\lambda^k \mathbb{E}[X^k]}{k!} \leq 1 + \sum_{k=2}^\infty \frac{\lambda^k \|X\|_{\psi_1}^k \cdot k^k}{k!} \leq 1 + \sum_{k=2}^\infty \frac{\lambda^k \|X\|_{\psi_1}^k e^k}{k!}.
$$
the final inequality following because $k! \geq (k/e)^k$. Now, if $|\lambda| \leq \frac{1}{2} \|X\|_{\psi_1}$, then we have

$$E[\exp(\lambda X)] \leq 1 + \lambda^2 e^{2 \|X\|_{\psi_1}^2} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \|X\|_{\psi_1} \leq 1 + 2e^2 \|X\|_{\psi_1}^2 \lambda^2,$$

as the final sum is at most $\sum_{k=0}^{\infty} 2^{-k} = 2$. Using $1 + x \leq e^x$ gives that (2) implies (4). For the opposite direction, we may simply use that if (4) holds with $K_4 = 1$ and $K'_4 = 1$, then $E[\exp(X/\sigma)] \leq \exp(1)$, so that (3) holds.

4.4.3 Proof of Theorem 4.36

JCD Comment: I would like to write this. For now, check out Ledoux and Talagrand [108, Theorem 4.12] or Koltchinskii [103, Theorem 2.2].

4.5 Bibliography

A few references on concentration, random matrices, and entropies include Vershynin’s extraordinarily readable lecture notes [141], the comprehensive book of Boucheron, Lugosi, and Massart [32], and the more advanced material in Buldygin and Kozachenko [38]. Many of our arguments are based off of those of Vershynin and Boucheron et al.

4.6 Exercises

Question 4.1 (Concentration of bounded random variables): Let X be a random variable taking values in $[a, b]$, where $-\infty < a \leq b < \infty$. In this question, we show *Hoeffding’s Lemma*, that is, that X is sub-Gaussian: for all $\lambda \in \mathbb{R}$, we have

$$E[\exp(\lambda(X - E[X]))] \leq \exp \left(\frac{\lambda^2(b - a)^2}{8} \right).$$

(a) Show that $\text{Var}(X) \leq \frac{(b-a)^2}{4} = \frac{(b-a)^2}{4}$ for any random variable X taking values in $[a, b]$.

(b) Let

$$\varphi(\lambda) = \log E[\exp(\lambda(X - E[X]))].$$

Assuming that $E[X] = 0$ (convince yourself that this is no loss of generality) show that

$$\varphi(0) = 0, \quad \varphi'(0) = 0, \quad \varphi''(t) = \frac{E[X^2 e^{tX}]}{E[e^{tX}]} - \frac{E[X e^{tX}]^2}{E[e^{tX}]^2}.$$

(You may assume that derivatives and expectations commute, which they do in this case.)

(c) Construct a random variable Y_t, defined for $t \in \mathbb{R}$, such that $Y_t \in [a, b]$ and $\text{Var}(Y_t) = \varphi''(t)$.

(You may assume X has a density for simplicity.)

(d) Using the result of part (c), show that $\varphi(\lambda) \leq \frac{\lambda^2(b-a)^2}{8}$ for all $\lambda \in \mathbb{R}$.

87
Question 4.2: In this question, we show how to use Bernstein-type (sub-exponential) inequalities to give sharp convergence guarantees. Recall (Example 4.14, Corollary 4.18, and inequality (4.1.8)) that if \(X_i\) are independent bounded random variables with \(|X_i - \mathbb{E}[X]| \leq b\) for all \(i\) and \(\text{Var}(X_i) \leq \sigma^2\), then

\[
\max \left\{ \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq \mathbb{E}[X] + t \right), \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \leq \mathbb{E}[X] - t \right) \right\} \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{5n^2}{6 \sigma^2}, \frac{nt}{2b} \right\} \right).
\]

We consider minimization of loss functions \(\ell\) over finite function classes \(\mathcal{F}\) with \(\ell \in [0, 1]\), so that if \(L(f) = \mathbb{E}[\ell(f, Z)]\) then \(|\ell(f, Z) - L(f)| \leq 1\). Throughout this question, we let

\[
L^* = \min_{f \in \mathcal{F}} L(f) \quad \text{and} \quad f^* \in \arg\min_{f \in \mathcal{F}} L(f).
\]

We will show that, roughly, a procedure based on picking an empirical risk minimizer is unlikely to choose a function \(f \in \mathcal{F}\) with bad performance, so that we obtain faster concentration guarantees.

(a) Argue that for any \(f \in \mathcal{F}\)

\[
\mathbb{P}\left(\hat{L}(f) \geq L(f) + t \right) \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{5n^2}{6 L(f)(1 - L(f))}, \frac{nt}{2} \right\} \right).
\]

(b) Define the set of “bad” prediction functions \(\mathcal{F}_{\epsilon_{\text{bad}}} := \{ f \in \mathcal{F} : L(f) \geq L^* + \epsilon \}\). Show that for any fixed \(\epsilon \geq 0\) and any \(f \in \mathcal{F}_{\epsilon_{\text{bad}}}\), we have

\[
\mathbb{P}\left(\hat{L}(f) \leq L^* + \epsilon \right) \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{5n^2}{6 L^*(1 - L^*) + \epsilon(1 - \epsilon)}, \frac{n\epsilon}{2} \right\} \right).
\]

(c) Let \(\hat{f}_n \in \arg\min_{f \in \mathcal{F}} \hat{L}(f)\) denote the empirical minimizer over the class \(\mathcal{F}\). Argue that it is likely to have good performance, that is, for all \(\epsilon \geq 0\) we have

\[
\mathbb{P}\left(L(\hat{f}_n) \geq L(f^*) + 2\epsilon \right) \leq \text{card}(\mathcal{F}) \cdot \exp\left(-\frac{1}{2} \min\left\{ \frac{5n^2}{6 L^*(1 - L^*) + \epsilon(1 - \epsilon)}, \frac{n\epsilon}{2} \right\} \right).
\]

(d) Using the result of part (c), argue that with probability at least \(1 - \delta\),

\[
L(\hat{f}_n) \leq L(f^*) + \frac{4 \log |\mathcal{F}|}{n} + \sqrt{\frac{12}{5} \cdot \frac{L^*(1 - L^*) \cdot \log |\mathcal{F}|}{n}}.
\]

Why is this better than an inequality based purely on the boundedness of the loss \(\ell\), such as Theorem 4.41 or Corollary 4.43? What happens when there is a perfect risk minimizer \(f^*\)?

Question 4.3 (Likelihood ratio bounds and concentration): Consider a data release problem, where given a sample \(x\), we release a sequence of data \(Z_1, Z_2, \ldots, Z_n\) belonging to a discrete set \(\mathcal{Z}\), where \(Z_i\) may depend on \(Z_{i-1}\) and \(x\). We assume that the data has limited information about \(x\) in the sense that for any two samples \(x, x'\), we have the likelihood ratio bound

\[
\frac{p(z_i | x, z_i^{-1})}{p(z_i | x', z_i^{-1})} \leq e^\epsilon.
\]

Let us control the amount of “information” (in the form of an updated log-likelihood ratio) released by this sequential mechanism. Fix \(x, x'\), and define

\[
L(z_1, \ldots, z_n) := \log \frac{p(z_1, \ldots, z_n | x)}{p(z_1, \ldots, z_n | x')}.
\]
(a) Show that, assuming the data \(Z_i\) are drawn conditional on \(x\),

\[
\mathbb{P}(L(Z_1, \ldots, Z_n) \geq n\varepsilon(e^\varepsilon - 1) + t) \leq \exp\left(-\frac{t^2}{2n\varepsilon^2}\right).
\]

Equivalently, show that

\[
\mathbb{P}\left(L(Z_1, \ldots, Z_n) \geq n\varepsilon(e^\varepsilon - 1) + \varepsilon \sqrt{2n\log(1/\delta)}\right) \leq \delta.
\]

(b) Let \(\gamma \in (0, 1)\). Give the largest value of \(\varepsilon\) you can that is sufficient to guarantee that for any test \(\Psi: \mathcal{Z}^n \rightarrow \{x, x'\}\), we have

\[
P_x(\Psi(Z^n_1 \neq x)) + P_{x'}(\Psi(Z^n_1 \neq x') \geq 1 - \gamma,
\]

where \(P_x\) and \(P_{x'}\) denote the sampling distribution of \(Z^n_1\) under \(x\) and \(x'\), respectively?

Question 4.4 (Marcinkiewicz-Zygmund inequality): Let \(X_i\) be independent random variables with \(\mathbb{E}[X_i] = 0\) and \(\mathbb{E}[|X_i|^p] < \infty\), where \(1 \leq p < \infty\). Prove that

\[
\mathbb{E}\left[\sum_{i=1}^{n} X_i^p\right] \leq C_p \mathbb{E}\left[\left(\sum_{i=1}^{n} |X_i|^2\right)^{p/2}\right]
\]

where \(C_p\) is a constant (that depends on \(p\)). As a corollary, derive that if \(\mathbb{E}[|X_i|^p] \leq \sigma^p\) and \(p \geq 2\), then

\[
\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_i\right|^p\right] \leq C_p \frac{\sigma^p}{n^{p/2}}.
\]

That is, sample means converge quickly to zero in higher moments. *Hint:* For any fixed \(x \in \mathbb{R}^n\), if \(\varepsilon_i\) are i.i.d. uniform signs \(\varepsilon_i \in \{\pm 1\}\), then \(\varepsilon^T x\) is sub-Gaussian.

Question 4.5 (Small balls and anti-concentration): Let \(X\) be a nonnegative random variable satisfying \(\mathbb{P}(X \leq \varepsilon) \leq c\varepsilon\) for some \(c < \infty\) and all \(\varepsilon > 0\). Argue that if \(X_i\) are i.i.d. copies of \(X\), then

\[
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq t\right) \geq 1 - \exp\left(-\frac{n}{2\tau^2} + 2\tau t\right)
\]

for all \(t\).

Question 4.6 (Lipschitz functions remain sub-Gaussian): Let \(X\) be \(\sigma^2\)-sub-Gaussian and \(f: \mathbb{R} \rightarrow \mathbb{R}\) be \(L\)-Lipschitz, meaning that \(|f(x) - f(y)| \leq L|x - y|\) for all \(x, y\). Prove that there exists a numerical constant \(C < \infty\) such that \(f(X)\) is \(CL^2\sigma^2\)-sub-Gaussian.

Question 4.7 (Sub-gaussian maxima): Let \(X_1, \ldots, X_n\) be \(\sigma^2\)-sub-gaussian (not necessarily independent) random variables. Show that

(a) \(\mathbb{E}[\max_i X_i] \leq \sqrt{2\sigma^2 \log n}\).

(b) There exists a numerical constant \(C < \infty\) such that \(\mathbb{E}[\max_i |X_i|^p] \leq (Cp\sigma^2 \log k)^{p/2}\).
Question 4.8: Consider a binary classification problem with logistic loss $\ell(\theta; (x, y)) = \log(1 + \exp(-y\theta^Tx))$, where $\theta \in \Theta := \{\theta \in \mathbb{R}^d \mid \|\theta\|_1 \leq r\}$ and $y \in \{\pm 1\}$. Assume additionally that the space $X \subset \{x \in \mathbb{R}^d \mid \|x\|_\infty \leq b\}$. Define the empirical and population risks $\hat{L}_n(\theta) := P_n\ell(\theta; (X, Y))$ and $L(\theta) := P\ell(\theta; (X, Y))$, and let $\hat{\theta}_n = \arg\min_{\theta \in \Theta} \hat{L}(\theta)$. Show that with probability at least $1 - \delta$ over $(X_i, Y_i) \overset{iid}{\sim} P$,

$$L(\hat{\theta}_n) \leq \inf_{\theta \in \Theta} L(\theta) + C \frac{rb \sqrt{\log \frac{d}{\delta}}}{\sqrt{n}}$$

where $C < \infty$ is a numerical constant (you need not specify this).

Question 4.9 (Sub-Gaussian constants of Bernoulli random variables): In this exercise, we will derive sharp sub-Gaussian constants for Bernoulli random variables (cf. [? , Thm. 1] or [? ?]), showing

$$\log \mathbb{E}[e^{t(X-p)}] \leq \frac{1-2p}{4 \log \frac{1-p}{p}} t^2 \quad \text{for all } t \geq 0. \quad (4.6.1)$$

(a) Define $\varphi(t) = \log(\mathbb{E}[e^{t(X-p)}]) = \log((1-p)e^{-tp} + pe^{t(1-p)})$. Show that

$$\varphi'(t) = \mathbb{E}[Y_t] \quad \text{and} \quad \varphi''(t) = \text{Var}(Y_t)$$

where $Y_t = (1-p)$ with probability $q(t) := \frac{pe^{t(1-p)}}{pe^{t(1-p)} + (1-p)e^{-tp}}$ and $Y_t = -p$ otherwise.

(b) Show that $\varphi'(0) = 0$ and that if $p > \frac{1}{2}$, then $\text{Var}(Y_t) \leq \text{Var}(Y_0) = p(1-p)$. Conclude that $\varphi(t) \leq \frac{p(1-p)}{2} t^2$ for all $t \geq 0$.

(c) Argue that $p(1-p) \leq \frac{1-2p}{2\log \frac{1-p}{p}}$ for $p \in [0, 1]$. Hint: Let $p = \frac{1+\delta}{2}$ for $\delta \in [0, 1]$, so that the inequality is equivalent to $\log \frac{1+\delta}{1-\delta} \leq \frac{2\delta}{1-\delta}$. Then use that $\log(1+\delta) = \int_0^\delta \frac{1}{1+u} \, du$.

(d) Let $C = 2\log \frac{1-p}{p}$ and define $s = Ct = 2\log \frac{1-p}{p}s$, and let

$$f(s) = \frac{1-2p}{2} Cs^2 + Cps - \log(1-p + pe^s),$$

so that inequality (4.6.1) holds if and only if $f(s) \geq 0$ for all $s \geq 0$. Give $f'(s)$ and $f''(s)$.

(e) Show that $f(0) = f(1) = f'(0) = f'(1) = 0$, and argue that $f''(s)$ changes signs at most twice and that $f''(0) = f''(1) > 0$. Use this to show that $f(s) \geq 0$ for all $s \geq 0$.

JCD Comment: Perhaps use transportation inequalities to prove this bound, and also maybe give Ordentlich and Weinberger’s “A Distribution Dependent Refinement of Pinsker’s Inequality” as an exercise.

Question 4.10: Let $s(p) = \frac{1-2p}{\log \frac{1-p}{p}}$. Show that s is concave on $[0, 1]$.

90
Chapter 5

Generalization and stability

Intro: relate sample expectations to population expectations. Perhaps also cite the paper Information-theoretic analysis of generalization capability of learning algorithms (Xu / Raginsky).

Throughout this section, we will use a convenient notational shorthand for expectation, where for a probability distribution \(P \) on \(\mathcal{X} \) and function \(f : \mathcal{X} \to \mathbb{R} \), we let

\[
P f := \mathbb{E}_P[f(X)] = \int f(x) dP(x),
\]

so that \(P_n f = \frac{1}{n} \sum_{i=1}^{n} f(X_i) \) denotes the empirical expectation when \(P_n \) is the empirical measure on the sample \(\{X_1, \ldots, X_n\} \).

5.1 Starting point

The starting point of all of our generalization bounds is a surprisingly simply variational result, which relates expectations, moment generating functions, and the KL-divergence in one single equality. It turns out that this inequality, by relating means with moment generating functions and divergences, allows us to prove generalization bounds based on information-theoretic tools and stability.

Theorem 5.1 (Donsker-Varadhan representation). Let \(P \) and \(Q \) be distributions on a common space \(\mathcal{X} \). Then

\[
D_{\text{KL}}(P||Q) = \sup_g \left\{ \mathbb{E}_P[g(X)] - \log \mathbb{E}_Q[e^{g(X)}] \right\},
\]

where the supremum is taken over measurable functions \(g : \mathcal{X} \to \mathbb{R} \) such that \(\mathbb{E}_Q[e^{g(X)}] < \infty \).

Proof We may assume that \(P \) is absolutely continuous with respect to \(Q \), as otherwise both sides are infinite by inspection. Thus, we assume without loss of generality that \(P \) and \(Q \) have densities \(p \) and \(q \).

Attainment in the equality is easy: we simply take \(g(x) = \log \frac{p(x)}{q(x)} \), so that \(\mathbb{E}_Q[e^{g(X)}] = 1 \). To show that the right hand side is never larger than \(D_{\text{KL}}(P||Q) \) requires a bit more work. To that end, let \(g \) be any function such that \(\mathbb{E}_Q[e^{g(X)}] < \infty \), and define the random variable \(Z_g(x) = \)
\(e^g(x)/\mathbb{E}_Q[e^g(X)]\), so that \(\mathbb{E}_Q[Z] = 1\). Then using the absolute continuity of \(P\) w.r.t. \(Q\), we have

\[
\mathbb{E}_P[\log Z_g] = \mathbb{E}_P \left[\log \frac{p(X)}{q(X)} + \log \left(\frac{Z_g(X)}{p(X)} \right) \right] = D_{\text{kl}}(P\|Q) + \mathbb{E}_P \left[\log \left(\frac{Z_g}{dP} \right) \right] \\
\leq D_{\text{kl}}(P\|Q) + \log \mathbb{E}_P \left[\frac{dQ}{dP} Z_g \right] \\
= D_{\text{kl}}(P\|Q) + \log \mathbb{E}_Q[Z_g].
\]

As \(\mathbb{E}_Q[Z_g] = 1\), using that \(\mathbb{E}_P[\log Z_g] = \mathbb{E}_P[g(X)] - \log \mathbb{E}_Q[e^g(X)]\) gives the result. \(\square\)

The Donsker-Varadhan representation already gives a hint that we can use some information-theoretic techniques to control the difference between an empirical sample and its expectation, at least in an average sense. In particular, we see that for any function \(g\), we have

\[
\mathbb{E}_P[g(X)] \leq D_{\text{kl}}(P\|Q) + \log \mathbb{E}_Q[e^g(X)]
\]

for any random variable \(X\). Now, changing this on its head a bit, suppose that we consider a collection of functions \(\mathcal{F}\) and put two probability measures \(\pi\) and \(\pi_0\) on \(\mathcal{F}\), and consider \(P_n f \sim P f\), where we consider \(f\) a random variable \(f \sim \pi\) or \(f \sim \pi_0\). Then a consequence of the Donsker-Varadhan theorem is that

\[
\int (P_n f - P f) d\pi(f) \leq D_{\text{kl}}(\pi\|\pi_0) + \log \int \exp(P_n f \sim P f) d\pi_0(f)
\]

for any \(\pi, \pi_0\). While this inequality is a bit naive—bounding a difference by an exponent seems wasteful—as we shall see, it has substantial applications when we can upper bound the KL-divergence \(D_{\text{kl}}(\pi\|\pi_0)\).

5.2 PAC-Bayes bounds

JCD Comment: Write an intro to this section

Let \(\mathcal{F}\) be a collection of functions \(f : \mathcal{X} \to \mathbb{R}\), and assume that each function \(f\) is \(\sigma^2\)-sub-Gaussian, which we recall (Definition 4.1) means that \(\mathbb{E}[e^{\lambda(f(X) - P f)}] \leq \exp(\lambda^2 \sigma^2/2)\) for all \(\lambda \in \mathbb{R}\), where \(P f = \mathbb{E}_P[f(X)] = \int f(x) dP(x)\) denotes the expectation of \(f\) under \(P\).

Lemma 5.2. Let \(Z\) be a \(\sigma^2\)-sub-Gaussian random variable. Then for \(\lambda \geq 0\),

\[
\mathbb{E}[e^{\lambda Z^2}] \leq \frac{1}{\sqrt{[1 - 2\sigma^2 \lambda]_+}}
\]

This is Example 4.12.

With Lemma 5.2 and Theorem 5.1 in place, we can prove the following PAC-Bayes theorem.

Theorem 5.3. Let \(\Pi\) be the collection of all priors (probability distributions) on the set \(\mathcal{F}\). With probability at least \(1 - \delta\),

\[
\int (P_n f - P f)^2 d\pi(f) \leq \frac{8\sigma^2}{3} D_{\text{kl}}(\pi\|\pi_0) + \log \frac{2}{n}
\]

simultaneously for all \(\pi \in \Pi\).
Proof. Without loss of generality, we assume that $P f = 0$ for all $f \in F$, and recall that $P_n f = \frac{1}{n} \sum_{i=1}^n f(X_i)$ is the empirical mean of f. Then we know that $P_n f$ is σ^2/n-sub-Gaussian, and Lemma 5.2 implies that $E[\exp(\lambda(P_n f)^2)] \leq [1 - 2\lambda\sigma^2/n]^{-1/2}$ for any f, and thus for any “prior” π_0 on f we have

$$E \left[\int \exp(\lambda(P_n f)^2) d\pi_0(f) \right] \leq [1 - 2\lambda\sigma^2/n]^{-1/2}.$$

Consequently, taking $\lambda = \lambda_n := \frac{3n}{8\sigma^2}$, we obtain

$$E \left[\int \exp(\lambda_n(P_n f)^2) d\pi_0(f) \right] = E \left[\int \exp \left(\frac{3n}{8\sigma^2} (P_n f)^2 \right) d\pi_0(f) \right] \leq 2.$$

Markov’s inequality thus implies that

$$P \left(\int \exp \left(\lambda_n(P_n f)^2 \right) d\pi_0(f) \geq \frac{2}{\delta} \right) \leq \delta,$$

where the probability is over $X_i \sim P$.

Now, we use the Donsker-Varadhan equality (Theorem 5.1). Letting $\lambda > 0$, we define the function $g(f) = \lambda(P_n f)^2$, so that for any two distributions π and π_0 on F, we have

$$\frac{1}{\lambda} \int g(f) d\pi = \int (P_n f)^2 d\pi(f) \leq \frac{D_{kl}(\pi||\pi_0)}{\lambda} + \log \int \exp(\lambda(P_n f)^2) d\pi_0(f).$$

This holds without any probabilistic qualifications, so using the application (5.2.1) of Markov’s inequality with $\lambda = \lambda_n$, we thus see that with probability at least $1 - \delta$ over X_1, \ldots, X_n, simultaneously for all distributions π,

$$\int (P_n f)^2 d\pi(f) \leq \frac{8\sigma^2}{3} D_{kl}(\pi||\pi_0) + \log \frac{2}{\delta} \frac{n}{\lambda}.$$

This is the desired result (as we have assumed that $P f = 0$ w.l.o.g.).

By Jensen’s inequality (or Cauchy-Schwarz), it is immediate from Theorem 5.3 that we also have

$$\int |P_n f - P f| d\pi(f) \leq \sqrt{\frac{8\sigma^2}{3} D_{kl}(\pi||\pi_0) + \log \frac{2}{\delta} \frac{n}{\lambda}}$$

simultaneously for all $\pi \in \Pi$ \quad (5.2.2)

with probability at least $1 - \delta$, so that $E_{\pi}[|P_n f - P f|]$ is with high probability of order $1/\sqrt{n}$. The inequality (5.2.2) is the original form of the PAC-Bayes bound due to McAllester, with slightly sharper constants and improved logarithmic dependence. The key is that stability, in the form of a prior π_0 and posterior π closeness, allow us to achieve reasonably tight control over the deviations of random variables and functions with high probability.

Let us give an example, which is similar to many of our approaches in Section 4.3.2, to illustrate some of the approaches this allows. The basic idea is that by appropriate choice of prior π_0 and “posterior” π, whenever we have appropriately smooth classes of functions we achieve certain generalization guarantees.
Example 5.4 (A uniform law for Lipschitz functions): Consider a case as in Section 4.3.2, where we let \(L(\theta) = P\ell(\theta, Z) \) for some function \(\ell : \Theta \times Z \to \mathbb{R} \). Let \(\mathbb{B}_2^d = \{ v \in \mathbb{R}^d \mid \|v\|_2 \leq 1 \} \) be the \(\ell_2 \)-ball in \(\mathbb{R}^d \), and let us assume that \(\Theta \subset r\mathbb{B}_2^d \) and additionally that \(\theta \mapsto \ell(\theta, z) \) is \(L \)-Lipschitz for all \(z \in Z \). For simplicity, we assume that \(\ell(\theta, z) \in [0, Lr] \) for all \(\theta \in \Theta \) (though it is possible to avoid this by relativizing our bounds by replacing \(\ell \) by \(\ell(\cdot, z) - \inf_{\theta \in \Theta} \ell(\theta, z) \)).

If \(\bar{L}_n(\theta) = P_n\ell(\theta, Z) \), then Theorem 5.3 implies that

\[
\int |\bar{L}_n(\theta) - L(\theta)|d\pi(\theta) \leq \sqrt{\frac{2L^2r^2}{3n} \left[D_{kl}(\pi \| \pi_0) + \log \frac{2}{\delta} \right]}
\]

for all \(\pi \) with probability at least \(1 - \delta \). Now, let \(\theta_0 \in \Theta \) be arbitrary, and for \(\epsilon > 0 \) (to be chosen later) take \(\pi_0 \) to be uniform on \((r + \epsilon)\mathbb{B}_2^d \) and \(\pi \) to be uniform on \(\theta_0 + \epsilon\mathbb{B}_2^d \). Then we immediately see that \(D_{kl}(\pi \| \pi_0) = d \log (1 + \frac{r}{\epsilon}) \). Moreover, we have \(\int \bar{L}_n(\theta)d\pi(\theta) \leq \bar{L}_n(\theta_0) \pm L\epsilon \) and similarly for \(L(\theta) \), by the \(L \)-Lipschitz continuity of \(\ell \). For any fixed \(\epsilon > 0 \), we thus have

\[
|\bar{L}_n(\theta_0) - L(\theta_0)|^2 \leq 2L\epsilon + \sqrt{\frac{2L^2r^2}{3n} \left[d \log \left(1 + \frac{r}{\epsilon} \right) + \log \frac{2}{\delta} \right]}
\]

simultaneously for all \(\theta_0 \in \Theta \), with probability at least \(1 - \delta \). By choosing \(\epsilon = \frac{rd}{n} \) we obtain that with probability at least \(1 - \delta \),

\[
\sup_{\theta \in \Theta} |\bar{L}_n(\theta) - L(\theta)| \leq \frac{2Lrd}{n} + \sqrt{\frac{2L^2r^2}{3n} \left[d \log \left(1 + \frac{n}{d} \right) + \log \frac{2}{\delta} \right]}.
\]

Thus, roughly, with high probability we have \(|\bar{L}_n(\theta) - L(\theta)| \leq O(1)Lr \sqrt{\frac{d}{n} \log \frac{2}{\delta}} \) for all \(\theta \).

On the one hand, the result in Example 5.4 is satisfying: it applies to any Lipschitz function and provides a uniform bound. On the other hand, when we compare to the results achievable for specially structured linear function classes, then applying Rademacher complexity bounds—such as Proposition 4.46 and Example 4.47—we have somewhat weaker results, in that they depend on the dimension explicitly, while the Rademacher bounds do not exhibit this explicit dependence. This means they can potentially apply in infinite dimensional spaces that Example 5.4 cannot. We will give an example presently showing how to address some of these issues.

5.2.1 Relative bounds

In many cases, it is useful to have bounds that provide somewhat finer control than the bounds we have presented. Recall from our discussion of sub-Gaussian and sub-exponential random variables, especially the Bennett and Bernstein-type inequalities (Proposition 4.20), that if a random variable \(X \) satisfies \(|X| \leq b \) but \(\text{Var}(X) \leq \sigma^2 \ll b^2 \), then \(X \) concentrates more quickly about its mean than the convergence provided by naive application of sub-Gaussian concentration with sub-Gaussian parameter \(b^2/8 \). To that end, we investigate an alternative to Theorem 5.3 that allows somewhat sharper control.

The approach is similar to our derivation in Theorem 5.3, where we show that the moment generating function of a quantity like \(P_n f - Pf \) is small (Eq. (5.2.1)) and then relate this—via the Donsker-Varadhan change of measure in Theorem 5.1—to the quantities we wish to control. In the next proposition, we provide relative bounds on the deviations of functions from their means. To
make this precise, let \(\mathcal{F} \) be a collection of functions \(f : \mathcal{X} \to \mathbb{R} \), and let \(\sigma^2(f) : = \text{Var}(f(X)) \) be the variance of functions in \(\mathcal{F} \). We assume the class satisfies the Bernstein condition (4.1.9) with parameter \(b \), that is,
\[
\left| \mathbb{E} \left[(f(X) - Pf)^k \right] \right| \leq \frac{k!}{2} \sigma^2(f)b^{k-2} \quad \text{for } k = 3, 4, \ldots
\]
(5.2.3)
This says that the second moment of functions \(f \in \mathcal{F} \) bounds—with the additional boundedness-type constant \(b \)—the higher moments of functions in \(f \). We then have the following result.

Proposition 5.5. Let \(\mathcal{F} \) be a collection of functions \(f : \mathcal{X} \to \mathbb{R} \) satisfying the Bernstein condition (5.2.3). Then for any \(|\lambda| \leq \frac{1}{2b} \), with probability at least \(1 - \delta \),
\[
\lambda \int Pf d\pi(f) - \lambda^2 \int \sigma^2(f)d\pi(f) \leq \lambda \int Pf d\pi(f) + \frac{1}{n} \left[D_{\text{kl}}(\pi\|\pi_0) + \log \frac{1}{\delta} \right]
\]
simultaneously for all \(\pi \in \Pi \).

Proof We begin with an inequality on the moment generating function of random variables satisfying the Bernstein condition (4.1.9), that is, that \(|\mathbb{E}[(X - \mu)^k]| \leq \frac{k!}{2} \sigma^2 b^{k-2} \) for \(k \geq 2 \). In this case, Lemma 4.19 implies that
\[
\mathbb{E}[e^{\lambda(X - \mu)}] \leq \exp(\lambda^2 \sigma^2)
\]
for \(|\lambda| \leq 1/(2b) \). As a consequence, for any \(f \) in our collection \(\mathcal{F} \), we see that if we define
\[
\Delta_n(f, \lambda) := \lambda \left[P_n f - Pf - \lambda \sigma^2(f) \right],
\]
we have that
\[
\mathbb{E}[\exp(n\Delta_n(f, \lambda))] = \mathbb{E}[\exp(\lambda(f(X) - Pf) - \lambda^2 \sigma^2(f))]^n \leq 1
\]
for all \(n, f \in \mathcal{F} \), and \(|\lambda| \leq \frac{1}{2b} \). Then, for any fixed measure \(\pi_0 \) on \(\mathcal{F} \), Markov’s inequality implies that
\[
\mathbb{P} \left(\int \exp(n\Delta_n(f, \lambda))d\pi_0(f) \geq \frac{1}{\delta} \right) \leq \delta.
\]
(5.2.4)
Now, as in the proof of Theorem 5.3, we use the Donsker-Varadhan Theorem 5.1 (change of measure), which implies that
\[
n \int \Delta_n(f, \lambda)d\pi_0(f) \leq D_{\text{kl}}(\pi\|\pi_0) + \log \int \exp(n\Delta_n(f, \lambda))d\pi_0(f)
\]
for all distributions \(\pi \). Using inequality (5.2.4), we obtain that with probability at least \(1 - \delta \),
\[
\int \Delta_n(f, \lambda)d\pi_0(f) \leq \frac{1}{n} \left[D_{\text{kl}}(\pi\|\pi_0) + \log \frac{1}{\delta} \right]
\]
for all \(\pi \). As this holds for any fixed \(|\lambda| \leq 1/(2b) \), this gives the desired result by rearranging. \(\square \)

We would like to optimize over the bound in Proposition 5.5 by choosing the “best” \(\lambda \). If we could choose the optimal \(\lambda \), by rearranging Proposition 5.5 we would obtain the bound
\[
\mathbb{E}_\pi[Pf] \leq \mathbb{E}_\pi[P_n f] + \inf_{\lambda > 0} \left\{ \lambda \mathbb{E}_\pi[\sigma^2(f)] + \frac{1}{n} \left[D_{\text{kl}}(\pi\|\pi_0) + \log \frac{1}{\delta} \right] \right\}
\]
\[
= \mathbb{E}_\pi[P_n f] + 2\sqrt{\frac{\mathbb{E}_\pi[\sigma^2(f)]}{n}} \left[D_{\text{kl}}(\pi\|\pi_0) + \log \frac{1}{\delta} \right]
\]
95
simultaneously for all π, with probability at least $1 - \delta$. The problem with this approach is two-fold: first, we cannot arbitrarily choose λ in Proposition 5.5, and second, the bound above depends on the unknown population variance $\sigma^2(f)$. It is thus of interest to understand situations in which we can obtain similar guarantees, but where we can replace unknown population quantities on the right side of the bound with known quantities.

To that end, let us consider the following condition, a type of relative error condition related to the Bernstein condition (4.1.9): for each $f \in F$,

$$\sigma^2(f) \leq bP f. \tag{5.2.5}$$

This condition is most natural when each of the functions f take nonnegative values—for example, when $f(X) = \ell(\theta, X)$ for some loss function ℓ and parameter θ of a model. If the functions f are nonnegative and upper bounded by b, then we certainly have $\sigma^2(f) \leq E[f(X)]^2 \leq bE[f(X)] = bP f$, so that Condition (5.2.5) holds. Revisiting Proposition 5.5, we rearrange to obtain the following theorem.

Theorem 5.6. Let F be a collection of functions satisfying the Bernstein condition (5.2.3) as in Proposition 5.5, and in addition, assume the variance-bounding condition (5.2.5). Then for any $0 \leq \lambda \leq \frac{1}{2b}$, with probability at least $1 - \delta$,

$$E_\pi[P f] \leq E_\pi[P_n f] + \frac{\lambda b}{1 - \lambda b} E_\pi[P_n f] + \frac{1}{\lambda (1 - \lambda b)} \left[\frac{1}{n} D_{\text{KL}}(\pi \| \pi_0) + \log \frac{1}{\delta} \right]$$

for all π.

Proof We use condition (5.2.5) to see that

$$\lambda E_\pi[P f] - \lambda^2 b E_\pi[P f] \leq \lambda E_\pi[P f] - \lambda^2 E_\pi[\sigma^2(f)],$$

apply Proposition 5.5, and divide both sides of the resulting inequality by $\lambda(1 - \lambda b)$.

To make this uniform in λ, thus achieving a tighter bound (so that we need not pre-select λ), we choose multiple values of λ and apply a union bound. To that end, let $1 + \eta = \frac{1}{1 - \lambda b}$, or $\eta = \frac{\lambda b}{1 - \lambda b}$ and $\frac{1}{\lambda b(1 - \lambda b)} = \frac{(1 + \eta)^2}{\eta}$, so that the inequality in Theorem 5.3 is equivalent to

$$E_\pi[P f] \leq E_\pi[P_n f] + \eta E_\pi[P_n f] + \frac{(1 + \eta)^2 b}{\eta} \left[\frac{1}{n} D_{\text{KL}}(\pi \| \pi_0) + \log \frac{1}{\delta} \right].$$

Using that our choice of $\eta \in [0, 1]$, this implies

$$E_\pi[P f] \leq E_\pi[P_n f] + \eta E_\pi[P_n f] + \frac{1}{\eta} \left[\frac{b}{n} D_{\text{KL}}(\pi \| \pi_0) + \log \frac{1}{\delta} \right] + \frac{3b}{\eta} \left[D_{\text{KL}}(\pi \| \pi_0) + \log \frac{1}{\delta} \right].$$

Now, take $\eta_1 = 1/n, \ldots, \eta_n = 1$. Then by optimizing over $\eta \in \{\eta_1, \ldots, \eta_n\}$ (which is equivalent, to within a $1/n$ factor, to optimizing over $0 < \eta \leq 1$) and applying a union bound, we obtain

Corollary 5.7. Let the conditions of Theorem 5.6 hold. Then with probability at least $1 - \delta$,

$$E_\pi[P f] \leq E_\pi[P_n f] + 2 \sqrt{\frac{E_\pi[P_n f]}{n} \left[D_{\text{KL}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right]} + \frac{1}{n} \left(E_\pi[P_n f] + 5b \left[D_{\text{KL}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right] \right),$$

simultaneously for all π on F. 96
Proof. By a union bound, we have
\[
\mathbb{E}_\pi[P f] \leq \mathbb{E}_\pi[P_n f] + \eta \mathbb{E}_\pi[P_n f] + \frac{1}{\eta} \left[D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right] + \frac{3b}{n} \left[D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right]
\]
for each \(\eta \in \{1/n, \ldots, 1\} \). We consider two cases. In the first, assume that \(\mathbb{E}_\pi[P_n f] \leq \frac{b}{n}(D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta}) \). Then taking \(\eta = 1 \) above evidently gives the result. In the second, we have \(\mathbb{E}_\pi[P_n f] > \frac{b}{n}(D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta}) \), and we can set
\[
\eta_* = \sqrt{\frac{\frac{b}{n}(D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta})}{\mathbb{E}_\pi[P_n f]}} \in (0, 1).
\]
Choosing \(\eta \) to be the smallest value \(\eta_k \) in \(\{n_1, \ldots, n_n\} \) with \(\eta_k \geq \eta_* \), so that \(\eta \leq \eta \leq \eta_* + \frac{1}{n} \) then implies the claim in the corollary. \(\square \)

Let us revisit the loss minimization approaches central to Section 4.3.2 and Example 5.4 in the context of Corollary 5.7. We will investigate an approach to achieve convergence guarantees that are (nearly) independent of dimension, focusing on 0-1 losses in a binary classification problem.

Example 5.8 (Large margins and PAC-Bayes): Consider a binary classification problem with data \((x, y) \in \mathbb{R}^d \times \{\pm 1\}\), where we make predictions \(\langle \theta, x \rangle\) (or its sign), and for a margin penalty \(\gamma \geq 0\) we define the loss
\[
\ell_\gamma(\theta; (x, y)) = \mathbb{1}\{\langle \theta, x \rangle y \leq \gamma\}.
\]
We call the quantity \(\langle \theta, x \rangle y\) the margin of \(\theta\) on the pair \((x, y)\), noting that when the margin is large, \(\langle \theta, x \rangle\) has the same sign as \(y\) and is “confident” (i.e. far from zero). For shorthand, let us define the expected and empirical losses at margin \(\gamma\) by
\[
L_\gamma(\theta) := P\ell_\gamma(\theta; (X, Y)) \quad \text{and} \quad \widehat{L}_\gamma(\theta) := P_n\ell_\gamma(\theta; (X, Y)).
\]
Consider the following scenario: the data \(x\) lie in a ball of radius \(b\), so that \(\|x\|_2 \leq b\); note that the losses \(\ell_\gamma\) and \(\ell_0\) satisfy the Bernstein (5.2.3) and self-bounding (5.2.5) conditions with constant 1 as they take values in \(\{0, 1\}\). Let \(\pi_0\) be \(\mathcal{N}(0, \tau^2 I)\) for some \(\tau > 0\) to be chosen, and let \(\pi\) be \(\mathcal{N}(\hat{\theta}, \tau^2 I)\) for some \(\hat{\theta} \in \mathbb{R}^d\) satisfying \(\|\hat{\theta}\|_2 \leq r\). Then Corollary 5.7 implies that
\[
\mathbb{E}_\pi[L_\gamma(\theta)] \leq \mathbb{E}_\pi[\widehat{L}_\gamma(\theta)] + 2\sqrt{r^2 + \log \frac{n}{\delta}} + \frac{1}{n} \left(\mathbb{E}_\pi[\widehat{L}_\gamma(\theta)] + C \left[D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right] \right)
\]
and
\[
\mathbb{E}_\pi[\widehat{L}_\gamma(\theta)] + 2\sqrt{r^2 + \log \frac{n}{\delta}} + \frac{1}{n} \left(\mathbb{E}_\pi[\widehat{L}_\gamma(\theta)] + C \left[D_{\text{kl}}(\pi \| \pi_0) + \log \frac{n}{\delta} \right] \right)
\]
simultaneously for all \(\hat{\theta}\) satisfying \(\|\hat{\theta}\|_2 \leq r\) with probability at least \(1 - \delta\), where we have used that \(D_{\text{kl}}(\mathcal{N}(\theta, \tau^2 I)\|\mathcal{N}(0, \tau^2 I)) = \|\theta\|_2^2 / (2\tau^2)\).
Let us use the margin assumption. Note that if \(Z \sim \mathcal{N}(0, \tau^2 I) \), then for any fixed \(\theta_0, x, y \) we have
\[
\ell_0(\theta_0; (x, y)) - \mathbb{P}(Z^T x \geq \gamma) \leq \mathbb{E}[\ell_0(\theta_0 + Z; (x, y))] \leq \ell_2(\theta_0; (x, y)) + \mathbb{P}(Z^T x \geq \gamma)
\]
where the middle expectation is over \(Z \sim \mathcal{N}(0, \tau^2 I) \). Using the \(\tau^2 \|x\|_2^2 \)-sub-Gaussianity of \(Z^T x \), we can obtain immediately that if \(\|x\|_2 \leq b \), we have
\[
\ell_0(\theta_0; (x, y)) - \exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right) \leq \mathbb{E}[\ell_0(\theta_0 + Z; (x, y))] \leq \ell_2(\theta_0; (x, y)) + \exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right).
\]
Returning to our earlier bound, we evidently have that if \(\|x\|_2 \leq b \) for all \(x \in \mathcal{X} \), then with probability at least \(1 - \delta \), simultaneously for all \(\theta \in \mathbb{R}^d \) with \(\|\theta\|_2 \leq r \),
\[
L_0(\theta) \leq \tilde{L}_2(\theta) + 2 \exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right) + 2 \sqrt{\frac{\tilde{L}_2(\theta) + \exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right)}{\exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right) \left[\frac{r^2}{2\tau^2} + \log \frac{n}{\delta} \right]}}
\]
\[
+ \frac{1}{n} \left(\tilde{L}_2(\theta) + \exp\left(- \frac{\gamma^2}{2\tau^2 b^2} \right) + C \left[\frac{r^2}{2\tau^2} + \log \frac{n}{\delta} \right] \right).
\]
Setting \(\tau^2 = \frac{\gamma^2}{2b^2 \log n} \), we immediately see that for any choice of margin \(\gamma > 0 \), we have with probability at least \(1 - \delta \) that
\[
L_0(\theta) \leq \tilde{L}_2(\theta) + \frac{2b}{n} + 2 \sqrt{\frac{1}{n} \left[\tilde{L}_2(\theta) + \frac{b}{n} \right] \left[\frac{r^2 b^2 \log n}{2\gamma^2} + \log \frac{n}{\delta} \right]}
\]
\[
+ \frac{1}{n} \left(\tilde{L}_2(\theta) + \frac{1}{n} + C \left[\frac{r^2 b^2 \log n}{2\gamma^2} + \log \frac{n}{\delta} \right] \right)
\]
for all \(\|\theta\|_2 \leq r \). Rewriting (replacing \(2\gamma \) with \(\gamma \)) and ignoring lower-order terms, we have (roughly) that there exists a constant \(C < \infty \) such that that for any fixed margin \(\gamma > 0 \), with high probability
\[
\sup_{\theta \in \Theta} \left\{ P(\langle \theta, X \rangle Y \leq 0) - P_n(\langle \theta, X \rangle Y \leq \gamma) - C \frac{r \sqrt{b \log n}}{\gamma \sqrt{n}} \sqrt{P_n(\langle \theta, X \rangle Y \leq \gamma)} \right\} \leq 0. \quad (5.2.6)
\]
Inequality (5.2.6) provides a “dimension-free” guarantee—it depends only on the \(\ell_2 \)-norms \(\|\theta\|_2 \) and \(\|x\|_2 \)—so that it can apply equally in infinite dimensional spaces. The key to the inequality is that if we can find a “large margin” predictor—for example, one achieved by a support vector machine or, more broadly, by minimizing a convex loss of the form
\[
\minimize_{\|\theta\|_2 \leq r} \frac{1}{n} \sum_{i=1}^{n} \phi(\langle X_i, \theta \rangle Y_i)
\]
for some decreasing convex \(\phi : \mathbb{R} \to \mathbb{R}_+ \), e.g. \(\phi(t) = [1 - t]_+ \) or \(\phi(t) = \log(1 + e^{-t}) \)—then we get strong generalization performance guarantees relative to the empirical margin \(\gamma \). ◊
5.3 Interactive data analysis

A major challenge in modern data analysis is that analyses are often not the classical statistics and scientific method setting. In the scientific method—forgive me for being a pedant—one proposes a hypothesis, the status quo or some other belief, and then designs an experiment to falsify that hypothesis. Then, upon performing the experiment, there are only two options: either the experimental results contradict the hypothesis (that is, we must reject the null) so that the hypothesis is false, or the hypothesis remains consistent with available data. In the classical (Fisherian) statistics perspective, this typically means that we have a single null hypothesis H_0 before observing a sample, we draw a sample $X \in \mathcal{X}$, and then for some test statistic $T : \mathcal{X} \to \mathbb{R}$ with observed value $t_{\text{observed}} = T(X)$, we compute the probability under the null of observing something as extreme as what we observed, that is, the p-value $p = P_{H_0}(T(X) \geq t_{\text{observed}})$.

Yet modern data analyses are distant from this pristine perspective for many reasons. The simplest is that we often have a number of hypotheses we wish to test, not a single one. For example, in biological applications, we may wish to investigate the associations between the expression of number of genes and a particular phenotype or disease; each gene j then corresponds to a null hypothesis $H_{0,j}$ that gene j is independent of the phenotype. There are numerous approaches to addressing the challenges associated with such multiple testing problems—such as false discovery rate control, familywise error rate control, and others—with whole courses devoted to the challenges.

Even these approaches to multiple testing and high-dimensional problems do not truly capture modern data analyses, however. Indeed, in many fields, researchers use one or a few main datasets, writing papers and performing multiple analyses on the same dataset. For example, in medicine, the UK Biobank dataset [137] has some several hundred citations (as of late 2018), many of which build on one another, with early studies coloring the analyses in subsequent studies. Even in situations without a shared dataset, analyses present researchers with huge degrees of freedom and choice. A researcher may study a summary statistic of his or her sampled data, or a plot of a few simple relationships, performing some simple data exploration—which statisticians and scientists have advocated for 50 years, dating back at least to John Tukey!—but this means that there are huge numbers of potential comparisons a researcher might make (that he or she does not). This “garden of forking paths,” as Gelman and Loken [77] term it, causes challenges even when researchers are not “p-hacking” or going on a “fishing expedition” to try to find publishable results. The problem in these studies and approaches is that, because we make decisions that may, even only in a small way, depend on the data observed, we have invalidated all classical statistical analyses.

To that end, we now consider interactive data analyses, where we perform data analyses sequentially, computing new functions on a fixed sample X_1, \ldots, X_n after observing some initial information about the sample. The starting point of our approach is similar to our analysis of PAC-Bayesian learning and generalization: we observe that if the function we decide to compute on the data X^n is chosen without much information about the data at hand, then its value on the sample should be similar to its values on the full population. This insight dovetails with what we have seen thus far, that appropriate “stability” in information can be useful and guarantee good future performance.

5.3.1 The interactive setting

We do not consider the interactive data analysis setting in full, rather, we consider a stylized approach to the problem, as it captures many of the challenges while being broad enough for different applications. In particular, we focus on the statistical queries setting, where a data
analyst wishes to evaluate expectations
\[E_P[\phi(X)] \] (5.3.1)
of various functionals \(\phi : \mathcal{X} \to \mathbb{R} \) under the population \(P \) using a sample \(X_1^n \) i.i.d. \(P \). Certainly, numerous problems problems are solvable using statistical queries (5.3.1). Means use \(\phi(x) = x \), while we can compute variances using the two statistical queries \(\phi_1(x) = x \) and \(\phi_2(x) = x^2 \), as
\[
\text{Var}(X) = E_P[\phi_2(X)] - E_P[\phi_1(X)]^2.
\]
Classical algorithms for the statistical query problem simply return sample means
\[
P_n \phi := \frac{1}{n} \sum_{i=1}^{n} \phi(X_i)
\]
given a query \(\phi : \mathcal{X} \to \mathbb{R} \). When the number of queries to be answered is not chosen adaptively, this means we can typically answer a large number relatively accurately; indeed, if we have a finite collection \(\Phi \) of \(\sigma^2 \)-sub-Gaussian \(\phi : \mathcal{X} \to \mathbb{R} \), then we of course have
\[
P_{\max} \phi \leq \frac{\epsilon^{-t^2}}{2(\log(2|\Phi|) + t)}
\]
by Corollary 4.10 (sub-Gaussian concentration) and a union bound. Thus, so long as \(|\Phi| \) is not exponential in the sample size \(n \), we expect uniformly high accuracy.

Example 5.9 (Risk minimization via statistical queries): Suppose that we are in the loss-minimization setting (4.3.3), where the losses \(\ell(\theta, X_i) \) are convex and differentiable in \(\theta \). Then gradient descent applied to \(\hat{L}_n(\theta) = P_n \ell(\theta, X) \) will converge to a minimizing value of \(\hat{L}_n \). We can evidently implement gradient descent by a sequence of statistical queries \(\phi(x) = \nabla_\theta \ell(\theta, x) \), iterating
\[
\theta^{(k+1)} = \theta^{(k)} - \alpha_k P_n \phi^{(k)},
\]
where \(\phi^{(k)} = \nabla_\theta \ell(\theta^{(k)}, x) \) and \(\alpha_k \) is a stepsize. \(\diamond \)

One issue with the example (5.9) is that we are *interacting* with the dataset, because each sequential query \(\phi^{(k)} \) depends on the previous \(k - 1 \) queries. (Our results on uniform convergence of empirical functionals and related ideas address many of these challenges, so that the result of the process (5.3.2) will be well-behaved regardless of the interactivity.)

We consider an interactive version of the statistical query estimation problem. In this version, there are two parties: an analyst (or statistician or learner), who issues queries \(\phi : \mathcal{X} \to \mathbb{R} \), and a mechanism that answers the queries to the analyst. We index our functionals \(\phi \) by \(t \in T \) for a (possibly infinite) set \(T \), so we have a collection \(\{\phi_t\}_{t \in T} \). In this context, we thus have the following scheme:

Input:	Sample \(X^n \) drawn i.i.d. \(P \), collection \(\{\phi_t\}_{t \in T} \) of possible queries
Repeat:	for \(k = 1, 2, \ldots \)
	i. Analyst chooses index \(T_k \in T \) and query \(\phi := \phi_{T_k} \)
	ii. Mechanism responds with answer \(A_k \) approximating \(E_P[\phi(X)] \) using \(X^n \)

Figure 5.1: The interactive statistical query setting

Of interest in the iteration 5.1 is that we *interactively* choose \(T_1, T_2, \ldots, T_k \), where the choice \(T_i \) may depend on our approximations of \(E_P[\phi_{T_j}(X)] \) for \(j < i \), that is, on the results of our previous
queries. Even more broadly, the analyst may be able to choose the index T_k in alternative ways depending on the sample X^n_k, and our goal is to still be able to accurately compute expectations $P\phi_T = E_P[\phi_T(X)]$ when the index T may depend on X^n_k. The setting in Figure 5.1 clearly breaks with the classical statistical setting in which an analysis is pre-specified before collecting data, but more closely captures modern data exploration practices.

5.3.2 Second moment errors and mutual information

The starting point of our derivation is the following result, which follows from more or less identical arguments to those for our PAC-Bayesian bounds earlier.

Theorem 5.10. Let $\{\phi_t\}_{t \in T}$ be a collection of σ^2-sub-Gaussian functions $\phi_t : X \to \mathbb{R}$. Then for any random variable T and any $\lambda > 0$,

$$E[(P_n \phi_T - P \phi_T)^2] \leq \frac{1}{\lambda} \left[I(X^n_1; T) - \frac{1}{2} \log \left[1 - 2\sigma^2/n \right] \right]$$

and

$$|E[P_n \phi_T] - E[P \phi_T]| \leq \sqrt{\frac{2\sigma^2}{n} I(X^n_1; T)}$$

where the expectations are taken over T and the sample X^n_1.

Proof The proof is similar to that of our first basic PAC-Bayesian result in Theorem 5.3. Let us assume w.l.o.g. that $P \phi_t = 0$ for all $t \in T$, noting that then $P_n \phi_t$ is σ^2/n-sub-Gaussian. We prove the first result first. Lemma 5.2 implies that $E[\exp(\lambda(P_n \phi_t)^2)] \leq \left[1 - 2\sigma^2/n \right]^{-1/2}$ for each $t \in T$. As a consequence, we obtain that via the Donsker-Varadhan equality (Theorem 5.1) that

$$\lambda E \left[\int (P_n \phi_t)^2 d\pi(t) \right] \leq E[D_{kl}(\pi \| \pi_0)] + E \left[\log \int \exp(\lambda(P_n \phi_t)^2) d\pi_0(t) \right]$$

$$\leq E[D_{kl}(\pi \| \pi_0)] + \log E \left[\int \exp(\lambda(P_n \phi_t)^2) d\pi_0(t) \right]$$

$$\leq E[D_{kl}(\pi \| \pi_0)] - \frac{1}{2} \log \left[1 - 2\sigma^2/n \right]$$

for all distributions π on T, which may depend on P_n, where the expectation E is taken over the sample $X^n_1 \overset{\text{iid}}{\sim} P$. (Here inequality (i) is Theorem 5.1, inequality (ii) is Jensen’s inequality, and inequality (iii) is Lemma 5.2.) Now, let π_0 be the marginal distribution on T (marginally over all observations X^n_1), and let π denote the posterior of T conditional on the sample X^n_1. Then $E[D_{kl}(\pi \| \pi_0)] = I(X^n_1; T)$ by definition of the mutual information, giving the bound on the squared error.

For the second result, note that the Donsker-Varadhan equality implies

$$\lambda E \left[\int P_n \phi_t d\pi(t) \right] \leq E[D_{kl}(\pi \| \pi_0)] + \log E[\exp(\lambda P_n \phi_t)] d\pi_0(t) \leq I(X^n_1; T) + \frac{\lambda^2 \sigma^2}{2n}.$$
The key in the theorem is that if the mutual information—the Shannon information—\(I(X; T)\) between the sample \(X\) and \(T\) is small, then the expected squared error can be small. To make this a bit clearer, let us choose values for \(\lambda\) in the theorem; taking \(\lambda = \frac{2}{n^2} \sigma^2\) gives the following corollary.

Corollary 5.11. Let the conditions of Theorem 5.10 hold. Then

\[
\mathbb{E}[(P_n \phi_T - P \phi_T)^2] \leq \frac{2e\sigma^2}{n} I(X_n^1; T) + \frac{5\sigma^2}{4n}.
\]

Consequently, if we can limit the amount of information any particular query (i.e., \(\phi_T\)) contains about the actual sample \(X_n^1\), then guarantee reasonably high accuracy in the second moment errors \((P_n \phi_T - P \phi_T)^2\).

5.3.3 Limiting interaction in interactive analyses

Let us now return to the interactive data analysis setting of Figure 5.1, where we recall the stylized application of estimating mean functionals \(P \phi\) for \(\phi \in \{\phi_t\}_{t \in \mathcal{T}}\). To motivate a more careful approach, we consider a simple example to show the challenges that may arise even with only a single “round” of interactive data analysis. Naively answering queries accurately—using the mechanism \(P_n \phi\) that simply computes the sample average—can easily lead to problems:

Example 5.12 (A stylized correlation analysis): Consider the following stylized genetics experiment. We observe vectors \(X \in \{-1, 1\}^k\), where \(X_j = 1\) if gene \(j\) is expressed and \(-1\) otherwise. We also observe phenotypes \(Y \in \{-1, 1\}\), where \(Y = 1\) indicates appearance of the phenotype. In our setting, we will assume that the vectors \(X\) are uniform on \(\{-1, 1\}^k\) and independent of \(Y\), but an experimentalist friend of ours wishes to know if there exists a vector \(v\) with \(\|v\|_2 = 1\) such that the correlation between \(v^T X\) and \(Y\) is high, meaning that \(v^T X\) is associated with \(Y\). In our notation here, we have index set \(\{v \in \mathbb{R}^k \mid \|v\|_2 = 1\}\), and by Example 4.6, Hoeffding’s lemma, and the independence of the coordinates of \(X\) we have that \(v^T X Y\) is \(\|v\|_2^2 / 4 = 1/4\)-sub-Gaussian. Now, we recall the fact that if \(Z_j, j = 1, \ldots, k\), are \(\sigma^2\)-sub-Gaussian, then for any \(p \geq 1\), we have

\[
\mathbb{E}[\max_j |Z_j|^p] \leq (Cp\sigma^2 \log k)^{p/2}
\]

for a numerical constant \(C\). That is, powers of sub-Gaussian maxima grow at most logarithmically. Indeed, by Theorem 4.11, we have for any \(q \geq 1\) by Hölder’s inequality that

\[
\mathbb{E}[\max_j |Z_j|^p] \leq \mathbb{E} \left[\sum_j |Z_j|^q \right]^{1/q} \leq k^{1/q} (Cpq\sigma^2)^{p/2},
\]

and setting \(q = \log k\) gives the inequality. Thus, we see that for any \textit{a priori} fixed \(v_1, \ldots, v_k, v_{k+1}\), we have

\[
\mathbb{E}[\max_j (v_j^T (P_n X))^2] \leq O(1) \frac{\log k}{n}.
\]

If instead we allow a single interaction, the problem is different. We issue queries associated with \(v = e_1, \ldots, e_k\), the \(k\) standard basis vectors; then we simply set \(V_{k+1} = P_n X / \|P_n X\|_2\). Then evidently

\[
\mathbb{E}[(V_{k+1}^T (P_n X))^2] = \mathbb{E}[\|P_n X\|_2^2] = \frac{k}{n}.
\]
which is exponentially larger than in the non-interactive case. That is, if an analyst is allowed to interact with the dataset, he or she may be able to discover very large correlations that are certainly false in the population, which in this case has $P_{XY} = 0$. ◇

Example 5.12 shows that, without being a little careful, substantial issues may arise in interactive data analysis scenarios. When we consider our goal more broadly, which is to be able to provide accurate approximations to P_{ϕ} for queries ϕ chosen adaptively for any population distribution P and $\phi : X \to \{-1, 1\}$, it is possible to construct quite perverse situations, where if we compute sample expectations $P_n\phi$ exactly, one round of interaction is sufficient to find a query ϕ for which $P_n\phi - P\phi \geq 1$.

Example 5.13 (Exact query answering allows arbitrary corruption): Suppose we draw a sample X_1^n of size n on a sample space $X = [m]$ with $X_i \sim \text{Uniform}[m]$, where $m \geq 2n$. Let Φ be the collection of all functions $\phi : [m] \to \{-1, 1\}$, so that $P(|P_n\phi - P\phi| \geq t) \leq \exp(-nt^2/2)$ for any fixed ϕ. Suppose that in the interactive scheme in Fig. 5.1, we simply release answers $A = P_n\phi$. Consider the following query:

$$\phi(x) = n - x \text{ for } x = 1, 2, \ldots, m.$$

Then by inspection, we see that

$$P_n\phi = \sum_{j=1}^{m} n^{-j} \text{card}(\{X_i \mid X_i = j\})$$

$$= \frac{1}{n} \text{card}(\{X_i \mid X_i = 1\}) + \frac{1}{n^2} \text{card}(\{X_i \mid X_i = 1\}) + \cdots + \frac{1}{n^m} \text{card}(\{X_i \mid X_i = m\}).$$

It is clear that given $P_n\phi$, we can reconstruct the sample counts exactly. Then if we define a second query $\phi_2(x) = 1$ for $x \in X_1^n$ and $\phi_2(x) = -1$ for $x \not\in X_1^n$, we see that $P\phi_2 \leq \frac{n}{m} - 1$, while $P_n\phi_2 = 1$. The gap is thus

$$E[P_n\phi_2 - P\phi_2] \geq 2 - \frac{n}{m} \geq 1,$$

which is essentially as bad as possible. ◇

More generally, when one performs an interactive data analysis (e.g. as in Fig. 5.1), adapting hypotheses while interacting with a dataset, it is not a question of statistical significance or multiplicity control for the analysis one does, but for all the possible analyses one might have done otherwise. Given the branching paths one might take in an analysis, it is clear that we require some care.

With that in mind, we consider the desiderata for techniques we might use to control information in the indices we select. We seek some type of *stability* in the information algorithms provide to a data analyst—intuitively, if small changes to a sample do not change the behavior of an analyst substantially, then we expect to obtain reasonable generalization bounds. More broadly, if outputs of a particular analysis procedure carry little information about a particular sample (but instead provide information about a population), then Corollary 5.11 suggests that any estimates we obtain should be accurate.

To develop this stability theory, we require two conditions: first, that whatever quantity we develop for stability should compose adaptively, meaning that if we apply two (randomized) algorithms to a sample, then if both are appropriately stable, even if we choose the second algorithm
because of the output of the first in arbitrary ways, they should remain jointly stable. Second, our notion should bound the mutual information \(I(X_1^n; T) \) between the sample \(X_1^n \) and \(T \). Lastly, we remark that this control on the mutual information has an additional benefit: by the data processing inequality, any downstream analysis we perform that depends only on \(T \) necessarily satisfies the same stability and information guarantees as \(T \), because if we have the Markov chain \(X_1^n \to T \to V \) then \(I(X_1^n; V) \leq I(X_1^n; T) \).

We consider randomized algorithms \(A : \mathcal{X}^n \to \mathcal{A} \), taking values in our index set \(\mathcal{A} \), where \(A(X_1^n) \in \mathcal{A} \) is a random variable that depends on the sample \(X_1^n \). For simplicity in derivation, we abuse notation in this section, and for random variables \(X \) and \(Y \) with distributions \(P \) and \(Q \) respectively, we denote
\[
D_{\text{kl}}(X \| Y) := D_{\text{kl}}(P \| Q).
\]
We make the following definition.

Definition 5.1. Let \(\varepsilon \geq 0 \). A randomized algorithm \(A : \mathcal{X}^n \to \mathcal{A} \) is \(\varepsilon \)-KL-stable if for each \(i \in \{1, \ldots, n\} \) there is a randomized \(A_i : \mathcal{X}^{n-1} \to \mathcal{A} \) such that for every sample \(x_1^n \in \mathcal{X}^n \),
\[
\frac{1}{n} \sum_{i=1}^{n} D_{\text{kl}}(A(x_1^n) \| A_i(x_{\setminus i})) \leq \varepsilon.
\]

Examples may be useful to understand Definition 5.1.

Example 5.14 (KL-stability in mean estimation: Gaussian noise addition): Suppose we wish to estimate a mean, and that \(x_i \in [-1, 1] \) are all real-valued. Then a natural statistic is to simply compute \(A(x_1^n) = \frac{1}{n} \sum_{i=1}^{n} x_i \). In this case, without randomization, we will have infinite KL-divergence between \(A(x_1^n) \) and \(A(x_{\setminus i}) \). If instead we set \(A(x_1^n) = \frac{1}{n} \sum_{i=1}^{n} x_i + Z \) for \(Z \sim N(0, \sigma^2) \), and similarly \(A_i = \frac{1}{n} \sum_{j \neq i} x_j + Z \), then we have (recall Example 2.7)
\[
\frac{1}{n} \sum_{i=1}^{n} D_{\text{kl}}(A(x_1^n) \| A(x_{\setminus i})) = \frac{1}{2n\sigma^2} \sum_{i=1}^{n} \frac{1}{n^2} x_i^2 \leq \frac{1}{2\sigma^2 n^2},
\]
so that the sample mean of a bounded random variable perturbed with Guassian noise is \(\varepsilon = \frac{1}{2\sigma^2 n^2} \)-KL-stable. ◊

We can consider other types of noise addition as well.

Example 5.15 (KL-stability in mean estimation: Laplace noise addition): Let the conditions of Example 2.7 hold, but suppose instead of Gaussian noise we add scaled Laplace noise, that is, \(A(x_1^n) = \frac{1}{n} \sum_{i=1}^{n} x_i + Z \) for \(Z \) with density \(p(z) = \frac{1}{2\sigma} \exp(-|z|/\sigma) \), where \(\sigma > 0 \). Then using that if \(L_{\mu, \sigma} \) denotes the Laplace distribution with shape \(\sigma \) and mean \(\mu \), with density \(p(z) = \frac{1}{2\sigma} \exp(-|z - \mu|/\sigma) \), we have
\[
D_{\text{kl}}(L_{\mu_0, \sigma} \| L_{\mu_1, \sigma}) = \frac{1}{\sigma^2} \int_0^{\frac{|\mu_1 - \mu_0|}{\sigma}} \exp(-z/\sigma)(\mu_1 - \mu_0) - z)dz \leq \exp \left(-\frac{|\mu_1 - \mu_0|}{\sigma}\right) - 1 + \frac{|\mu_1 - \mu_0|}{\sigma} \leq \frac{|\mu_1 - \mu_0|^2}{2\sigma^2},
\]
we see that in this case the sample mean of a bounded random variable perturbed with Laplace noise is \(\varepsilon = \frac{1}{2\sigma^2 n^2} \)-KL-stable, where \(\sigma \) is the shape parameter. ◊
The two key facts are that KL-stable algorithms compose adaptively and that they bound mutual information in independent samples.

Lemma 5.16. Let $A : \mathcal{X}^n \to A_0$ and $A' : A_0 \times \mathcal{X} \to A_1$ be ε and ε'-KL-stable algorithms, respectively. Then the (randomized) composition $A' \circ A(x^n) = A'(A(x_1^n), x_1^n)$ is $\varepsilon + \varepsilon'$-KL-stable. Moreover, the pair $(A' \circ A(x^n_1), A(x^n))$ is $\varepsilon + \varepsilon'$-KL-stable.

Proof Let A_i and A'_i be the promised sub-algorithms in Definition 5.1. We apply the data processing inequality, which implies for each i that

$$D_{kl}(A'(A(x^n_i), x_1^n)|A'_i(A_i(x_{\setminus i}), x_{\setminus i})) \leq D_{kl}(A'(A(x^n_i), x_1^n), A(x^n_i)|A'_i(A_i(x_{\setminus i}), x_{\setminus i}), A_i(x_{\setminus i})).$$

We require a bit of notational trickery now. Fixing i, let $P_{A,A'}$ be the joint distribution of $A'(A(x^n_i), x_1^n)$ and $A(x^n_i)$ and $Q_{A,A'}$ the joint distribution of $A'_i(A_i(x_{\setminus i}), x_{\setminus i})$ and $A_i(x_{\setminus i})$, so that they are both distributions over $A_i \times A_0$. Let $P_{A'|A}$ be the distribution of $A'(t, x^n_i)$ and similarly $Q_{A'|A}$ is the distribution of $A'_i(t, x_{\setminus i})$. Note that A', A'_i both “observe” x, so that using the chain rule (2.1.6) for KL-divergences, we have

$$D_{kl}(A' \circ A, A|A'_i \circ A_i, A_i) = D_{kl}(P_{A,A'}|Q_{A,A'})$$

$$= D_{kl}(P_A|Q_A) + \int D_{kl}(P_{A'|t}|Q_{A'|t}) dP_A(t)$$

$$= D_{kl}(A|A_i) + \mathbb{E}_A[D_{kl}(A'(A, x^n_i)||A'_i(A, x^n_i))].$$

Summing this from $i = 1$ to n yields

$$\frac{1}{n} \sum_{i=1}^n D_{kl}(A' \circ A|A'_i \circ A_i) \leq \frac{1}{n} \sum_{i=1}^n D_{kl}(A|A_i) + \mathbb{E}_A\left[\frac{1}{n} \sum_{i=1}^n D_{kl}(A'(A, x^n_i)||A'_i(A, x^n_i))\right] \leq \varepsilon + \varepsilon',$n

as desired. \hfill \square

The second key result is that KL-stable algorithms also bound the mutual information of a random function.

Lemma 5.17. Let X_i be independent. Then for any random variable A,

$$I(A; X^n_1) \leq \sum_{i=1}^n I(A; X_i | X_{\setminus i}) = \sum_{i=1}^n \int D_{kl}(A(x_i^n) | A_i(x_{\setminus i})) dP(x^n_i),$$

where $A_i(x_{\setminus i}) = A(x_i^{i-1}, X_i, x_{i+1}^n)$ is the random realization of A conditional on $X_{\setminus i} = x_{\setminus i}$.

Proof Without loss of generality, we assume A and X are both discrete. In this case, we have

$$I(A; X_i^n) = \sum_{i=1}^n I(A; X_i | X_{1}^{i-1}) = \sum_{i=1}^n H(X_i | X_{1}^{i-1}) - H(X_i | A, X_{1}^{i-1}).$$

Now, because the X_i follow a product distribution, $H(X_i | X_{1}^{i-1}) = H(X_i)$, while $H(X_i | A, X_{1}^{i-1}) \geq H(X_i | A, X_{\setminus i})$ because conditioning reduces entropy. Consequently, we have

$$I(A; X_i^n) \leq \sum_{i=1}^n H(X_i) - H(X_i | A, X_{\setminus i}) = \sum_{i=1}^n I(A; X_i | X_{\setminus i}).$$

105
To see the final equality, note that
\[
I(A; X_i \mid X_{\setminus i}) = \int_{X^{n-1}} I(A; X_i \mid X_{\setminus i} = x_{\setminus i})dP(x_{\setminus i})
\]
\[
= \int_{X^{n-1}} \int_X D_{\text{KL}}(A(x^n_1) \| A(x_{1:i-1}, X_i, x_{i+1:n}))dP(x_i)dP(x_{\setminus i})
\]
by definition of mutual information as \(I(X; Y) = \mathbb{E}_X[D_{\text{KL}}(P_Y \| P_Y)]\).

Combining Lemmas 5.16 and 5.17, we see (nearly) immediately that KL stability implies a mutual information bound, and consequently even interactive KL-stable algorithms maintain bounds on mutual information.

Proposition 5.18. Let \(A_1, \ldots, A_k\) be \(\varepsilon_i\)-KL-stable procedures, respectively, composed in any arbitrary sequence. Let \(X_i\) be independent. Then
\[
\frac{1}{n} I(A_1, \ldots, A_k; X^n_1) \leq \sum_{i=1}^k \varepsilon_i.
\]

Proof. Applying Lemma 5.17,
\[
I(A^k_1; X^n_1) \leq \sum_{i=1}^n I(A^k_1; X_i \mid X_{\setminus i}) = \sum_{j=1}^k \sum_{i=1}^n I(A_j; X_i \mid X_{\setminus i}, A^{j-1}_1).
\]
Fix an index \(j\) and for shorthand, let \(A = A\) and \(A' = (A_1, \ldots, A_{j-1})\) be the first \(j - 1\) procedures. Then expanding the final mutual information term and letting \(\nu\) denote the distribution of \(A'\), we have
\[
I(A; X_i \mid X_{\setminus i}, A') = \int D_{\text{KL}}(A(a', x^n_1) \| \overline{A}(a', x_{\setminus i}))dP(x_i \mid A' = a', x_{\setminus i})dP^{n-1}(x_{\setminus i})d\nu(a' \mid x_{\setminus i})
\]
where \(A(a', x^n_1)\) is the (random) procedure \(A\) on inputs \(x^n_1\) and \(a'\), while \(\overline{A}(a', x_{\setminus i})\) denotes the (random) procedure \(A\) on input \(a', x_{\setminus i}, X_i\), and where the \(i\)th example \(X_i\) follows its distribution conditional on \(A' = a'\) and \(X_{\setminus i} = x_{\setminus i}\); as in Lemma 5.17. We then recognize that for each \(i\), we have
\[
\int D_{\text{KL}}(A(a', x^n_1) \| \overline{A}(a', x_{\setminus i}))dP(x_i \mid a', x_{\setminus i}) \leq \int D_{\text{KL}}(A(a', x^n_1) \| \overline{A}(a', x_{\setminus i}))dP(x_i \mid a', x_{\setminus i})
\]
for any randomized function \(\overline{A}\), as the marginal \(\overline{A}\) in the lemma minimizes the average KL-divergence (recall Exercise 2.15). Now, sum over \(i\) and apply the definition of KL-stability as in Lemma 5.16.

\[\square\]
Input: Sample $X^n_1 \in \mathcal{X}^n$ drawn i.i.d. P, collection $\{\phi_t\}_{t \in T}$ of possible queries $\phi_t : \mathcal{X} \to [-1,1]$.

Repeat: for $k = 1, 2, \ldots$

i. Analyst chooses index $T_k \in T$ and query $\phi := \phi_{T_k}$

ii. Mechanism draws independent $Z_k \sim \mathcal{N}(0, \sigma^2)$ and responds with answer

$$A_k := P_n \phi + Z_k = \frac{1}{n} \sum_{i=1}^{n} \phi(X_i) + Z_k.$$

Figure 5.2: Sequential Gaussian noise mechanism.

5.3.4 Error bounds for a simple noise addition scheme

Based on Proposition 5.18, to build an appropriately well-generalizing procedure we must build a mechanism for the interaction in Fig. 5.1 that maintains KL-stability. Using Example 5.14, this is not challenging for the class of bounded queries. Let $\Phi = \{\phi_t\}_{t \in T}$ where $\phi_t : \mathcal{X} \to [-1,1]$ be the collection of statistical queries taking values in $[-1,1]$. Then based on Proposition 5.18 and Example 5.14, the following procedure is stable.

This procedure is evidently KL-stable, and based on Example 5.14 and Proposition 5.18, we have that

$$\frac{1}{n} I(X^n_1; T_1, \ldots, T_k, T_{k+1}) \leq \frac{k}{2\sigma^2 n^2}$$

so long as the indices $T_i \in T$ are chosen only as functions of $P_n \phi + Z_j$ for $j < i$, as the classical information processing inequality implies that

$$\frac{1}{n} I(X^n_1; T_1, \ldots, T_k, T_{k+1}) \leq \frac{1}{n} I(X^n_1; A_1, \ldots, A_k)$$

because we have $X^n_1 \to A_1 \to T_2$ and so on for the remaining indices. With this, we obtain the following theorem.

Theorem 5.19. Let the indices T_i, $i = 1, \ldots, k + 1$ be chosen in an arbitrary way using the procedure 5.2, and let $\sigma^2 > 0$. Then

$$E \left[\max_{j \leq k} (A_j - P \phi_{T_j})^2 \right] \leq \frac{2ek}{\sigma^2 n^2} + \frac{10}{4n} + 4\sigma^2 (\log k + 1).$$

By inspection, we can optimize over σ^2 by setting $\sigma^2 = \sqrt{k/(\log k + 1)/n}$, which yields the upper bound

$$E \left[\max_{j \leq k} (A_j - P \phi_{T_j})^2 \right] \leq \frac{10}{4n} + 10 \sqrt{\frac{k(1 + \log k)}{n}}.$$

Comparing to Example 5.12, we see a substantial improvement. While we do not achieve accuracy scaling with $\log k$, as we would if the queried functionals ϕ_t were completely independent of the sample, we see that we achieve mean-squared error of order

$$\frac{\sqrt{k \log k}}{n}$$

107
for k adaptively chosen queries.

Proof To prove the result, we use a technique sometimes called the monitor technique. Roughly, the idea is that we can choose the index T_{k+1} in any way we desire as long as it is a function of the answers A_1, \ldots, A_k and any other constants independent of the data. Thus, we may choose

$$T_{k+1} := T_k^* \quad \text{where} \quad k^* = \arg\max_{j \leq k} \{|A_j - P\phi_{T_j}|\},$$

as this is a (downstream) function of the k different $\varepsilon = \frac{1}{\sqrt{2\pi n^2}}$-KL-stable queries T_1, \ldots, T_k. As a consequence, we have from Corollary 5.11 (and the fact that the queries ϕ are 1-sub-Gaussian) that for $T = T_{k+1}$,

$$\mathbb{E}[(P_n\phi_T - P\phi_T)^2] \leq \frac{2e}{n} I(X_1^n; T_{k+1}) + \frac{5}{4n} \leq 2ek\varepsilon + \frac{5}{4n} = \frac{ek}{\sigma^2 n^2} + \frac{5}{4n}.$$

Now, we simply consider the independent noise addition, noting that $(a + b)^2 \leq 2a^2 + 2b^2$ for any $a, b \in \mathbb{R}$, so that

$$\mathbb{E}\left[\max_{j \leq k} (A_j - P\phi_{T_j})^2\right] \leq 2\mathbb{E}[(P_n\phi_T - P\phi_T)^2] + 2\mathbb{E}\left[\max_{j \leq k} Z_j^2\right] \leq \frac{2ek}{\sigma^2 n^2} + \frac{10}{4n} + 4\sigma^2(\log k + 1),$$

where inequality (5.3.3) is the desired result and follows by the following lemma.

Lemma 5.20. Let W_j, $j = 1, \ldots, k$ be independent $\mathcal{N}(0, 1)$. Then $\mathbb{E}[\max_j W_j^2] \leq 2(\log k + 1)$.

Proof We assume that $k \geq 3$, as the result is trivial otherwise. Using the standard tail bound for Gaussians (tighter than the standard sub-Gaussian bound) that $\mathbb{P}(W \geq t) \leq \frac{1}{\sqrt{2\pi}t}e^{-t^2/2}$ for $t \geq 0$ and that $\mathbb{E}[Z] = \int_0^\infty \mathbb{P}(Z \geq t)dt$ for a nonnegative random variable Z, we obtain that for any t_0,

$$\mathbb{E}[\max_j W_j^2] = \int_0^\infty \mathbb{P}(\max_j W_j^2 \geq t)dt \leq t_0 + \int_{t_0}^\infty \mathbb{P}(\max_j W_j^2 \geq t)dt \leq t_0 + 2k \int_{t_0}^\infty \mathbb{P}(W_1 \geq \sqrt{t})dt \leq t_0 + \frac{2k}{\sqrt{2\pi}} \int_{t_0}^\infty e^{-t/2}dt = t_0 + \frac{4k}{\sqrt{2\pi}} e^{-t_0/2}.$$

Setting $t_0 = 2\log(4k/\sqrt{2\pi})$ gives $\mathbb{E}[\max_j W_j^2] \leq 2\log k + \log \frac{4}{\sqrt{2\pi}} + 1$.

5.4 Bibliography

For PAC-Bayes: the original papers are David McAllester’s [114, 115, 116], and the tutorial [117]. Our approach is also similar to Catoni’s [41]. Our proofs are a simplified version of McAllester’s PAC-Bayesian Stochastic Model Selection.

Interactive data analysis: [71, 69, 70] and [22, 23].
5.5 Exercises

Question 5.1 (Large-margin PAC-Bayes bounds for multiclass problems): Consider the following multiclass prediction scenario. Data comes in pairs \((x, y) \in b \mathbb{B}_2^d \times [k]\) where \(\mathbb{B}_2^d = \{v \in \mathbb{R}^d \mid \|v\|_2 \leq 1\}\) denotes the \(\ell_2\)-ball and \([k] = \{1, \ldots, k\}\). We make predictions using predictors \(\theta_1, \ldots, \theta_k \in \mathbb{R}^d\), where the prediction of \(y\) on an example \(x\) is

\[
\hat{y}(x) := \text{argmax}_{i \leq k} \langle \theta_i, x \rangle.
\]

We suffer an error whenever \(\hat{y}(x) \neq y\), and the margin of our classifier on pair \((x, y)\) is

\[
\langle \theta_y, x \rangle - \max_{i \neq y} \langle \theta_i, x \rangle = \min_{i \neq y} \langle \theta_i - \theta_y, x \rangle.
\]

If \(\langle \theta_y, x \rangle > \langle \theta_i, x \rangle\) for all \(i \neq y\), the margin is then positive (and the prediction is correct).

(a) Develop an analogue of the bounds in Example 5.8 in this \(k\)-class multiclass setting. To do so, you should (i) define the analogue of the margin-based loss \(\ell_\gamma\), (ii) show how Gaussian perturbations leave it similar, and (iii) prove an analogue of the bound in Example 5.8. You should assume one of the two conditions

\[
(C1) \quad \|\theta_i\|_2 \leq r \quad \text{for all} \quad i
\]

\[
(C2) \quad \sum_{i=1}^{k} \|\theta_i\|_2^2 \leq kr^2
\]

on your classification vectors \(\theta_i\). Specify which condition you choose.

(b) Describe a minimization procedure—just a few lines suffice—that uses convex optimization to find a (reasonably) large-margin multiclass classifier.

Question 5.2 (A variance-based information bound): Let \(\Phi = \{\phi_t\}_{t \in T}\) be a collection of functions \(\phi_t : \mathcal{X} \to \mathbb{R}\), where each \(\phi_t\) satisfies the Bernstein condition \((4.1.9)\) with parameters \(\sigma^2(\phi_t)\) and \(b\), that is, \(\mathbb{E}[|\phi_t(X) - P\phi_t(X)|^k] \leq \frac{b^k}{2} \sigma^2(\phi_t) (2k - 1)\) for all \(k \geq 3\) and \(\mathbb{Var}(\phi_t(X)) = \sigma^2(\phi_t)\). Let \(T \in \mathcal{T}\) be any random variable, which may depend on an observed sample \(X_1^n\). Show that for all \(C > 0\) and \(|\lambda| \leq \frac{C}{\mathbb{E}^n}\), then

\[
\mathbb{E}\left[\frac{P_n \phi_T - P \phi_T}{\max\{C, \sigma(\phi_T)\}}\right] \leq \frac{1}{n|\lambda|} I(T; X_1^n) + |\lambda|.
\]

Question 5.3 (An information bound on variance): Let \(\Phi = \{\phi_t\}_{t \in T}\) be a collection of functions \(\phi_t : \mathcal{X} \to \mathbb{R}\), where each \(\phi_t : \mathcal{X} \to [-1, 1]\). Let \(\sigma^2(\phi_t) = \mathbb{Var}(\phi_t(X))\). Let \(s^2_n(\phi) = P_n \phi^2 - (P_n \phi)^2\) be the sample variance of \(\phi\). Show that for all \(C > 0\) and \(0 \leq \lambda \leq C/4\), then

\[
\mathbb{E}\left[\frac{s^2_n(\phi_T)}{\max\{C, \sigma^2(\phi_T)\}}\right] \leq \frac{1}{n\lambda} I(T; X_1^n) + 2.
\]

The \(\max\{C, \sigma^2(\phi_T)\}\) term is there to help avoid division by 0. Hint: If \(0 \leq x \leq 1\), then \(e^x \leq 1 + 2x\), and if \(X \in [0, 1]\), then \(\mathbb{E}[e^X] \leq 1 + 2\mathbb{E}[X] \leq e^{2\mathbb{E}[X]}\). Use this to argue that \(\mathbb{E}[e^{\lambda n P_n(\phi - P \phi^2)/\max\{C, \sigma^2\}}] \leq e^{2\lambda n}\) for any \(\phi : \mathcal{X} \to [-1, 1]\) with \(\mathbb{Var}(\phi) \leq \sigma^2\), then apply the Donsker-Varadhan theorem.

Question 5.4: Consider the following scenario: let \(\phi : \mathcal{X} \to [-1, 1]\) and let \(\alpha > 0, \tau > 0\). Let \(\mu = P_n \phi\) and \(s^2 = P_n \phi^2 - \mu^2\). Define \(\sigma^2 = \max\{\alpha s^2, \tau^2\}\), and assume that \(\tau^2 \geq \frac{5\alpha}{n}\).
(a) Show that the mechanism with answer A_k defined by

$$A := P_n \phi + Z \quad \text{for} \quad Z \sim N(0, \sigma^2)$$

is ϵ-KL-stable (Definition 5.1), where for a numerical constant $C < \infty$,

$$\epsilon \leq C \cdot \frac{s^2}{n^2 \sigma^2} \cdot \left(1 + \frac{\alpha^2}{\sigma^2}\right).$$

(b) Show that if $\alpha^2 \leq C' \tau^2$ for a numerical constant $C' < \infty$, then we can take $\epsilon \leq O(1/n\alpha)$.

Hint: Use exercise 2.14, and consider the “alternative” mechanisms of sampling from $N(\mu_{-i}, \sigma^2_{-i})$ where $\sigma^2_{-i} = \max\{\alpha s^2_{-i}, \tau^2\}$

for

$$\mu_{-i} = \frac{1}{n-1} \sum_{j \neq i} \phi(X_j) \quad \text{and} \quad s^2_{-i} = \frac{1}{n-1} \sum_{j \neq i} \phi(X_j)^2 - \mu^2_{-i}.$$

Input: Sample $X^n_1 \in \mathcal{X}^n$ drawn i.i.d. P, collection $\{\phi_t\}_{t \in T}$ of possible queries $\phi_t : \mathcal{X} \rightarrow [-1, 1]$, parameters $\alpha > 0$ and $\tau > 0$

Repeat: for $k = 1, 2, \ldots$

i. Analyst chooses index $T_k \in T$ and query $\phi := \phi_{T_k}$

ii. Set $s^2_k := P_n \phi^2 - (P_n \phi)^2$ and $\sigma^2_k := \max\{\alpha s^2_k, \tau^2\}$

iii. Mechanism draws independent $Z_k \sim N(0, \sigma^2_k)$ and responds with answer

$$A_k := P_n \phi + Z_k = \frac{1}{n} \sum_{i=1}^n \phi(X_i) + Z_k.$$

Figure 5.3: Sequential Gaussian noise mechanism with variance sensitivity.

Question 5.5 (A general variance-dependent bound on interactive queries): Consider the algorithm in Fig. 5.3. Let $\sigma^2(\phi_t) = \text{Var}(\phi_t(X))$ be the variance of ϕ_t.

(a) Show that for $b > 0$ and for all $0 \leq \lambda \leq \frac{b}{2}$,

$$E \left[\max_{j \leq k} \frac{|A_j - P\phi_{T_j}|}{\max\{b, \sigma(\phi_{T_j})\}} \right] \leq \frac{1}{n\lambda} I(X^n_1; T^k) + \lambda + \sqrt{2\log(ke)} \sqrt{\frac{4\alpha}{nb} I(X^n_1; T^k)} + 2\alpha + \frac{\tau^2}{b^2}.$$

(If you do not have quite the right constants, that’s fine.)

(b) Using the result of Question 5.4, show that with appropriate choices for the parameters $\alpha, b, \tau^2, \lambda$ that for a numerical constant $C < \infty$

$$E \left[\max_{j \leq k} \frac{|A_j - P\phi_{T_j}|}{\max\{(k \log k)^{1/4}/\sqrt{n}, \sigma(\phi_{T_j})\}} \right] \leq C \frac{(k \log k)^{1/4}}{\sqrt{n}}.$$

You may assume that k, n are large if necessary.

(c) Interpret the result from part (b). How does this improve over Theorem 5.19?
Chapter 6

Advanced techniques in concentration inequalities

6.1 Entropy and concentration inequalities

In the previous sections, we saw how moment generating functions and related techniques could be used to give bounds on the probability of deviation for fairly simple quantities, such as sums of random variables. In many situations, however, it is desirable to give guarantees for more complex functions. As one example, suppose that we draw a matrix \(X \in \mathbb{R}^{m \times n} \), where the entries of \(X \) are bounded independent random variables. The operator norm of \(X \), \(\|X\| := \sup_{u,v} \{ u^\top X v : \|u\|_2 = \|v\|_2 = 1 \} \), is one measure of the size of \(X \). We would like to give upper bounds on the probability that \(\|X\| \geq \mathbb{E}[\|X\|] + t \) for \(t \geq 0 \), which the tools of the preceding sections do not address well because of the complicated dependencies on \(\|X\| \).

In this section, we will develop techniques to give control over such complex functions. In particular, throughout we let \(Z = f(X_1, \ldots, X_n) \) be some function of a sample of independent random variables \(X_i \); we would like to know if \(Z \) is concentrated around its mean. We will use deep connections between information theoretic quantities and deviation probabilities to investigate these connections.

First, we give a definition.

Definition 6.1. Let \(\phi : \mathbb{R} \to \mathbb{R} \) be a convex function. The \(\phi \)-entropy of a random variable \(X \) is

\[
\mathbb{H}_\phi(X) := \mathbb{E}[\phi(X)] - \phi(\mathbb{E}[X]),
\]

assuming the relevant expectations exist.

A first example of the \(\phi \)-entropy is the variance:

Example 6.1 (Variance as \(\phi \)-entropy): Let \(\phi(t) = t^2 \). Then \(\mathbb{H}_\phi(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \text{Var}(X) \). ⊥

This example is suggestive of the fact that \(\phi \)-entropies may help us to control deviations of random variables from their means. More generally, we have by Jensen’s inequality that \(\mathbb{H}_\phi(X) \geq 0 \) for any convex \(\phi \); moreover, if \(\phi \) is strictly convex and \(X \) is non-constant, then \(\mathbb{H}_\phi(X) > 0 \). The rough intuition we consider throughout this section is as follows: if a random variable \(X \) is tightly concentrated around its mean, then we should have \(X \approx \mathbb{E}[X] \) “most” of the time, and so \(\mathbb{H}_\phi(X) \) should be small. The goal of this section is to make this claim rigorous.
6.1.1 The Herbst argument

Perhaps unsurprisingly given the focus of these lecture notes, we focus on a specific \(\phi \), using \(\phi(t) = t \log t \), which gives the entropy on which we focus:

\[
H(Z) := \mathbb{E}[Z \log Z] - \mathbb{E}[Z] \log \mathbb{E}[Z],
\]

(6.1.2)
defined whenever \(Z \geq 0 \) with probability 1. As our particular focus throughout this chapter, we consider the moment generating function and associated transformation \(X \mapsto e^{\lambda X} \). If we know the moment generating function \(\phi_X(\lambda) := \mathbb{E}[e^{\lambda X}] \), then \(\phi'_X(\lambda) = \mathbb{E}[X e^{\lambda X}] \), and so

\[
\mathbb{H}(e^{\lambda X}) = \lambda \phi'_X(\lambda) - \phi_X(\lambda) \log \phi_X(\lambda).
\]

This suggests—in a somewhat roundabout way we make precise—that control of the entropy \(\mathbb{H}(e^{\lambda X}) \) should be sufficient for controlling the moment generating function of \(X \).

The Herbst argument makes this rigorous.

Proposition 6.2. Let \(X \) be a random variable and assume that there exists a constant \(\sigma^2 < \infty \) such that

\[
\mathbb{H}(e^{\lambda X}) \leq \frac{\lambda^2 \sigma^2}{2} \phi_X(\lambda).
\]

(6.1.3)
for all \(\lambda \in \mathbb{R} \) (respectively, \(\lambda \in \mathbb{R}_+ \)) where \(\phi_X(\lambda) = \mathbb{E}[e^{\lambda X}] \) denotes the moment generating function of \(X \). Then

\[
\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] \leq \exp \left(\frac{\lambda^2 \sigma^2}{2} \right)
\]

for all \(\lambda \in \mathbb{R} \) (respectively, \(\lambda \in \mathbb{R}_+ \)).

Proof Let \(\varphi = \phi_X \) for shorthand. The proof proceeds by an integration argument, where we show that \(\log \varphi(\lambda) \leq \frac{\lambda^2 \sigma^2}{2} \). First, note that

\[
\varphi'(\lambda) = \mathbb{E}[X e^{\lambda X}],
\]

so that inequality (6.1.3) is equivalent to

\[
\lambda \varphi'(\lambda) - \varphi(\lambda) \log \varphi(\lambda) = \mathbb{H}(e^{\lambda X}) \leq \frac{\lambda^2 \sigma^2}{2} \varphi(\lambda),
\]

and dividing both sides by \(\lambda^2 \varphi(\lambda) \) yields the equivalent statement

\[
\frac{\varphi'(\lambda)}{\lambda \varphi(\lambda)} - \frac{1}{\lambda^2} \log \varphi(\lambda) \leq \frac{\sigma^2}{2}.
\]

But by inspection, we have

\[
\frac{\partial}{\partial \lambda} \frac{1}{\lambda} \log \varphi(\lambda) = \frac{\varphi'(\lambda)}{\lambda \varphi(\lambda)} - \frac{1}{\lambda^2} \log \varphi(\lambda).
\]

Moreover, we have that

\[
\lim_{\lambda \to 0} \frac{\log \varphi(\lambda)}{\lambda} = \lim_{\lambda \to 0} \frac{\log \varphi(\lambda) - \log \varphi(0)}{\lambda} = \frac{\varphi'(0)}{\varphi(0)} = \mathbb{E}[X].
\]
Integrating from 0 to any λ_0, we thus obtain
\[
\frac{1}{\lambda_0} \log \varphi(\lambda_0) - \mathbb{E}[X] = \int_0^{\lambda_0} \left[\frac{\partial}{\partial \lambda} \frac{1}{\lambda} \log \varphi(\lambda) \right] d\lambda \leq \int_0^{\lambda_0} \frac{\sigma^2}{2} d\lambda = \frac{\sigma^2 \lambda_0}{2}.
\]
Multiplying each side by λ_0 gives
\[
\log \mathbb{E}[e^{\lambda_0(X-\mathbb{E}[X])}] = \log \mathbb{E}[e^{\lambda_0 X}] - \lambda_0 \mathbb{E}[X] \leq \frac{\sigma^2 \lambda_0^2}{2},
\]
as desired. \qed

It is possible to give a similar argument for sub-exponential random variables, which allows us to derive Bernstein-type bounds, of the form of Corollary 4.18, but using the entropy method. In particular, in the exercises, we show the following result.

Proposition 6.3. Assume that there exist positive constants b and σ such that
\[
\mathbb{H}(e^{\lambda X}) \leq \lambda^2 \left[b \varphi_X'(\lambda) + \varphi_X(\lambda)(\sigma^2 - b \mathbb{E}[X]) \right]
\]
for all $\lambda \in [0, 1/b)$. Then X satisfies the sub-exponential bound
\[
\log \mathbb{E}[e^{\lambda(X-\mathbb{E}[X])}] \leq \frac{\sigma^2 \lambda^2}{1 - b \lambda}
\]
for all $\lambda \geq 0$.

An immediate consequence of this proposition is that any random variable satisfying the entropy bound (6.1.4a) is $(2\sigma^2, 2b)$-sub-exponential. As another immediate consequence, we obtain the concentration guarantee
\[
\mathbb{P}(X \geq \mathbb{E}[X] + t) \leq \exp \left(-\frac{1}{4} \min \left\{ \frac{t^2}{\sigma^2}, \frac{t}{b} \right\} \right)
\]
as in Proposition 4.16.

6.1.2 Tensorizing the entropy

A benefit of the moment generating function approach we took in the prequel is the excellent behavior of the moment generating function for sums. In particular, the fact that $\varphi_{X_1+\ldots+X_n}(\lambda) = \prod_{i=1}^n \varphi_{X_i}(\lambda)$ allowed us to derive sharper concentration inequalities, and we were only required to work with marginal distributions of the X_i, computing only the moment generating functions of individual random variables rather than characteristics of the entire sum. One advantage of the entropy-based tools we develop is that they allow similar tensorization—based on the chain rule identities of Chapter 2 for entropy, mutual information, and KL-divergence—for substantially more complex functions. Our approach here mirrors that of Boucheron, Lugosi, and Massart [32].

With that in mind, we now present a series of inequalities that will allow us to take this approach. For shorthand throughout this section, we let
\[
X_{\setminus i} = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)
\]
be the collection of all variables except X_i. Our first result is a consequence of the chain rule for entropy and is known as Han’s inequality.

113
Proposition 6.4 (Han’s inequality). Let X_1, \ldots, X_n be discrete random variables. Then

$$H(X^n) \leq \frac{1}{n-1} \sum_{i=1}^{n} H(X_i).$$

Proof The proof is a consequence of the chain rule for entropy and that conditioning reduces entropy. We have

$$H(X^n) = H(X_i | X_{\setminus i}) + H(X_{\setminus i}) \leq H(X_i | X_{1}^{i-1}) + H(X_{\setminus i}).$$

Writing this inequality for each $i = 1, \ldots, n$, we obtain

$$nH(X^n) \leq \sum_{i=1}^{n} H(X_{\setminus i}) + \sum_{i=1}^{n} H(X_i | X_{1}^{i-1}) = \sum_{i=1}^{n} H(X_i) + H(X^n),$$

and subtracting $H(X^n)$ from both sides gives the result.

We also require a divergence version of Han’s inequality, which will allow us to relate the entropy \mathbb{H} of a random variable to divergences and other information-theoretic quantities. Let \mathcal{X} be an arbitrary space, and let Q be a distribution over \mathcal{X}^n and $P = P_1 \times \cdots \times P_n$ be a product distribution on the same space. For $A \subset \mathcal{X}^{n-1}$, define the marginal densities

$$Q^{(i)}(A) := Q(X_{\setminus i} \in A) \quad \text{and} \quad P^{(i)}(A) = P(X_{\setminus i} \in A).$$

We then obtain the tensorization-type Han’s inequality for relative entropies.

Proposition 6.5. With the above definitions,

$$D_{\text{kl}}(Q || P) \leq \sum_{i=1}^{n} \left[D_{\text{kl}}(Q || P) - D_{\text{kl}}(Q^{(i)} || P^{(i)}) \right].$$

Proof We have seen earlier in the notes (recall the definition (2.2.1) of the KL divergence as a supremum over all quantizers and the surrounding discussion) that it is no loss of generality to assume that \mathcal{X} is discrete. Thus, noting that the probability mass functions

$$q^{(i)}(x_{\setminus i}) = \sum_{x} q(x_1^{i-1}, x, x_{i+1}^{n}) \quad \text{and} \quad p^{(i)}(x_{\setminus i}) = \prod_{j \neq i} p_j(x_j),$$

we have that Han’s inequality (Proposition 6.4) is equivalent to

$$(n-1) \sum_{x_1^n} q(x_1^n) \log q(x_1^n) \geq \sum_{i=1}^{n} q^{(i)}(x_{\setminus i}) \log q^{(i)}(x_{\setminus i}).$$

Now, by subtracting $q(x_1^n) \log p(x_1^n)$ from both sides of the preceding display, we obtain

$$(n-1)D_{\text{kl}}(Q || P) = (n-1) \sum_{x_1^n} q(x_1^n) \log q(x_1^n) - (n-1) \sum_{x_1^n} q(x_1^n) \log p(x_1^n)$$

$$\geq \sum_{i=1}^{n} \sum_{x_{\setminus i}} q^{(i)}(x_{\setminus i}) \log q^{(i)}(x_{\setminus i}) - (n-1) \sum_{x_1^n} q(x_1^n) \log p(x_1^n).$$
We expand the final term. Indeed, by the product nature of the distributions p, we have

$$
(n - 1) \sum_{x_1^n} q(x_1^n) \log p(x_1^n) = (n - 1) \sum_{x_1^n} q(x_1^n) \sum_{i=1}^n \log p_i(x_i)
$$

$$
= \sum_{i=1}^n \sum_{x_1^n \neq \phi(i)} q(x_1^n) \sum_{j \neq i} \log p_i(x_i) = \sum_{i=1}^n \sum_{x_{\setminus i}} q^{(i)}(x_{\setminus i}) \log p^{(i)}(x_{\setminus i}).
$$

Noting that

$$
\sum_{x_{\setminus i}} q^{(i)}(x_{\setminus i}) \log q^{(i)}(x_{\setminus i}) - \sum_{x_{\setminus i}} q^{(i)}(x_{\setminus i}) \log p^{(i)}(x_{\setminus i}) = D_{kl}(Q^{(i)} \| P^{(i)})
$$

and rearranging gives the desired result.

Finally, we will prove the main result of this subsection: a tensorization identity for the entropy $\mathbb{H}(Y)$ for an arbitrary random variable Y that is a function of n independent random variables. For this result, we use a technique known as tilting, in combination with the two variants of Han’s inequality we have shown, to obtain the result. The tilting technique is one used to transform problems of random variables into one of distributions, allowing us to bring the tools of information and entropy to bear more directly. This technique is a common one, and used frequently in large deviation theory, statistics, for heavy-tailed data, among other areas. More concretely, let $Y = f(X_1, \ldots, X_n)$ for some non-negative function f. Then we may always define a tilted density

$$
q(x_1, \ldots, x_n) := \frac{f(x_1, \ldots, x_n)p(x_1, \ldots, x_n)}{E_P[f(X_1, \ldots, X_n)]}
$$

which, by inspection, satisfies $\int q(x_1^n) = 1$ and $q \geq 0$. In our context, if $f \approx$ constant under the distribution P, then we should have $f(x_1^n)p(x_1^n) \approx cp(x_1^n)$ and so $D_{kl}(Q \| P)$ should be small; we can make this rigorous via the following tensorization theorem.

Theorem 6.6. Let X_1, \ldots, X_n be independent random variables and $Y = f(X_1^n)$, where f is a non-negative function. Define $\mathbb{H}(Y \mid X_{\setminus i}) = E[Y \log Y \mid X_{\setminus i}]$. Then

$$
\mathbb{H}(Y) \leq E \left[\sum_{i=1}^n \mathbb{H}(Y \mid X_{\setminus i}) \right].
$$

Proof Inequality (6.1.6) holds for Y if and only if holds identically for cY for any $c > 0$, so we assume without loss of generality that $E_P[Y] = 1$. We thus obtain that $\mathbb{H}(Y) = E[Y \log Y] = E[\phi(Y)]$, where assign $\phi(t) = t \log t$. Let P have density p with respect to a base measure μ. Then by defining the tilted distribution (density) $q(x_1^n) = f(x_1^n)p(x_1^n)$, we have $Q(X^n) = 1$, and moreover, we have

$$
D_{kl}(Q \mid \!\!\mid P) = \int q(x_1^n) \log \frac{q(x_1^n)}{p(x_1^n)} d\mu(x_1^n) = \int f(x_1^n)p(x_1^n) \log f(x_1^n) d\mu(x_1^n) = E_P[Y \log Y] = \mathbb{H}(Y).
$$

115
Similarly, if \(\phi(t) = t \log t \), then
\[
D_{\text{kl}} \left(Q^{(i)} \| P^{(i)} \right) \\
= \int_{X^{n-1}} \left(\int f(x_i^{-1}, x, n) p_i(x) d\mu(x) \right) \log \frac{p_i(x) f(x_i^{-1}, x, n) p_i(x) d\mu(x)}{p_i(x)} d\mu(x) \\
= \int_{X^{n-1}} \mathbb{E}[Y \mid x_i] \log \mathbb{E}[Y \mid x_i] p_i(x) d\mu(x) \\
= \mathbb{E}[\phi(\mathbb{E}[Y \mid X_{\setminus i}])].
\]
The tower property of expectations then yields that
\[
\mathbb{E}[\phi(Y)] - \mathbb{E}[\phi(\mathbb{E}[Y \mid X_{\setminus i}])] = \mathbb{E}[\mathbb{E}[\phi(Y) \mid X_{\setminus i}] - \phi(\mathbb{E}[Y \mid X_{\setminus i}])] = \mathbb{E}[\mathbb{H}(Y \mid X_{\setminus i})].
\]
Using Han’s inequality for relative entropies (Proposition 6.4) then immediately gives
\[
\mathbb{H}(Y) = D_{\text{kl}} (Q \| P) \leq \sum_{i=1}^{n} \left[D_{\text{kl}} (Q \| P) - D_{\text{kl}} \left(Q^{(i)} \| P^{(i)} \right) \right] = \sum_{i=1}^{n} \mathbb{E}[\mathbb{H}(Y \mid X_{\setminus i})],
\]
which is our desired result.

Theorem 6.6 shows that if we can show that individually the conditional entropies \(\mathbb{H}(Y \mid X_{\setminus i}) \) are not too large, then the Herbst argument (Proposition 6.2 or its variant Proposition 6.3) allows us to provide strong concentration inequalities for general random variables \(Y \).

Examples and consequences

We now show how to use some of the preceding results to derive strong concentration inequalities, showing as well how we may give convergence guarantees for a variety of procedures using these techniques.

We begin with our most straightforward example, which is the bounded differences inequality. In particular, we consider an arbitrary function \(f \) of \(n \) independent random variables, and we assume that for all \(x_{1:n} = (x_1, \ldots, x_n) \), we have the bounded differences condition:
\[
\sup_{x \in X, x' \in X} |f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x', x_{i+1}, \ldots, x_n)| \leq c_i \text{ for all } x_i.
\]
(6.1.7)

Then we have the following result.

Proposition 6.7 (Bounded differences). Assume that \(f \) satisfies the bounded differences condition (6.1.7), where \(\frac{1}{4} \sum_{i=1}^{n} c_i^2 \leq \sigma^2 \). Let \(X_i \) be independent. Then \(Y = f(X_1, \ldots, X_n) \) is \(\sigma^2 \)-sub-Gaussian.

Proof We use a similar integration argument to the Herbst argument of Proposition 6.2, and we apply the tensorization inequality (6.1.6). First, let \(U \) be an arbitrary random variable taking values in \([a, b]\). We claim that if \(\varphi_U(\lambda) = \mathbb{E}[e^{U \lambda}] \) and \(\psi(\lambda) = \log \varphi_U(\lambda) \) is its cumulant generating function, then
\[
\frac{\mathbb{H}(e^{U \lambda})}{\mathbb{E}[e^{U \lambda}]} \leq \frac{\lambda^2 (b - a)^2}{8}.
\]
(6.1.8)
To see this, note that
\[
\frac{\partial}{\partial \lambda} [\lambda \psi'(\lambda) - \psi(\lambda)] = \psi''(\lambda), \quad \text{so} \quad \lambda \psi'(\lambda) - \psi(\lambda) = \int_0^\lambda t \psi''(t) dt \leq \frac{\lambda^2(b-a)^2}{8},
\]
where we have used the homework exercise XXXX (recall Hoeffding’s Lemma, Example 4.6), to argue that \(\psi''(t) \leq \frac{(b-a)^2}{4} \) for all \(t \). Recalling that
\[
\mathbb{H}(e^{\lambda U}) = \lambda \varphi_U(\lambda) - \varphi_U(\lambda) \psi(\lambda) = [\lambda \psi'(\lambda) - \psi(\lambda)] \varphi_U(\lambda)
\]
gives inequality (6.1.8).

Now we apply the tensorization identity. Let \(Z = e^{\lambda Y} \). Then we have
\[
\mathbb{H}(Z) \leq \mathbb{E}\left[\sum_{i=1}^n \mathbb{H}(Z \mid X_i) \right] \leq \mathbb{E}\left[\sum_{i=1}^n \frac{c_i^2 \lambda^2}{8} \mathbb{E}[e^{\lambda Z} \mid X_i] \right] = \sum_{i=1}^n \frac{c_i^2 \lambda^2}{8} \mathbb{E}[e^{\lambda Z}].
\]
Applying the Herbst argument gives the final result.

As an immediate consequence of this inequality, we obtain the following dimension independent concentration inequality.

Example 6.8: Let \(X_1, \ldots, X_n \) be independent vectors in \(\mathbb{R}^d \), where \(d \) is arbitrary, and assume that \(\|X_i\|_2 \leq c_i \) with probability 1. (This could be taken to be a general Hilbert space with no loss of generality.) We claim that if we define
\[
\sigma^2 := \sum_{i=1}^n c_i^2, \quad \text{then} \quad P\left(\left\| \sum_{i=1}^n X_i \right\|_2 \geq t \right) \leq \exp\left(-2 \frac{t - \sqrt{\sigma^2}}{\sqrt{\sigma^2}} \right).
\]
Indeed, we have that \(Y = \|\sum_{i=1}^n X_i\|_2 \) satisfies the bounded differences inequality with parameters \(c_i \), and so
\[
P\left(\left\| \sum_{i=1}^n X_i \right\|_2 \geq t \right) = P\left(\left\| \sum_{i=1}^n X_i \right\|_2 - \mathbb{E}\left[\left\| \sum_{i=1}^n X_i \right\|_2 \right] \geq t - \mathbb{E}\left[\left\| \sum_{i=1}^n X_i \right\|_2 \right] \right)
\leq \exp\left(-2 \frac{t - \mathbb{E}\left[\left\| \sum_{i=1}^n X_i \right\|_2 \right]}{\sqrt{\sigma^2}} \right).
\]
Noting that \(\mathbb{E}\left[\left\| \sum_{i=1}^n X_i \right\|_2 \right] \leq \sqrt{\mathbb{E}\left[\left\| \sum_{i=1}^n X_i \right\|_2^2 \right]} = \sqrt{\sum_{i=1}^n \mathbb{E}\left[\left\| X_i \right\|_2^2 \right]} \) gives the result.

6.1.3 Concentration of convex functions

We provide a second theorem on the concentration properties of a family of functions that are quite useful, for which other concentration techniques do not appear to give results. In particular, we say that a function \(f : \mathbb{R}^n \to \mathbb{R} \) is *separately convex* if for each \(i \in \{1, \ldots, n\} \) and all \(x_{\setminus i} \in \mathbb{R}^{n-1} \) (or the domain of \(f \)), we have that
\[
x \mapsto f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n)
\]
is convex. We also recall that a function is \(L \)-Lipschitz if \(|f(x) - f(y)| \leq \|x - y\|_2 \) for all \(x, y \in \mathbb{R}^n \); any \(L \)-Lipschitz function is almost everywhere differentiable, and is \(L \)-Lipschitz if and only if \(\|\nabla f(x)\|_2 \leq L \) for (almost) all \(x \). With these preliminaries in place, we have the following result.
Theorem 6.9. Let \(X_1, \ldots, X_n\) be independent random variables with \(X_i \in [a, b]\) for all \(i\). Assume that \(f : \mathbb{R}^n \to \mathbb{R}\) is separately convex and \(L\)-Lipschitz with respect to the \(\|\cdot\|_2\) norm. Then

\[
\mathbb{E}[\exp(\lambda(f(X_{1:n}) - \mathbb{E}[f(X_{1:n})]))] \leq \exp(\lambda^2(b-a)^2L^2) \quad \text{for all } \lambda \geq 0.
\]

We defer the proof of the theorem temporarily, giving two example applications. The first is to the matrix concentration problem that motivates the beginning of this section.

Example 6.10: Let \(X \in \mathbb{R}^{m \times n}\) be a matrix with independent entries, where \(X_{ij} \in [-1, 1]\) for all \(i, j\), and let \(\|\|\) denote the operator norm on matrices, that is, \(\|A\| = \sup_{u,v}\{u^\top Av : \|u\|_2 \leq 1, \|v\|_2 \leq 1\}\). Then Theorem 6.9 implies

\[
\mathbb{P}(\|X\| \geq \mathbb{E}[\|X\|] + t) \leq \exp\left(-\frac{t^2}{16}\right)
\]

for all \(t \geq 0\). Indeed, we first observe that

\[
\|X\| - \|Y\| \leq \|X - Y\| \leq \|X - Y\|_{Fr},
\]

where \(\|\|_{Fr}\) denotes the Frobenius norm of a matrix. Thus the matrix operator norm is \(1\)-Lipschitz. Therefore, we have by Theorem 6.9 and the Chernoff bound technique that

\[
\mathbb{P}(\|X\| \geq \mathbb{E}[\|X\|] + t) \leq \exp(4\lambda^2 - \lambda t)
\]

for all \(\lambda \geq 0\). Taking \(\lambda = t/8\) gives the desired result. \(\diamondsuit\)

As a second example, we consider Rademacher complexity. These types of results are important for giving generalization bounds in a variety of statistical algorithms, and form the basis of a variety of concentration and convergence results. We defer further motivation of these ideas to subsequent chapters, just mentioning here that we can provide strong concentration guarantees for Rademacher complexity or Rademacher chaos.

Example 6.11: Let \(A \subset \mathbb{R}^n\) be any collection of vectors. The the Rademacher complexity of the class \(A\) is

\[
R_n(A) := \mathbb{E}\left[\sup_{a \in A} \sum_{i=1}^n a_i \varepsilon_i\right],
\]

(6.1.9)

where \(\varepsilon_i\) are i.i.d. Rademacher (sign) variables. Let \(\hat{R}_n(A) = \sup_{a \in A} \sum_{i=1}^n a_i \varepsilon_i\) denote the empirical version of this quantity. We claim that

\[
\mathbb{P}(\hat{R}_n(A) \geq R_n(A) + t) \leq \exp\left(-\frac{t^2}{16 \text{diam}(A)^2}\right),
\]

where \(\text{diam}(A) := \sup_{a \in A} \|a\|_2\). Indeed, we have that \(\varepsilon \mapsto \sup_{a \in A} a^\top \varepsilon\) is a convex function, as it is the maximum of a family of linear functions. Moreover, it is Lipschitz, with Lipschitz constant bounded by \(\sup_{a \in A} \|a\|_2\). Applying Theorem 6.9 as in Example 6.10 gives the result. \(\diamondsuit\)

Proof of Theorem 6.9 The proof relies on our earlier tensorization identity and a symmetrization lemma.
Lemma 6.12. Let $X, Y \overset{iid}{\sim} P$ be independent. Then for any function $g : \mathbb{R} \to \mathbb{R}$, we have
\[
\mathbb{H}(e^{\lambda g(X)}) \leq \lambda^2 \mathbb{E}[(g(X) - g(Y))^2 e^{\lambda g(X)}] \{g(X) \geq g(Y)\} \quad \text{for } \lambda \geq 0.
\]
Moreover, if g is convex, then
\[
\mathbb{H}(e^{\lambda g(X)}) \leq \lambda^2 \mathbb{E}[(X - Y)^2 (g'(X))^2 e^{\lambda g(X)}] \quad \text{for } \lambda \geq 0.
\]

Proof. For the first result, we use the convexity of the exponential in an essential way. In particular, we have
\[
\mathbb{H}(e^{\lambda g(X)}) = \mathbb{E}[\lambda g(X) e^{\lambda g(X)}] - \mathbb{E}[e^{\lambda g(X)}] \log \mathbb{E}[e^{\lambda g(Y)}] \\
\leq \mathbb{E}[\lambda g(X) e^{\lambda g(X)}] - \mathbb{E}[e^{\lambda g(X)}] \lambda g(Y),
\]
because \log is concave and $e^x \geq 0$. Using symmetry, that is, that $g(X) - g(Y)$ has the same distribution as $g(Y) - g(X)$, we then find
\[
\mathbb{H}(e^{\lambda g(X)}) \leq \frac{1}{2} \mathbb{E}[(\lambda g(X) - g(Y))(e^{\lambda g(X)} - e^{\lambda g(Y)})] = \mathbb{E}[\lambda g(X) - g(Y)](e^{\lambda g(X)} - e^{\lambda g(Y)}) \{g(X) \geq g(Y)\}.
\]
Now we use the classical first order convexity inequality—that a convex function f satisfies $f(t) \leq f(s) + f'(s)(t-s)$ for all t and s, Theorem A.23 in the appendices—which gives that $e^t \geq e^s + e^s(t-s)$ for all s and t. Rewriting, we have $e^s - e^t \leq e^s(s-t)$, and whenever $s \geq t$, we have $(s-t)(e^s - e^t) \leq e^s(s-t)^2$. Replacing s and t with $\lambda g(X)$ and $\lambda g(Y)$, respectively, we obtain
\[
\lambda g(X) - g(Y))(e^{\lambda g(X)} - e^{\lambda g(Y)}) \{g(X) \geq g(Y)\} \leq \lambda^2 (g(X) - g(Y))^2 e^{\lambda g(X)} \{g(X) \geq g(Y)\}.
\]
This gives the first inequality of the lemma.

To obtain the second inequality, note that if g is convex, then whenever $g(x) - g(y) \geq 0$, we have $g(y) \geq g(x) + g'(x)(y-x)$, or $g'(x)(x-y) \geq g(x) - g(y) \geq 0$. In particular,
\[
(g(X) - g(Y))^2 \{g(X) \geq g(Y)\} \leq (g'(X)(X - Y))^2,
\]
which gives the second result. \qed

Returning to the main thread of the proof, we note that the separate convexity of f and the tensorization identity of Theorem 6.6 imply
\[
\mathbb{H}(e^{\lambda f(X_1:n)}) \leq \mathbb{E} \left[\sum_{i=1}^n \mathbb{H}(e^{\lambda f(X_1:n)} \mid X_i) \right] \leq \mathbb{E} \left[\sum_{i=1}^n \lambda^2 \mathbb{E} \left[(X_i - Y_i)^2 \left(\frac{\partial}{\partial x_i} f(X_1:n) \right)^2 e^{\lambda f(X_1:n)} \mid X_i \right] \right],
\]
where Y_i are independent copies of the X_i. Now, we use that $(X_i - Y_i)^2 \leq (b-a)^2$ and the definition of the partial derivative to obtain
\[
\mathbb{H}(e^{\lambda f(X_1:n)}) \leq \lambda^2 (b-a)^2 \mathbb{E} \left[\|\nabla f(X_1:n)\|^2 e^{\lambda f(X_1:n)} \right].
\]
Noting that $\|\nabla f(X)\|^2 \leq L^2$, and applying the Herbst argument, gives the result. \qed
Question 6.1 (A discrete isoperimetric inequality): Let $A \subset \mathbb{Z}^d$ be a finite subset of the d-dimensional integers. Let the projection mapping $\pi_j : \mathbb{Z}^d \to \mathbb{Z}^{d-1}$ be defined by

$$\pi_j(z_1, \ldots, z_d) = (z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_d)$$

so that we “project out” the jth coordinate, and define the projected sets.

$$A_j = \pi_j(A) = \{ \pi_j(z) : z \in A \}$$

$$= \left\{ z \in \mathbb{Z}^{d-1} : \text{there exists } z_\star \in \mathbb{Z} \text{ such that } (z_1, z_2, \ldots, z_{j-1}, z_\star, z_{j}, \ldots, z_{d-1}) \in A \right\}.$$

Prove the Loomis-Whitney inequality, that is, that

$$\text{card}(A) \leq \left(\prod_{j=1}^{d} \text{card}(A_j) \right)^{\frac{1}{d-1}}.$$
Chapter 7

Privacy and disclosure limitation

In this chapter, we continue to build off of our ideas on stability in different scenarios, ranging from model fitting and concentration to interactive data analyses. Here, we show how stability ideas allow us to provide a new type of protection: the privacy of participants in studies. The major challenge in this direction had, until the mid-2000s with the introduction of differential privacy—a type of stability in likelihood ratios—been a satisfactory definition of privacy, because collection of side information often results in unforeseen compromises of private information. Consequently, in this chapter we focus on privacy notions based on differential privacy and its cousins, developing the information-theoretic stability ideas helpful to understand the protections it is possible to provide.

7.1 Disclosure limitation, privacy, and definitions

We begin this chapter with a few cautionary tales and examples, which motivate the coming definitions of privacy that we consider. A natural belief might be that, given only certain summary statistics of a large dataset, individuals in the data are protected. Yet this appears, by and large, to be false. As an example, in 2008 Nils Homer and colleagues [91] showed that even releasing aggregated genetic frequency statistics (e.g., frequency of single nucleotide polymorphisms (SNP) in microarrays) can allow resolution of individuals within a database. Consequently, the US National Institutes of Health (NIH), the Wellcome Trust, and the Broad Institute removed genetic summaries from public access (along with imposing stricter requirements for private access) [135, 48].

Another hypothetical example may elucidate some of the additional challenges. Suppose that I release a dataset that consists of the frequent times that posts are made worldwide that denigrate government policies, but I am sure to remove all information such as IP addresses, usernames, or other metadata excepting the time of the post. This might seem a priori reasonably safe, but now suppose that an authoritarian government knows precisely when its citizens are online. Then by linking the two datasets, the government may be able to track those who post derogatory statements about their leaders.

Perhaps the strongest definition of privacy of databases and datasets is due to Dalenius [52], who suggests that “nothing about an individual should be learnable from the database that cannot be learned without access to the database.” But quickly, one can see that it is essentially impossible to reconcile this idea with scientific advancement. Consider, for example, a situation where we perform a study on smoking, and discover that smoking causes cancer. We publish the result, but
now we have “compromised” the privacy of everyone who smokes who did not participate in the study: we know they are more likely to get cancer.

In each of these cases, the biggest challenge is one of side information: how can we be sure that, when releasing a particular statistic, dataset, or other quantity that no adversary will be able to infer sensitive data about participants in our study? We articulate three desiderata that—we believe—suffice for satisfactory definitions of privacy. In discussion of private releases of data, we require a bit of vocabulary. We term a (randomized) algorithm releasing data either a privacy mechanism, consistent with much of the literature in privacy, or a channel, mapping from the input sample to some output space, in keeping with our statistical and information-theoretic focus. In no particular order, we wish our privacy mechanism, which takes as input a sample \(X_1^n \in X^n \) and releases some \(Z \) to satisfy the following.

i. Given the output \(Z \), even an adversary knowing everyone in the study (excepting one person) should not be able to test whether you belong to the study.

ii. If you participate in multiple “private” studies, there should be some graceful degradation in the privacy protections, rather than a catastrophic failure. As part of this, any definition should guarantee that further processing of the output \(Z \) of a private mechanism \(X_1^n \to Z \), in the form of the Markov chain \(X_1^n \to Z \to Y \), should not allow further compromise of privacy (that is, a data-processing inequality). Additional participation in “private” studies should continue to provide little additional information.

iii. The mechanism \(X_1^n \to Z \) should be resilient to side information: even if someone knows something about you, he should learn little about you if you belong to \(X_1^n \), and this should remain true even if the adversary later gleans more information about you.

The third desideratum is perhaps most elegantly phrased via a Bayesian perspective, where an adversary has some prior beliefs \(\pi \) on the membership of a dataset (these prior beliefs can then capture any side information the adversary has). Perhaps the strongest adversary might have a prior supported on two samples \(\{x_1, \ldots, x_n\} \) and \(\{x'_1, \ldots, x'_n\} \) differing in only a single element; a private mechanism would then guarantee his posterior beliefs (after the release \(X_1^n \to Z \)) should not change significantly.

The challenges of side information motivate the definition of differential privacy, due to Dwork et al. [67]. The key in differential privacy is that we the noisy channel releasing statistics provides guarantees of bounded likelihood ratios between neighboring samples, that is, samples differing in only a single entry.

Definition 7.1 (Differential privacy). Let \(Q \) be a Markov kernel from \(X^n \) to an output space \(Z \). Then \(Q \) is \(\varepsilon \)-differentially private if for all (measurable) sets \(S \subset Z \) and all samples \(x_1^n \in X^n \) and \(y_1^n \in X^n \) differing in at most a single entry,

\[
\frac{Q(Z \in S \mid x_1^n)}{Q(Z \in S \mid y_1^n)} \leq e^\varepsilon.
\]

The intuition and original motivation for this definition are that an individual has little incentive to participate (or not participate) in a study, as the individual’s data has limited effect on the outcome.

The model (7.1.1) of differential privacy presumes that there is a trusted curator, such as a hospital, researcher, or corporation, who can collect all the data into one centralized location, and
it is consequently known as the \textit{centralized} model. A stronger model of privacy is the \textit{local model}, in which data providers trust no one, not even the data collector, and privatize their individual data before the collector even sees it.

\textbf{Definition 7.2} (Local differential privacy). A channel Q from \mathcal{X} to \mathcal{Z} is ε-locally differentially private if for all measurable $S \subset \mathcal{Z}$ and all $x, x' \in \mathcal{X}$,

$$
\frac{Q(Z \in S | x)}{Q(Z \in S | x')} \leq e^\varepsilon.
$$

(7.1.2)

It is clear that Definition 7.2 and the condition (7.1.2) are stronger than Definition 7.1: when samples $\{x_1, \ldots, x_n\}$ and $\{x'_1, \ldots, x'_n\}$ differ in at most one observation, then the local model (7.1.2) guarantees that the densities

$$
dQ(Z^n_1 | \{x_i\})/dQ(Z^n_1 | \{x'_i\}) = \prod_{i=1}^n dQ(Z_i | x_i)/dQ(Z_i | x'_i) \leq e^\varepsilon,
$$

where the inequality follows because only a single ratio may contain $x_i \neq x'_i$.

In the remainder of this introductory section, we provide a few of the basic mechanisms in use in differential privacy, then discuss its “semantics,” that is, its connections to the three desiderata we outline above. In the coming sections, we revisit a few more advanced topics, in particular, the composition of multiple private mechanisms and a few weakenings of differential privacy, as well as more sophisticated examples.

\textbf{7.1.1 Basic mechanisms}

The basic mechanisms in either the local or centralized models of differential privacy use some type of noise addition to ensure privacy. We begin with the simplest and oldest mechanism, randomized response, for local privacy, due to Warner \cite{Warner1965} in 1965.

\textbf{Example 7.1} (Randomized response): We wish to have a participant in a study answer a yes/no question about a sensitive topic (for example, drug use). That is, we would like to estimate the proportion of the population with a characteristic (versus those without); call these groups 0 and 1. Rather than ask the participant to answer the question specifically, however, we give them a spinner with a face painted in two known areas, where the first corresponds to group 0 and has area $e^\varepsilon/(1 + e^\varepsilon)$ and the second to group 1 and has area $1/(1 + e^\varepsilon)$. Thus, when the participant spins the spinner, it lands in group 0 with probability $e^\varepsilon/(1 + e^\varepsilon)$.

Then we simply ask the participant, upon spinning the spinner, to answer “Yes” if he or she belongs to the indicated group, “No” otherwise.

Let us demonstrate that this randomized response mechanism provides ε-local differential privacy. Indeed, we have

$$
\frac{Q(\text{Yes} | x = 0)}{Q(\text{Yes} | x = 1)} = e^{-\varepsilon} \quad \text{and} \quad \frac{Q(\text{No} | x = 0)}{Q(\text{No} | x = 1)} = e^\varepsilon,
$$

so that $Q(Z = z | x)/Q(Z = z | x') \in [e^{-\varepsilon}, e^\varepsilon]$ for all x, z. That is, the randomized response channel provides ε-local privacy. \Diamond
The interesting question is, of course, whether we can still use this channel to estimate the proportion of the population with the sensitive characteristic. Indeed, we can. We can provide a somewhat more general analysis, however, which we now do so that we can give a complete example.

Example 7.2 (Randomized response, continued): Suppose that we have an attribute of interest, \(x \), taking the values \(x \in \{1, \ldots, k\} \). Then we consider the channel (of \(Z \) drawn conditional on \(x \))

\[
Z = \begin{cases}
 x & \text{with probability } \frac{e^\varepsilon}{k-1+e^\varepsilon} \\
 \text{Uniform}([k] \setminus \{x\}) & \text{with probability } \frac{k-1}{k-1+e^\varepsilon}.
\end{cases}
\]

This (generalized) randomized response mechanism is evidently \(\varepsilon \)-locally private, satisfying Definition 7.2.

Let \(p \in \mathbb{R}^k_+ \), \(p^T \mathbf{1} = 1 \) indicate the true probabilities \(p_i = \mathbb{P}(X = i) \). Then by inspection, we have

\[
\mathbb{P}(Z = i) = p_i \frac{e^\varepsilon}{k-1+e^\varepsilon} + \frac{1 - p_i}{k-1+e^\varepsilon} = p_i \frac{e^\varepsilon - 1}{e^\varepsilon + k-1} + \frac{1}{e^\varepsilon + k - 1}.
\]

Thus, letting \(\hat{c}_n \in \mathbb{R}^k_+ \) denote the empirical proportion of the \(Z \) observations in a sample of size \(n \), we have

\[
\hat{p}_n := \frac{e^\varepsilon + k - 1}{e^\varepsilon - 1} \left(\frac{1}{e^\varepsilon + k - 1} \right)
\]

satisfies \(\mathbb{E}[\hat{p}_n] = p \), and we also have

\[
\mathbb{E} \left[||\hat{p}_n - p||_2^2 \right] = \frac{\left(\frac{e^\varepsilon + k - 1}{e^\varepsilon - 1} \right)^2 \mathbb{E} \left[||\hat{c}_n - \mathbb{E}[\hat{c}_n]||_2^2 \right]}{n} = \frac{1}{n} \left(\frac{e^\varepsilon + k - 1}{e^\varepsilon - 1} \right)^2 \sum_{j=1}^k \mathbb{P}(Z = j)(1 - \mathbb{P}(Z = j)).
\]

As \(\sum_j \mathbb{P}(Z = j) = 1 \), we always have the bound \(\mathbb{E}[||\hat{p}_n - p||_2^2] \leq \frac{1}{n} \left(\frac{e^\varepsilon + k - 1}{e^\varepsilon - 1} \right)^2 \).

While randomized response is essentially the standard mechanism in locally private settings, in centralized privacy, the “standard” mechanism is Laplace noise addition because of its exponential tails. In this case, we require a few additional definitions. Suppose that we wish to release some \(d \)-dimensional function \(f(X_i^n) \) of the sample \(X_i^n \), where \(f \) takes values in \(\mathbb{R}^d \). In the case that \(f \) is Lipschitz with respect to the Hamming metric—that is, the counting metric on \(\mathcal{X}^m \)—it is relatively straightforward to develop private mechanisms. For easier use in our future development, for \(p \in [1, \infty] \) and some distance-like function \(\text{dist} \) taking values in \(\mathbb{R}_+ \), we define the Lipschitz constant \(\text{Lip}_p, \text{dist} \) by

\[
\text{Lip}_{p, \text{dist}}(f) := \sup_{x, x'} \left\{ \frac{||f(x) - f(x')||_p}{\text{dist}(x, x')} : \text{dist}(x, x') > 0 \right\}.
\]

The appropriate notion of distance in the case of (centralized) differential privacy is the Hamming metric

\[
d_{\text{ham}}(\{x_1, \ldots, x_n\}, \{x_1', \ldots, x_n'\}) = \sum_{i=1}^n 1 \{x_i \neq x_i'\},
\]

124
which counts the number of differences between samples \(x \) and \(x' \). Differentially private mechanisms (Definition 7.1) are most convenient to define for functions that are Lipschitz with respect to the Hamming metric, because they allow simple noise addition strategies. In the privacy literature, the Lipschitz constant of a function is often called the sensitivity.

Example 7.3 (Laplace mechanisms): Recall the Laplace distribution, parameterized by a shape parameter \(\beta \), which has density on \(\mathbb{R} \) defined by

\[
p(w) = \frac{1}{2\beta} \exp(-|w|/\beta),
\]

and the analogous \(d \)-dimensional variant, which has density

\[
p(w) = \frac{1}{(2\beta)^d} \exp(-\|w\|_1/\beta).
\]

If \(W \sim \text{Laplace}(\beta) \), \(W \in \mathbb{R} \), then \(\mathbb{E}[W] = 0 \) by symmetry, while \(\mathbb{E}[W^2] = \frac{1}{\beta^2} \int_0^\infty w^2 e^{-w/\beta} = 2\beta^2 \).

Suppose that \(f : X^n \to \mathbb{R}^d \) has Lipschitz constant \(L \) with respect to the pairing \(\|\cdot\|_1 \) and \(d_{\text{ham}} \), that is,

\[
\text{Lip}_{1,d_{\text{ham}}}(f) = \sup \{ \| f(x^n_1) - f(y^n_1) \|_1 \mid d_{\text{ham}}(x^n_1, y^n_1) \leq 1 \} \leq L
\]

(you should convince yourself that this is an equivalent definition of the Lipschitz constant for the Hamming metric). Then if we consider the mechanism defined by the addition of \(W \in \mathbb{R}^d \) with independent \(\text{Laplace}(L/\epsilon) \) coordinates,

\[
Z := f(X^n_1) + W, \quad W \overset{\text{iid}}{\sim} \text{Laplace}(L/\epsilon), \tag{7.1.3}
\]

we have that \(Z \) is \(\epsilon \)-differentially private. Indeed, for samples \(x, x' \in X^n \) differing in at most a single coordinate (say, \(x_i \neq x'_i \)), \(Z \) has density ratio

\[
\frac{q(z \mid x)}{q(z \mid x')} = \exp \left(-\frac{\epsilon}{L} \| f(x) - z \|_1 \right) \cdot \exp \left(\frac{\epsilon}{L} \| f(x') - z \|_1 \right) \leq \exp \left(\frac{\epsilon}{L} \| f(x) - f(x') \|_1 \right) \leq \exp(\epsilon)
\]

by the triangle inequality and that \(f \) is \(L \)-Lipschitz with respect to the Hamming metric. Thus \(Z \) is \(\epsilon \)-differentially private. Moreover, we have

\[
\mathbb{E}[\| Z - f(x^n_1) \|_2^2] = \frac{2dL^2}{\epsilon^2},
\]

so that if \(L \) is small, we may report the value of \(f \) accurately. ◇

The most common instances and applications of the Laplace mechanism are in estimation of means and histograms. Let us demonstrate more carefully worked examples in these two cases.

Example 7.4 (Private one-dimensional mean estimation): Suppose that we have variables \(X_i \) taking values in \([-b, b] \) for some \(b < \infty \), and wish to estimate \(\mathbb{E}[X] \). A natural function to release is then \(f(X^n_1) = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \). This has Lipschitz constant \(2b/n \) with respect to the Hamming metric, because for any two samples \(x, x' \in [-b, b]^n \) differing in only entry \(i \), we have

\[
| f(x) - f(x') | = \frac{1}{n} | x_i - x'_i | \leq \frac{2b}{n}
\]
because $x_i \in [-b, b]$. Thus the Laplace mechanism (7.1.3) with the choice variance $W \sim \text{Laplace}(2b/(n\epsilon))$ yields

$$E[(Z - E[X])^2] = E[(X_n - E[X])^2] + E[(Z - X_n)^2] = \frac{1}{n} \text{Var}(X) + \frac{8b^2}{n^2\epsilon^2} \leq \frac{b^2}{n} + \frac{8b^2}{n^2\epsilon^2}.$$

We can privately release means with little penalty so long as $\epsilon \gg n^{-1/2}$. ♦

Example 7.5 (Private histogram (multinomial) release): Suppose that we wish to estimate a multinomial distribution, or put differently, a histogram. That is, we have observations $X \in \{1, \ldots, k\}$, where k may be large, and wish to estimate $p_j := P(X = j)$ for $j = 1, \ldots, k$. For a given sample x_1^n, the empirical count vector \hat{p}_n with coordinates $\hat{p}_{n,j} = \frac{1}{n} \sum_{i=1}^n 1 \{X_i = j\}$ satisfies

$$\text{Lip}_{1,\text{ham}}(\hat{p}_n) \leq \frac{2}{n},$$

because swapping a single example x_i for x'_i may change the counts for at most two coordinates j, j' by 1. Consequently, the Laplace noise addition mechanism

$$Z = \hat{p}_n + W, \quad W_j \overset{iid}{\sim} \text{Laplace}\left(\frac{2}{n\epsilon}\right)$$

satisfies

$$E[\|Z - \hat{p}_n\|_2^2] = \frac{8k}{n^2\epsilon^2}$$

and consequently

$$E[\|Z - p\|_2^2] = \frac{8k}{n^2\epsilon^2} + \frac{1}{n} \sum_{j=1}^k p_j(1 - p_j) \leq \frac{8k}{n^2\epsilon^2} + \frac{1}{n}.$$

This example shows one of the challenges of differentially private mechanisms: even in the case where the quantity of interest is quite stable (insensitive to changes in the underlying sample, or has small Lipschitz constant), it may be the case that the resulting mechanism adds noise that introduces some dimension-dependent scaling. In this case, the conditions on privacy levels acceptable for good estimation—in that the rate of convergence is no different from the non-private case, which achieves $E[\|\hat{p}_n - p\|_2^2] = \frac{k}{n} \sum_{j=1}^k p_j(1 - p_j) \leq \frac{1}{n}$ are that $\epsilon \gg \frac{k}{n}$. Thus, in the case that the histogram has a large number of bins, the naive noise addition strategy cannot provide as much protection without sacrificing efficiency.

If instead of ℓ_2-error we consider ℓ_∞ error, it is possible to provide somewhat more satisfying results in this case. Indeed, we know that $P(\|W\|_\infty \geq t) \leq k \exp(-t/b)$ for $W_j \overset{iid}{\sim} \text{Laplace}(b)$, so that in the mechanism above we have

$$P(\|Z - \hat{p}_n\|_\infty \geq t) \leq k \exp\left(-\frac{tn\epsilon}{2}\right) \quad \text{all } t \geq 0,$$

so using that each coordinate of \hat{p}_n is 1-sub-Gaussian, we have

$$E[\|Z - p\|_\infty] \leq E[\|\hat{p}_n - p\|_\infty] + E[\|W\|_\infty] \leq \sqrt{\frac{2\log k}{n}} + \inf_{t \geq 0} \left\{ t + \frac{2k}{n\epsilon} \exp\left(-\frac{tn\epsilon}{2}\right) \right\} \leq \sqrt{\frac{2\log k}{n}} + \frac{2\log k}{n\epsilon} + \frac{2}{n\epsilon}.$$

In this case, then, whenever $\epsilon \gg (n/\log k)^{-1/2}$, we obtain rate of convergence at least $\sqrt{2\log k/n}$, which is a bit loose (as we have not controlled the variance of \hat{p}_n), but somewhat more satisfying than the k-dependent penalty above. ♦

126
7.1.2 Resilience to side information, Bayesian perspectives, and data processing

As we discuss earlier, one of the major challenges in the definition of privacy is to protect against side information, especially because in the future, information about you may be compromised, allowing various linkage attacks. With this in mind, we return to our three desiderata. First, we note the following simple fact: if Z is a differentially private view of a sample X^n_1, then any downstream functions Y are also differentially private. That is, if we have $X^n_1 \rightarrow Z \rightarrow Y$, then for any $x, x' \in \mathcal{X}^n$ with $d_{ham}(x, x') \leq 1$, we have for any set A that

$$\frac{P(Y \in A \mid x)}{P(Y \in A \mid x')} = \int P(Y \in A \mid z) q(z \mid x) d\mu(z) \leq e^\varepsilon \int P(Y \in A \mid z) q(z \mid x') d\mu(z) = e^\varepsilon.$$

That is, any type of post-processing cannot reduce privacy.

With this simple idea out of the way, let us focus on our testing-based desideratum. In this case, we consider a Bayesian one, which allows us to more carefully consider side information. In this case, we consider the following thought experiment. An adversary has a set of prior beliefs π on \mathcal{X}^n, and wishes to test whether a particular value x belongs to a given
sample, which we denote by S for notational convenience. Now, consider the posterior distribution $\pi(\cdot \mid Z)$ induced by observing an output of the channel $Z \sim Q(\cdot \mid S)$. We will show that, under a few mild conditions on the types of priors allowed, that differential privacy guarantees that the posterior beliefs of the adversary about who belongs to the sample cannot change much. There is some annoyance in this calculation in that the order of the sample may be important, but it at least gets toward some semantic interpretation of differential privacy.

We consider the adversary’s beliefs on whether a particular value x belongs to the sample, but more precisely, we consider whether $X_i = x$. We assume that the prior density π on \mathcal{X}^n satisfies

$$
\pi(x^n_i) = \pi_{\backslash i}(x_{\backslash i})\pi_i(x_i), \quad (7.1.5)
$$

where $x_{\backslash i} = (x_{1}^{i-1}, x_{i+1}^{n}) \in \mathcal{X}^{n-1}$. That is, the adversary’s beliefs about person i in the dataset are independent of his beliefs about the other members of the dataset. (We assume that π is a density with respect to a measure μ on $\mathcal{X}^{n-1} \times \mathcal{X}$, where $d\mu(s, x) = d\mu(s)d\mu(x)$.) Under the condition (7.1.5), we have the following proposition.

Proposition 7.7. Let Q be an ε-differentially private channel and let π be any prior distribution satisfying condition (7.1.5). Then for any z, the posterior density π_i on X_i satisfies

$$
e^{-\varepsilon}\pi_i(x) \leq \pi_i(x \mid Z = z) \leq e^{\varepsilon}\pi_i(x).
$$

Proof. We abuse notation and for a sample $s \in \mathcal{X}^{n-1}$, where $s = (x_1^{i-1}, x_{i+1}^{n})$, we let $s \oplus_i x = (x_1^{i-1}, x, x_{i+1}^{n})$. Letting μ be the base measure on $\mathcal{X}^{n-1} \times \mathcal{X}$ with respect to which π is a density and $q(\cdot \mid x^n_i)$ be the density of the channel Q, we have

$$
\pi_i(x \mid Z = z) = \frac{\int_{s \in \mathcal{X}^{n-1}} q(z \mid s \oplus_i x)\pi(s \oplus_i x)d\mu(s)}{\int_{s \in \mathcal{X}^{n-1}} \int_{x' \in \mathcal{X}} q(z \mid s \oplus_i x')\pi(s \oplus_i x')d\mu(s, x')}
\leq e^\varepsilon \frac{\int_{s \in \mathcal{X}^{n-1}} q(z \mid s \oplus_i x)\pi(s \oplus_i x)d\mu(s)}{\int_{s \in \mathcal{X}^{n-1}} \int_{x' \in \mathcal{X}} q(z \mid s \oplus_i x)\pi(s \oplus_i x')d\mu(s)d\mu(x')}
= e^\varepsilon \frac{\int_{s \in \mathcal{X}^{n-1}} q(z \mid s \oplus_i x)\pi_{\backslash i}(s)d\mu(s)\int_{x' \in \mathcal{X}} \pi_i(x')d\mu(x')}{\int_{s \in \mathcal{X}^{n-1}} q(z \mid s \oplus_i x)\pi_{\backslash i}(s)d\mu(s)}
= e^\varepsilon \pi_i(x),
$$

where inequality (\ast) follows from ε-differential privacy. The lower bound is similar. \qed

There are other versions of prior and posterior beliefs that differential privacy may protect against. If the channel is invariant to permutations, so that $Q(\cdot \mid x^n_i) = Q(\cdot \mid (x_{\sigma(1)}, \ldots, x_{\sigma(n)}))$ for any permutation σ of $\{1, \ldots, n\}$, then we may change Proposition 7.7 to reflect a semantics more in line with the question of whether a particular value x belongs to a sample X^n_i at all, so long as the adversary’s prior beliefs follow a product distribution that is also appropriately invariant to permutations. The conditioning and ordering gymnastics necessary for this are a bit tedious, however, so we omit the development. Roughly, however, we see that Proposition 7.7 captures the idea that even if an adversary has substantial prior knowledge—in the form of a prior distribution π on the ith value X_i and everything else in the sample—the posterior cannot change much.

We may devise an alternative view by considering Bayes factors, which measure how much prior and posterior distributions differ after observations. In this case, we have the following immediate result.

128
Proposition 7.8. A channel Q from $X^n \to Z$ is ε-differentially private if and only if for any prior distribution π on X^n and any observation $z \in Z$, the posterior odds satisfy

$$\frac{\pi(x \mid z)}{\pi(x' \mid z)} \leq e^{\varepsilon}$$

for all $x, x' \in X^n$ with $d_{\text{ham}}(x, x') \leq 1$.

Proof. We have $\pi(x \mid z) = q(z \mid x)\pi(x)/q(z)$, where q is the density (conditional or marginal) of $Z \in Z$. Then

$$\frac{\pi(x \mid z)}{\pi(x' \mid z)} = \frac{q(z \mid x)\pi(x)}{q(z \mid x')\pi(x')} \leq e^{\varepsilon} \frac{\pi(x)}{\pi(x')}$$

for all z, x, x' if and only if Q is ε-differentially private. \qed

Thus we see that private channels mean that prior and posterior odds between two neighboring samples cannot change substantially, no matter what the observation Z actually is.

7.2 Weakenings of differential privacy

One challenge with the definition of differential privacy is that it can sometimes require the addition of more noise to a desired statistic than is practical for real use. Moreover, the privacy considerations interact in different ways with geometry: as we saw in Example 7.5, the Laplace mechanism adds noise that introduces dimension-dependent scaling, which we discuss more in Example 7.17. Consequently, it is of interest to develop weaker notions that—at least hopefully—still provide appropriate and satisfactory privacy protections. To that end, we develop two additional types of privacy that allow the development of more sophisticated and lower-noise mechanisms than standard differential privacy; their protections are necessarily somewhat weaker but are typically satisfactory.

We begin with a definition that allows (very rare) catastrophic privacy breaches—as long as the probability of this event is extremely small (say, 10^{-20}), these may be acceptable.

Definition 7.3. Let $\varepsilon, \delta \geq 0$. A channel Q from X^n to output space Z is (ε, δ)-differentially private if for all (measurable) sets $S \subset Z$ and all neighboring samples $x^n_1 \in X^n$ and $y^n_1 \in X^n$,

$$Q(Z \in S \mid x^n_1) \leq e^\varepsilon Q(Z \in S \mid y^n_1) + \delta \quad (7.2.1)$$

One typically thinks of δ in the definition above as satisfying $\delta = \delta_n$, where $\delta_n \ll n^{-k}$ for any $k \in \mathbb{N}$. (That is, δ decays super-polynomially to zero.) Some practitioners contend that all real-world differentially private algorithms are in fact (ε, δ)-differentially private: while one may use cryptographically secure random number generators, there is some possibility (call this δ) that a cryptographic key may leak, or an encoding may be broken, in the future, making any mechanism (ε, δ)-private at best for some $\delta > 0$.

An alternative definition of privacy is based on Rényi divergences between distributions. These are essentially simply monotonically transformed f divergences (recall Chapter 2.2), though their structure is somewhat more amenable to analysis, especially in our contexts. With that in mind, we define
Definition 7.4. Let P and Q be distributions on a space X with densities p and q (with respect to a measure μ). For $\alpha \in [1, \infty]$, the Rényi-α-divergence between P and Q is

$$D_\alpha(P\|Q) := \frac{1}{\alpha - 1} \log \int \left(\frac{p(x)}{q(x)} \right)^\alpha q(x) d\mu(x).$$

Here, the values $\alpha \in \{1, \infty\}$ are defined in terms of their respective limits.

Rényi divergences satisfy

$$\exp((\alpha - 1)D_\alpha(P\|Q)) = D_f(P\|Q)$$

for the f-divergence defined by $f(t) = t^\alpha - 1$, so that they inherit a number of the properties of such divergences. We enumerate a few here for later reference.

Proposition 7.9 (Basic facts on Rényi divergence). Rényi divergences satisfy the following properties.

i. The divergence $D_\alpha(P\|Q)$ is non-decreasing in α.

ii. $\lim_{\alpha \downarrow 1} D_\alpha(P\|Q) = D_{KL}(P\|Q)$ and $\lim_{\alpha \uparrow \infty} D_\alpha(P\|Q) = \sup_x \{p(x)/q(x) \mid q(x) > 0\}$.

iii. Let $K(\cdot \mid x)$ be a Markov kernel from $X \to Z$ as in Proposition 2.16, and let K_P and K_Q be the induced marginals of P and Q under K, respectively. Then $D_\alpha(K_P\|K_Q) \leq D_\alpha(P\|Q)$.

Each of these properties we leave as an exercise to the reader, noting that property i is a consequence of Hölder’s inequality, property ii is by L’Hospital’s rule, and property iii is an immediate consequence of Proposition 2.16. Rényi divergences also tensorize nicely—generalizing the tensorization properties of KL-divergence and information of Chapter 2 (recall the chain rule (2.1.6) for KL-divergence)—and we return to this later. As a preview, however, these tensorization properties allow us to prove that the composition of multiple private data releases remains appropriately private.

With these preliminaries in place, we can then provide

Definition 7.5 (Rényi-differential privacy). Let $\varepsilon \geq 0$ and $\alpha \in [1, \infty]$. A channel Q from X^n to output space Z is (ε, α)-Rényi private if for all neighboring samples $x^n_1, y^n_1 \in X^n$,

$$D_\alpha(Q(\cdot \mid x^n_1)\|Q(\cdot \mid y^n_1)) \leq \varepsilon. \quad (7.2.2)$$

Clearly, any ε-differentially private channel is also (ε, α)-Rényi private for any $\alpha \geq 1$; as we soon see, we can provide tighter guarantees than this.

7.2.1 Basic mechanisms

We now describe a few of the basic mechanisms that provide guarantees of (ε, δ)-differential privacy and (ε, α)-Rényi privacy. The advantage for these settings is that they allow mechanisms that more naturally handle vectors in ℓ_2, and smoothness with respect to Euclidean norms, than with respect to ℓ_1, which is most natural for pure ε-differential privacy. A starting point is the following example, which we will leverage frequently.

Example 7.10 (Rényi divergence between Gaussian distributions): Consider normal distributions $N(\mu_0, \Sigma)$ and $N(\mu_1, \Sigma)$. Then

$$D_\alpha(N(\mu_0, \Sigma)\|N(\mu_1, \Sigma)) = \frac{\alpha}{2} (\mu_0 - \mu_1)^T \Sigma^{-1} (\mu_0 - \mu_1). \quad (7.2.3)$$
To see this equality, we compute the appropriate integral of the densities. Let \(p \) and \(q \) be the densities of \(N(\mu_0, \Sigma) \) and \(N(\mu_1, \Sigma) \), respectively. Then letting \(\mathbb{E}_{\mu_1} \) denote expectation over \(X \sim N(\mu_1, \Sigma) \), we have
\[
\int \left(\frac{p(x)}{q(x)} \right)^\alpha q(x) dx = \mathbb{E}_{\mu_1} \left[\exp \left(-\frac{\alpha}{2} (X - \mu_0)^T \Sigma^{-1} (X - \mu_0) + \frac{\alpha}{2} (X - \mu_1)^T \Sigma^{-1} (X - \mu_1) \right) \right]
\]
\[
\overset{(i)}{=} \mathbb{E}_{\mu_1} \left[\exp \left(-\frac{\alpha}{2} (\mu_0 - \mu_1)^T \Sigma^{-1} (\mu_0 - \mu_1) + \alpha (\mu_0 - \mu_1)^T \Sigma^{-1} (X - \mu_1) \right) \right]
\]
\[
\overset{(ii)}{=} \exp \left(-\frac{\alpha}{2} (\mu_0 - \mu_1)^T \Sigma^{-1} (\mu_0 - \mu_1) + \frac{\alpha^2}{2} (\mu_0 - \mu_1)^T \Sigma^{-1} (\mu_0 - \mu_1) \right),
\]
where equality \((i)\) is simply using that \((x-a)^2 - (x-b)^2 = (a-b)^2 + 2(b-a)(x-b) \) and equality \((ii)\) follows because \((\mu_0 - \mu_1)^T \Sigma^{-1} (X - \mu_1) \sim N(0, (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0)) \) under \(X \sim N(\mu_1, \Sigma) \). Noting that \(-\alpha + \alpha^2 = \alpha(\alpha - 1)\) and taking logarithms gives the result. ◇

Example 7.10 is the key to developing different privacy-preserving schemes under Rényi privacy. Let us reconsider Example 7.3, except that instead of assuming the function \(f \) of interest is smooth with respect to \(\ell_1 \) norm, we use the \(\ell_2 \)-norm.

Example 7.11 (Gaussian mechanisms): Suppose that \(f : \mathcal{X}^n \to \mathbb{R}^d \) has Lipschitz constant \(L \) with respect to the \(\ell_2 \)-norm (for the Hamming metric \(d_{\text{ham}} \)), that is,
\[
\text{Lip}_2,d_{\text{ham}}(f) = \text{sup} \{ \| f(x_n) - f(y_n) \|_2 \mid d_{\text{ham}}(x_n, y_n) \leq 1 \} \leq L.
\]
Then, for any variance \(\sigma^2 > 0 \), we have that the mechanism
\[
Z = f(X_1^n) + W, \quad W \sim \mathcal{N}(0, \sigma^2 I)
\]
satisfies
\[
D_{\alpha} (N(f(x), \sigma^2) \mid N(f(x'), \sigma^2)) = \frac{\alpha}{2\sigma^2} \| f(x) - f(x') \|_2^2 \leq \frac{\alpha}{2\sigma^2} L^2
\]
whenever \(d_{\text{ham}}(x, x') \leq 1 \). Thus, if we have Lipschitz constant \(L \) and desire \((\varepsilon, \alpha)\)-Rényi privacy, we may take \(\sigma^2 = \frac{L^2 \alpha}{2\varepsilon} \), and then the mechanism
\[
Z = f(X_1^n) + W, \quad W \sim \mathcal{N} \left(0, \frac{L^2 \alpha}{2\varepsilon} I \right)
\]
(7.2.4)
satisfies \((\varepsilon, \alpha)\)-Rényi privacy. ◇

Certain special cases can make this more concrete. Indeed, suppose we wish to estimate a mean \(\mathbb{E}[X] \) where \(X_i \overset{\text{iid}}{\sim} P \) for some distribution \(P \) such that \(\| X_i \|_2 \leq r \) with probability 1 for some radius.

Example 7.12 (Bounded mean estimation with Gaussian mechanisms): Letting \(f(X_1^n) = \overline{X}_n \) be the sample mean, where \(X_i \) satisfy \(\| X_i \|_2 \leq r \) as above, we see that
\[
\| f(x) - f(x') \|_2^2 \leq \frac{2r}{n}
\]
whenever \(d_{\text{ham}}(x, x') \leq 1 \). In this case, the Gaussian mechanism (7.2.4) with \(L = \frac{2r}{n} \) yields
\[
\mathbb{E}[\| Z - f(X_1^n) \|_2^2] = \mathbb{E}[\| W \|_2^2] = \frac{2d r^2 \alpha}{n^2 \varepsilon}.
\]
Then we have
\[E[\|Z - E[X]\|^2] = E[\|f(X^n_\alpha) - E[X]\|^2] + E[\|Z - f(X^n_\alpha)\|^2] \leq \frac{r^2}{n} + \frac{2d^2 \alpha}{n^2 \varepsilon}. \]

It is not immediately apparent how to compare this quantity to the case for the Laplace mechanism in Example 7.3, but we will return to this shortly once we have developed connections between the various privacy notions we have developed. ◯

7.2.2 Connections between privacy measures

An important consideration in our development of privacy definitions and mechanisms is to understand the relationships between the definitions, and when a channel \(Q \) satisfying one of the definitions satisfies one of our other definitions. Thus, we collect a few different consequences of our definitions, which help to show the various definitions are stronger or weaker than others.

First, we argue that \(\varepsilon \)-differential privacy implies stronger values of Rényi-differential privacy.

Proposition 7.13. Let \(\varepsilon \geq 0 \) and let \(P \) and \(Q \) be distributions such that \(e^{-\varepsilon} \leq P(A)/Q(A) \leq e^\varepsilon \) for all measurable sets \(A \). Then for any \(\alpha \in [1, \infty] \),
\[
D_\alpha(P|Q) \leq \min \left\{ \frac{3\alpha}{2} \varepsilon^2, \varepsilon \right\}.
\]

As an immediate corollary, we have

Corollary 7.14. Let \(\varepsilon \geq 0 \) and assume that \(Q \) is \(\varepsilon \)-differentially private. Then for any \(\alpha \geq 1 \), \(Q \) is \((\min\left\{ \frac{3\alpha}{2} \varepsilon^2, \varepsilon \right\}, \alpha) \)-Rényi private.

Before proving the proposition, let us see its implications for Example 7.12 versus estimation under \(\varepsilon \)-differential privacy. Let \(\varepsilon \leq 1 \), so that roughly to have “similar” privacy, we require that our Rényi private channels satisfy \(D_\alpha(Q(\cdot | x)\|Q(\cdot | x')) \leq \varepsilon^2 \). The \(\ell_1 \)-sensitivity of the mean satisfies \(\|\overline{x}_n - \overline{x}_n'\|_1 \leq \sqrt{d}\|\overline{x}_n - \overline{x}_n'\|_2 \leq \sqrt{dr}/n \) for neighboring \(x, x' \). Then the Laplace mechanism (7.1.3) satisfies
\[
E[\|Z_{\text{Laplace}} - E[X]\|^2] = E[\|\overline{X}_n - E[X]\|^2] + \frac{2r^2}{n^2 \varepsilon^2} \cdot d^2,
\]
while the Gaussian mechanism under \((\varepsilon^2, \alpha) \)-Rényi privacy will yield
\[
E[\|Z_{\text{Gauss}} - E[X]\|^2] = E[\|\overline{X}_n - E[X]\|^2] + \frac{2\alpha^2}{n^2 \varepsilon^2} \cdot d\alpha.
\]

This is evidently better than the Laplace mechanism whenever \(\alpha < d \).

Proof of Proposition 7.13 We assume that \(P \) and \(Q \) have densities \(p \) and \(q \) with respect to a base measure \(\mu \), which is no loss of generality, whence the ratio condition implies that \(e^{-\varepsilon} \leq p/q \leq e^{\varepsilon} \) and \(D_\alpha(P|Q) = \frac{1}{\alpha - 1} \log \int (p/q)^\alpha d\mu \). We prove the result assuming that \(\alpha \in (1, \infty) \), as continuity gives the result for \(\alpha \in \{1, \infty\} \).

First, it is clear that \(D_\alpha(P|Q) \leq \varepsilon \) always. For the other term in the minimum, let us assume that \(\alpha \leq 1 + \frac{1}{\varepsilon} \) and \(\varepsilon \leq 1 \). If either of these fails, the result is trivial, because for \(\alpha > 1 + \frac{1}{\varepsilon} \) we have \(\frac{3}{2} \alpha^2 \geq \frac{9}{2} \varepsilon \geq \varepsilon \), and similarly \(\varepsilon \geq 1 \) implies \(\frac{3}{2} \alpha^2 \geq \varepsilon \).

Now we perform a Taylor approximation of \(t \rightarrow (1 + t)\alpha \). By Taylor’s theorem, we have for any \(t > -1 \) that
\[
(1 + t)\alpha = 1 + \alpha t + \frac{\alpha(\alpha - 1)}{2} (1 + \tilde{t})^{\alpha-2} t^2
\]
for some \(\tilde{t} \in [0,t] \) (or \([t,0]\) if \(t < 0\)). In particular, if \(1 + t \leq c\), then \((1 + t)^\alpha \leq 1 + \alpha t + \frac{\alpha(\alpha-1)}{2} \max\{1, e^{\alpha-2}\} t^2\). Now, we compute the divergence: we have

\[
\exp\left((\alpha - 1)D_\alpha(P\|Q)\right) = \int \left(\frac{p(z)}{q(z)}\right)^\alpha q(z) d\mu(z)
\]

\[
= \int \left(1 + \frac{p(z)}{q(z)} - 1\right)^\alpha q(z) d\mu(z)
\]

\[
\leq 1 + \alpha \int \left(\frac{p(z)}{q(z)} - 1\right) q(z) d\mu(z) + \frac{\alpha(\alpha - 1)}{2} \max\{1, \exp(\alpha(\alpha - 2))\} \int \left(\frac{p(z)}{q(z)} - 1\right)^2 q(z) d\mu(z)
\]

\[
\leq 1 + \frac{\alpha(\alpha - 1)}{2} e^{\alpha(\alpha - 2)} \cdot (e^\alpha - 1)^2.
\]

Now, we know that \(\alpha - 2 \leq 1/\varepsilon - 1\) by assumption, so using that \(\log(1 + x) \leq x\), we obtain

\[
D_\alpha(P\|Q) \leq \frac{\alpha}{2} (e^\varepsilon - 1)^2 \cdot \exp([1 - \varepsilon]_+).
\]

Finally, a numerical calculation yields that this quantity is at most \(\frac{3\alpha}{2} \varepsilon^2\) for \(\varepsilon \leq 1\). \(\square\)

We can also provide connections from \((\varepsilon, \alpha)\)-Rényi privacy to \((\varepsilon, \delta)\)-differential privacy, and then from there to \(\varepsilon\)-differential privacy. We begin by showing how to develop \((\varepsilon, \delta)\)-differential privacy out of Rényi privacy. Another way to think about this proposition is that whenever two distributions \(P\) and \(Q\) are close in Rényi divergence, then there is some limited “amplification” of probabilities that is possible in moving from one to the other.

Proposition 7.15. Let \(P\) and \(Q\) satisfy \(D_\alpha(P\|Q) \leq \varepsilon\). Then for any set \(A\),

\[
P(A) \leq \exp\left(\frac{\alpha - 1}{\alpha} \varepsilon\right) Q(A)^{\frac{\alpha - 1}{\alpha}}.
\]

Consequently, for any \(\delta > 0\),

\[
P(A) \leq \min\left\{ \exp\left(\varepsilon + \frac{1}{\alpha - 1} \log \frac{1}{\delta}\right) Q(A), \delta \right\} \leq \exp\left(\varepsilon + \frac{1}{\alpha - 1} \log \frac{1}{\delta}\right) Q(A) + \delta.
\]

As above, we have an immediate corollary to this result.

Corollary 7.16. Assume that \(Q\) is \((\varepsilon, \alpha)\)-Rényi private. Then it is also \((\varepsilon + \frac{1}{\alpha - 1} \log \frac{1}{\delta}, \delta)\)-differentially private for any \(\delta > 0\).

Before turning to the proof of the proposition, we show how it can provide prototypical \((\varepsilon, \delta)\)-private mechanisms via Gaussian noise addition.

Example 7.17 (Gaussian mechanisms, continued): Consider Example 7.11, where \(f : \mathcal{X}^n \to \mathbb{R}^d\) has \(\ell_2\)-sensitivity \(L\). Then by Example 7.10, the Gaussian mechanism \(Z = f(X^n_\delta) + W\) for \(W \sim N(0, \sigma^2 I)\) is \((\frac{\alpha L^2}{2\sigma^2}, \alpha)\)-Rényi private for all \(\alpha \geq 1\). Combining this with Corollary 7.16, the Gaussian mechanism is also

\[
\left(\frac{\alpha L^2}{2\sigma^2} + \frac{1}{\alpha - 1} \log \frac{1}{\delta}, \delta\right)\)-differentially private.
for any $\delta > 0$ and $\alpha > 1$. Optimizing first over α by taking $\alpha = 1 + \sqrt{2\sigma^2 \log \delta^{-1}/L^2}$, we see that the channel is $(\frac{L^2}{2\sigma^2} + \sqrt{2L^2 \log \delta^{-1}/\sigma^2}, \delta)$-differentially private. Thus we have that the Gaussian mechanism

$$Z = f(X_n) + W, \quad W \sim N(0, \sigma^2 I)$$

for $\sigma^2 = L^2 \max\left(\frac{8 \log \frac{1}{\delta} \varepsilon^2}{\varepsilon}, \frac{1}{\varepsilon}\right)$

is (ε, δ)-differentially private.

To continue with our ℓ_2-bounded mean-estimation in Example 7.12, let us assume that $\varepsilon < 8 \log \frac{1}{\delta}$, in which case the Gaussian mechanism (7.2.5) with $L^2 = \frac{r^2}{\varepsilon^2}$ achieves (ε, δ)-differential privacy, and we have

$$E[\|Z_{\text{Gauss}} - E[X]\|^2] = E[\|X_n - E[X]\|^2] + O(1) \frac{r^2}{\varepsilon^2} \cdot d \log \frac{1}{\delta}.$$ \hspace{1cm} (7.2.5)

Comparing to the previous cases, we see an improvement over the Laplace mechanism whenever $\log \frac{1}{\delta} \ll d$, or that $\delta \gg e^{-d}$.

Proof of Proposition 7.15 We use the data processing inequality of Proposition 7.9.iii, which shows that

$$\varepsilon \geq D_\alpha(P\|Q) \geq \frac{1}{\alpha} \log \left[\left(\frac{P(A)}{Q(A)}\right)^{\alpha} Q(A)\right].$$

Rearranging and taking exponentials, we immediately obtain the first claim of the proposition.

For the second, we require a bit more work. First, let us assume that $Q(A) > e^{-\varepsilon} \delta^{\frac{\alpha}{\alpha-1}}$. Then we have by the first claim of the proposition that

$$P(A) \leq \exp \left(\frac{\alpha-1}{\alpha} \varepsilon + \frac{1}{\alpha} \log \frac{1}{Q(A)}\right) Q(A)$$

$$\leq \exp \left(\frac{\alpha-1}{\alpha} \varepsilon + \frac{1}{\alpha} \log \frac{1}{\delta}\right) Q(A) = \exp \left(\varepsilon + \frac{1}{\alpha-1} \log \frac{1}{\delta}\right) Q(A).$$

On the other hand, when $Q(A) \leq e^{-\varepsilon} \delta^{\frac{\alpha}{\alpha-1}}$, then again using the first result of the proposition,

$$P(A) \leq \exp \left(\frac{\alpha-1}{\alpha} (\varepsilon + \log Q(A))\right)$$

$$\leq \exp \left(\frac{\alpha-1}{\alpha} \left(\varepsilon - \varepsilon + \frac{\alpha}{\alpha-1} \log \delta\right)\right) = \delta.$$

This gives the second claim of the proposition.

Finally, we develop our last set of connections, which show how we may relate (ε, δ)-private channels with ε-private channels. To provide this definition, we require one additional weakened notion of divergence, which relates (ε, δ)-differential privacy to Rényi-α-divergence with $\alpha = \infty$. We define

$$D^\delta_\infty(P\|Q) := \sup_{S \subset \mathcal{X}} \left\{ \log \frac{P(S) - \delta}{Q(S)} \mid P(S) > \delta \right\},$$

where the supremum is over measurable sets. Evidently equivalent to this definition is that

$$D^\delta_\infty(P\|Q) \leq \varepsilon$$

if and only if

$$P(S) \leq e^{\varepsilon} Q(S) + \delta \quad \text{for all} \ S \subset \mathcal{X}.$$

Then we have the following theorem.
Lemma 7.18. Let $\varepsilon > 0$ and $\delta \in (0, 1)$, and let P and Q be distributions on a space \mathcal{X}.

(i) We have $D_{\infty}^{\delta}(P|Q) \leq \varepsilon$ if and only if there exists a probability distribution R on \mathcal{X} such that $\|P - R\|_{TV} \leq \delta$ and $D_{\infty}(R|Q) \leq \varepsilon$.

(ii) We have $D_{\infty}^{\delta}(P|Q) \leq \varepsilon$ and $D_{\infty}^{\delta}(Q|P) \leq \varepsilon$ if and only if there exist distributions P_0 and Q_0 such that

$$\|P - P_0\|_{TV} \leq \frac{\delta}{1 + e^{\varepsilon}}, \quad \|Q - Q_0\|_{TV} \leq \frac{\delta}{1 + e^{\varepsilon}},$$

and $D_{\infty}(P_0|Q_0) \leq \varepsilon$ and $D_{\infty}(Q_0|P_0) \leq \varepsilon$.

The proof of the lemma is technical, so we defer it to Section 7.5.1. The key application of the lemma—which we shall see presently—is that (ε, δ)-differentially private algorithms compose in elegant ways.

7.2.3 Side information protections under weakened notions of privacy

We briefly discuss the side information protections these weaker notions of privacy protect. For both (ε, δ)-differential privacy and (ε, α)-Rényi privacy, we revisit the treatment in Proposition 7.8, considering Bayes factors and ratios of prior and posterior divergences, as these are natural formulations of side information in terms of an adversary’s probabilistic beliefs. Our first analogue of Proposition 7.8, applies to the (ε, δ)-private case.

Proposition 7.19. Let Q be a (ε, δ)-differentially private channel from $\mathcal{X}^n \rightarrow \mathcal{Z}$. Then for any neighboring $x_0, x, x' \in \mathcal{X}^n$, we have with probability at least $1 - \delta$ over the draw of $Z \sim Q(\cdot | x_0)$, the posterior odds satisfy

$$\frac{\pi(x | z)}{\pi(x' | z)} \leq e^{3\varepsilon} \frac{\pi(x)}{\pi(x')}.$$

Deferring the proof momentarily, this result shows that as long as two samples x, x' are neighboring, then an adversary is extremely unlikely to be able to glean substantially distinguishing information between the samples. This is suggestive of a heuristic in differential privacy that if n is the sample size, then one should take $\delta \ll 1/n$ to limit the probability of disclosure: by a union bound, we see that for each individual $i \in \{1, \ldots, n\}$, we can simultaneously guarantee that the posterior odds for swapping individual i’s data do not change much (with high probability).

Unsurprisingly at this point, we can also give posterior update bounds for Rényi differential privacy. Here, instead of giving high-probability bounds—though it is possible—we can show that moments of the odds ratio do not change significantly. Indeed, we have the following proposition:

Proposition 7.20. Let Q be a (ε, α)-Rényi private channel from $\mathcal{X}^n \rightarrow \mathcal{Z}$, where $\alpha \in (1, \infty)$. Then for any neighboring $x_0, x, x' \in \mathcal{X}^n$, we have

$$\mathbb{E}_0 \left[\left(\frac{\pi(x | Z)}{\pi(x' | Z)} \right)^{\alpha - 1} \right]^{1/\alpha} \leq e^{\varepsilon} \frac{\pi(x)}{\pi(x')} \cdot$$

where \mathbb{E}_0 denotes expectation taken over $Z \sim Q(\cdot | x_0)$.

135
Proposition 7.20 communicates a similar message to our previous results in this vein: even if we get information from the output of the private mechanism on some sample \(x_0 \in \mathcal{X}^n \) near the samples (datasets) of interest \(x, x' \) that an adversary wishes to distinguish, it is impossible to update beliefs by much. The parameter \(\alpha \) then controls the degree of difficulty of this “impossible” claim, which one can see by (for example) applying a Chebyshev-type bound to the posterior ratio and prior ratios.

We now turn to the promised proofs of Propositions 7.19 and 7.20. To prove the former, we require a definition.

Definition 7.6. Distributions \(P \) and \(Q \) on a space \(\mathcal{X} \) are \((\varepsilon, \delta)\)-close if for all measurable \(A \)

\[
P(A) \leq e^{\varepsilon}Q(A) + \delta \quad \text{and} \quad Q(A) \leq e^{\varepsilon}P(A) + \delta.
\]

Letting \(p \) and \(q \) denote their densities (with respect to any shared base measure), they are \((\varepsilon, \delta)\)-pointwise close if the set

\[
A := \{ x \in \mathcal{X} : e^{-\varepsilon}q(x) \leq p(x) \leq e^{\varepsilon}q(x) \} = \{ x \in \mathcal{X} : e^{-\varepsilon}p(x) \leq q(x) \leq e^{\varepsilon}p(x) \}
\]

satisfies \(P(A) \geq 1 - \delta \) and \(Q(A) \geq 1 - \delta \).

The following lemma shows that closeness and approximate differential privacy are strongly related.

Lemma 7.21. If \(P \) and \(Q \) are \((\varepsilon, \delta)\)-close, then for any \(\beta > 0 \), the sets

\[
A_+ := \{ x : p(x) > e^{(1+\beta)\varepsilon}q(x) \} \quad \text{and} \quad A_- := \{ x : p(x) \leq e^{-(1+\beta)\varepsilon}q(x) \}
\]

satisfy

\[
\max\{P(A_+), Q(A_-)\} \leq \frac{e^{\beta \varepsilon} \delta}{e^{\beta \varepsilon} - 1}, \quad \max\{P(A_-), Q(A_+)\} \leq \frac{e^{-\varepsilon} \delta}{e^{\beta \varepsilon} - 1}.
\]

Conversely, if \(P \) and \(Q \) are \((\varepsilon, \delta)\)-pointwise close, then

\[
P(A) \leq e^{\varepsilon}Q(A) + \delta \quad \text{and} \quad Q(A) \leq e^{\varepsilon}P(A) + \delta
\]

for all sets \(A \).

Proof. Let \(A = A_+ = \{ x : p(x) > e^{(1+\beta)\varepsilon}q(x) \} \). Then

\[
P(A) \leq e^{\varepsilon}Q(A) + \delta \leq e^{-\beta \varepsilon}P(A) + \delta,
\]

so that \(P(A) \leq \frac{\delta}{1-e^{-\beta \varepsilon}} \). Similarly,

\[
Q(A) \leq e^{-(1+\beta)\varepsilon}P(A) \leq e^{-\beta \varepsilon}Q(A) + e^{-(1+\beta)\varepsilon} \delta,
\]

so that \(Q(A) \leq e^{-(1+\beta)\varepsilon} \delta/(1-e^{-\beta \varepsilon}) = e^{-\varepsilon} \delta/(e^{\beta \varepsilon} - 1) \). The set \(A_- \) satisfies the symmetric properties.

For the converse result, let \(B = \{ x : e^{-\varepsilon}q(x) \leq p(x) \leq e^{\varepsilon}q(x) \} \). Then for any set \(A \) we have

\[
P(A) = P(A \cap B) + P(A \cap B^c) \leq e^{\varepsilon}Q(A \cap B) + \delta \leq e^{\varepsilon}Q(A) + \delta,
\]

and the same inequalities yield \(Q(A) \leq e^{\varepsilon}P(A) + \delta \). \(\square \)

That is, \((\varepsilon, \delta)\)-close distributions are \((2\varepsilon, \frac{e^{\beta \varepsilon} \delta}{e^{\beta \varepsilon} - 1})\)-pointwise close, and \((\varepsilon, \delta)\)-pointwise close distributions are \((\varepsilon, \delta)\)-close.

A minor extension of this lemma (taking \(\beta = 1 \) and applying the lemma twice) yields the following result.
Lemma 7.22. Let P_0, P_1, P_2 be distributions on a space X, each (ε, δ)-close. Then for any i, j, k, $j \neq k$, the set

$$A_{jk} := \left\{ x \in X : \log \frac{p_j(x)}{p_k(x)} > 3\varepsilon \right\}$$

satisfies $P_i(A_{jk}) \leq C\delta \max\{\varepsilon^{-1}, 1\}$

for a numerical constant $C \leq 2$.

With Lemma 7.22 in hand, we can prove Proposition 7.19:

Proof of Proposition 7.19 Let $x_0 \in \mathcal{X}^n$ denote the “true” sample. Consider the three channels $Q(\cdot \mid x_0)$, $Q(\cdot \mid x)$, and $Q(\cdot \mid x')$. Then by Lemma 7.22, with probability at least $1 - 2\delta \max\{\varepsilon^{-1}, 1\}$, $Z \sim Q(\cdot \mid x_0)$ belongs to the set $A = \{ z \in Z \mid e^{-3\varepsilon} q(z \mid x) \leq q(z \mid x') \leq e^{3\varepsilon} q(z \mid x) \}$. Calculating the odds ratios immediately gives the result. \qed

Finally, we provide the proof of Proposition 7.20.

Proof of Proposition 7.20 Let $r = \alpha - 1$ for shorthand, and let $p = \frac{\alpha}{r} = \frac{\alpha}{\alpha - 1} > 1$ and $p_* = \frac{p}{p-1} = \alpha$ be its conjugate. We apply Hölder’s inequality: letting q be the density of Q with respect to some base measure $d\mu$—which we know must exist by definition of Rényi differential privacy—we have

$$\mathbb{E} \left[\left(\frac{\pi(x \mid Z)}{\pi(x' \mid Z)} \right)^r \right] = \int \left(\frac{q(z \mid x)\pi(x)}{q(z \mid x')\pi(x')} \right)^r q(z \mid x_0) d\mu$$

$$= \left(\frac{\pi(x)}{\pi(x')} \right)^r \int \left(\frac{q(z \mid x)}{q(z \mid x')} \right)^r q(z \mid x_0) q(z \mid x') d\mu$$

$$\leq \left(\frac{\pi(x)}{\pi(x')} \right)^r \left(\int \left(\frac{q(z \mid x)}{q(z \mid x')} \right)^{pr} q(z \mid x') d\mu \right)^{\frac{1}{p}} \left(\int \left(\frac{q(z \mid x_0)}{q(z \mid x')} \right)^{p_*} q(z \mid x') d\mu \right)^{\frac{1}{p_*}}$$

$$= \left(\frac{\pi(x)}{\pi(x')} \right)^r \exp \left(\frac{(\alpha - 1)^2}{\alpha} D_\alpha(Q(\cdot \mid x) \mid Q(\cdot \mid x')) + \frac{\alpha - 1}{\alpha} D_\alpha(Q(\cdot \mid x_0) \mid Q(\cdot \mid x')) \right)$$

$$\leq \left(\frac{\pi(x)}{\pi(x')} \right)^r \exp \left(\frac{(\alpha - 1)^2 + \alpha - 1}{\alpha} \varepsilon \right)$$

as $pr = \alpha$ and $p_* = \alpha$. Taking everything to the $1/(\alpha - 1)$ power and gives the result. \qed

7.3 Composition and privacy based on divergence

One of the major challenges in privacy is to understand what happens when a user participates in multiple studies, each providing different privacy guarantees. In this case, we might like to understand and control privacy losses even when the mechanisms for information release may depend on one another. Conveniently, all Rényi divergences provide strong guarantees on composition, essentially for free, and these then allow us to prove strong results on the composition of multiple private mechanisms.
7.3.1 Composition of Rényi-private channels

A natural idea to address composition is to attempt to generalize our chain rules for KL-divergence and related ideas to Rényi divergences. Unfortunately, this plan of attack does not quite work, as there is no generally accepted definition of a conditional Rényi divergence, and associated chain rules do not sum naturally. In situations in which individual divergence of associated elements of a joint distribution have bounded Rényi divergence, however, we can provide some natural tensorization guarantees. To set notation, let

$$P_i(z_i \mid z_{i-1}^i) = \frac{p_i(z_i \mid z_{i-1}^i)}{q_i(z_i \mid z_{i-1}^i)}$$

and similarly for Q_i. We have the following theorem.

Theorem 7.23. Let the conditions above hold, $\varepsilon_i < \infty$ for $i = 1, \ldots, n$, and $\alpha \in [1, \infty]$. Assume that conditional on z_{i-1}^i, we have $D_\alpha(P_i(\cdot \mid z_{i-1}^i)\mid Q_i(\cdot \mid z_{i-1}^i)) \leq \varepsilon_i$. Then

$$D_\alpha(P^n_i Q^n_i) \leq \sum_{i=1}^{n} \varepsilon_i.$$

Proof We assume without loss of generality that the conditional distributions $P_i(\cdot \mid z_{i-1}^i)$ and Q_i are absolutely continuous with respect to a base measure μ on Z. Then we have

$$D_\alpha(P^n_i Q^n_i) = \frac{1}{\alpha - 1} \log \int \prod_{i=1}^{n} \left(\frac{p_i(z_i \mid z_{i-1}^i)}{q_i(z_i \mid z_{i-1}^i)} \right)^\alpha q_i(z_i \mid z_{i-1}^i) d\mu(z_i^n)$$

$$= \frac{1}{\alpha - 1} \log \int_{z_{i-1}^{n-1}} \left[\int q_j(z_j \mid z_{i-1}^{n-1}) d\mu(z_j) \right]^{n-1} \prod_{i=1}^{n} \left(\frac{p_i(z_i \mid z_{i-1}^i)}{q_i(z_i \mid z_{i-1}^i)} \right)^\alpha q_i(z_i \mid z_{i-1}^i) d\mu(z_{i-1}^{n-1})$$

$$\leq \frac{1}{\alpha - 1} \log \int_{z_{i-1}^{n-1}} \exp((\alpha - 1)\varepsilon_n) \prod_{i=1}^{n-1} \left(\frac{p_i(z_i \mid z_{i-1}^i)}{q_i(z_i \mid z_{i-1}^i)} \right)^\alpha q_i(z_i \mid z_{i-1}^i) d\mu(z_{i-1}^{n-1})$$

$$= \varepsilon_n + D_\alpha(P_i^{n-1} Q_i^{n-1}).$$

Applying the obvious inductive argument then gives the result. \qed

7.3.2 Privacy games and composition

To understand arbitrary composition of private channels, let us consider a privacy “game,” where an adversary may sequentially choose a dataset—in an arbitrary way—and then observes a private release Z_i of some mechanism applied to the dataset and the dataset with one entry (observation) modified. The adversary may then select a new dataset, and repeat the game. We then ask whether the resulting sequence of (private) observations Z_i^k remains private. Figure 7.1 captures this in an algorithmic form. Letting $Z_i^{(b)}$ denote the random observations under the bit $b \in \{0, 1\}$, whether

1This is no loss of generality, as the general definition of f-divergences as suprema over finite partitions, or quantizations, of each X_i and Y_i separately, as in our discussion of KL-divergence in Chapter 2.2.2. Thus we may assume Z is discrete and μ is a counting measure.
Input: Family of channels \mathcal{Q} and bit $b \in \{0, 1\}$.
Repeat: for $k = 1, 2, \ldots$

i. Adversary chooses arbitrary space \mathcal{X}, $n \in \mathbb{N}$, and two datasets $x^{(0)}, x^{(1)} \in \mathcal{X}^n$ with $d_{\text{ham}}(x^{(0)}, x^{(1)}) \leq 1$.

ii. Adversary chooses private channel $Q_k \in \mathcal{Q}$.

iii. Adversary observes one sample $Z_k \sim Q_k(\cdot | x^{(b)})$.

Figure 7.1. The privacy game. In this game, the adversary may not directly observe the private $b \in \{0, 1\}$.

the distributions of $(Z^{(0)}_1, \ldots, Z^{(0)}_k)$ and $(Z^{(1)}_1, \ldots, Z^{(1)}_k)$ are substantially different. Note that, in the game in Fig. 7.1, the adversary may track everything, and even chooses the mechanisms Q_k.

Now, let $Z^{(0)} = (Z^{(0)}_1, \ldots, Z^{(0)}_k)$ and $Z^{(1)} = (Z^{(1)}_1, \ldots, Z^{(1)}_k)$ be the outputs of the privacy game above, and let their respective marginal distributions be $Q^{(0)}$ and $Q^{(1)}$. We then make the following definition.

Definition 7.7. Let $\varepsilon \geq 0$, $\alpha \in [1, \infty]$, and $k \in \mathbb{N}$. A collection \mathcal{Q} of channels satisfies (ε, α)-Rényi privacy under k-fold adaptive composition if, in the privacy game in Figure 7.1, the distributions $Q^{(0)}$ and $Q^{(1)}$ on $Z^{(0)}$ and $Z^{(1)}$, respectively, satisfy $D_{\alpha}(Q^{(0)} || Q^{(1)}) \leq \varepsilon$ and $D_{\alpha}(Q^{(1)} || Q^{(0)}) \leq \varepsilon$.

Let $\delta > 0$. Then a collection \mathcal{Q} of channels satisfies (ε, δ)-differential privacy under k-fold adaptive composition if $D_{\infty}(Q^{(0)} || Q^{(1)}) \leq \varepsilon$ and $D_{\infty}(Q^{(1)} || Q^{(0)}) \leq \varepsilon$.

By considering a special case centered around a particular individual in the game 7.1, we can gain some intuition for the definition. Indeed, suppose that an individual has some data x_0; in each round of the game the adversary generates two datasets, one containing x_0 and the other identical except that x_0 is removed. Then satisfying Definition 7.7 captures the intuition that an individual’s privacy remains protected, even in the face of multiple (private) accesses of the individual’s data.

As an immediate corollary to Theorem 7.23, we then have the following.

Corollary 7.24. Assume that each channel in the game in Fig. 7.1 is (ε_i, α)-Rényi private. Then the arbitrary composition of k such channels remains $(\sum_{i=1}^{k} \varepsilon_i, \alpha)$-Rényi private.

More sophisticated corollaries are possible once we start to use the connections between privacy measures we outline in Section 7.2.2. In this case, we can develop so-called advanced composition rules, which sometimes suggest that privacy degrades more slowly than might be expected under adaptive composition.

Corollary 7.25. Assume that each channel in the game in Fig. 7.1 is ε-differentially private. Then the composition of k such channels is $k\varepsilon$-differentially private. Additionally, the composition of k such channels is

$$
\left(\frac{3k}{2}\varepsilon^2 + \sqrt{6k\log\frac{1}{\delta} \cdot \varepsilon, \delta}\right)
$$

differentially private for all $\delta > 0$.

Proof The first claim is immediate: for $Q^{(0)}, Q^{(1)}$ as in Definition 7.7, we know that $D_{\alpha}(Q^{(0)} || Q^{(1)}) \leq k\varepsilon$ for all $\alpha \in [1, \infty]$ by Theorem 7.23 coupled with Proposition 7.13 (or Corollary 7.14).
For the second claim, we require a bit more work. Here, we use the bound \(\frac{3\alpha}{2} \varepsilon^2 \) in the Rényi privacy bound in Corollary 7.14. Then we have for any \(\alpha \geq 1 \) that
\[
D_\alpha \left(Q^{(0)} \mid Q^{(1)} \right) \leq \frac{3k\alpha}{2} \varepsilon^2
\]
by Theorem 7.23. Now we apply Proposition 7.15 and Corollary 7.16, which allow us to conclude \((\varepsilon, \delta)-\)differential privacy from Rényi privacy. Indeed, by the preceding display, setting \(\eta = 1 + \alpha \), we have that the composition is \((\frac{3}{2} \varepsilon^2 + \frac{3k\eta}{2} \varepsilon^2 + \frac{1}{\eta} \log \frac{1}{\delta}, \delta)\)-differentially private for all \(\eta > 0 \) and \(\delta > 0 \). Optimizing over \(\eta \) gives the second result.

We note in passing that it is possible to get slightly sharper results than those in Corollary 7.25; indeed, using ideas from Exercise 4.3 it is possible to achieve \((k\varepsilon, k\delta)\)-differentially private under adaptive composition.

A more sophisticated result, which shows adaptive composition for \((\varepsilon, \delta)\)-differentially private channels, is also possible using Lemma 7.18.

Corollary 7.26. Assume that each channel in the game in Fig. 7.1 is \((\varepsilon, \delta)\)-differentially private. Then the composition of \(k \) such channels is \((k\varepsilon, k\delta)\)-differentially private. Additionally, they are
\[
\left(\frac{3k}{2} \varepsilon^2 + \sqrt{6k \log \frac{1}{\delta_0} \cdot \varepsilon, \delta_0 + \frac{k\delta}{1 + e^\varepsilon}} \right)
\]
differentially private for all \(\delta_0 > 0 \).

Proof Consider the channels \(Q_i \) in Fig. 7.1. As each satisfies \(D_\infty^\delta (Q_i(\cdot \mid x^{(0)}) \mid Q_i(\cdot \mid x^{(1)})) \leq \varepsilon \) and \(D_\infty^\delta (Q_i(\cdot \mid x^{(1)}) \mid Q_i(\cdot \mid x^{(0)})) \leq \varepsilon \), Lemma 7.18 guarantees the existence (at each sequential step, which may depend on the preceding \(i - 1 \) outputs) of probability measures \(Q_i^{(0)} \) and \(Q_i^{(1)} \) such that
\[
D_\infty (Q_i^{(1-b)} \mid Q_i^{(b)}) \leq \varepsilon, \quad \|Q_i^{(b)} - Q_i(\cdot \mid x^{(b)})\|_{TV} \leq \delta/(1 + e^\varepsilon) \text{ for } b \in \{0, 1\}.
\]

Note that by construction (and Theorem 7.23) we have \(D_\alpha (Q_1^{(b)} \cdots Q_k^{(b)} \mid Q_1^{(1-b)} \cdots Q_k^{(1-b)}) \leq \min\{ \frac{3k}{2} \varepsilon^2, k\varepsilon \} \), where \(Q^{(b)} \) denotes the joint distribution on \(Z_1, \ldots, Z_k \) under bit \(b \). We also have by the triangle inequality that \(\|Q_1^{(b)} \cdots Q_k^{(b)} - Q^{(b)}\|_{TV} \leq k\delta/(1 + e^\varepsilon) \) for \(b \in \{0, 1\}. \) (See Exercise 2.16.) As a consequence, we see as in the proof of Corollary 7.25 that the composition is \((\frac{3k}{2} \varepsilon^2 + \frac{3k\eta}{2} \varepsilon^2 + \frac{1}{\eta} \log \frac{1}{\delta_0} + k\delta/(1 + e^\varepsilon))\)-differentially private for all \(\eta > 0 \) and \(\delta_0 \). Optimizing gives the result. \(\square \)

As a consequence of these results, we see that whenever the privacy parameter \(\varepsilon < 1 \), it is possible to compose multiple privacy mechanisms together and have privacy penalty scaling only as the worse of \(\sqrt{k\varepsilon} \) and \(k\varepsilon^2 \), which is substantially better than the “naive” bound of \(k\varepsilon \). Of course, a challenge here—relatively infrequently discussed in the privacy literature—is that when \(\varepsilon \geq 1 \), which is a frequent case for practical deployments of privacy, all of these bounds are much worse than a naive bound that \(k\)-fold composition of \(\varepsilon\)-differentially private algorithms is \(k\varepsilon\)-differentially private.
7.4 Additional mechanisms and privacy-preserving algorithms

Since the introduction of differential privacy, a substantial literature has grown providing mechanisms for different estimation, learning, and data release problems. Here, we describe a few of those beyond the basic noise addition schemes we have thus far developed, highlighting a few applications along the way. One major challenge with the naive approaches is that they rely on global sensitivity of the functions to be estimated, rather than local sensitivities—a worst case notion that sometimes forces privacy to add unnecessary noise. In Section 7.4.2, we give one potential approach to this problem, which we develop further in exercises and revisit in optimality guarantees in sequential chapters. Our view is necessarily somewhat narrow, but the results here can form a natural starting point for further work in this area.

7.4.1 The exponential mechanism

In many statistical, learning, and other problems, there is a natural notion of loss (or conversely, utility) in releasing a potentially noisy result of some computation. We abstract this by considering an input space \(X^n \) of samples and output space \(Z \) along with a loss function \(\ell : X^n \times Z \rightarrow \mathbb{R} \), where \(\ell(x, z) \) measures the loss of \(z \) on an input \(x \in X^n \). For example, if we wish to compute a function \(f : X^n \rightarrow \mathbb{R} \), a natural notion of loss is \(\ell(x, z) = |f(x) - z| \) for \(z \in \mathbb{R} \). As a more sophisticated and somewhat abstract formulation, suppose we wish to release a dataset \(\bar{x} \) approximating an input sample \(x \in X^n \), where we wish \(\bar{x} \) to be accurate for most statistical queries in some family, that is, we wish to have \(\frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \approx \frac{1}{n} \sum_{i=1}^{n} \phi(\bar{x}_i) \) for all \(\phi \in \Phi \). Then a natural loss is \(\ell(x, \bar{x}) = \sup_{\phi \in \Phi} |\frac{1}{n} \sum_{i=1}^{n} \phi(x_i) - \phi(\bar{x}_i)| \).

In scenarios in which we have such a loss, McSherry and Talwar [118] propose the exponential mechanism, which proceeds as follows. We assume that for each \(x, z \in X^n \), the loss \(\ell(\cdot, z) \) has (global) sensitivity \(L \), i.e., \(|\ell(x, z) - \ell(x', z)| \leq L \) for all \(x, x' \) with \(d_{\text{ham}}(x, x') \leq 1 \). We assume we have a base measure \(\mu \) on \(Z \), and then define the exponential mechanism by

\[
Q(Z \in A \mid x) = \frac{1}{\int \exp(-\frac{\varepsilon}{L} \ell(x, z)) d\mu(z)} \int_A \exp\left(-\frac{\varepsilon}{L} \ell(x, z)\right) d\mu(z),
\]

assuming \(\int e^{-\frac{\varepsilon}{L} \ell(x, z)} d\mu(z) \) is finite for each \(x \in X^n \). (Typically, one assumes \(\ell \) takes on values in \(\mathbb{R}_+ \) and \(\mu \) is a finite measure, making the last assumption trivial.) That is, we release \(Z \) with probability proportional to \(\exp\left(-\frac{\varepsilon}{L} \ell(x, z)\right) \). It is evident that the mechanism (7.4.1) is \(2\varepsilon \)-differentially private: for any \(x, x' \) with \(d_{\text{ham}}(x, x') \leq 1 \), we have

\[
\frac{Q(A \mid x)}{Q(A \mid x')} \leq \frac{\int \exp\left(-\frac{\varepsilon}{L} \ell(x', z)\right) d\mu(z) \int_A \exp\left(-\frac{\varepsilon}{L} \ell(x, z)\right) d\mu(z)}{\int \exp\left(-\frac{\varepsilon}{L} \ell(x, z)\right) d\mu(z) \int_A \exp\left(-\frac{\varepsilon}{L} \ell(x', z)\right) d\mu(z)} \leq \exp(2\varepsilon).
\]

As a first (somewhat trivial) example, we can recover the Laplace mechanism:

Example 7.27 (The Laplace mechanism): We can recover Example 7.3 through the exponential mechanism. Indeed, suppose that we wish to release \(f : X^n \rightarrow \mathbb{R}^d \), where \(f \) has sensitivity \(L \). Then taking \(z \in \mathbb{R}^d \), \(\ell(x, z) = \|f(x^n) - z\|_1 \), and \(\mu \) to be the usual Lebesgue measure on \(\mathbb{R}^d \), the exponential mechanism simply uses density

\[
q(z \mid x) \propto \exp\left(-\frac{\varepsilon}{L} \|f(x^n) - z\|_1\right),
\]

which is the Laplace mechanism. ◇
Corollary 7.30. Let \(S \) we have some control over the measure of the sublevel sets \(u \) Then for any \(t \geq 0 \),

\[
\ell^*(x) = \inf_{z \in Z} \ell(x, z),
\]

assuming tacitly that it is finite, and the sublevel sets

\[
S_t := \{ z \in Z \mid \ell(x, z) \leq \ell^*(x) + t \}.
\]

With these definitions, we have the following proposition.

Proposition 7.28. Let \(t \geq 0 \). Then for the exponential mechanism (7.4.1), if \(Z \sim Q(\cdot \mid x) \) then

\[
\ell(x, Z) \leq \ell^*(x) + 2t
\]

with probability at least

\[
1 - \exp \left(-\frac{t}{L} + \log \frac{\mu(Z)}{\mu(S_t)} \right).
\]

Proof Assume without loss of generality (by scaling) that the global Lipschitzian (sensitivity) constant of \(\ell \) is \(L = 1 \). Then for \(Z \sim Q(\cdot \mid x) \), we have

\[
P(\ell(x, Z) \geq \ell^*(x) + 2t) = \frac{\int_{S_t^c} \exp(-\varepsilon(\ell(x, z) - \ell^*(x)))d\mu(z)}{\int \exp(-\varepsilon(\ell(x, z) - \ell^*(x)))d\mu(z)}
\]

\[
\leq \frac{\int_{S_t^c} \exp(-2\varepsilon t)d\mu(z)}{\int_{S_t} \exp(-\varepsilon(\ell(x, z) - \ell^*(x)))d\mu(z)} \leq \exp(-\varepsilon t) \frac{\mu(S_t^c)}{\mu(S_t)},
\]

where the last inequality uses that \(\ell(x, z) - \ell^*(x) \leq t \) on \(S_t \).

We can provide a few simplifications of this result in different special cases. For example, if \(Z \) is finite with cardinality \(\text{card}(Z) \), then Proposition 7.28 implies that taking \(\mu \) to be the counting measure on \(Z \) we have

Corollary 7.29. In addition to the conditions in Proposition 7.28, assume that \(\text{card}(Z) \) is finite. Then for any \(u \in (0, 1) \), with probability at least

\[
\ell(x, Z) \leq \ell^*(x) + \frac{2L}{\varepsilon} \log \frac{\text{card}(Z)}{u}.
\]

That is, with extremely high probability, the loss of \(Z \) from the exponential mechanism is at most logarithmic in \(\text{card}(Z) \) and grows only linearly with the global sensitivity \(L \).

A second corollary allows us to bound the expected loss of the exponential mechanism, assuming we have some control over the measure of the sublevel sets \(S_t \).

Corollary 7.30. Let \(t \geq 0 \) be the smallest scalar such that \(t \geq \frac{2L}{\varepsilon} \log \frac{\mu(Z)}{\mu(S_t)} \) and \(t \geq \frac{L}{\varepsilon} \). Then \(Z \) drawn from the exponential mechanism (7.4.1) satisfies

\[
\mathbb{E}[\ell(x, Z)] \leq \ell^*(x) + t + \frac{2L}{\varepsilon} \leq \ell^*(x) + 3t \leq \ell^*(x) + O(1) \frac{L}{\varepsilon} \log \left(1 + \frac{\mu(Z)}{\mu(S_t)} \right).
\]
Proof We first recall that if $W \geq 0$ is a nonnegative random variable, then by a change of variables, $\mathbb{E}[W] = \int_0^\infty \mathbb{P}(W \geq t) dt$. Take $\ell(x, Z) - \ell^*(x) \geq 0$ as our random variable, fix any $t_0 \geq 0$, and let $\rho = \log \frac{\mu(Z)}{\mu(S_{t_0})}$. Then by Proposition 7.28 we have

$$
\mathbb{E}[\ell(x, Z) - \ell^*(x)] \leq t_0 + \int_{t_0}^\infty \mathbb{P}(\ell(x, Z) - \ell^*(x) \geq t) dt
$$

$$
= t_0 + 2 \int_{t_0/2}^\infty \mathbb{P}(\ell(x, Z) - \ell^*(x) \geq 2t) dt
$$

$$
\leq t_0 + 2 \int_{t_0/2}^\infty \exp \left(-\frac{\varepsilon t}{L} + \log \frac{\mu(Z)}{\mu(S_t)} \right) dt
$$

$$
\leq t_0 + 2e\varepsilon \int_{t_0/2}^\infty \exp \left(-\frac{\varepsilon t}{L} \right) dt = t_0 + \frac{2L}{\varepsilon} \exp \left(\rho - \frac{\varepsilon t_0}{2L} \right).
$$

Take t_0 as in the statement of the corollary to obtain the result. \qed

Corollary 7.30 may seem a bit circular: we require the ratio $\mu(Z)/\mu(S_t)$ to be controlled—but it is relatively straightforward to use it (and Proposition 7.28) with a bit of care and standard bounds on volumes.

Example 7.31 (Empirical risk minimization via the exponential mechanism): We consider the empirical risk minimization problem, where we have losses $\ell : \Theta \times \mathcal{X} \to \mathbb{R}_+$, where $\Theta \subset \mathbb{R}^d$ is a parameter space of interest, and we wish to choose

$$
\hat{\theta}_n \in \arg\min_{\theta \in \Theta} \left\{ L_n(\theta, x) := \frac{1}{n} \sum_{i=1}^n \ell(\theta, x_i) \right\}.
$$

We make a few standard assumptions: first, for simplicity, that n is large enough that $\frac{n}{d} \geq \varepsilon$. We also assume that $\Theta \subset \mathbb{R}^d$ is an ℓ_2-ball of radius R, that $\theta \mapsto \ell(\theta, x_i)$ is M-Lipschitz for all x_i, and that $\ell(\theta, x_i) \in [0, 2MR]$ for all $\theta \in \Theta$. (Note that this last is no loss of generality, as $\ell(\theta, x_i) - \inf_{\theta' \in \Theta} \ell(\theta', x_i) \leq M \sup_{\theta, \theta' \in \Theta} \|\theta - \theta'\|_2 \leq 2MR$.)

Take the empirical loss $L_n(\theta, x)$ as our criterion function for the exponential mechanism, which evidently satisfies $|L_n(\theta, x) - L_n(\theta, x')| \leq \frac{2MR}{n}$ whenever $d_{\text{ham}}(x, x') \leq 1$, so that we release θ with density

$$
q(\theta | x) \propto \exp \left(-\frac{n\varepsilon}{2MR} L_n(\theta, x) \right).
$$

Let $\hat{\theta}_n$ be the empirical minimizer as above; then by the Lipschitz continuity of ℓ, the sublevel set S_t evidently satisfies

$$
S_t \supset \left\{ \theta \in \Theta \mid \|\theta - \hat{\theta}_n\|_2 \leq \frac{t}{M} \right\}.
$$

Then a volume calculation (with the factor of 2 necessary because we may have $\hat{\theta}_n$ on the boundary of Θ) yields that for μ the Lebesgue measure,

$$
\frac{\mu(S_t)}{\mu(Z)} \geq \left(\frac{t}{2MR} \right)^d.
$$

143
As a consequence, by Corollary 7.30, whenever $t \geq O(1) \frac{MR}{n\varepsilon} \cdot d \log \frac{MR}{t}$, we have $E[L_n(\theta, x) | x] \leq L_n(\hat{\theta}_n, x) + 3t$. Evidently the choice $t = O(1) \frac{MRd}{n\varepsilon}$ suffices whenever $\varepsilon d \leq 1$, so we obtain

$$E[L_n(\theta, x)] \leq L_n(\hat{\theta}_n, x) + O(1) \frac{MRd}{n\varepsilon} \log \frac{n\varepsilon}{d},$$

whenever $\frac{d}{n\varepsilon} \leq 1$. Notably, standard empirical risk minimization (recall Chapter 4.3.2) typically achieves rates of convergence roughly of MR/\sqrt{n}, so that the gap of the exponential mechanism is lower order whenever $\frac{d}{\sqrt{n\varepsilon}} \leq 1$.

7.4.2 Local sensitivities and the inverse sensitivity mechanism

JCD Comment: I should write this!

7.4.3 Stochastic gradient methods and local privacy

Consider the risk minimization problem

$$\min_{\theta \in \Theta} L(\theta) := E_P[\ell(\theta; X)] \quad (7.4.2)$$

where $\ell(\cdot; x)$ is convex for each $x \in X$ and E_P denotes expectation taken over $X \sim P$. A standard approach to solving problems of the form (7.4.2), is to use the **stochastic gradient method**, which iterates for $k = 1, 2, \ldots$, beginning from some $\theta_0 \in \Theta$,

i. Draw $X_k \sim P$

ii. Compute stochastic gradient $g_k = \nabla_{\theta} \ell(\theta_k; X_k)$

iii. Update

$$\theta_{k+1} = \text{Proj}_\Theta(\theta_k - \eta_k g_k) \quad (7.4.3)$$

where $\eta_k > 0$ is a non-increasing sequence of stepsizes and Proj_Θ denotes Euclidean projection onto Θ, that is,

$$\text{Proj}_\Theta(\theta_0) = \arg\min_{\theta \in \Theta} \left\{ \|\theta - \theta_0\|^2_2 \right\}.$$

The analysis of such stochastic gradient procedures constitutes an entire field on its own. The important fact is that in the iteration (7.4.3), it is unimportant that $g_k = \nabla_{\theta} \ell(\theta_k; X_k)$ precisely, but all that is required is that we have unbiased gradient estimates $E[g_k | \theta_k] = \nabla L(\theta_k)$. To keep matters simple, we present one typical type of result, which we do not prove. In the theorem, we assume that the stochastic gradients $g = g(\theta, X, W)$ for some random variable W independent of X and θ.

Proposition 7.32 (Bach and Moulines [14], Theorem 3). Assume that $\theta^* = \arg\min_{\theta} L(\theta)$ belongs to the interior of Θ, is unique, and that $\nabla^2 L(\theta^*) > 0$. Let the stepsizes $\eta_k = \eta_0 k^{-\beta}$ for some $\beta \in (1/2, 1)$. Additionally assume that $\theta \mapsto \nabla \ell(\theta; x)$ is $L(x)$ Lipschitz on Θ with $E[\|L(X)\|^2] < \infty$ and $\theta \mapsto \nabla^2 \ell(\theta; x)$ is Lipschitz on Θ. Then

$$\mathbb{E}\left[\|\bar{\theta}_n - \theta^*\|^2_2 \right]^{1/2} = \sqrt{\frac{\text{tr}(\nabla^2 L(\theta^*)^{-1} \Sigma \nabla^2 L(\theta^*)^{-1})}{n}} + O\left(\frac{1}{n^{1-\beta/2}}\right),$$

where $\bar{\theta}_n = \frac{1}{n} \sum_{k=1}^n \theta_k$ and $\Sigma = \text{Cov}(g(\theta^*, X, W))$.

144
This result is in fact optimal—no method can achieve better convergence in n in the leading term when $g(\theta^*, X, W) = \nabla \ell(\theta^*; X)$—and shows that the convergence rate slows the larger the covariance Σ of the stochastic gradients taken at θ^* is.

The importance of this result is that we can develop locally private procedures for fitting large scale models using the iteration (7.4.3) by adding noise to or appropriately limiting the stochastic gradients $\nabla \ell(\theta; x)$. Indeed, a natural strategy is to, at each iteration (7.4.3), perturb the stochastic gradients via some (conditional) mean-zero noise, sufficient to guarantee some type of privacy. We consider a specialized version of this problem, where we assume the stochastic gradient vectors belong to the ℓ_2-ball of radius M, so that $\|\nabla \ell(\theta; x)\|_2 \leq M$ for all $\theta \in \Theta$ and $x \in X$. We wish to develop a scheme providing ε-local differential privacy for individual contributors of data points x. In this case, the first idea might be to add independent Laplacian noise, but (as we have seen in Example 7.3) this may add noise of too large a magnitude. Instead, we develop a new mechanism based on uniform sampling on the sphere $S^{d-1} = \{u \in \mathbb{R}^d \mid \|u\|_2 = 1\} \subset \mathbb{R}^d$.

We begin with a vector $v \in \mathbb{R}^d$. Then the mechanism proceeds as follows:

$$\text{set } T = \begin{cases} 1 & \text{with probability } \frac{e^\varepsilon}{e^\varepsilon + 1} \\ 0 & \text{otherwise} \end{cases}$$

and conditional on $T = t$, we draw

$$W \mid (T, v) \sim \begin{cases} \text{Uniform}(\{w \in S^{d-1} : \langle w, v \rangle \geq 0\}) & \text{if } T = 1 \\ \text{Uniform}(\{w \in S^{d-1} : \langle w, v \rangle \leq 0\}) & \text{if } T = 0. \end{cases} \quad (7.4.4)$$

By inspection, W is a ε-locally differentially private view of v, and we have

$$\mathbb{E}[W \mid v] = \frac{e^\varepsilon - 1}{e^\varepsilon + 1} C_d v \|v\|_2,$$

where $C_d = \mathbb{E}[U_1 \mid U_1 \geq 0]$ for $U \sim \text{Uniform}(S^{d-1})$, where U_1 denotes the first coordinate of $U \in \mathbb{R}^d$. See Figure 7.2 for a graphical depiction of this algorithm. In this case, a calculation yields that

$$C_d := \mathbb{E}[U_1 \mid U_1 \geq 0] = \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(\frac{d}{2} + 1\right)}{\Gamma\left(\frac{d-1}{2} + 1\right)} \gtrsim \frac{1}{\sqrt{d}},$$

where the inequality is a consequence of Stirling’s approximation to the gamma function. (The first coordinate U_1 has the same distribution as $2B - 1$, where $B \sim \text{Beta}(\frac{d-1}{2}, \frac{d+1}{2})$.)

With this derivation, we see how we may define a channel that preserves ε-local privacy and computes unbiased stochastic gradients. At iteration k, we let $g_k = \nabla \ell(\theta_k; X_k)$ as in the iteration (7.4.3). Then, we scale g_k, which satisfies $\|g_k\|_2 \leq M$, so that it lies on the surface of the ball: we set

$$g_k = \begin{cases} +g_k / \|g_k\|_2 & \text{w.p. } \frac{1}{2} + \frac{\|g_k\|_2}{2M} \\ -g_k / \|g_k\|_2 & \text{w.p. } \frac{1}{2} - \frac{\|g_k\|_2}{2M} \end{cases},$$

so that $\mathbb{E}[g_k \mid g_k] = \frac{1}{M} g_k$. Then given this vector, we draw W_k according to the mechanism (7.4.4), and then set

$$Z_k = M \frac{1}{C_d} \frac{e^\varepsilon + 1}{e^\varepsilon - 1} W_k = M \frac{e^\varepsilon + 1}{e^\varepsilon - 1} \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{d-1}{2} + 1\right)}{\Gamma\left(\frac{d}{2} + 1\right)} W_k, \quad (7.4.5)$$

which then satisfies $\mathbb{E}[Z_k \mid g_k] = g_k$, so that it is a valid stochastic gradient.
Figure 7.2. Local ε-differentially private sampling of a vector v on the surface of the ℓ_2-ball. With probability $\frac{e^\varepsilon}{e^\varepsilon + 1}$, draw W uniformly from the hemisphere in the direction of v, with probability $\frac{1}{e^\varepsilon + 1}$, draw uniformly from the opposite hemisphere.

Combining the mechanism (7.4.5) into the stochastic gradient iteration (7.4.3), where we replace g_k with Z_k via

$$\theta_{k+1} = \text{Proj}_\Theta(\theta_k - \eta_k Z_k), \quad (7.4.6)$$

we have the following corollary to Proposition 7.32.

Corollary 7.33. Let the conditions of Proposition 7.32 hold. Then the private stochastic gradient iteration (7.4.6) satisfies

$$E \| \theta_n - \theta^* \|^2 \leq \frac{e^\varepsilon + 1}{e^\varepsilon - 1} \sqrt{\frac{\text{tr}(\nabla^2 L(\theta^*))}{n}} + O \left(\frac{1}{n^{1-\beta/2}} \right).$$

for a numerical constant $c \leq 2$. There exist problems for which this inequality is sharp to within a numerical constant.

Proof Evidently, all we need to do is to compute the asymptotic variance $\Sigma = E[Z_\infty Z_\infty^T]$, where Z_∞ denotes the output of the sampling scheme (7.4.6) at the limit point $\theta_\infty = \theta^*$, because $E[Z_\infty] = E[\nabla \ell(\theta^*; X)] = 0$. Let $W \sim \text{Uniform}(S^{d-1})$. Then for $v \in S^{d-1}$ and $t \in [0, 1]$ we have by rotational symmetry that

$$dE[WW^T \mid \langle W, v \rangle = t] = (1 - t^2)(I - vv^T) + t^2 vv^T,$$

and so $dE[WW^T \mid \langle W, v \rangle \geq 0] = (1 - C_d^2)(I - vv^T) + C_d^2 vv^T$ for $C_d = E[U_1 \mid U_1 \geq 0]$ as above.
Thus, we obtain that
\[
\mathbb{E}[Z_\infty Z_\infty^T] = \frac{e^\varepsilon}{e^\varepsilon + 1} \mathbb{E} \left[Z_\infty Z_\infty^T | (Z_\infty, \nabla \ell(\theta^*; X)) \geq 0, X \right] + \frac{1}{e^\varepsilon + 1} \mathbb{E} \left[Z_\infty Z_\infty^T | (Z_\infty, \nabla \ell(\theta^*; X)) \leq 0, X \right] \\
= \mathbb{E} \left[Z_\infty Z_\infty^T | (Z_\infty, \nabla \ell(\theta^*; X)) \geq 0, X \right] \leq \frac{1}{d} \left(M e^\varepsilon + 1 \right)^2 \frac{\sqrt{\pi} d \Gamma(d + 1)}{\Gamma(d + 1)} \cdot \left[(1 - C^2_d)(I - \Sigma) + C^2_d \Sigma \right],
\]
where \(\Sigma = \mathbb{E}[(\nabla \ell(\theta^*; X) \nabla \ell(\theta^*; X)^T) / \|\nabla \ell(\theta^*; X)\|_2^2] \) satisfies \(\text{tr}(\Sigma) = 1 \) and \(\Sigma < I \). Consequently, we have
\[
\Sigma := \mathbb{E}[Z_\infty Z_\infty^T] \leq c \cdot M^2 \left[\frac{e^\varepsilon + 1}{e^\varepsilon - 1} \right]^2 d \cdot I
\]
where \(c \leq 4 \) is a numerical constant. Substituting this in Proposition 7.32 gives the corollary.

The sharpness of the result comes from considering estimating the mean of vectors \(X \) drawn uniformly from the unit sphere \(S^{d-1} \) with loss \(\ell(\theta; x) = \frac{1}{2} \|\theta - x\|_2^2 \).

Let us inspect and understand this quantity a bit, considering the time (or sample size) it takes to solve the problem (7.4.2) with and without privacy. Assume for simplicity that \(\Sigma = \text{Cov}(\nabla \ell(\theta^*; X)) \leq (M^2/d)I \), which is the natural scaling for vectors satisfying \(\|\nabla \ell(\theta^*; X)\|_2 \leq M \) that are (roughly) isometric, that is, have approximately scaled identity covariance. Then for a fixed accuracy \(\gamma = \mathbb{E}[\|\bar{\theta}_n - \theta^*\|_2^2]^{1/2} \), if \(N(\gamma) \) denotes the sample size necessary to solve problem (7.4.2) to accuracy \(\gamma \) in the non-private case, so that we have roughly
\[
N(\gamma) \approx \frac{M^2 \text{tr}(\nabla^2 L(\theta^*)^{-2})}{d \gamma^2},
\]
then in the locally private case the necessary sample size for our scheme (7.4.6) is
\[
N_{\text{priv}}(\gamma) \gtrsim \frac{M^2 \text{tr}(\nabla^2 L(\theta^*)^{-2})}{\gamma^2} \cdot \left(\frac{e^\varepsilon + 1}{e^\varepsilon - 1} \right)^2 = d \cdot \left(\frac{e^\varepsilon + 1}{e^\varepsilon - 1} \right)^2 \cdot N(\gamma).
\]
That is, for \(\varepsilon \lesssim 1 \), there is a degradation in sample complexity of \(N(\gamma) \mapsto dN(\gamma)/\varepsilon^2 \). As we shall see later in the lecture notes, this degradation is essentially unavoidable.

Sparse vectors

7.5 Deferred proofs

7.5.1 Proof of Lemma 7.18

We prove the first statement of the lemma first. Let us assume there exists \(R \) such that \(\|P - R\|_{\text{TV}} \leq \delta \) and \(D_{\infty}(R|Q) \leq \varepsilon \). Then for any set \(S \) we have
\[
P(S) \leq R(S) + \delta \leq e^\varepsilon Q(S) + \delta, \quad \text{i.e.} \quad \log \frac{P(S) - \delta}{Q(S)} \leq \varepsilon,
\]

which is equivalent to $D^\delta_\infty(P\|Q) \leq \varepsilon$. Now, let us assume that $D^\delta_\infty(P\|Q) \leq \varepsilon$, whence we must construct the distribution R.

We assume w.l.o.g. that P and Q have densities p, q, and define the sets

$$S := \{ x : p(x) > e^\varepsilon q(x) \} \quad \text{and} \quad T := \{ x : p(x) < q(x) \}.$$

On these sets, we have $0 \leq P(S) - e^\varepsilon Q(S) \leq \delta$ by assumption, and we then define a distribution R with density that we partially specify via

$$x \in S \Rightarrow r(x) := e^\varepsilon q(x) < p(x) \quad \text{and} \quad r(x) \geq q(x).$$

Now, we note that $e^\varepsilon q(x) \geq p(x) \geq q(x)$ for $x \in (S \cup T)^c$, and thus

$$Q(S) + Q(S^c \cap T^c) \leq e^\varepsilon Q(S) + P(S^c \cap T^c) \leq R(S) + R(S^c \cap T^c) \leq e^\varepsilon Q(S) + P(S^c \cap T^c) \leq P(S) + P(S^c \cap T^c).$$

(7.5.1)

In particular, when $x \in T$, we may take the density r so that $p(x) \leq r(x) \leq q(x)$, as

$$R(S) + R(S^c \cap T^c) + P(T) < 1 \quad \text{and} \quad R(S) + R(S^c \cap T^c) + Q(T) > 1$$

by the inequalities (7.5.1), and so that $R(X) = 1$. With this, we evidently have $r(x) \leq e^\varepsilon q(x)$ by construction, and because $S \subset T^c$, we have

$$R(T) - P(T) = P(T^c) = R(T^c) = P(S \cap T^c) = R(S \cap T^c) + P(S^c \cap T^c) = R(S^c \cap T^c) = P(S) - R(S),$$

where we have used that $r = p$ on $(T \cup S)^c$ by construction. Thus we find that

$$\|P - R\|_{TV} = \frac{1}{2} \int_S |r - p| + \frac{1}{2} \int_T |r - p| = \frac{1}{2} (P(S) - R(S)) + \frac{1}{2} (R(T) - P(T)) = P(S) - R(S) = P(S) - e^\varepsilon Q(S) \leq \delta$$

by assumption.

Now, we turn to the second statement of the lemma. We start with the easy direction, where we assume that P_0 and Q_0 satisfy $D_\infty(P_0\|Q_0) \leq \varepsilon$ and $D_\infty(Q_0\|P_0) \leq \varepsilon$ as well as $\|P - P_0\|_{TV} \leq \delta$ and $\|Q - Q_0\|_{TV} \leq \delta$. Then for any set S we have

$$P(S) \leq P_0(S) + \frac{\delta}{1 + e^\varepsilon} \leq e^\varepsilon Q_0(S) + \frac{\delta}{1 + e^\varepsilon} \leq e^\varepsilon Q(S) + e^\varepsilon \delta + \frac{\delta}{1 + e^\varepsilon},$$

or $D^\delta_\infty(P\|Q) \leq \varepsilon$. The other direction is similar.

We consider the converse direction, where we have both $D^\delta_\infty(P\|Q) \leq \varepsilon$ and $D^\delta_\infty(Q\|P) \leq \varepsilon$. Let us construct P_0 and Q_0 as in the statement of the lemma. Define the sets

$$S := \{ x : p(x) > e^\varepsilon q(x) \} \quad \text{and} \quad S' := \{ x : q(x) > e^\varepsilon p(x) \}$$

as well as the sets

$$T := \{ x : e^\varepsilon q(x) \geq p(x) \geq q(x) \} \quad \text{and} \quad T' := \{ x : e^{-\varepsilon} q(x) \leq p(x) < q(x) \},$$

148
so that S, S', T, T' are all disjoint, and $\mathcal{X} = S \cup S' \cup T \cup T'$. We begin by constructing intermediate measures—which end up not being probabilities—P_1 and Q_1, which we modify slightly to actually construct P_0 and Q_0. We first construct densities similar to our construction above for part (i), setting

$$x \in S \Rightarrow p_1(x) := e^\varepsilon q_1(x), \quad q_1(x) := \frac{1}{1+e^\varepsilon}(p(x) + q(x))$$

$$x \in S' \Rightarrow q_1(x) := e^\varepsilon p_1(x), \quad p_1(x) := \frac{1}{1+e^\varepsilon}(p(x) + q(x)).$$

Now, define the two quantities

$$\alpha := P(S) - P_1(S) = P(S) - \frac{e^\varepsilon}{1+e^\varepsilon}(P(S) + Q(S)) = \frac{P(S) - e^\varepsilon Q(S)}{1+e^\varepsilon} \leq \frac{\delta}{1+e^\varepsilon}. \leq $$

and similarly

$$\alpha' := Q(S') - Q_1(S') = \frac{Q(S') - e^\varepsilon P(S')}{1+e^\varepsilon} \leq \frac{\delta}{1+e^\varepsilon}.$$

Note also that we have $P(S) - P_1(S) = Q_1(S) - Q(S)$ and $Q(S') - Q_1(S') = P_1(S') - P(S')$ by construction.

We assume w.l.o.g. that $\alpha \geq \alpha'$, so that if $\beta = \alpha - \alpha' \geq 0$, we have $\beta \leq \frac{\delta}{1+e^\varepsilon}$, and we have the sandwiching

$$P_1(S) + P_1(S') + P(T \cup T') = P_1(S) + P_1(S') + 1 - P(S \cup S') = 1 - \beta < 1$$

because S and S' are disjoint and $T_\lt \cup T_\gt = (S \cup S')^c$, and similarly

$$Q_1(S) + Q_1(S') + Q(T \cup T') = Q_1(S) + Q_1(S') + 1 - Q(S \cup S') = 1 + \beta > 1.$$

Let $p_1 = p$ on the set $T \cup T'$ and similarly for $q_1 = q$. Then we have $P_1(\mathcal{X}) = 1 - \beta$, $Q_1(\mathcal{X}) = 1 + \beta$, and $|\log \frac{p_1}{q_1}| \leq \varepsilon$.

Now, note that $S \cup T = \{x : q_1(x) \geq p_1(x)\}$, and we have

$$Q_1(S) + Q_1(T) - P_1(S) - P_1(T) = Q_1(S) + Q(T) - P_1(S) - P(T)$$

$$\geq Q_1(S) + Q_1(S') + Q(T) + Q(T') - P_1(S) - P_1(S') - P(T) - P(T') = 2\beta.$$

Now, (roughly) we decrease the density q_1 to q_0 on $S \cup T$ and increase p_1 to p_0 on $S \cup T$, while still satisfying $q_0 \geq p_0$ on $S \cup T$. In particular, we may choose the densities $q_0 = q_1$ on $T' \cup S'$ and $p_0 = p_1$ on $T \cup S'$, while choosing q_0, p_0 so that

$$p_1(x) \leq p_0(x) \leq q_0(x) \leq q_1(x) \text{ on } S \cup T,$$

where

$$P_0(S \cup T) = P_1(S \cup T) + \beta \quad \text{and} \quad Q_0(S \cup T) = Q_1(S \cup T) - \beta.$$

With these choices, we evidently obtain $Q_0(\mathcal{X}) = P_0(\mathcal{X}) = 1$ and that $D_\infty(P_0 \| Q_0) \leq \varepsilon$ and $D_\infty(Q_0 \| P_0) \leq \varepsilon$ by construction. It remains to consider the variation distances. As $p_0 = p$ on T',
we have
\begin{align*}
\|P - P_0\|_{TV} &= \frac{1}{2} \int_S |p - p_0| + \frac{1}{2} \int_{S'} |p - p_0| + \frac{1}{2} \int_T |p - p_0| \\
&= \frac{1}{2} (P(S) - P_0(S)) + \frac{1}{2} (P_0(S') - P(S)) + \frac{1}{2} (P_0(T) - P(T)) \\
&\leq \frac{1}{2} (\alpha + \alpha') + \frac{1}{2} (\beta) \leq \frac{\delta}{1 + \epsilon^2},
\end{align*}
where the $P_0(T) - P(T) \leq \beta$ claim follows because $p_1(x) = p(x)$ on T and by the increasing construction yielding equality (7.5.2), we have $P_0(T) = P_0(T) - P_1(T) = \beta + P_1(S) - P_0(S) \leq \beta$. In particular, we have \(\|P - P_0\|_{TV} \leq \frac{\alpha + \alpha'}{2} + \frac{\beta}{2} = \alpha \leq \frac{\delta}{1 + \epsilon^2} \). The argument that \(\|Q - Q_0\|_{TV} \leq \frac{\delta}{1 + \epsilon^2} \) is similar.

7.6 Bibliography

Given the broad focus of this book, our treatment of privacy is necessarily somewhat brief, and there is substantial depth to the subject that we do not cover.

The initial development of randomized response began with Warner [144], who proposed randomized response in survey sampling as a way to collect sensitive data. This elegant idea remained in use for many years, and a generalization to data release mechanisms with bounded likelihood ratios—essentially, the local differential privacy definition 7.2—is due to Evfimievski et al. [72] in 2003 in the databases community. Dwork, McSherry, Nissim, and Smith [67] and the subsequent work of Dwork et al. [66] defined differential privacy and its \((\varepsilon, \delta)\)-approximate relaxation. A small industry of research has built out of these papers, with numerous extensions and developments.

The book of Dwork and Roth [65] surveys much of the field, from the perspective of computer science, as of 2014. Lemma 7.18 is due to Dwork et al. [68], and our proof is based on theirs.

7.7 Exercises

Question 7.1 (Laplace mechanisms versus randomized response): In this question, you will investigate using Laplace and randomized response mechanisms, as in Examples 7.3 and 7.1–7.2, to perform locally private estimation of a mean, and compare this with randomized-response based mechanisms.

We consider the following scenario: we have data $X_i \in [0, 1]$, drawn i.i.d., and wish to estimate the mean $\mathbb{E}[X]$ under local ε-differential privacy.

(a) The Laplace mechanism simply sets $Z_i = X_i + W_i$ for $W_i \overset{i.i.d.}{\sim} \text{Laplace}(b)$ for some b. What choice of b guarantees ε-local differential privacy?

(b) For your choice of b, let $Z_n = \frac{1}{n} \sum_{i=1}^n Z_i$. Give $\mathbb{E}[(Z_n - \mathbb{E}[X])^2]$.

(c) A randomized response mechanism for this case is the following: first, we randomly round X_i to \{0, 1\}, by setting
\[
\bar{X}_i = \begin{cases}
1 & \text{with probability } X_i \\
0 & \text{otherwise.}
\end{cases}
\]
Conditional on $\bar{X}_i = x$, we then set

$$Z_i = \begin{cases}
 x & \text{with probability } \frac{e^\epsilon}{1+e^\epsilon} \\
 1 - x & \text{with probability } \frac{1}{1+e^\epsilon}.
\end{cases}$$

What is $\mathbb{E}[Z_i]$?

(d) For the randomized response Z_i above, give constants a and b so that $aZ_i - b$ is unbiased for $\mathbb{E}[X]$, that is, $\mathbb{E}[aZ_i - b] = \mathbb{E}[X]$. Let $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^{n} (aZ_i - b)$ be your mean estimator. What is $\mathbb{E}[(\hat{\theta}_n - \mathbb{E}[X])^2]$? Does this converge to the mean-square error of the sample mean $\mathbb{E}[(\bar{X}_n - \mathbb{E}[X])^2] = \text{Var}(X)/n$ as $\epsilon \uparrow \infty$?

(e) Let us consider a more sophisticated randomized response scheme. Define quantized values

$$b_0 = 0, \ b_1 = \frac{1}{k}, \ \ldots, \ b_{k-1} = \frac{k-1}{k}, \ b_k = 1. \quad (7.7.1)$$

Now consider a randomized response estimator that, when $X \in [b_j, b_{j+1}]$ first rounds X randomly to $\bar{X} \in \{b_j, b_{j+1}\}$ so that $\mathbb{E}[\bar{X} \mid X] = X$. Conditional on $\bar{X} = j$, we then set

$$Z = \begin{cases}
 j & \text{with probability } \frac{e^\epsilon}{k+e^\epsilon} \\
 \text{Uniform}(\{0, \ldots, k\} \setminus \{j\}) & \text{with probability } \frac{k}{k+e^\epsilon}.
\end{cases}$$

Give a and b so that $\mathbb{E}[aZ - b] = \mathbb{E}[X]$.

(f) For your values of a and b above, let $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^{n} (aZ_i - b)$. Give a (reasonably tight) bound on $\mathbb{E}[(\hat{\theta}_n - \mathbb{E}[X])^2]$.

(g) For any given $\epsilon > 0$, give (approximately) the k in the choice of the number of bins (7.7.1) that optimizes your bound, and (approximately) evaluate $\mathbb{E}[(\hat{\theta}_n - \mathbb{E}[X])^2]$ with your choice of k. As $\epsilon \uparrow \infty$, does this converge to $\text{Var}(X)/n$?

(h) Now, it is time to compare the simple randomized response estimator from part (d) with the Laplace mechanism from part (b). For each of the following distributions, generate samples of size $N = 10, 100, 1000, 10000$, and then for $T = 25$ tests, compute the two estimators, both with $\epsilon = 1$. Then plot the mean-squared error and confidence intervals for each of the two methods as well as the sample mean without any privacy.

i. Uniform distribution: $X \sim \text{Uniform}[0, 1]$, with $\mathbb{E}[X] = 1/2$.

ii. Bernoulli distribution: $X \sim \text{Bernoulli}(p)$, where $p = .1$.

iii. Uniform distribution: $X \sim \text{Uniform}[.49, .51]$, with $\mathbb{E}[X] = 1/2$.

Do you prefer the Laplace or randomized response mechanism? In one sentence, why?

Question 7.2 (Subsampling via divergence measures (Balle et al. [15])): The hockey stick divergence functional, defined for $\alpha \geq 1$, is $\phi_\alpha(t) = [1 - \alpha t]^+$. It is straightforward to relate this to (ϵ, δ)-differential privacy via Definition 7.6: two distributions P and Q are (ϵ, δ)-close if and only if their ϕ_ϵ-divergences are less than δ, i.e., if and only if

$$D_{\phi_\epsilon}(P \| Q) \leq \delta \quad \text{and} \quad D_{\phi_\epsilon}(Q \| P) \leq \delta.$$

(In your answer to this question, feel free to use $D_{\alpha}(P \| Q)$ as a shorthand for $D_{\phi_\alpha}(P \| Q)$.)
(a) Let P_0, P_1, Q_1 be any three distributions, and for some $q \in [0, 1]$ and $\alpha \geq 1$, define $P = (1 - q)P_0 + qP_1$ and $Q = (1 - q)P_0 + qQ_1$. Let $\alpha' = 1 + q(\alpha - 1) = (1 - q) + q\alpha$ and $\theta = \alpha'/\alpha \leq 1$. Show that
\[
D_{\phi_{\alpha'}}(P||Q) = qD_{\phi_{\alpha}}((1 - \theta)P_0 + \theta P_1||Q_1).
\]

(b) Let $\varepsilon > 0$ and define $\varepsilon(q) = \log(1 + q(e^\varepsilon - 1))$. Show that
\[
D_{\phi_{\varepsilon(q)}}(P||Q) \leq \max \{D_{\phi_{\varepsilon}}(P_0||Q_1), D_{\phi_{\varepsilon}}(P_1||Q_1)\}.
\]

Question 7.3 (Subsampling and privacy amplification (Balle et al. [15])): Consider the following subsampling approach to privacy. Assume that we have a private (randomized) algorithm, represented by A, that acts on samples of size m and guarantees (ε, δ)-differential privacy. The subsampling mechanism is then defined as follows: given a sample X^n of size $n > m$, choose a subsample X_{sub} of size m uniformly at random from X^n, and then release $Z = A(X_{\text{sub}})$.

(a) Use the results of parts (a) and (b) in Question 7.2 to show that Z is $(\varepsilon(q), \delta q)$-differentially private, where $q = m/n$ and $\varepsilon(q) = \log(1 + q(e^\varepsilon - 1))$.

(b) Show that if $\varepsilon \leq 1$, then Z is $((\varepsilon - 1)q, \varepsilon\delta)$-differentially private, and if $\varepsilon \leq \frac{1}{2}$, then Z is $(2(\sqrt{1} - 1)\varepsilon q, \varepsilon\delta)$-differentially private. Hint: Argue that for any $T > 0$, one has $e^t - 1 \leq (e^T - 1)\frac{t}{T}$ for all $t \in [0, T]$.

Question 7.4 (Subsampling and privacy): We would like to estimate the mean $\mathbb{E}[X]$ of $X \sim P$, where $X \in B = \{x \in \mathbb{R}^d \mid \|x\|_2 \leq 1\}$, the ℓ_2-ball in \mathbb{R}^d. We investigate the extent to which subsampling of a dataset can improve privacy by providing some additional anonymity. Consider the following mechanism for estimating (scaled) multiples of this mean: for a dataset $\{X_1, \ldots, X_n\}$, we let $S_i \in \{0, 1\}$ be i.i.d. Bernoulli(q), that is, $\mathbb{E}[S_i] = q$, and then consider the algorithm
\[
Z = \sum_{i=1}^n X_iS_i + \sigma W, \quad W \sim \mathcal{N}(0, I_d). \tag{7.7.2}
\]

In this question, we investigate the Rényi privacy properties of the subsampling (7.7.2). (Recall the Rényi divergence of Definition 7.4, $D_\alpha(p||q) = \frac{1}{\alpha - 1} \log \int (p/q)^\alpha \, dq$.)

We consider a slight variant of Rényi privacy, where we define data matrices X and X' to be adjacent if $X \in \mathbb{R}^{d \times n}$ and $X' \in \mathbb{R}^{d \times n-1}$ where X' is X with a single column removed. Then a mechanism is (ε, α)-Rényi private against single removals if and only if
\[
D_\alpha(Q(\cdot \mid X)||Q(\cdot \mid X')) \leq \varepsilon \quad \text{and} \quad D_\alpha(Q(\cdot \mid X')||Q(\cdot \mid X)) \leq \varepsilon \tag{7.7.3}
\]
for all neighboring X and X' consisting of samples of size n and $n - 1$, respectively.

(a) Let $Q(\cdot \mid X)$ and $Q(\cdot \mid X')$ denote the channels for the mechanism (7.7.2) with data matrices $X = [x_1 \cdots x_{n-1} \ x]$ and $X' = [x_1 \cdots x_{n-1}] \in \mathbb{R}^{d \times n}$. Let P_μ denote the normal distribution $\mathcal{N}(\mu, \sigma^2 I)$ with mean μ and covariance $\sigma^2 I$ on \mathbb{R}^d. Show that for any $\alpha \in (1, \infty)$,
\[
D_\alpha(Q(\cdot \mid X)||Q(\cdot \mid X')) \leq D_\alpha(qP_x + (1 - q)P_0||P_0)
\]
and
\[
D_\alpha(Q(\cdot \mid X')||Q(\cdot \mid X)) \leq D_\alpha(P_0||qP_x + (1 - q)P_0).
\]
(b) Show that for the Rényi $\alpha = 2$-divergence,
\[
D_2(qP_x + (1-q)P_0 | P_0) \leq \log \left(1 + q^2 \left(\exp \left(\frac{\|x\|_2^2}{\sigma^2} \right) - 1 \right) \right) \quad \text{and} \quad D_2(P_0 | qP_x + (1-q)P_0) \leq \log \left(1 + \frac{q^2}{1-q} \left(\exp \left(\frac{\|x\|_2^2}{\sigma^2} \right) - 1 \right) \right).
\]

(Hint: Example 7.10.)

Consider two mechanisms for computing a sample mean \bar{X}_n of vectors, where $\|x_i\|_2 \leq b$ for all i.

The first is to repeat the following T times: for $t = 1, 2, \ldots, T$,

i. Draw $S \sim \{0, 1\}^n$ with $S_i \sim \text{Bernoulli}(q)$

ii. Set $Z_t = \frac{1}{nq}(XS + \sigma_{\text{sub}} W_t)$, where $W_t \sim \mathcal{N}(0, I)$, as in (7.7.2).

Then set $Z_{\text{sub}} = \frac{1}{T} \sum_{t=1}^{T} Z_t$. The other mechanism is to simply set $Z_{\text{Gauss}} = \bar{X}_n + \sigma_{\text{Gauss}} W$ for $W \sim \mathcal{N}(0, I)$.

(c) What level of privacy does Z_{sub} have? That is, Z_{sub} is $(\varepsilon, 2)$-Rényi private (against single removals (7.7.3)). Give a tight upper bound on ε.

(d) What level of $(\varepsilon, 2)$-Rényi privacy does Z_{Gauss} provide?

(e) Fix $\varepsilon > 0$, and assume that each mechanism Z_{sub} and Z_{Gauss} have parameters chosen so that they are $(\varepsilon, 2)$-Rényi private. Optimize over $T, q, n, \sigma_{\text{sub}}$ in the subsampling mechanism and σ_{Gauss} in the Gaussian mechanism, and provide the sharpest bound you can on

\[
\mathbb{E}[\|Z_{\text{sub}} - \bar{X}_n\|_2^2] \quad \text{and} \quad \mathbb{E}[\|Z_{\text{Gauss}} - \bar{X}_n\|_2^2].
\]

You may assume $\|x_i\|_2 = b$ for all i. (In your derivation, to avoid annoying constants, you should replace $\log(1 + t)$ with its upper bound, $\log(1 + t) \leq t$, which is fairly sharp for $t \approx 0$.)

Question 7.5 (Privacy and stochastic gradient methods): In this question, we develop tools for private (and locally private) estimation in statistical risk minimization, focusing on problems of the form (7.4.2).

Consider a stochastic gradient method using privacy (Eqs. (7.4.3) and (7.4.6)), where instead of using the careful ℓ_2-sampling scheme of Fig. 7.2 we add Gaussian noise and subsample a random fraction q of the dataset. We are given a sample X_n of size n, and at each iteration k we draw a sample $S_k \subset \{1, \ldots, n\}$, where indices are chosen independently and $\mathbb{P}(i \in S_k) = q$, then set

\[
g_k := \frac{1}{nq} \sum_{i \in S_k} \nabla \ell(\theta_k; x_i) + \sigma_{\text{sub}} W_k
\]

where $W_k \sim \mathcal{N}(0, I)$. We then update via the projection (7.4.3), i.e.

\[
\theta_{k+1} = \text{Proj}_\Theta(\theta_k - \eta_k g_k)
\]

where $\eta_k = \eta_0 k^{-\beta}$ for some $\eta_0 > 0$ and $\beta \in (1/2, 1)$. We assume that $\|\nabla \ell(\theta; x)\|_2 \leq M$ for all $x \in \mathcal{X}, \theta \in \Theta$.

153
(a) What level ε of $(\varepsilon, 2)$-Rényi privacy does one noisy gradient calculation (7.7.4) provide? (To simplify your answer, you may assume that $\sigma_{\text{sub}} \geq M$ and $q < 1 - 1/e$.)

Now we consider the application of the results for the stochastic gradient method in Proposition 7.32 in the context of the stochastic gradients (7.7.4). Let the empirical loss $L_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; X_i)$. You may assume all the conditions of Proposition 7.32, additionally assuming that $\|\nabla \ell(\theta; x)\|_2 \leq M$ for all θ, x.

(b) Choose $q \in (0, 1)$, σ_{sub}, and a number of iterations T to perform the stochastic gradient iteration with gradients (7.7.4). Prove that for your choices, the resulting average $\bar{\theta}_T = \frac{1}{T} \sum_{k=1}^{T} \theta_k$ is $(\varepsilon, 2)$-Rényi private. (You may assume that $\varepsilon \leq 1$.)

(c) Using your choices of q, σ_{sub}, and T from part (b), give the tightest upper bound you can on the root mean squared error

$$E \left[\|\bar{\theta}_T - \bar{\theta}_n\|_2^2 \right]^{1/2}$$

in terms of the sample size n, privacy level ε, bound M on $\|\nabla \ell(\theta; x)\|_2$, $\nabla^2 L_n(\bar{\theta}_n)$, and $\Sigma_n := \text{Cov}_n(\nabla \ell(\bar{\theta}_n, X))$ where Cov_n denotes empirical covariance and $\bar{\theta}_n$ minimizes $L_n(\theta)$ over $\theta \in \Theta$. (You may have unspecified numerical constants, and you may assume that $\bar{\theta}_n \in \text{int} \Theta$.)

(d) Assume that if $\bar{\theta}(X^n)$ is any function of the data satisfying $n E[\|\bar{\theta}(X^n) - \bar{\theta}_n\|_2^2] \to 0$ as $n \to \infty$ then $E[\|\bar{\theta}(X^n) - \theta^\star\|_2^2]$ satisfies the exact bound of Proposition 7.32. What does this say about your estimator from part (c)?

(e) An implementation for solving logistic regression. Construct a dataset as follows: for $d = 25$ and $n = 2000$, draw $\{X_i\}_{i=1}^{n}$ i.i.d. and uniform on S^{d-1}, and draw $\theta^\star \in S^{d-1}$ uniformly as well. Then for each $i = 1, \ldots, n$, for $y \in \{\pm 1\}$ set

$$Y_i = y$$

with probability $\frac{1}{1 + \exp(-y\langle \theta^\star, X_i \rangle)}$

that is, following the binary logistic regression model.

Now, for the loss $\ell(\theta; (x, y)) = \log(1 + \exp(-y\langle x, \theta \rangle))$, implement

i. The non-private stochastic gradient method

ii. The sampling scheme from parts (a–c) of this problem

iii. The ℓ_2-locally private sampling approach in Eqs. (7.4.5)–(7.4.6).

Initialize each method at $\theta_0 = 0$, use stepsizes $\eta_k = k^{-2/3}$, and set the privacy levels $\varepsilon = 1$ for each problem. Use $\Theta = \mathbb{R}^d$ so that there are no projections.

Repeat these experiments at least 10 times each, and then plot your errors $\|\bar{\theta} - \theta^\star\|_2$ (in whatever format you like) for each of the non-private, (centralized) Rényi private, and locally private approaches. Explain (briefly) your plots.

Question 7.6 (Concentration and privacy composition): In this question, we give an alternative to the privacy composition approaches we exploit in Section 7.3.2. Consider an identical scenario to that in Fig. 7.1, and begin by assuming that each channel Q_i is ε-differentially private with density q_i, and let $Q^{(b)}$ be shorthand for $Q(\cdot | x^{(b)})$. Define the log-likelihood ratio

$$L^{(b)}(Z_i^k) := \sum_{i=1}^{k} \log \frac{q_i^{(b)}(Z_i)}{q_i^{(1-b)}(Z_i)}.$$
(a) Let P, Q be any two distributions satisfying $D_\infty(P\|Q) \leq \varepsilon$ and $D_\infty(Q\|P) \leq \varepsilon$, i.e., that
\[
\log \frac{P(A)}{Q(A)} \in [-\varepsilon, \varepsilon]
\] for all sets A. Show that
\[
D_{\text{kl}}(P\|Q) \leq \varepsilon(e^\varepsilon - 1).
\]

(b) Let $Q^{(b)}$ denote the joint distribution of Z_1, \ldots, Z_k when bit b holds in the privacy game in Fig. 7.1. Show that
\[
\mathbb{E}_b[L^{(b)}(Z^k_1)] \leq k\varepsilon(e^\varepsilon - 1)
\]
where \mathbb{E}_b denotes expectation under $Q^{(b)}$, and that for all $t \geq 0$,
\[
Q^{(b)}\left(L^{(b)}(Z^k_1) \geq k\varepsilon(e^\varepsilon - 1) + t\right) \leq \exp\left(-\frac{t^2}{2k\varepsilon^2}\right).
\]
Conclude that for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over $Z^k_1 \sim Q^{(b)}$,
\[
L^{(b)}(Z^k_1) \leq k(e^\varepsilon - 1)\varepsilon + \sqrt{2k\log \frac{1}{\delta}} \cdot \varepsilon.
\]

(c) Argue that for any (measurable) set A,
\[
Q^{(b)}(Z^k_1 \in A) \leq e^{\varepsilon(k, \delta)} \cdot Q^{(1-b)}(Z^k_1 \in A) + \delta
\]
for all $\delta \in [0, 1]$, where $\varepsilon(k, \delta) = k\varepsilon(e^\varepsilon - 1) + \sqrt{2k\log \frac{1}{\delta}} \cdot \varepsilon$.

(d) Conclude the following tighter variant of Corollary 7.25: if each channel in Fig. 7.1 is ε-differentially private, then the composition of k such channels is
\[
\left(k\varepsilon(e^\varepsilon - 1) + \sqrt{2k\log \frac{1}{\delta}} \cdot \varepsilon, \delta\right)
\]
differentially private for all $\delta > 0$.

As an aside, a completely similar derivation yields the following tighter analogue of Corollary 7.26: if each channel is (ε, δ)-differentially private, then their composition is
\[
\left(k\varepsilon(e^\varepsilon - 1) + \sqrt{2k\log \frac{1}{\delta_0}} \cdot \varepsilon, \delta_0 + \frac{k\delta}{1 + e^\varepsilon}\right)
\]
differentially private for all $\delta_0 > 0$.

155
Part II

Fundamental limits and optimality
JCD Comment: Put a brief commentary here. Some highlights:

i. Minimax lower bounds (both local and global) using Le Cam’s, Fano’s, and Assouad’s methods.

ii. Strong data processing inequalities, along with some bounds on them

iii. Constrained risk inequalities and functionals for lower bounds perhaps
Chapter 8

Minimax lower bounds: the Fano and Le Cam methods

Understanding the fundamental limits of estimation and optimization procedures is important for a multitude of reasons. Indeed, developing bounds on the performance of procedures can give complementary insights. By exhibiting fundamental limits of performance (perhaps over restricted classes of estimators), it is possible to guarantee that an algorithm we have developed is optimal, so that searching for estimators with better statistical performance will have limited returns, though searching for estimators with better performance in other metrics may be interesting. Moreover, exhibiting refined lower bounds on the performance of estimators can also suggest avenues for developing alternative, new optimal estimators; lower bounds need not be a fully pessimistic exercise.

In this set of notes, we define and then discuss techniques for lower-bounding the minimax risk, giving three standard techniques for deriving minimax lower bounds that have proven fruitful in a variety of estimation problems [147]. In addition to reviewing these standard techniques—the Le Cam, Fano, and Assouad methods—we present a few simplifications and extensions that may make them more “user friendly.”

8.1 Basic framework and minimax risk

Our first step here is to establish the minimax framework we use. When we study classical estimation problems, we use a standard version of minimax risk; we will also show how minimax bounds can be used to study optimization problems, in which case we use a specialization of the general minimax risk that we call minimax excess risk (while minimax risk handles this case, it is important enough that we define additional notation).

Let us begin by defining the standard minimax risk, deferring temporarily our discussion of minimax excess risk. Throughout, we let \mathcal{P} denote a class of distributions on a sample space \mathcal{X}, and let $\theta : \mathcal{P} \rightarrow \Theta$ denote a function defined on \mathcal{P}, that is, a mapping $P \mapsto \theta(P)$. The goal is to estimate the parameter $\theta(P)$ based on observations X_i drawn from the (unknown) distribution P. In certain cases, the parameter $\theta(P)$ uniquely determines the underlying distribution; for example, if we attempt to estimate a normal mean θ from the family $\mathcal{P} = \{\mathcal{N}(\theta, \sigma^2) : \theta \in \mathbb{R}\}$ with known variance σ^2, then $\theta(P) = \mathbb{E}_P[X]$ uniquely determines distributions in \mathcal{P}. In other scenarios, however, θ does not uniquely determine the distribution: for instance, we may be given a class of densities \mathcal{P} on the unit interval $[0, 1]$, and we wish to estimate $\theta(P) = \int_0^1 (p'(t))^2 dt$, where p is the
density of P.\footnote{Such problems arise, for example, in estimating the uniformity of the distribution of a species over an area (large $\theta(P)$ indicates an irregular distribution).} In this case, θ does not parameterize P, so we take a slightly broader viewpoint of estimating functions of distributions in these notes.

The space Θ in which the parameter $\theta(P)$ takes values depends on the underlying statistical problem; as an example, if the goal is to estimate the univariate mean θ, we let $\Theta \subset \mathbb{R}$. To evaluate the quality of an estimator $\hat{\theta}$, we use to measure the error of an estimator for the parameter θ, and let $\Phi : \mathbb{R} \to \mathbb{R}$ be a non-decreasing function with $\Phi(0) = 0$ (for example, $\Phi(t) = t^2$).

For a distribution $P \in \mathcal{P}$, we assume we receive i.i.d. observations X_i drawn according to some P, and based on these $\{X_i\}$, the goal is to estimate the unknown parameter $\theta(P) \in \Theta$. For a given estimator $\hat{\theta}$—a measurable function $\hat{\theta} : \mathcal{X}^n \to \Theta$—we assess the quality of the estimate $\hat{\theta}(X_1, \ldots, X_n)$ in terms of the risk

$$E_P \left[\Phi\left(\rho(\hat{\theta}(X_1, \ldots, X_n), \theta(P)) \right) \right].$$

For instance, for a univariate mean problem with $\rho(\theta, \theta') = |\theta - \theta'|$ and $\Phi(t) = t^2$, this risk is the mean-squared error. As the distribution P is varied, we obtain the risk functional for the problem, which gives the risk of any estimator $\hat{\theta}$ for the family \mathcal{P}.

For any fixed distribution P, there is always a trivial estimator of $\theta(P)$: simply return $\theta(P)$, which will have minimal risk. Of course, this “estimator” is unlikely to be good in any real sense, and it is thus important to consider the risk functional not in a pointwise sense (as a function of individual P) but to take a more global view. One approach to this is Bayesian: we place a prior π on the set of possible distributions \mathcal{P}, viewing $\theta(P)$ as a random variable, and evaluate the risk of an estimator $\hat{\theta}$ taken in expectation with respect to this prior on P. Another approach, first suggested by Wald [143], which is to choose the estimator $\hat{\theta}$ minimizing the maximum risk

$$\sup_{P \in \mathcal{P}} E_P \left[\Phi\left(\rho(\hat{\theta}(X_1, \ldots, X_n), \theta(P)) \right) \right].$$

An optimal estimator for this metric then gives the minimax risk, which is defined as

$$\mathcal{M}_n(\theta(P), \Phi \circ \rho) := \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} E_P \left[\Phi\left(\rho(\hat{\theta}(X_1, \ldots, X_n), \theta(P)) \right) \right], \quad (8.1.1)$$

where we take the supremum (worst-case) over distributions $P \in \mathcal{P}$, and the infimum is taken over all estimators $\hat{\theta}$. Here the notation $\theta(\mathcal{P})$ indicates that we consider parameters $\theta(P)$ for $P \in \mathcal{P}$ and distributions in \mathcal{P}.

In some scenarios, we study a specialized notion of risk appropriate for optimization problems (and statistical problems in which all we care about is prediction). In these settings, we assume there exists some loss function $\ell : \Theta \times \mathcal{X} \to \mathbb{R}$, where for an observation $x \in \mathcal{X}$, the value $\ell(\theta; x)$ measures the instantaneous loss associated with using θ as a predictor. In this case, we define the risk

$$L_P(\theta) := E_P[\ell(\theta; X)] = \int_{\mathcal{X}} \ell(\theta; x) dP(x) \quad (8.1.2)$$

as the expected loss of the vector θ. (See, e.g., Chapter 5 of the lectures by Shapiro, Dentcheva, and Ruszczyński [134], or work on stochastic approximation by Nemirovski et al. [121].)
8.2 Preliminaries on methods for lower bounds

There are a variety of techniques for providing lower bounds on the minimax risk (8.1.1). Each of them transforms the maximum risk by lower bounding it via a Bayesian problem (e.g. [93, 106, 109]), then proving a lower bound on the performance of all possible estimators for the Bayesian problem (it is often the case that the worst case Bayesian problem is equivalent to the original minimax problem).
problem \cite{106}). In particular, let \(\{P_v\} \subseteq P \) be a collection of distributions in \(P \) indexed by \(v \) and \(\pi \) be any probability mass function over \(v \). Then for any estimator \(\hat{\theta} \), the maximum risk has lower bound
\[
\sup_{P \in P} \mathbb{E}_P \left[\Phi(\rho(\hat{\theta}(X^n), \theta(P))) \right] \geq \sum_v \pi(v) \mathbb{E}_{P_v} \left[\Phi(\rho(\hat{\theta}(X^n), \theta(P_v))) \right].
\]

While trivial, this lower bound serves as the departure point for each of the subsequent techniques for lower bounding the minimax risk.

8.2.1 From estimation to testing

A standard first step in proving minimax bounds is to “reduce” the estimation problem to a testing problem \cite{147, 146, 139}. The idea is to show that estimation risk can be lower bounded by the probability of error in testing problems, which we can develop tools for. We use two types of testing problems: one a multiple hypothesis test, the second based on multiple binary hypothesis tests, though we defer discussion of the second.

Given an index set \(V \) of finite cardinality, consider a family of distributions \(\{P_v\}_{v \in V} \) contained within \(\mathcal{P} \). This family induces a collection of parameters \(\{\theta(P_v)\}_{v \in V} \); we call the family a \(2\delta \)-packing in the \(\rho \)-semimetric if
\[
\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta \quad \text{for all} \quad v \neq v'.
\]

We use this family to define the canonical hypothesis testing problem:

- first, nature chooses \(V \) according to the uniform distribution over \(V \);
- second, conditioned on the choice \(V = v \), the random sample \(X = X^n = (X_1, \ldots, X_n) \) is drawn from the \(n \)-fold product distribution \(P_v^n \).

Given the observed sample \(X \), the goal is to determine the value of the underlying index \(v \). We refer to any measurable mapping \(\Psi : X^n \rightarrow V \) as a test function. Its associated error probability is \(\mathbb{P}(\Psi(X^n) \neq V) \), where \(\mathbb{P} \) denotes the joint distribution over the random index \(V \) and \(X \). In particular, if we set \(\overline{P} = \frac{1}{|V|} \sum_{v \in V} P_v \) to be the mixture distribution, then the sample \(X \) is drawn (marginally) from \(\overline{P} \), and our hypothesis testing problem is to determine the randomly chosen index \(V \) given a sample from this mixture \(\overline{P} \).

With this setup, we obtain the classical reduction from estimation to testing.

Proposition 8.3. The minimax error (8.1.1) has lower bound
\[
\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(X_1, \ldots, X_n) \neq V),
\]
where the infimum ranges over all testing functions.

Proof. To see this result, fix an arbitrary estimator \(\hat{\theta} \). Suppressing dependence on \(X \) throughout the derivation, first note that it is clear that for any fixed \(\theta \), we have
\[
\mathbb{E}[\Phi(\rho(\hat{\theta}, \theta))] \geq \mathbb{E} \left[\Phi(\delta) 1 \left\{ \rho(\hat{\theta}, \theta) \geq \delta \right\} \right] = \Phi(\delta) \mathbb{P}(\rho(\hat{\theta}, \theta) \geq \delta),
\]
where the final inequality follows because \(\Phi \) is non-decreasing. Now, let us define \(\theta_v = \theta(P_v) \), so that \(\rho(\theta_v, \theta_{v'}) \geq 2\delta \) for \(v \neq v' \). By defining the testing function
\[
\Psi(\hat{\theta}) := \arg\min_{v \in V} \{ \rho(\hat{\theta}, \theta_v) \},
\]
we obtain the desired lower bound.
breaking ties arbitrarily, we have that $\rho(\hat{\theta}, \theta_v) < \delta$ implies that $\Psi(\hat{\theta}) = v$ because of the triangle inequality and 2δ-separation of the set $\{\theta_v\}_{v \in \mathcal{V}}$. Indeed, assume that $\rho(\hat{\theta}, \theta_v) < \delta$; then for any $v' \neq v$, we have

$$
\rho(\hat{\theta}, \theta_{v'}) \geq \rho(\theta_v, \theta_{v'}) - \rho(\hat{\theta}, \theta_v) > 2\delta - \delta = \delta.
$$

The test must thus return v as claimed. Equivalently, for $v \in \mathcal{V}$, the inequality $\Psi(\hat{\theta}) \neq v$ implies $\rho(\hat{\theta}, \theta_v) \geq \delta$. (See Figure 8.1.) By averaging over \mathcal{V}, we find that

$$
\sup_P \mathbb{P}(\rho(\hat{\theta}, \theta(P)) \geq \delta) \geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\rho(\hat{\theta}, \theta(P_v)) \geq \delta \mid V = v) \geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P}(\Psi(\hat{\theta}) \neq v \mid V = v).
$$

Taking an infimum over all tests $\Psi : \mathcal{X}^n \rightarrow V$ gives inequality (8.2.1).

The remaining challenge is to lower bound the probability of error in the underlying multi-way hypothesis testing problem, which we do by choosing the separation δ to trade off between the loss $\Phi(\delta)$ (large δ increases the loss) and the probability of error (small δ, and hence separation, makes the hypothesis test harder). Usually, one attempts to choose the largest separation δ that guarantees a constant probability of error. There are a variety of techniques for this, and we present three: Le Cam’s method, Fano’s method, and Assouad’s method, including extensions of the latter two to enhance their applicability. Before continuing, however, we review some inequalities between divergence measures defined on probabilities, which will be essential for our development, and concepts related to packing sets (metric entropy, covering numbers, and packing).

8.2.2 Inequalities between divergences and product distributions

We now present a few inequalities, and their consequences when applied to product distributions, that will be quite useful for proving our lower bounds. The three divergences we relate are the total variation distance, Kullback-Leibler divergence, and Hellinger distance, all of which are instances
of f-divergences (recall Section 2.2.3). We first recall the definitions of the three when applied to distributions \(P, Q \) on a set \(\mathcal{X} \), which we assume have densities \(p, q \) with respect to a base measure \(\mu \). Then we recall the total variation distance (2.2.6) is

\[
\|P - Q\|_{TV} := \sup_{A \subset \mathcal{X}} |P(A) - Q(A)| = \frac{1}{2} \int |p(x) - q(x)|d\mu(x),
\]

which is the f-divergence \(D_f (P||Q) \) generated by \(f(t) = \frac{1}{2} |t - 1| \). The Hellinger distance (2.2.8) is

\[
d_{hel}(P, Q)^2 := \int (\sqrt{p(x)} - \sqrt{q(x)})^2d\mu(x),
\]

which is the f-divergence \(D_f (P||Q) \) generated by \(f(t) = (\sqrt{t} - 1)^2 \). We also recall the Kullback-Leibler (KL) divergence

\[
D_{kl} (P||Q) := \int p(x) \log \frac{p(x)}{q(x)} d\mu(x),
\]

which is the f-divergence \(D_f (P||Q) \) generated by \(f(t) = t \log t \). As noted in Section 2.2.3, Proposition 2.11, these divergences have the following relationships.

Proposition (Proposition 2.11, restated). The total variation distance satisfies the following relationships:

(a) For the Hellinger distance,

\[
\frac{1}{2} d_{hel}(P, Q)^2 \leq \|P - Q\|_{TV} \leq d_{hel}(P, Q)\sqrt{1 - d_{hel}(P, Q)^2/4}.
\]

(b) Pinsker’s inequality: for any distributions \(P, Q \),

\[
\|P - Q\|_{TV}^2 \leq \frac{1}{2} D_{kl} (P||Q).
\]

We now show how Proposition 2.11 is useful, because KL-divergence and Hellinger distance both are easier to manipulate on product distributions than is total variation. Specifically, consider the product distributions \(P = P_1 \times \cdots \times P_n \) and \(Q = Q_1 \times \cdots \times Q_n \). Then the KL-divergence satisfies the decoupling equality

\[
D_{kl} (P||Q) = \sum_{i=1}^{n} D_{kl} (P_i||Q_i),
\]

while the Hellinger distance satisfies

\[
d_{hel}(P, Q)^2 = \int \left(\sqrt{p_1(x_1) \cdots p_n(x_n)} - \sqrt{q_1(x_1) \cdots q_n(x_n)} \right)^2 d\mu(x_1^n)
\]

\[
= \int \left(\prod_{i=1}^{n} p_i(x_i) + \prod_{i=1}^{n} q_i(x_i) - 2\sqrt{p_1(x_1) \cdots p_n(x_n)q_1(x_1) \cdots q_n(x_n)} \right) d\mu(x_1^n)
\]

\[
= 2 - 2 \prod_{i=1}^{n} \int \sqrt{p_i(x)q_i(x)}d\mu(x) = 2 - 2 \prod_{i=1}^{n} \left(1 - \frac{1}{2} d_{hel}(P_i, Q_i)^2 \right).
\]
In particular, we see that for product distributions P^n and Q^n, Proposition 2.11 implies that

$$\|P^n - Q^n\|_{TV} \leq \frac{1}{2} D_{\text{kl}}(P^n | Q^n) = \frac{n}{2} D_{\text{kl}}(P \| Q)$$

and

$$\|P^n - Q^n\|_{TV} \leq d_{\text{hel}}(P^n, Q^n) \leq \sqrt{2 - 2(1 - d_{\text{hel}}(P, Q)^2)^n}.$$

As a consequence, if we can guarantee that $D_{\text{kl}}(P \| Q) \leq 1/n$ or $d_{\text{hel}}(P, Q) \leq 1/\sqrt{n}$, then we guarantee the strict inequality $\|P^n - Q^n\|_{TV} \leq 1 - c$ for a fixed constant $c > 0$, for any n. We will see how this type of guarantee can be used to prove minimax lower bounds in the following sections.

8.2.3 Metric entropy and packing numbers

The second part of proving our lower bounds involves the construction of the packing set in Section 8.2.1. The size of the space Θ of parameters associated with our estimation problem—and consequently, how many parameters we can pack into it—is strongly coupled with the difficulty of estimation. Given a non-empty set Θ with associated (semi)metric ρ, a natural way to measure the size of the set is via the number of balls of a fixed radius $\delta > 0$ required to cover it.

Definition 8.1 (Covering number). Let Θ be a set with (semi)metric ρ. A δ-cover of the set Θ with respect to ρ is a set $\{\theta_1, \ldots, \theta_N\}$ such that for any point $\theta \in \Theta$, there exists some $v \in \{1, \ldots, N\}$ such that $\rho(\theta, \theta_v) \leq \delta$. The δ-covering number of Θ is

$$N(\delta, \Theta, \rho) := \inf \{ N \in \mathbb{N} : \text{there exists a } \delta \text{-cover } \theta_1, \ldots, \theta_N \text{ of } \Theta \}.$$

The metric entropy [102] of the set Θ is simply the logarithm of its covering number $\log N(\delta, \Theta, \rho)$. We can define a related measure—more useful for constructing our lower bounds—of size that relates to the number of disjoint balls of radius $\delta > 0$ that can be placed into the set Θ.

Definition 8.2 (Packing number). A δ-packing of the set Θ with respect to ρ is a set $\{\theta_1, \ldots, \theta_M\}$ such that for all distinct $v, v' \in \{1, \ldots, M\}$, we have $\rho(\theta_v, \theta_{v'}) \geq \delta$. The δ-packing number of Θ is

$$M(\delta, \Theta, \rho) := \sup \{ M \in \mathbb{N} : \text{there exists a } \delta \text{-packing } \theta_1, \ldots, \theta_M \text{ of } \Theta \}.$$

An exercise in proof by contradiction shows that the packing and covering numbers of a set are in fact closely related:

Lemma 8.4. The packing and covering numbers satisfy the following inequalities:

$$M(2\delta, \Theta, \rho) \leq N(\delta, \Theta, \rho) \leq M(\delta, \Theta, \rho).$$

We leave derivation of this lemma to the reader, noting that it shows that (up to constant factors) packing and covering numbers have the same scaling in the radius δ. As a simple example, we see for any interval $[a, b]$ on the real line that in the usual absolute distance metric, $N(\delta, [a, b], | \cdot |) \asymp \frac{b - a}{\delta}$.

We can now provide a few more complex examples of packing and covering numbers, presenting two standard results that will be useful for constructing the packing sets used in our lower bounds to come. We remark in passing that these constructions are essentially identical to those used to construct well-separated code-books in communication; in showing our lower bounds, we show that even if a code-book is well-separated, it may still be hard to estimate. Our first bound shows that there are (exponentially) large packings of the d-dimensional hypercube of points that are $O(d)$-separated in the Hamming metric.

164
Lemma 8.5 (Gilbert-Varshamov bound). Let $d \geq 1$. There is a subset \mathcal{V} of the d-dimensional hypercube $\mathcal{H}_d = \{-1, 1\}^d$ of size $|\mathcal{V}| \geq \exp(d/8)$ such that the ℓ_1-distance

$$\|v - v'\|_1 = 2\sum_{j=1}^{d} 1\{v_j \neq v'_j\} \geq \frac{d}{2}$$

for all $v \neq v'$ with $v, v' \in \mathcal{V}$.

Proof. We use the proof of Guntuboyina [82]. Consider a maximal subset \mathcal{V} of $\mathcal{H}_d = \{-1, 1\}^d$ satisfying

$$\|v - v'\|_1 \geq d/2 \quad \text{for all distinct } v, v' \in \mathcal{V}. \quad (8.2.5)$$

That is, the addition of any vector $w \in \mathcal{H}_d, w \notin \mathcal{V}$ to \mathcal{V} will break the constraint (8.2.5). This means that if we construct the closed balls $B(v, d/2) := \{w \in \mathcal{H}_d : \|v - w\|_1 \leq d/2\}$, we must have

$$\bigcup_{v \in \mathcal{V}} B(v, d/2) = \mathcal{H}_d \quad \text{so} \quad |\mathcal{V}| |B(0, d/2)| = \sum_{v \in \mathcal{V}} |B(v, d/2)| \geq 2^d. \quad (8.2.6)$$

We now upper bound the cardinality of $B(v, d/2)$ using the probabilistic method, which will imply the desired result. Let $S_i, i = 1, \ldots, d$, be i.i.d. Bernoulli $\{0, 1\}$-valued random variables. Then by their uniformity, for any $v \in \mathcal{H}_d$,

$$2^{-d}|B(v, d/2)| = \mathbb{P}(S_1 + S_2 + \ldots + S_d \leq d/4) = \mathbb{P}(S_1 + S_2 + \ldots + S_d \geq 3d/4) \leq \mathbb{E}[\exp(\lambda S_1 + \ldots + \lambda S_d)] \exp(-3\lambda d/4)$$

for any $\lambda > 0$, by Markov’s inequality (or the Chernoff bound). Since $\mathbb{E}[\exp(\lambda S_1)] = \frac{1}{2}(1 + e^\lambda)$, we obtain

$$2^{-d}|B(v, d/2)| \leq \inf_{\lambda \geq 0} \left\{2^{-d}(1 + e^\lambda)^d \exp(-3\lambda d/4)\right\}$$

Choosing $\lambda = \log 3$, we have

$$|B(v, d/2)| \leq 4^d \exp(-(3/4)d \log 3) = 3^{-3d/4}4^d.$$

Recalling inequality (8.2.6), we have

$$|\mathcal{V}| 3^{-3d/4}4^d \geq |\mathcal{V}| |B(v, d/2)| \geq 2^d, \quad \text{or} \quad |\mathcal{V}| \geq \frac{3^d}{2^d} = \exp\left(d \left[\frac{3}{4} \log 3 - \log 2\right]\right) \geq \exp(d/8),$$

as claimed. \square

Given the relationships between packing, covering, and size of sets Θ, we would expect there to be relationships between volume, packing, and covering numbers. This is indeed the case, as we now demonstrate for arbitrary norm balls in finite dimensions.

Lemma 8.6. Let \mathcal{B} denote the unit $\|\cdot\|$-ball in \mathbb{R}^d. Then

$$\left(\frac{1}{\delta}\right)^d \leq N(\delta, \mathcal{B}, \|\cdot\|) \leq \left(1 + \frac{2}{\delta}\right)^d.$$
As a consequence of Lemma 8.6, we see that for any $\delta < 1$, there is a packing \mathcal{V} of B such that $\|v - v'\| \geq \delta$ for all distinct $v, v' \in \mathcal{V}$ and $|\mathcal{V}| \geq (1/\delta)^d$, because we know $M(\delta, B, \|\cdot\|) \geq N(\delta, B, \|\cdot\|)$ as in Lemma 8.4. In particular, the lemma shows that any norm ball has a $1/2$-packing in its own norm with cardinality at least 2^d. We can also construct exponentially large packings of arbitrary norm-balls (in finite dimensions) where points are of constant distance apart.

Proof We prove the lemma via a volumetric argument. For the lower bound, note that if the points v_1, \ldots, v_N are a δ-cover of B, then

$$\text{Vol}(B) \leq \sum_{i=1}^{N} \text{Vol}(\delta B + v_i) = N \text{Vol}(\delta B) = N \text{Vol}(B) \delta^d.$$

In particular, $N \geq \delta^{-d}$. For the upper bound on $N(\delta, B, \|\cdot\|)$, let \mathcal{V} be a δ-packing of B with maximal cardinality, so that $|\mathcal{V}| = M(\delta, B, \|\cdot\|) \geq N(\delta, B, \|\cdot\|)$ (recall Lemma 8.4). Notably, the collection of δ-balls $\{\delta B + v_i\}_{i=1}^{M}$ cover the ball B (as otherwise, we could put an additional element in the packing \mathcal{V}), and moreover, the balls $\{\delta B + v_i\}$ are all disjoint by definition of a packing. Consequently, we find that

$$M \left(\frac{\delta}{2}\right)^d \text{Vol}(B) = M \text{Vol} \left(\frac{\delta}{2} B\right) \leq \text{Vol} \left(B + \frac{\delta}{2} B\right) = \left(1 + \frac{\delta}{2}\right)^d \text{Vol}(B).$$

Rewriting, we obtain

$$M(\delta, B, \|\cdot\|) \leq \left(\frac{2}{\delta}\right)^d \left(1 + \frac{\delta}{2}\right)^d \frac{\text{Vol}(B)}{\text{Vol}(B)} = \left(1 + \frac{2}{\delta}\right)^d,$$

completing the proof.

8.3 Le Cam’s method

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple binary hypothesis testing problems. In this section, we explore this connection, showing the connection between hypothesis testing and total variation distance, and we then show how this can yield lower bounds on minimax error (or the optimal Bayes’ risk) for simple—often one-dimensional—estimation problems.

In the first homework, we considered several representations of the total variation distance, including a question showing its relation to optimal testing. We begin again with this strand of thought, recalling the general testing problem discussed in Section 8.2.1. Suppose that we have a Bayesian hypothesis testing problem where V is chosen with equal probability to be 1 or 2, and given $V = v$, the sample X is drawn from the distribution P_v. Denoting by \mathbb{P} the joint distribution of V and X, we have for any test $\Psi : \mathcal{X} \rightarrow \{1, 2\}$ that the probability of error is

$$\mathbb{P}(\Psi(X) \neq V) = \frac{1}{2} P_1(\Psi(X) \neq 1) + \frac{1}{2} P_2(\Psi(X) \neq 2).$$

Recalling Section 8.2.1, we note that Proposition 2.18 gives an exact representation of the testing error using total variation distance. In particular, we have
Proposition (Proposition 2.18, restated). For any distributions P_1 and P_2 on \mathcal{X}, we have
\[
\inf_{\Psi} \{ P_1(\Psi(X) \neq 1) + P_2(\Psi(X) \neq 2) \} = 1 - \|P_1 - P_2\|_{TV}, \tag{8.3.1}
\]
where the infimum is taken over all tests $\Psi : \mathcal{X} \to \{1, 2\}$.

Returning to the setting in which we receive n i.i.d. observations $X_i \sim P$, when $V = 1$ with probability $\frac{1}{2}$ and 2 with probability $\frac{1}{2}$, we have
\[
\inf_{\Psi} \mathbb{P}(\Psi(X_1, \ldots, X_n) \neq V) = \frac{1}{2} - \frac{1}{2} \|P^n_1 - P^n_2\|_{TV}. \tag{8.3.2}
\]
The representations (8.3.1) and (8.3.2), in conjunction with our reduction of estimation to testing in Proposition 8.3, imply the following lower bound on minimax risk. For any family P, for which there exists a pair $P_1, P_2 \in \mathcal{P}$ satisfying $\rho(\theta(P_1), \theta(P_2)) \geq 2\delta$, then the minimax risk after n observations has lower bound
\[
\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \left[\frac{1}{2} - \frac{1}{2} \|P^n_1 - P^n_2\|_{TV} \right]. \tag{8.3.3}
\]
The lower bound (8.3.3) suggests the following strategy: we find distributions P_1 and P_2, which we choose as a function of δ, that guarantee $\|P^n_1 - P^n_2\|_{TV} \leq \frac{1}{2}$. In this case, so long as $\rho(\theta(P_1), \theta(P_2)) \geq 2\delta$, we have the lower bound
\[
\mathcal{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{4} \right] = \frac{1}{4} \Phi(\delta).
\]
We now give an example illustrating this idea.

Example 8.7 (Bernoulli mean estimation): Consider the problem of estimating the mean $\theta \in [-1, 1]$ of a $\{\pm 1\}$-valued Bernoulli distribution under the squared error loss $(\theta - \hat{\theta})^2$, where $X_i \in \{-1, 1\}$. In this case, by fixing some $\delta > 0$, we set $\mathcal{V} = \{-1, 1\}$, and we define P_v so that
\[
P_v(X = 1) = \frac{1 + v\delta}{2} \quad \text{and} \quad P_v(X = -1) = \frac{1 - v\delta}{2},
\]
whence we see that the mean $\theta(P_v) = \delta v$. Using the metric $\rho(\theta, \theta') = |\theta - \theta'|$ and loss $\Phi(\delta) = \delta^2$, we have separation 2δ of $\theta(P_{-1})$ and $\theta(P_1)$. Thus, via Le Cam’s method (8.3.3), we have that
\[
\mathcal{M}_n(\text{Bernoulli}([-1, 1]), (\cdot)^2) \geq \frac{1}{2} \delta^2 \left(1 - \|P^n_{-1} - P^n_1\|_{TV} \right).
\]

We would thus like to upper bound $\|P^n_{-1} - P^n_1\|_{TV}$ as a function of the separation δ and sample size n; here we use Pinsker’s inequality (Proposition 2.11(b)) and the tensorization identity (8.2.3) that makes KL-divergence so useful. Indeed, we have
\[
\|P^n_{-1} - P^n_1\|_{TV}^2 \leq \frac{1}{2} D_{KL}(P^n_{-1}|P^n_1) = \frac{n}{2} D_{KL}(P_{-1}|P_1) = \frac{n}{2} \delta \log \frac{1 + \delta}{1 - \delta}.
\]
Noting that $\delta \log \frac{1 + \delta}{1 - \delta} \leq 3\delta^2$ for $\delta \in [0, 1/2]$, we obtain that $\|P^n_{-1} - P^n_1\|_{TV} \leq \delta \sqrt{3n/2}$ for $\delta \leq 1/2$. In particular, we can guarantee a high probability of error in the associated hypothesis testing problem (recall inequality (8.3.2)) by taking $\delta = 1/\sqrt{6n}$; this guarantees $\|P^n_{-1} - P^n_1\|_{TV} \leq \frac{1}{2}$. We thus have the minimax lower bound
\[
\mathcal{M}_n(\text{Bernoulli}([-1, 1]), (\cdot)^2) \geq \frac{1}{2} \delta^2 \left(1 - \frac{1}{2} \right) = \frac{1}{24n}.
\]
While the factor $1/24$ is smaller than necessary, this bound is optimal to within constant factors; the sample mean $(1/n) \sum_{i=1}^n X_i$ achieves mean-squared error $(1 - \theta^2)/n$. As an alternative proof, we may use the Hellinger distance and its associated decoupling identity (8.2.4). We sketch the idea, ignoring lower order terms when convenient. In this case, Proposition 2.11(a) implies

$$\|P_1^n - P_2^n\|_{\text{TV}} \leq d_{\text{hel}}(P_1^n, P_2^n) = \sqrt{2 - 2(1 - d_{\text{hel}}(P_1, P_2)^2)^n}. $$

Noting that

$$d_{\text{hel}}(P_1, P_2)^2 = \left(\sqrt{\frac{1 + \delta}{2}} - \sqrt{\frac{1 - \delta}{2}} \right)^2 = 1 - 2\sqrt{\frac{1 - \delta^2}{4}} = 1 - \sqrt{1 - \delta^2} \approx \frac{1}{2} \delta^2, $$

and noting that $(1 - \delta^2) \approx e^{-\delta^2}$, we have (up to lower order terms in δ) that $\|P_1^n - P_2^n\|_{\text{TV}} \leq \sqrt{2 - 2 \exp(-\delta^2 n/2)}$. Choosing $\delta^2 = 1/(4n)$, we have $\sqrt{2 - 2 \exp(-\delta^2 n/2)} \leq 1/2$, thus giving the lower bound

$$M_n(\text{Bernoulli}([-1,1]), (\cdot)^2) \gtrsim \frac{1}{2} \delta^2 \left(1 - \frac{1}{2} \right) = \frac{1}{16n}, $$

where the quotations indicate we have been fast and loose in the derivation. ◯

This example shows the “usual” rate of convergence in parametric estimation problems, that is, that we can estimate a parameter θ at a rate (in squared error) scaling as $1/n$. The mean estimator above is, in some sense, the prototypical example of such regular problems. In some “irregular” scenarios—including estimating the support of a uniform random variable, which we study in the homework—faster rates are possible.

We also note in passing that there are substantially more complex versions of Le Cam’s method that can yield sharp results for a wider variety of problems, including some in nonparametric estimation [106, 147]. For our purposes, the simpler two-point perspective provided in this section will be sufficient.

JCD Comment: Talk about Euclidean structure with KL space and information geometry a bit here to suggest the KL approach later.

8.4 Fano’s method

Fano’s method, originally proposed by Has’minskii [85] for providing lower bounds in nonparametric estimation problems, gives a somewhat more general technique than Le Cam’s method, and it applies when the packing set \mathcal{V} has cardinality larger than two. The method has played a central role in minimax theory, beginning with the pioneering work of Has’minskii and Ibragimov [85, 93]. More recent work following this initial push continues to the present day (e.g. [28, 147, 146, 29, 125, 82, 40]).

8.4.1 The classical (local) Fano method

We begin by stating Fano’s inequality, which provides a lower bound on the error in a multi-way hypothesis testing problem. Let V be a random variable taking values in a finite set \mathcal{V} with cardinality $|\mathcal{V}| \geq 2$. If we let the function $h_2(p) = -p \log p - (1 - p) \log(1 - p)$ denote the entropy of the Bernoulli random variable with parameter p, Fano’s inequality (Proposition 2.20 from Chapter 2) takes the following form [e.g. 49, Chapter 2]:
Proposition 8.8 (Fano inequality). For any Markov chain $V \rightarrow X \rightarrow \hat{V}$, we have

$$h_2(\mathbb{P}(\hat{V} \neq V)) + \mathbb{P}(\hat{V} \neq V) \log(|\mathcal{V}| - 1) \geq H(V \mid \hat{V}). \quad (8.4.1)$$

Restating the results in Chapter 2, we also have the following convenient rewriting of Fano’s inequality when V is uniform in \mathcal{V} (recall Corollary 2.21).

Corollary 8.9. Assume that V is uniform on \mathcal{V}. For any Markov chain $V \rightarrow X \rightarrow \hat{V}$,

$$\mathbb{P}(\hat{V} \neq V) \geq 1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)}. \quad (8.4.2)$$

In particular, Corollary 8.9 shows that we have

$$\inf_{\Psi} \mathbb{P}(\Psi(X) \neq V) \geq 1 - \frac{I(V; X) + \log 2}{\log |\mathcal{V}|},$$

where the infimum is taken over all testing procedures Ψ. By combining Corollary 8.9 with the reduction from estimation to testing in Proposition 8.3, we obtain the following result.

Proposition 8.10. Let $\{\theta(P_v)\}_{v \in \mathcal{V}}$ be a 2δ-packing in the ρ-semimetric. Assume that V is uniform on the set \mathcal{V}, and conditional on $V = v$, we draw a sample $X \sim P_v$. Then the minimax risk has lower bound

$$\mathcal{M}(\theta(P); \Phi \circ \rho) \geq \Phi(\delta) \left(1 - \frac{I(V; X) + \log 2}{\log |\mathcal{V}|}\right).$$

To gain some intuition for Proposition 8.10, we think of the lower bound as a function of the separation $\delta > 0$. Roughly, as $\delta \downarrow 0$, the separation condition between the distributions P_v is relaxed and we expect the distributions P_v to be closer to one another. In this case—as will be made more explicity presently—the hypothesis testing problem of distinguishing the P_v becomes more challenging, and the information $I(V; X)$ shrinks. Thus, what we roughly attempt to do is to choose our packing $\theta(P_v)$ as a function of δ, and find the largest $\delta > 0$ making the mutual information small enough that

$$\frac{I(V; X) + \log 2}{\log |\mathcal{V}|} \leq \frac{1}{2}. \quad (8.4.3)$$

In this case, the minimax lower bound is at least $\Phi(\delta)/2$. We now explore techniques for achieving such results.

Mutual information and KL-divergence

Many techniques for upper bounding mutual information rely on its representation as the KL-divergence between multiple distributions. Indeed, given random variables V and X as in the preceding sections, if we let $\mathbb{P}_{V,X}$ denote their joint distribution and \mathbb{P}_V and \mathbb{P}_X their marginals, then

$$I(V; X) = D_{\text{KL}}(\mathbb{P}_{X,V} \parallel \mathbb{P}_X \mathbb{P}_V),$$

where $\mathbb{P}_X \mathbb{P}_V$ denotes the distribution of (X, V) when the random variables are independent. By manipulating this definition, we can rewrite it in a way that is a bit more convenient for our purposes.

Indeed, focusing on our setting of testing, let us assume that V is drawn from a prior distribution π (this may be a discrete or arbitrary distribution, though for simplicity we focus on the case when
π is discrete). Let \(P_v \) denote the distribution of \(X \) conditional on \(V = v \), as in Proposition 8.10. Then marginally, we know that \(X \) is drawn from the mixture distribution

\[
\mathcal{P} := \sum_v \pi(v) P_v.
\]

With this definition of the mixture distribution, via algebraic manipulations, we have

\[
I(V; X) = \sum_v \pi(v) D_{\text{KL}} (P_v \| \mathcal{P}),
\]

a representation that plays an important role in our subsequent derivations. To see equality (8.4.4), let \(\mu \) be a base measure over \(X \) (assume w.l.o.g. that \(X \) has density \(p(\cdot | v) = p_v(\cdot) \) conditional on \(V = v \)), and note that

\[
I(V; X) = \sum_v \int_X p(x | v) \pi(v) \log \frac{p(x | v)}{\mathcal{P}(x)} d\mu(x) = \sum_v \pi(v) \int_X p(x | v) \log \frac{p(x | v)}{\mathcal{P}(x)} d\mu(x).
\]

Representation (8.4.4) makes it clear that if the distributions of the sample \(X \) conditional on \(V \) are all similar, then there is little information content. Returning to the discussion after Proposition 8.10, we have in this uniform setting that

\[
\mathcal{P} = \frac{1}{|V|} \sum_{v \in V} P_v \quad \text{and} \quad I(V; X) = \frac{1}{|V|} \sum_{v \in V} D_{\text{KL}} (P_v \| \mathcal{P}).
\]

The mutual information is small if the typical conditional distribution \(P_v \) is difficult to distinguish—has small KL-divergence—from \(\mathcal{P} \).

The local Fano method

The local Fano method is based on a weakening of the mixture representation of mutual information (8.4.4), then giving a uniform upper bound on divergences between all pairs of the conditional distributions \(P_v \) and \(P_{v'} \). (This method is known in the statistics literature as the “generalized Fano method,” a poor name, as it is based on a weak upper bound on mutual information.) In particular (focusing on the case when \(V \) is uniform), the convexity of \(-\log\) implies that

\[
I(V; X) = \frac{1}{|V|} \sum_{v \in V} D_{\text{KL}} (P_v \| \mathcal{P}) \leq \frac{1}{|V|^2} \sum_{v,v'} D_{\text{KL}} (P_v \| P_{v'}). \tag{8.4.5}
\]

In the local Fano method approach, we construct a local packing. This local packing approach is based on constructing a family of distributions \(P_v \) for \(v \in V \) defining a \(2\delta \)-packing (recall Section 8.2.1), meaning that \(\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta \) for all \(v \neq v' \), but which additionally satisfy the uniform upper bound

\[
D_{\text{KL}} (P_v \| P_{v'}) \leq \kappa^2 \delta^2 \quad \text{for all} \ v, v' \in V, \tag{8.4.6}
\]

where \(\kappa > 0 \) is a fixed problem-dependent constant. If we have the inequality (8.4.6), then so long as we can find a local packing \(V \) such that

\[
\log |V| \geq 2(\kappa^2 \delta^2 + \log 2),
\]

170
we are guaranteed the testing error condition (8.4.3), and hence the minimax lower bound

\[\mathcal{M}(\theta(P), \Phi \circ \rho) \geq \frac{1}{2} \Phi(\delta). \]

The difficulty in this approach is constructing the packing set \(\mathcal{V} \) that allows \(\delta \) to be chosen to obtain sharp lower bounds, and we often require careful choices of the packing sets \(\mathcal{V} \). (We will see how to reduce such difficulties in subsequent sections.)

Constructing local packings As mentioned above, the main difficulty in using Fano’s method is in the construction of so-called “local” packings. In these problems, the idea is to construct a packing \(\mathcal{V} \) of a fixed set (in a vector space, say \(\mathbb{R}^d \)) with constant radius and constant distance. Then we scale elements of the packing by \(\delta > 0 \), which leaves the cardinality \(|\mathcal{V}| \) identical, but allows us to scale \(\delta \) in the separation in the packing and the uniform divergence bound (8.4.6). In particular, Lemmas 8.5 and 8.6 show that we can construct exponentially large packings of certain sets with balls of a fixed radius.

We now illustrate these techniques via two examples.

Example 8.11 (Normal mean estimation): Consider the \(d \)-dimensional normal location family \(\mathcal{N}_d = \{ \mathcal{N}(\theta, \sigma^2 I_{d \times d}) \mid \theta \in \mathbb{R}^d \} \); we wish to estimate the mean \(\theta = \theta(P) \) of a given distribution \(P \in \mathcal{N}_d \) in mean-squared error, that is, with loss \(\| \hat{\theta} - \theta \|^2 \). Let \(\mathcal{V} \) be a 1/2-packing of the unit \(\ell_2 \)-ball with cardinality at least \(2^d \), as guaranteed by Lemma 8.6. (We assume for simplicity that \(d \geq 2 \).

Now we construct our local packing. Fix \(\delta > 0 \), and for each \(v \in \mathcal{V} \), set \(\theta_v = \delta v \in \mathbb{R}^d \). Then we have

\[\| \theta_v - \theta_{v'} \|_2 = \delta \| v - v' \|_2 \geq \frac{\delta}{2} \]

for each distinct pair \(v, v' \in \mathcal{V} \), and moreover, we note that \(\| \theta_v - \theta_{v'} \|_2 \leq \delta \) for such pairs as well. By applying the Fano minimax bound of Proposition 8.10, we see that (given \(n \) normal observations \(X_i \overset{iid}{\sim} P \))

\[\mathcal{M}_n(\theta(\mathcal{N}_d), \| \cdot \|_2^2) \geq \left(\frac{1}{2} \cdot \frac{\delta}{2} \right)^2 \left(1 - \frac{I(\mathcal{N}; X^n) + \log 2}{\log |\mathcal{V}|} \right) = \frac{\delta^2}{16} \left(1 - \frac{I(\mathcal{N}; X^n) + \log 2}{d \log 2} \right). \]

Now note that for any pair \(v, v' \), if \(P_v \) is the normal distribution \(\mathcal{N}(\theta_v, \sigma^2 I_{d \times d}) \) we have

\[D_{\text{kl}}(P_v^n \| P_{v'}^n) = n \cdot D_{\text{kl}}(\mathcal{N}(\delta v, \sigma^2 I_{d \times d}) \| \mathcal{N}(\delta v', \sigma^2 I_{d \times d})) = n \cdot \frac{\delta^2}{2\sigma^2} \| v - v' \|^2_2, \]

as the KL-divergence between two normal distributions with identical covariance is

\[D_{\text{kl}}(\mathcal{N}(\theta_1, \Sigma) \| \mathcal{N}(\theta_2, \Sigma)) = \frac{1}{2} (\theta_1 - \theta_2)^\top \Sigma^{-1} (\theta_1 - \theta_2) \]

as in Example 2.7. As \(\| v - v' \|_2 \leq 1 \), we have the KL-divergence bound (8.4.6) with \(\kappa^2 = n/2\sigma^2 \).

Combining our derivations, we have the minimax lower bound

\[\mathcal{M}_n(\theta(\mathcal{N}_d), \| \cdot \|_2^2) \geq \frac{\delta^2}{16} \left(1 - \frac{n\delta^2/2\sigma^2 + \log 2}{d \log 2} \right). \]

(8.4.7)
Then by taking $\delta^2 = d\sigma^2 \log 2/(2n)$, we see that
\[
1 - \frac{n \delta^2 / 2 \sigma^2 + \log 2}{d \log 2} = 1 - \frac{1}{d} - \frac{1}{4} \geq \frac{1}{4}
\]
by assumption that $d \geq 2$, and inequality (8.4.7) implies the minimax lower bound
\[
\mathfrak{m}_n(\theta(N_d), \|\cdot\|_2^2) \geq \frac{d \sigma^2 \log 2}{32n} \cdot \frac{1}{4} \geq \frac{1}{185} \cdot \frac{d \sigma^2}{n}.
\]
While the constant $1/185$ is not sharp, we do obtain the right scaling in d, n, and the variance σ^2; the sample mean attains the same risk.

Example 8.12 (Linear regression): In this example, we show how local packings can give (up to some constant factors) sharp minimax rates for standard linear regression problems. In particular, for fixed matrix $X \in \mathbb{R}^{n \times d}$, we observe
\[
Y = X \theta + \varepsilon,
\]
where $\varepsilon \in \mathbb{R}^n$ consists of independent random variables ε_i with variance bounded by $\text{Var}(\varepsilon_i) \leq \sigma^2$, and $\theta \in \mathbb{R}^d$ is allowed to vary over \mathbb{R}^d. For the purposes of our lower bound, we may assume that $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n})$. Let \mathcal{P} denote the family of such normally distributed linear regression problems, and assume for simplicity that $d \geq 32$.

In this case, we use the Gilbert-Varshamov bound (Lemma 8.5) to construct a local packing and attain minimax rates. Indeed, let \mathcal{V} be a packing of $\{-1, 1\}^d$ such that $\|v - v'\|_1 \geq d/2$ for distinct elements of \mathcal{V}, and let $|\mathcal{V}| \geq \exp(d/8)$ as guaranteed by the Gilbert-Varshamov bound.

For fixed $\delta > 0$, if we set $\theta_v = \delta v$, then we have the packing guarantee for distinct elements v, v' that
\[
\|\theta_v - \theta_{v'}\|_2^2 = \delta^2 \sum_{j=1}^d (v_j - v_j')^2 = 4\delta^2 \|v - v'\|_1 \geq 2d\delta^2.
\]
Moreover, we have the upper bound
\[
D_{\text{kl}}(\mathcal{N}(X \theta_v, \sigma^2 I_{n \times n}) || \mathcal{N}(X \theta_{v'}, \sigma^2 I_{n \times n})) = \frac{1}{2\sigma^2} \|X(\theta_v - \theta_{v'})\|_2^2 \\
\leq \frac{\delta^2}{2\sigma^2} \gamma_{\text{max}}(X) \|v - v'\|_2 \leq \frac{2d}{\sigma^2} \gamma_{\text{max}}(X) \delta^2,
\]
where $\gamma_{\text{max}}(X)$ denotes the maximum singular value of X. Consequently, the bound (8.4.6) holds with $\kappa^2 \leq 2d \gamma_{\text{max}}(X)/\sigma^2$, and we have the minimax lower bound
\[
\mathfrak{m}(\theta(\mathcal{P}), \|\cdot\|_2^2) \geq \frac{d \sigma^2}{2} \left(1 - \frac{I(\mathcal{V}; Y) + \log 2}{\log |\mathcal{V}|} \right) \geq \frac{d \sigma^2}{2} \left(1 - \frac{2d \gamma_{\text{max}}(X) \delta^2 + \log 2}{d/8} \right).
\]
Now, if we choose
\[
\delta^2 = \frac{\sigma^2}{64 \gamma_{\text{max}}^2(X)}, \quad \text{then} \quad 1 - \frac{8 \log 2}{d} - \frac{16d \gamma_{\text{max}}^2(X) \delta^2}{d} \geq 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2},
\]
by assumption that $d \geq 32$. In particular, we obtain the lower bound
\[
\mathfrak{m}(\theta(\mathcal{P}), \|\cdot\|_2^2) \geq \frac{1}{256} \frac{\sigma^2 d}{\gamma_{\text{max}}^2(X)} = \frac{1}{256} \frac{\sigma^2 d}{n} \gamma_{\text{max}}(\frac{1}{\sqrt{n}} X),
\]
172
for a convergence rate (roughly) of $\sigma^2 d/n$ after rescaling the singular values of X by $1/\sqrt{n}$.

This bound is sharp in terms of the dimension, dependence on n, and the variance σ^2, but it does not fully capture the dependence on X, as it depends only on the maximum singular value. Indeed, in this case, an exact calculation (cf. [109]) shows that the minimax value of the problem is exactly $\sigma^2 \text{tr}((X^\top X)^{-1})$. Letting $\lambda_j(A)$ be the jth eigenvalue of a matrix A, we have

$$\sigma^2 \text{tr}((X^\top X)^{-1}) = \frac{\sigma^2}{n} \text{tr}((n^{-1} X^\top X)^{-1}) = \frac{\sigma^2}{n} \sum_{j=1}^{d} \frac{1}{\lambda_j(\frac{1}{n} X^\top X)} \geq \frac{\sigma^2 d}{n} \min_j \frac{1}{\lambda_j(\frac{1}{n} X^\top X)} = \frac{\sigma^2 d}{n} \frac{1}{\gamma_{\text{max}}^2(\frac{1}{\sqrt{n}} X)}.$$

Thus, the local Fano method captures most—but not all—of the difficulty of the problem.

8.4.2 A distance-based Fano method

While the testing lower bound (8.4.2) is sufficient for proving lower bounds for many estimation problems, for the sharpest results it sometimes requires a somewhat delicate construction of a well-separated packing (e.g. [40, 62]). To that end, we also provide extensions of inequalities (8.4.1) and (8.4.2) that more directly yield bounds on estimation error, allowing more direct and simpler proofs of a variety of minimax lower bounds (see also reference [60]).

More specifically, suppose that the distance function ρ_V is defined on V, and we are interested in bounding the estimation error $\rho_V(\hat{V}, V)$. We begin by providing analogues of the lower bounds (8.4.1) and (8.4.2) that replace the testing error with the tail probability $\mathbb{P}(\rho_V(\hat{V}, V) > t)$. By Markov’s inequality, such control directly yields bounds on the expectation $\mathbb{E}[\rho_V(\hat{V}, V)]$. As we show in the sequel and in chapters to come, these distance-based Fano inequalities allow more direct proofs of a variety of minimax bounds without the need for careful construction of packing sets or metric entropy calculations as in other arguments.

We begin with the distance-based analogue of the usual discrete Fano inequality in Proposition 8.8. Let V be a random variable supported on a finite set V with cardinality $|V| \geq 2$, and let $\rho : V \times V \to \mathbb{R}$ be a function defined on $V \times V$. In the usual setting, the function ρ is a metric on the space V, but our theory applies to general functions. For a given scalar $t \geq 0$, the maximum and minimum neighborhood sizes at radius t are given by

$$N^\text{max}_t := \max_{v \in V} \left\{ \text{card}\{v' \in V \mid \rho(v, v') \leq t\} \right\} \quad \text{and} \quad N^\text{min}_t := \min_{v \in V} \left\{ \text{card}\{v' \in V \mid \rho(v, v') \leq t\} \right\}.$$

Defining the error probability $P_t = \mathbb{P}(\rho_V(\hat{V}, V) > t)$, we then have the following generalization of Fano’s inequality:

Proposition 8.13. For any Markov chain $V \to X \to \hat{V}$, we have

$$h_2(P_t) + P_t \log \frac{|V| - N^\text{min}_t}{N^\text{max}_t} + \log N^\text{max}_t \geq H(V \mid \hat{V}). \quad (8.4.9)$$

Before proving the proposition, which we do in Section 8.5.1, it is informative to note that it reduces to the standard form of Fano’s inequality (8.4.1) in a special case. Suppose that we take ρ_V to be the 0-1 metric, meaning that $\rho_V(v, v') = 0$ if $v = v'$ and 1 otherwise. Setting $t = 0$ in Proposition 8.13, we have $P_0 = \mathbb{P}[\hat{V} \neq V]$ and $N^\text{min}_0 = N^\text{max}_0 = 1$, whence inequality (8.4.9) reduces...
to inequality (8.4.1). Other weakenings allow somewhat clearer statements (see Section 8.5.2 for a proof):

Corollary 8.14. If V is uniform on V and $(|V| - N_t^\text{min}) > N_t^\text{max}$, then

$$
\mathbb{P}(\rho_V(\hat{V}, V) > t) \geq 1 - \frac{I(V; X) + \log 2}{\log N_t^\text{max}}.
$$

(8.4.10)

Inequality (8.4.10) is the natural analogue of the classical mutual-information based form of Fano’s inequality (8.4.2), and it provides a qualitatively similar bound. The main difference is that the usual cardinality $|V|$ is replaced by the ratio $|V|/N_t^\text{max}$. This quantity serves as a rough measure of the number of possible “regions” in the space V that are distinguishable—that is, the number of subsets of V for which $\rho_V(v, v') > t$ when v and v' belong to different regions. While this construction is similar in spirit to the usual construction of packing sets in the standard reduction from testing to estimation (cf. Section 8.2.1), our bound allows us to skip the packing set construction. We can directly compute $I(V; X)$ where V takes values over the full space, as opposed to computing the mutual information $I(V'; X)$ for a random variable V' uniformly distributed over a packing set contained within V. In some cases, the former calculation can be much simpler, as illustrated in examples and chapters to follow.

We now turn to providing a few consequences of Proposition 8.13 and Corollary 8.14, showing how they can be used to derive lower bounds on the minimax risk. Proposition 8.13 is a generalization of the classical Fano inequality (8.4.1), so it leads naturally to a generalization of the classical Fano lower bound on minimax risk, which we describe here. This reduction from estimation to testing is somewhat more general than the classical reductions, since we do not map the original estimation problem to a strict test, but rather a test that allows errors. Consider as in the standard approach to minimax lower bounds. On the other hand, allowing for $t > 0$ lends greater flexibility to the construction, since only certain pairs θ_v and $\theta_{v'}$ are required to be well-separated.

Given a set V and associated separation function (8.4.11), we assume the canonical estimation setting: nature chooses $V \in V$ uniformly at random, and conditioned on this choice $V = v$, a sample X is drawn from the distribution P_v. We then have the following corollary of Proposition 8.13, whose argument is completely identical to that for inequality (8.2.1):

Corollary 8.15. Given V uniformly distributed over V with separation function $\delta(t)$, we have

$$
\mathcal{M}_n(\theta(P), \Phi \circ \rho) \geq \Phi\left(\frac{\delta(t)}{2}\right) \left[1 - \frac{I(X; V) + \log 2}{\log N_t^\text{max}}\right] \quad \text{for all } t.
$$

(8.4.12)

Notably, using the discrete metric $\rho_V(v, v') = 1 \{v \neq v'\}$ and taking $t = 0$ in the lower bound (8.4.12) gives the classical Fano lower bound based on constructing a packing [93, 147, 146]. We now turn to an example illustrating the use of Corollary 8.15 in providing a minimax lower bound on the performance of regression estimators.
Example: Normal regression model Consider the d-dimensional linear regression model $Y = X\theta + \varepsilon$, where $\varepsilon \in \mathbb{R}^n$ is i.i.d. $\mathcal{N}(0, \sigma^2)$ and $X \in \mathbb{R}^{n \times d}$ is known, but θ is not. In this case, our family of distributions is

$$
\mathcal{P}_X := \left\{ Y \sim \mathcal{N}(X\theta, \sigma^2 I_{n \times n}) \mid \theta \in \mathbb{R}^d \right\} = \left\{ Y = X\theta + \varepsilon \mid \varepsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n}), \theta \in \mathbb{R}^d \right\}.
$$

We then obtain the following minimax lower bound on the minimax error in squared ℓ_2-norm: there is a universal (numerical) constant $c > 0$ such that

$$
\mathcal{M}_n(\theta(\mathcal{P}_X), \| \cdot \|_2^2) \geq c \frac{\sigma^2 d^2}{\|X\|_{Fy}^2} \geq \frac{c}{\gamma_{\text{max}}(X/\sqrt{n})^2} \cdot \frac{\sigma^2 d^2}{n},
$$

where γ_{max} denotes the maximum singular value. Notably, this inequality is nearly the sharpest known bound proved via Fano inequality-based methods [40], but our technique is essentially direct and straightforward.

To see inequality (8.4.13), let the set $\mathcal{V} = \{-1, 1\}^d$ be the d-dimensional hypercube, and define $\theta_v = \delta \nu$ for some fixed $\delta > 0$. Then letting ρ_ν be the Hamming metric on \mathcal{V} and ρ be the usual ℓ_2-norm, the associated separation function (8.4.11) satisfies $\delta(t) > \max\{\sqrt{t}, 1\}$. Now, for any $t \leq \lfloor d/3 \rfloor$, the neighborhood size satisfies

$$
N_t^{\text{max}} = \sum_{\tau=0}^t \binom{d}{\tau} \leq 2 \binom{d}{t} \leq 2 \left(\frac{de}{t} \right)^t.
$$

Consequently, for $t \leq d/6$, the ratio $|\mathcal{V}|/N_t^{\text{max}}$ satisfies

$$
\log \frac{|\mathcal{V}|}{N_t^{\text{max}}} \geq d \log 2 - \log 2 \left(\frac{d}{t} \right) \geq d \log 2 - \frac{d}{6} \log(6e) - \log 2 = d \log \frac{2}{2^{1/d} \sqrt[6]{6e}} > \max \left\{ \frac{d}{6}, \log 4 \right\}
$$

for $d \geq 12$. (The case $2 \leq d < 12$ can be checked directly). In particular, by taking $t = \lfloor d/6 \rfloor$ we obtain via Corollary 8.15 that

$$
\mathcal{M}_n(\theta(\mathcal{P}_X), \| \cdot \|_2^2) \geq \frac{\max\{|d/6, 2\} \delta^2}{4} \left(1 - \frac{I(Y; V) + \log 2}{\max\{d/6, 2 \log 2\}} \right).
$$

But of course, for V uniform on \mathcal{V}, we have $\mathbb{E}[VV^\top] = I_{d \times d}$, and thus for V, V' independent and uniform on \mathcal{V},

$$
I(Y; V) \leq \frac{1}{|\mathcal{V}|^2} \sum_{v \in \mathcal{V}} \sum_{v' \in \mathcal{V}} D_{\text{KL}}(\mathcal{N}(X\theta_v, \sigma^2 I_{n \times n}) \| \mathcal{N}(X\theta_{v'}, \sigma^2 I_{n \times n}))
$$

$$
= \frac{\delta^2}{2\sigma^2} \mathbb{E} \left[\| XV - XV' \|_2^2 \right] = \frac{\delta^2}{\sigma^2} \|X\|_{Fy}^2.
$$

Substituting this into the preceding minimax bound, we obtain

$$
\mathcal{M}_n(\theta(\mathcal{P}_X), \| \cdot \|_2^2) \geq \frac{\max\{|d/6, 2\} \delta^2}{4} \left(1 - \frac{\delta^2 \|X\|_{Fy}^2 / \sigma^2 + \log 2}{\max\{d/6, 2 \log 2\}} \right).
$$

Choosing $\delta^2 \asymp d\sigma^2 / \|X\|_{Fy}^2$ gives the result (8.4.13).
8.5 Proofs of results

8.5.1 Proof of Proposition 8.13

Our argument for proving the proposition parallels that of the classical Fano inequality by Cover and Thomas [49]. Letting E be a $\{0, 1\}$-valued indicator variable for the event $\rho(\hat{V}, V) \leq t$, we compute the entropy $H(E, V | \hat{V})$ in two different ways. On one hand, by the chain rule for entropy, we have

$$H(E, V | \hat{V}) = H(V | \hat{V}) + H(E | V, \hat{V}),$$

where the final term vanishes since E is (V, \hat{V})-measurable. On the other hand, we also have

$$H(E, V | \hat{V}) = H(E | \hat{V}) + H(V | E, \hat{V}) \leq H(E) + H(V | E, \hat{V}),$$

using the fact that conditioning reduces entropy. Applying the definition of conditional entropy yields

$$H(V | E, \hat{V}) = P(E = 0)H(V | E = 0, \hat{V}) + P(E = 1)H(V | E = 1, \hat{V}),$$

and we upper bound each of these terms separately. For the first term, we have

$$H(V | E = 0, \hat{V}) \leq \log(|V| - N_t^{\min}),$$

since conditioned on the event $E = 0$, the random variable V may take values in a set of size at most $|V| - N_t^{\min}$. For the second, we have

$$H(V | E = 1, \hat{V}) \leq \log N_t^{\max},$$

since conditioned on $E = 1$, or equivalently on the event that $\rho(\hat{V}, V) \leq t$, we are guaranteed that V belongs to a set of cardinality at most N_t^{\max}.

Combining the pieces and noting $P(E = 0) = P_t$, we have proved that

$$H(E, V | \hat{V}) \leq H(E) + P_t \log (|V| - N_t^{\min}) + (1 - P_t) \log N_t^{\max}.$$

Combining this inequality with our earlier equality (8.5.1), we see that

$$H(V | \hat{V}) \leq H(V | E, \hat{V}) \leq H(E) + P_t \log (|V| - N_t^{\min}) + (1 - P_t) \log N_t^{\max}.$$

Since $H(E) = h_2(P_t)$, the claim (8.4.9) follows.

8.5.2 Proof of Corollary 8.14

First, by the information-processing inequality [e.g. 49, Chapter 2], we have $I(V; \hat{V}) \leq I(V; X)$, and hence $H(V | X) \leq H(V | \hat{V})$. Since $h_2(P_t) \leq \log 2$, inequality (8.4.9) implies that

$$H(V | X) - \log N_t^{\max} \leq H(V | \hat{V}) - \log N_t^{\max} \leq \mathbb{P}(\rho(\hat{V}, V) > t) \log \frac{|V| - N_t^{\min}}{N_t^{\max}} + \log 2.$$

Rearranging the preceding equations yields

$$\mathbb{P}(\rho(\hat{V}, V) > t) \geq \frac{H(V | X) - \log N_t^{\max} - \log 2}{\log \frac{|V| - N_t^{\min}}{N_t^{\max}}}. \tag{8.5.2}$$
Note that his bound holds without any assumptions on the distribution of \(V \).

By definition, we have \(I(V; X) = H(V) - H(V \mid X) \). When \(V \) is uniform on \(\mathcal{V} \), we have \(H(V) = \log |\mathcal{V}| \), and hence \(H(V \mid X) = \log |\mathcal{V}| - I(V; X) \). Substituting this relation into the bound (8.5.2) yields the inequality

\[
P(\rho(\widehat{V}, V) > t) \geq \frac{\log \frac{|\mathcal{V}|}{N_{\max}} - I(V; X) + \log 2}{\log \frac{|\mathcal{V}| - N_{\min}}{N_{\max}}} \geq 1 - \frac{I(V; X) + \log 2}{\log \frac{|\mathcal{V}|}{N_{\max}}}.
\]

8.6 Exercises

Question 8.1 (A generalized version of Fano’s inequality; cf. Proposition 8.13): Let \(\mathcal{V} \) and \(\mathcal{W} \) be arbitrary sets, and suppose that \(\pi \) is a (prior) probability measure on \(\mathcal{V} \), where \(\mathcal{V} \) is distributed according to \(\pi \). Let \(\mathcal{V} \to X \to b_V \) be Markov chain, where \(\mathcal{V} \) takes values in \(\mathcal{V} \) and \(b_V \) takes values in \(\mathcal{W} \). Let \(\mathcal{N} \subset \mathcal{V} \times \mathcal{W} \) denote a measurable subset of \(\mathcal{V} \times \mathcal{W} \) (a collection of neighborhoods), and for any \(b_v \in \mathcal{W} \), denote the slice

\[
\mathcal{N}_{b_v} := \{ v \in \mathcal{V} : (v, b_v) \in \mathcal{N} \}.
\]

That is, \(\mathcal{N} \) denotes the neighborhoods of points \(v \) for which we do not consider a prediction \(b_v \) for \(v \) to be an error, and the slices (8.6.1) index the neighborhoods. Define the “volume” constants

\[
p_{\max} := \sup_{b_v} \pi(V \in \mathcal{N}_{b_v}) \quad \text{and} \quad p_{\min} := \inf_{b_v} \pi(V \in \mathcal{N}_{b_v}).
\]

Define the error probability \(P_{\text{error}} = \mathbb{P}[(V, b_V) \notin \mathcal{N}] \) and entropy \(h_2(p) = -p \log p - (1-p) \log(1-p) \).

(a) Prove that for any Markov chain \(V \to X \to \widehat{V} \), we have

\[
h_2(P_{\text{error}}) + P_{\text{error}} \log \frac{1-p_{\min}}{p_{\max}} \geq \log \frac{1}{p_{\max}} - I(V; \widehat{V}).
\]

(b) Conclude from inequality (8.6.2) that

\[
\mathbb{P}[(V, \widehat{V}) \notin \mathcal{N}] \geq 1 - \frac{I(V; X) + \log 2}{\inf_{\widehat{V}} \log \frac{1}{\pi(\mathcal{N}_{b_{\widehat{V}}})}}.
\]

(c) Now we give a version explicitly using distances. Let \(\mathcal{V} \subset \mathbb{R}^d \) and define \(\mathcal{N} = \{(v, v') : \|v - v'\| \leq \delta\} \) to be the points within \(\delta \) of one another. Let \(\mathbb{B}_v \) denote the \(\|\cdot\|\)-ball of radius 1 centered at \(v \). Conclude that for any prior \(\pi \) on \(\mathbb{R}^d \) that

\[
\mathbb{P}\left(\|V - \widehat{V}\|_2 \geq \delta\right) \geq 1 - \frac{I(V; X) + \log 2}{\log \frac{1}{\sup_{\pi(\mathbb{B}_v)}}}.
\]

Question 8.2: In this question, we will show that the minimax rate of estimation for the parameter of a uniform distribution (in squared error) scales as \(1/n^2 \). In particular, assume that \(X_i \sim \text{Uniform}(\theta, \theta + 1) \), meaning that \(X_i \) have densities \(p(x) = 1 \{ x \in [\theta, \theta + 1] \} \). Let \(X_{(1)} = \min_i \{X_i\} \) denote the first order statistic.
(a) Prove that
\[\mathbb{E}[(X(1) - \theta)^2] = \frac{2}{(n+1)(n+2)}. \]
(Hint: the fact that \(\mathbb{E}[Z] = \int_0^\infty \mathbb{P}(Z \geq t)dt \) for any positive \(Z \) may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of \(\theta \in \mathbb{R} \) for the uniform family \(\mathcal{U} = \{ \text{Uniform}(\theta, \theta + 1) : \theta \in \mathbb{R} \} \) in squared error has lower bound \(c/n^2 \), where \(c \) is a numerical constant.

Question 8.3 (Sign identification in sparse linear regression): In sparse linear regression, we have \(n \) observations \(Y_i = \langle X_i, \theta^* \rangle + \varepsilon_i \), where \(X_i \in \mathbb{R}^d \) are known (fixed) matrices and the vector \(\theta^* \) has a small number \(k \ll d \) of non-zero indices, and \(\varepsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2) \). In this problem, we investigate the problem of **sign recovery**, that is, identifying the vector of signs \(\text{sign}(\theta^*_j) \) for \(j = 1, \ldots, d \), where \(\text{sign}(0) = 0 \).

Assume we have the following process: fix a signal threshold \(\theta_{\text{min}} > 0 \). First, a vector \(S \in \{-1, 0, 1\}^d \) is chosen uniformly at random from the set of vectors \(\mathcal{S}_k := \{ s \in \{-1, 0, 1\}^d : \|s\|_1 = k \} \). Then we define vectors \(\theta^*_s \) so that \(\theta^*_s j = \theta_{\text{min}} s_j \), and conditional on \(S = s \), we observe
\[Y = X \theta^*_s + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n}). \]
(Here \(X \in \mathbb{R}^{n \times d} \) is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator \(\hat{S} \) of \(S \), we have
\[\mathbb{P}(\hat{S} \neq S) \geq \frac{1}{2} \quad \text{unless} \quad n \geq c \frac{d}{n} \log \left(\frac{d}{k} \right) \frac{\sigma^2}{\theta_{\text{min}}^2}, \]
where \(c \) is a numerical constant. You may assume that \(k \geq 4 \) or \(\log \left(\frac{d}{k} \right) \geq 4 \log 2 \).

(b) Assume that \(X \in \{-1, 1\}^{n \times d} \). Give a lower bound on how large \(n \) must be for sign recovery. Give a one sentence interpretation of \(\sigma^2/\theta_{\text{min}}^2 \).

Question 8.4 (General minimax lower bounds): In this exercise, we outline a more general approach to minimax risk than that afforded by studying losses applied to parameter error. In particular, we may instead consider losses of the form
\[L : \Theta \times \mathcal{P} \rightarrow \mathbb{R}_+ \]
where \(\mathcal{P} \) is a collection of distributions and \(\Theta \) is a parameter space, where additionally the losses satisfy the condition
\[\inf_{\theta \in \Theta} L(\theta, P) = 0 \quad \text{for all} \quad P \in \mathcal{P}. \]

(a) Consider a statistical risk minimization problem, where we have a distribution \(P \) on random variable \(X \in \mathcal{X} \), loss function \(f : \Theta \times \mathcal{X} \rightarrow \mathbb{R} \), and for \(P \in \mathcal{P} \) define the population risk \(F_P(\theta) := \mathbb{E}_P[f(\theta, X)] \). Show that
\[L(\theta, P) := F_P(\theta) - \inf_{\theta \in \Theta} F_P(\theta) \]
satisfies the conditions above.
(b) For distributions P_0, P_1, define the *separation* between them (for the loss L) by

$$ \text{sep}_L(P_0, P_1; \Theta) := \sup \left\{ \delta \geq 0 : \begin{array}{l} L(\theta, P_0) \leq \delta \text{ implies } L(\theta, P_1) \geq \delta \\ L(\theta, P_1) \leq \delta \text{ implies } L(\theta, P_0) \geq \delta \end{array} \text{ for any } \theta \in \Theta \right\}. \quad (8.6.3) $$

That is, having small loss on P_0 implies large loss on P_1 and vice versa.

We say a collection of distributions $\{P_v\}_{v \in V}$ indexed by V is *δ-separated* if $\text{sep}_L(P_v, P_v'; \Theta) \geq \delta$. Show that if $\{P_v\}_{v \in V}$ is δ-separated, then for any estimator $\hat{\theta}$

$$ \frac{1}{|V|} \sum_{v \in V} \mathbb{E}_{P_v}[L(\hat{\theta}, P_v)] \geq \delta \inf_{\tilde{v}} \mathbb{P}(\tilde{v} \neq V), $$

where \mathbb{P} is the joint distribution over the random index V chosen uniformly and then X sampled $X \sim P_v$ conditional on $V = v$.

(c) Show that if \mathcal{P} has a δ-separated subset $\{P_v\}_{v \in V}$, then

$$ \mathfrak{M}(\mathcal{P}, L) := \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\hat{\theta}, P)] \geq \delta \inf_{\tilde{v}} \mathbb{P}(\tilde{v} \neq V). $$

Question 8.5 (Optimality in stochastic optimization): In this question, we prove minimax lower bounds on the convergence rates in stochastic optimization problems based on the size of the domain over which we optimize and certain Lipschitz conditions of the functions themselves. You may assume the dimension d in the problems we consider is as large as you wish.

The setting is as follows: we have a domain $\Theta \subset \mathbb{R}^d$, function $f : \Theta \times \mathcal{X} \to \mathbb{R}$, which is convex in its first argument, and population risks $F_\theta(\theta) := \mathbb{E}_P[f(\theta, X)]$, where the expectation is taken over $X \sim P$. For any two functions F_0, F_1, let $\theta^* \in \text{argmin}_{\theta \in \Theta} F_v(\theta)$, and define the *optimization distance* between F_0 and F_1 by

$$ d_{\text{opt}}(F_0, F_1; \Theta) := \inf_{\theta \in \Theta} \left\{ F_0(\theta) + F_1(\theta) - F_0(\theta^0) - F_1(\theta^1) \right\}. $$

Define also the loss $L(\theta, P) := F_P(\theta) - \inf_{\theta \in \Theta} F_P(\theta)$.

(a) Show for any $\delta \geq 0$ that if $d_{\text{opt}}(F_0, F_1; \Theta) \geq \delta$, then $\text{sep}_L(P_0, P_1; \Theta) \geq \frac{\delta}{2}$, where sep is defined in Eq. (8.6.3).

We consider lower bounds for stochastic optimization problems with appropriately Lipschitz f.

(b) Let the sample space $\mathcal{X} = \{ \pm e_j \}_{j=1}^d$ be the signed standard basis vectors, and for $\theta \in \mathbb{R}^d$, define

$$ f(\theta; x) := \begin{cases} |\theta_j - 1| & \text{if } x = e_j \\ |\theta_j + 1| & \text{if } x = -e_j. \end{cases} $$

Let $v \in \{-1, 1\}^d$. For some $\delta > 0$ to be chosen, define the distribution P_v on X by

$$ X = \begin{cases} v_j e_j & \text{w.p. } \frac{1+\delta}{2d} \\ -v_j e_j & \text{w.p. } \frac{1-\delta}{2d}. \end{cases} $$

(Note that $\|X\|_0 = 1$.) Give an explicit formula for

$$ F_v(\theta) := \mathbb{E}_{P_v}[f(\theta, X)]. $$
(c) Show that \(\theta^* = \arg\min_\theta F_{\nu}(\theta) = v \) and that \(F_{\nu}(\theta^*) = 1 - \delta \).

(d) Let \(V \subset \{\pm 1\}^d \) be a \(d/2 \)-packing in \(\ell_1 \)-distance of cardinality at least \(\exp(d/8) \) (by Gilbert-Varshamov, Lemma 8.5). Assume that \(\Theta \supset [-1,1]^d \). Show that \(d_{\text{opt}}(F_{\nu}, F_{\nu'}) \geq \delta \|v - v'\|_1 / d \) for all distinct \(v, v' \in V \).

(e) For our loss \(L(\theta, P) = F_P(\theta) - \inf_{\theta' \in \Theta} F_P(\theta) \), show that the minimax loss gap
\[
\mathcal{M}_n(\mathcal{P}, \Theta, L) := \inf_{\theta_0 \in \Theta} \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[L(\theta_0(X_n^1), P)] = \inf_{\theta_0 \in \Theta} \sup_{P \in \mathcal{P}} \left\{ \mathbb{E}_{P}[F_P(\theta_0(X_1^n)) - F_P^*] \right\}
\]
(where \(F_P^* = \inf_{\theta \in \Theta} F_P(\theta) \) and \(X_1^n \overset{\text{iid}}{\sim} P \)) satisfies
\[
\mathcal{M}_n(\mathcal{P}, L) \geq c \min \left\{ \frac{\sqrt{d}}{\sqrt{n}}, 1 \right\},
\]
where \(c > 0 \) is a constant. You may assume \(d \geq 8 \) (or any other large constant) for simplicity.

(f) Show how to modify this construction so that for constants \(L, R > 0 \), if \(\Theta \supset [-R, R]^d \), there are functions \(f \) that are \(L \)-Lipschitz with respect to the \(\ell_\infty \) norm, meaning
\[
|f(\theta; x) - f(\theta'; x)| \leq L \|\theta - \theta'\|_\infty,
\]
such that for this domain \(\Theta \), loss \(f \) (and induced \(L \)), and the same family of distributions \(\mathcal{P} \) as above,
\[
\mathcal{M}_n(\mathcal{P}, \Theta, L) \geq cLR \min \left\{ \frac{\sqrt{d}}{\sqrt{n}}, 1 \right\}.
\]

(g) Suppose that instead, we have \(\Theta \supset \{\theta \in \mathbb{R}^d \mid \|\theta\|_2 \leq R_2\} \), the \(\ell_2 \)-ball of radius \(R_2 \), and allow \(f \) to be \(L_2 \)-Lipschitz with respect to the \(\ell_2 \)-norm (instead of \(\ell_\infty \)). Show that
\[
\mathcal{M}_n(\mathcal{P}, \Theta, L) \geq c \frac{L_2 R_2}{\sqrt{n}}.
\]

(h) What do these results say about stochastic gradient methods?

Question 8.6 (Optimality in high-dimensional stochastic optimization): We revisit the setting in Question 8.5, except that we consider a high-dimensional regime. In particular, we will prove lower bounds on optimization when the domain \(\Theta = \{\theta \in \mathbb{R}^d \mid \|\theta\|_1 \leq r\} \), the \(\ell_1 \)-ball, and the loss functions \(f \) are \(M \)-Lipschitz with respect to the \(\ell_1 \)-norm, equivalently, that \(\|\nabla f(\theta, x)\|_\infty \leq M \) for all \(\theta \in \Theta \). For distributions \(P \) on \(X \), define \(F_P(\theta) = \mathbb{E}_P[f(\theta, X)] \) and \(F_P^* = \inf_{\theta \in \Theta} F_P(\theta) \).

We now give an explicit construction. Let the sample space \(\mathcal{X} = \{-1,1\}^d \) be the hypercube, and consider linear losses
\[
f(\theta; x) = M \langle \theta, x \rangle,
\]
which are evidently \(M \)-Lipschitz w.r.t. the \(\ell_1 \)-norm. Now, for the packing set \(\mathcal{V} = \{\pm e_j\}_{j=1}^d \) of the standard basis vectors, define the distribution \(P_v \) on \(X \in \{\pm 1\}^d \) to have independent coordinates with
\[
X_j = \begin{cases}
1 & \text{w.p. } \frac{1 + \delta v_j}{2} \\
-1 & \text{w.p. } \frac{1 - \delta v_j}{2}
\end{cases}
\]
for some \(\delta \).
That is, $X \sim P_v$ has independent random sign coordinates except in coordinate j when $v = e_j$, where $P_{\pm e_j}(X_j = \pm 1) = \frac{1 \pm \delta}{2}$. Let

$$F_v(\theta) = \mathbb{E}_{P_v}[f(\theta, X)] = M\delta(v, \theta).$$

(a) Give $\theta^v := \arg\min_{\theta \in \Theta} F_v(\theta)$.

(b) Using the optimization distance $d_{\text{opt}}(F_0, F_1; \Theta) = \inf_{\theta \in \Theta} \{F_0(\theta) + F_1(\theta) - F_0^* - F_1^*\}$, where $F_v^* = \inf_{\theta \in \Theta} F_v(\theta)$, defined in Question 8.5, show the separation

$$\min_{v \neq v'} d_{\text{opt}}(F_v, F_{v'}; \Theta) = M\delta r.$$

(c) Let the loss $L(\theta, P) = F_P(\theta) - \inf_{\theta \in \Theta} F_P(\theta)$ as in Question 8.5, let P be the collection of distributions supported on $[-1, 1]^d$, and define the minimax loss gap

$$\mathcal{M}_n(P, \Theta, L) := \inf_{\theta_n} \sup_{P \in P} \left\{ \mathbb{E}_P \left[F_P(\theta_n(X^n_1)) - F_P^* \right] \right\}$$

where $X^n_1 \overset{\text{iid}}{\sim} P$. Show that there exists a numerical constant $c > 0$ such that

$$\mathcal{M}_n(P, \Theta, L) \geq c \frac{\sqrt{\log(2d)}}{\sqrt{n}}.$$

(You may assume $d \geq 2$ to avoid trivial cases.) Hint. Use the result of Question 8.4 part (c).

Question 8.7 (Optimal algorithms for memory access): In a modern CPU, memory is organized in a hierarchy, so that data upon which computations are being actively performed lies in a very small memory close to the logic units of the processor for which access is extraordinarily fast, while data not being actively used lies in slower memory slightly farther from the processor. (Modern processor memory is generally organized into the registers—a small number of 4- or 8-byte memory locations on the processor—and level 1, 2, (and sometimes 3 or more) cache, which contain small amounts of data and increasing access times, and RAM (random access memory).) Moving data—communicating—between levels of the memory hierarchy is both power intensive and very slow relative to computation on the data itself, so that in many algorithms the bulk of the time of the algorithm is in moving data from one place to another to be computed upon. Thus, developing very fast algorithms for numerical (and other) tasks on modern computers requires careful tracking of memory access and communication, and careful control of these quantities can often yield orders of magnitude speed improvements in execution. In this problem, you will prove a lower bound on the number of communication steps that a variety of numerical-type methods must perform, giving a concrete (attainable) inequality that allows one to certify optimality of specific algorithms.

In particular, we consider matrix multiplication, as it is a proxy for a class of cubic algorithms that are well behaved. Let $A, B \in \mathbb{R}^{n \times n}$ be matrices, and assume we wish to compute $C = AB$, via the simple algorithm that for all i, j sets

$$C_{ij} = \sum_{l=1}^{n} A_{il}B_{lj}.$$

Computationally, this forces us to repeatedly execute operations of the form

$$\text{Mem}(C_{ij}) = F(\text{Mem}(A_{il}), \text{Mem}(B_{lj}), \text{Mem}(C_{ij})).$$
where F is some function—that may depend on i, j, l—and $\text{Mem}(\cdot)$ indicates that we access the memory associated with the argument. (In our case, we have $C_{ij} = C_{ij} + A_{il} \cdot B_{lj}$.) We assume that executing F requires that $\text{Mem}(A_{il})$, $\text{Mem}(B_{lj})$, and $\text{Mem}(C_{ij})$ belong to fast memory, and that each are distinct (stored in a separate place in flow and fast memory). We assume that the order of the computations does not matter, so we may re-order them in any way. We call $\text{Mem}(A_{il})$ (respectively B or C) and operand in our computation. We let M denote the size of fast/local memory, and we would like to lower bound the number of times we must communicate an operand into or out of the fast local memory as a function of n, the matrix size, and M, the fast memory size, when all we may do is re-order the computation being executed. We let N_{Store} denote the number of times we write something from fast memory out to slow memory and let N_{Load} the number of times we load something from slow memory to fast memory. Let N be the total number of operations we execute (for simple matrix multiplication, we have $N = n^3$, though with sparse matrices, this can be smaller).

We analyze the procedure by breaking the computation into a number of segments, where each segment contains precisely M load or store (communication-causing) instructions.

(a) Let N_{seg} be an upper bound on the number of evaluations with the function $F(\cdot)$ in any given segment (you will upper bound this in a later part of the problem). Justify that

$$N_{\text{seg}} + N_{\text{seg}} \geq M \left\lfloor \frac{N}{N_{\text{seg}}} \right\rfloor.$$

(b) Within a segment, all operands involved must be in fast memory at least once to be computed with. Assume that memory locations $\text{Mem}(A_{il})$, $\text{Mem}(B_{lj})$, and $\text{Mem}(C_{ij})$ do not overlap. For any operand involved in a memory operation in one of the segments, the operand (1) was already in fast memory at the beginning of the segment, (2) was read from slow memory, (3) is still in fast memory at the end of the segment, or (4) is written to slow memory at the end of the segment. (There are also operands potentially created during execution that are simply discarded; we do not bound those.) Justify the following: within a segment, for each type of operand $\text{Mem}(A_{ij})$, $\text{Mem}(B_{ij})$, or $\text{Mem}(C_{ij})$, there are at most $c \cdot M$ such operands (i.e. there are at most cM operands of type $\text{Mem}(A_{ij})$, independent of the others, and so on), where c is a numerical constant. What value of c can you attain?

(c) Using the result of question 6.1, argue that $N_{\text{seg}} \leq c' \sqrt{M^3}$ for a numerical constant c'. What value of c' do you get?

(d) Using the result of part (c), argue that the number of loads and stores satisfies

$$N_{\text{Store}} + N_{\text{Load}} \geq c'' \frac{N}{\sqrt{M}} - M$$

for a numerical constant c''. What is your constant?
Assouad’s method

Assouad’s method provides a somewhat different technique for proving lower bounds. Instead of reducing the estimation problem to a multiple hypothesis test or simpler estimation problem, as with Le Cam’s method and Fano’s method from the preceding lectures, here we transform the original estimation problem into multiple binary hypothesis testing problems, using the structure of the problem in an essential way. Assouad’s method applies only problems where the loss we care about is naturally related to identification of individual points on a hypercube.

9.1 The method

9.1.1 Well-separated problems

To describe the method, we begin by encoding a notion of separation and loss, similar to what we did in the classical reduction of estimation to testing. For some \(d \in \mathbb{N}\), let \(V = \{-1, 1\}^d\), and let us consider a family \(\{P_v\}_{v \in V} \subset \mathcal{P}\) indexed by the hypercube. We say that the family \(P_v\) induces a 2\(\delta\)-Hamming separation for the loss \(\Phi \circ \rho\) if there exists a function \(b_v: \theta(\mathcal{P}) \rightarrow \{-1, 1\}^d\) satisfying

\[
\Phi(\rho(\theta, \theta(P_v))) \geq 2\delta \sum_{j=1}^{d} 1\{|b_v(\theta)|_j \neq v_j\}.
\]

That is, we can take the parameter \(\theta\) and test the individual indices via \(b_v\).

Example 9.1 (Estimation in \(\ell_1\)-error): Suppose we have a family of multivariate Laplace distributions on \(\mathbb{R}^d\)—distributions with density proportional to \(p(x) \propto \exp(-\|x - \mu\|_1)\)—and we wish to estimate the mean in \(\ell_1\)-distance. For \(v \in \{-1, 1\}^d\) and some fixed \(\delta > 0\) let \(p_v\) be the density

\[p_v(x) = \frac{1}{2} \exp(-\|x - \delta v\|_1),\]

which has mean \(\theta(P_v) = \delta v\). Under the \(\ell_1\)-loss, we have for any \(\theta \in \mathbb{R}^d\) that

\[\|\theta - \theta(P_v)\|_1 = \sum_{j=1}^{d} |\theta_j - \delta v_j| \geq \delta \sum_{j=1}^{d} 1\{|\text{sign}(\theta_j)| \neq v_j\},\]

so that this family induces a \(\delta\)-Hamming separation for the \(\ell_1\)-loss. \(\Diamond\)
9.1.2 From estimation to multiple binary tests

As in the standard reduction from estimation to testing, we consider the following random process: nature chooses a vector \(V \in \{-1,1\}^d \) uniformly at random, after which the sample \(X \) is drawn from the distribution \(P_v \) conditional on \(V = v \). Then, if we let \(P_{\pm j} \) denote the joint distribution over the random index \(V \) and \(X \) conditional on the \(j \)th coordinate \(V_j = \pm 1 \), we obtain the following sharper version of Assouad’s lemma \([10]\) (see also the paper \([7]\)); we provide a proof in Section 9.1.3 to follow.

Lemma 9.2. Under the conditions of the previous paragraph, we have

\[
\mathcal{M}(\theta(P), \Phi \circ \rho) \geq \delta \sum_{j=1}^{d} \inf_{\Psi} [P_{+j}(\Psi(X) \neq +1) + P_{-j}(\Psi(X) \neq -1)].
\]

While Lemma 9.2 requires conditions on the loss \(\Phi \) and metric \(\rho \) for the separation condition \((9.1.1)\) to hold, it is sometimes easier to apply than Fano’s method. Moreover, while we will not address this in class, several researchers \([7, 61]\) have noted that it appears to allow easier application in so-called “interactive” settings—those for which the sampling of the \(X_i \) may not be precisely i.i.d. It is closely related to Le Cam’s method, discussed previously, as we see that if we define \(P_{+j} = 2^{1-d} \sum_{v:v_j=1} P_v \) (and similarly for \(-j\)), Lemma 9.2 is equivalent to

\[
\mathcal{M}(\theta(P), \Phi \circ \rho) \geq \delta \sum_{j=1}^{d} [1 - \|P_{+j} - P_{-j}\|_{TV}]. \tag{9.1.2}
\]

There are standard weakenings of the lower bound \((9.1.2)\) (and Lemma 9.2). We give one such weakening. First, we note that the total variation is convex, so that if we define \(P_{\pm v, j} = \frac{1}{2} e_j \sum_{v \in \{-1,1\}^d} P_{v, j} \) and \(P_{-v, j} = \frac{1}{2} e_j \sum_{v \in \{-1,1\}^d} P_{v, j} \),

Thus, by the triangle inequality, we have

\[
\|P_{+j} - P_{-j}\|_{TV} = \left\| \frac{1}{2d} \sum_{v \in \{-1,1\}^d} P_{v, j} - P_{-v, j} \right\|_{TV}
\leq \frac{1}{2d} \sum_{v \in \{-1,1\}^d} \|P_{v, j} - P_{-v, j}\|_{TV} \leq \max_{v, j} \|P_{v, j} - P_{-v, j}\|_{TV}.
\]

Then as long as the loss satisfies the per-coordinate separation \((9.1.1)\), we obtain the following:

\[
\mathcal{M}(\theta(P), \Phi \circ \rho) \geq d\delta \left(1 - \max_{v, j} \|P_{v, j} - P_{-v, j}\|_{TV} \right). \tag{9.1.3}
\]

This is the version of Assouad’s lemma most frequently presented.

We also note that by the Cauchy-Schwarz inequality and convexity of the variation-distance, we have

\[
\sum_{j=1}^{d} \|P_{+j} - P_{-j}\|_{TV} \leq \sqrt{d} \left(\sum_{j=1}^{d} \|P_{+j} - P_{-j}\|_{TV}^2 \right)^{1/2} \leq \sqrt{d} \left(\sum_{j=1}^{d} \frac{1}{2d} \sum_{v} \|P_{v, j} - P_{-v, j}\|_{TV}^2 \right)^{1/2}.
\]

184
and consequently we have a not quite so terribly weak version of inequality (9.1.2):

\[M(\theta(P), \Phi \circ \rho) \geq \delta d \left[1 - \frac{1}{d} \sum_{j=1}^{d} \sum_{v \in \{-1,1\}} \| P_{v,j} - P_{v,-j} \|_{TV}^2 \right]^{\frac{1}{2}} \]

(9.1.4)

Regardless of whether we use the sharper version (9.1.2) or weakened versions (9.1.3) or (9.1.4), the technique is essentially the same. We simply seek a setting of the distributions \(P_v \) so that the probability of making a mistake in the hypothesis test of Lemma 9.2 is high enough—say \(1/2 \)—or the variation distance is small enough—such as \(\| P_{+j} - P_{-j} \|_{TV} \leq 1/2 \) for all \(j \). Once this is satisfied, we obtain a minimax lower bound of the form

\[M(\theta(P), \Phi \circ \rho) \geq \delta d \left[1 - \frac{1}{2} \right] = \frac{d\delta}{2}. \]

9.1.3 Proof of Lemma 9.2

Fix an (arbitrary) estimator \(\hat{\theta} \). By assumption (9.1.1), we have

\[\Phi(\rho(\theta, \theta(P_v))) \geq 2\delta \sum_{j=1}^{d} \mathbf{1}\{[\hat{v}(\theta)]_j \neq v_j\}. \]

Taking expectations, we see that

\[\sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\Phi(\rho(\hat{\theta}(X), \theta(P))) \right] \geq \frac{1}{|V|} \sum_{v \in V} \mathbb{E}_{P_v} \left[\Phi(\rho(\hat{\theta}(X), \theta_v)) \right] \geq \frac{1}{|V|} \sum_{v \in V} 2\delta \sum_{j=1}^{d} \mathbb{E}_{P_v} \left[\mathbf{1}\{ [\hat{v}(\theta)]_j \neq v_j \} \right] \]

as the average is smaller than the maximum of a set and using the separation assumption (9.1.1). Recalling the definition of the mixtures \(P_{\pm j} \) as the joint distribution of \(V \) and \(X \) conditional on \(V_j = \pm 1 \), we swap the summation orders to see that

\[\frac{1}{|V|} \sum_{v \in V} P_v \left([\hat{v}(\theta)]_j \neq v_j \right) = \frac{1}{|V|} \sum_{v : v_j = 1} P_v \left([\hat{v}(\theta)]_j \neq v_j \right) + \frac{1}{|V|} \sum_{v : v_j = -1} P_v \left([\hat{v}(\theta)]_j \neq v_j \right) = \frac{1}{2} P_{+j} \left([\hat{v}(\theta)]_j \neq v_j \right) + \frac{1}{2} P_{-j} \left([\hat{v}(\theta)]_j \neq v_j \right). \]

This gives the statement claimed in the lemma, while taking an infimum over all testing procedures \(\Psi : \mathcal{X} \to \{-1, +1\} \) gives the claim (9.1.2).

9.2 Example applications of Assouad’s method

We now provide two example applications of Assouad’s method. The first is a standard finite-dimensional lower bound, where we provide a lower bound in a normal mean estimation problem. For the second, we consider estimation in a logistic regression problem, showing a similar lower bound. In Chapter 10 to follow, we show how to use Assouad’s method to prove strong lower bounds in a standard nonparametric problem.
Example 9.3 (Normal mean estimation): For some $\sigma^2 > 0$ and $d \in \mathbb{N}$, we consider estimation of mean parameter for the normal location family

\[\mathcal{N} := \{ \mathcal{N}(\theta, \sigma^2 I_d) : \theta \in \mathbb{R}^d \} \]

in squared Euclidean distance. We now show how for this family, the sharp Assouad’s method implies the lower bound

\[\mathcal{M}_n(\theta(\mathcal{N}), \|\cdot\|_2^2) \geq \frac{d\sigma^2}{8n}. \quad (9.2.1) \]

Up to constant factors, this bound is sharp; the sample mean has mean squared error $d\sigma^2/n$. We proceed in (essentially) the usual way we have set up. Fix some $\delta > 0$ and define $\theta_v = \delta v$, taking $P_v = \mathcal{N}(\theta_v, \sigma^2 I_d)$ to be the normal distribution with mean θ_v. In this case, we see that the hypercube structure is natural, as our loss function decomposes on coordinates: we have $\|\theta - \theta_v\|^2 \geq \delta^2 \sum_{j=1}^d \mathbf{1}\{\text{sign}(\theta_j) \neq v_j\}$. The family P_v thus induces a δ^2-Hamming separation for the loss $\|\cdot\|_2^2$, and by Assouad’s method (9.1.2), we have

\[\mathcal{M}_n(\theta(\mathcal{N}), \|\cdot\|_2^2) \geq \frac{\delta^2}{2} \sum_{j=1}^d \left[1 - \|P^n_{+j} - P^n_{-j}\|_{TV} \right], \]

where $P^n_{+j} = 2^{1-d} \sum_{v: v_j = 1} P^n_v$. It remains to provide upper bounds on $\|P^n_{+j} - P^n_{-j}\|_{TV}$. By the convexity of $\|\cdot\|^2_{TV}$ and Pinsker’s inequality, we have

\[\|P^n_{+j} - P^n_{-j}\|_{TV}^2 \leq \max_{d_{\text{ham}}(v,v') \leq 1} \|P^n_v - P^n_{v'}\|_{TV}^2 \leq \frac{1}{2} \max_{d_{\text{ham}}(v,v') \leq 1} D_{\text{kl}}(P^n_v || P^n_{v'}). \]

But of course, for any v and v' differing in only 1 coordinate,

\[D_{\text{kl}}(P^n_v || P^n_{v'}) = \frac{n}{2\sigma^2} \|\theta_v - \theta_{v'}\|_2^2 = \frac{2n}{\sigma^2} \delta^2, \]

giving the minimax lower bound

\[\mathcal{M}_n(\theta(\mathcal{N}), \|\cdot\|_2^2) \geq \frac{d\delta^2}{2} \sum_{j=1}^d \left[1 - \sqrt{2n\delta^2/\sigma^2} \right]. \]

Choosing $\delta^2 = \sigma^2/8n$ gives the claimed lower bound (9.2.1).

Example 9.4 (Logistic regression): In this example, consider the logistic regression model, where we have known (fixed) regressors $X_i \in \mathbb{R}^d$ and an unknown parameter $\theta \in \mathbb{R}^d$; the goal is to infer θ after observing a sequence of $Y_i \in \{-1, 1\}$, where for $y \in \{-1, 1\}$ we have

\[P(Y_i = y \mid X_i, \theta) = \frac{1}{1 + \exp(-y X_i^\top \theta)}. \]

Denote this family by \mathcal{P}_{log}, and for $P \in \mathcal{P}_{\text{log}}$, let $\theta(P)$ be the predictor vector θ. We would like to estimate the vector θ in squared ℓ_2 error. As in Example 9.3, if we choose some $\delta > 0$ and for each $v \in \{-1, 1\}^d$, we set $\theta_v = \delta v$, then we have the δ^2-separation in Hamming metric $\|\theta - \theta_v\|^2 \geq \delta^2 \sum_{j=1}^d \mathbf{1}\{\text{sign}(\theta_j) \neq v_j\}$. Let P^n_v denote the distribution of the n independent
observations Y_i when $\theta = \theta_0$. Then we have by Assouad’s lemma (and the weakening (9.1.4)) that

$$\mathcal{M}_n(\theta(P_{\log}), \|\cdot\|_2^2) \geq \frac{\delta^2}{2} \sum_{j=1}^{d} \left[1 - \|P_{v+j}^n - P_{v-j}^n\|_{TV}^2\right]$$

$$\geq \frac{d\delta^2}{2} \left[1 - \left(\frac{1}{d} \sum_{j=1}^{d} \sum_{v \in \{-1,1\}^d} \|P_{v+j}^n - P_{v-j}^n\|_{TV}^2\right)^{\frac{1}{2}}\right]. \quad (9.2.2)$$

It remains to bound $\|P_{v+j}^n - P_{v-j}^n\|_{TV}^2$ to find our desired lower bound. To that end, use the shorthands $p_v(x) = 1/(1 + \exp(\delta x \top v))$ and let $D_{kl}(p\|q)$ be the binary KL-divergence between Bernoulli(p) and Bernoulli(q) distributions. Then we have by Pinsker’s inequality (recall Proposition 2.11) that for any v, v',

$$\|P_v^n - P_{v'}^n\|_{TV} \leq \frac{1}{4} [D_{kl}(P_v^n \| P_{v'}^n) + D_{kl}(P_{v'}^n \| P_v^n)] = \frac{1}{4} \sum_{i=1}^{n} [D_{kl}(p_v(X_i) \| p_{v'}(X_i)) + D_{kl}(p_{v'}(X_i) \| p_v(X_i))].$$

Let us upper bound the final KL-divergence. Let $p_a = 1/(1 + e^a)$ and $p_b = 1/(1 + e^b)$. We claim that

$$D_{kl}(p_a \| p_b) + D_{kl}(p_b \| p_a) \leq (a - b)^2. \quad (9.2.3)$$

Deferring the proof of claim (9.2.3), we immediately see that

$$\|P_v^n - P_{v'}^n\|_{TV} \leq \frac{\delta^2}{4} \sum_{i=1}^{n} \left(X_i \top (v - v')\right)^2.$$

Now we recall inequality (9.2.2) for motivation, and we see that the preceding display implies

$$\frac{1}{2^d} \sum_{j=1}^{d} \sum_{v \in \{-1,1\}^d} \|P_{v+j}^n - P_{v-j}^n\|_{TV}^2 \leq \frac{\delta^2}{4d} \sum_{v \in \{-1,1\}^d} \sum_{j=1}^{d} \sum_{i=1}^{n} (2X_{ij})^2 = \frac{\delta^2}{d} \sum_{i=1}^{n} \sum_{j=1}^{d} X_{ij}^2.$$

Replacing the final double sum with $\|X\|_{F,2}^2$, where X is the matrix of the X_i, we have

$$\mathcal{M}_n(\theta(P_{\log}), \|\cdot\|_2^2) \geq \frac{d\delta^2}{2} \left[1 - \left(\frac{\delta^2}{d} \|X\|_{F,2}^2\right)^{\frac{1}{2}}\right].$$

Setting $\delta^2 = d/4 \|X\|_{F,2}^2$, we obtain

$$\mathcal{M}_n(\theta(P_{\log}), \|\cdot\|_2^2) \geq \frac{d\delta^2}{4} = \frac{d^2}{16 \|X\|_{F,2}^2} = \frac{d}{n} \cdot \frac{1}{16 \frac{1}{n} \sum_{i=1}^{n} \|X_i\|_{2}^2}.$$

That is, we have a minimax lower bound scaling roughly as d/n for logistic regression, where “large” X_i (in ℓ_2-norm) suggest that we may obtain better performance in estimation. This is intuitive, as a larger X_i gives a better signal to noise ratio.

We now return to prove the claim (9.2.3). Indeed, by a straightforward expansion, we have

$$D_{kl}(p_a \| p_b) + D_{kl}(p_b \| p_a) = p_a \log \frac{p_a}{p_b} + (1 - p_a) \log \frac{1 - p_a}{1 - p_b} + p_b \log \frac{p_b}{p_a} + (1 - p_b) \log \frac{1 - p_b}{1 - p_a}$$

$$= (p_a - p_b) \log \frac{p_a}{p_b} + (p_b - p_a) \log \frac{1 - p_a}{1 - p_b} = (p_a - p_b) \log \left(\frac{p_a}{1 - p_a} \frac{1 - p_b}{p_b}\right).$$
Now note that \(p_a/(1-p_a) = e^{-a} \) and \((1-p_b)/p_b = e^b \). Thus we obtain
\[
D_{kl}(p_a || p_b) + D_{kl}(p_b || p_a) = \left(\frac{1}{1+e^a} - \frac{1}{1+e^b} \right) \log \left(\frac{e^b-a}{e^a} \right) = (b-a) \left(\frac{1}{1+e^a} - \frac{1}{1+e^b} \right)
\]

Now assume without loss of generality that \(b \geq a \). Noting that \(e^x \geq 1 + x \) by convexity, we have
\[
\frac{1}{1+e^a} - \frac{1}{1+e^b} = \frac{e^b-e^a}{(1+e^a)(1+e^b)} \leq \frac{e^b-e^a}{e^b} = 1 - e^{a-b} \leq 1 - (1 + (a-b)) = b - a,
\]
yielding claim (9.2.3). ◦

9.3 Exercises

Question 9.1: In this question, we study the question of whether adaptivity can give better estimation performance for linear regression problems. That is, for \(i = 1, \ldots, n \), assume that we observe variables \(Y_i \) in the usual linear regression setup,
\[
Y_i = \langle X_i, \theta \rangle + \varepsilon_i, \quad \varepsilon_i \overset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2), \tag{9.3.1}
\]
where \(\theta \in \mathbb{R}^d \) is unknown. But now, based on observing \(Y^{i-1}_1 = \{Y_1, \ldots, Y_{i-1}\} \), we allow an adaptive choice of the next predictor variables \(X_i \in \mathbb{R}^d \). Let \(\mathcal{L}^n_{\text{F}, \text{ada}}(F^2) \) denote the family of linear regression problems under this adaptive setting (with \(n \) observations) where we constrain the Frobenius norm of the data matrix \(X^T = [X_1 \cdots X_n] \), \(X \in \mathbb{R}^{n \times d} \), to have bound \(\|X\|_{F^2} = \sum_{i=1}^n \|X_i\|_2^2 \leq F^2 \). We use Assouad’s method to show that the minimax mean-squared error satisfies the following bound:
\[
\mathcal{M}(\mathcal{L}^n_{\text{F}, \text{ada}}(F^2), \|\cdot\|_2^2) := \inf_{\theta} \sup_{\theta \in \mathbb{R}^d} \mathbb{E}[\|\hat{\theta} - \theta\|_2^2] \geq \frac{d\sigma^2}{n} \cdot \frac{1}{16 \frac{1}{d} F^2}. \tag{9.3.2}
\]
Here the infimum is taken over all adaptive procedures satisfying \(\|X\|_{F^2} \leq F^2 \).

In general, when we choose \(X_i \) based on the observations \(Y^{i-1}_1 \), we are taking \(X_i = F_i(Y^{i-1}_1, U_i) \), where \(U_i \) is a random variable independent of \(\varepsilon_i \) and \(Y^{i-1}_1 \) and \(F_i \) is some function. Justify the following steps in the proof of inequality (9.3.2):

(i) Assume that nature chooses \(v \in \mathcal{V} = \{-1, 1\}^d \) uniformly at random and, conditionally on \(v \), let \(\theta = \theta_v \). Justify
\[
\mathcal{M}(\mathcal{L}^n_{\text{F}, \text{ada}}(F^2), \|\cdot\|_2^2) \geq \inf_{\theta} \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{E}_{\theta_v}[\|\hat{\theta} - \theta_v\|_2^2].
\]
Argue it is no loss of generality to assume that the choices for \(X_i \) are deterministic based on the \(Y^{i-1}_1 \). Thus, throughout we assume that \(X_i = F_i(Y^{i-1}_1, u_i^1) \), where \(u_i^1 \) is a fixed sequence, or, for simplicity, that \(X_i \) is a function of \(Y^{i-1}_1 \).

(ii) Fix \(\delta > 0 \). Let \(v \in \{-1, 1\}^d \), and for each such \(v \), define \(\theta_v = \delta v \). Also let \(P^n_v \) denote the joint distribution (over all adaptively chosen \(X_i \)) of the observed variables \(Y_1, \ldots, Y_n \), and define \(P^n_{+j} = \frac{1}{2^j} \sum_{v:v_j=1} P^n_v \) and \(P^n_{-j} = \frac{1}{2^j} \sum_{v:v_j=-1} P^n_v \), so that \(P^n_{+j} \) denotes the distribution of the \(Y_i \) when \(v \in \{-1, 1\}^d \) is chosen uniformly at random but conditioned on \(v_j = \pm 1 \). Then
\[
\inf_{\theta} \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{E}_{\theta_v}[\|\hat{\theta} - \theta_v\|_2^2] \geq \frac{\delta^2}{2} \sum_{j=1}^d \left[1 - \left\| P^n_{+j} - P^n_{-j} \right\|_{TV} \right].
\]
(iii) We have
\[
\frac{\delta^2}{2} \sum_{j=1}^{d} \left[1 - \|P^n_{+j} - P^n_{-j}\|_{TV} \right] \geq \frac{\delta^2 d}{2} \left[1 - \left(\frac{1}{d} \sum_{j=1}^{d} \|P^n_{+j} - P^n_{-j}\|_{TV}^2 \right)^{\frac{1}{2}} \right].
\]

(iv) Let \(P^{(i)}_{+j} \) be the distribution of the random variable \(Y_i \) conditioned on \(v_j = +1 \) (with the other coordinates of \(v \) chosen uniformly at random), and let \(P^{(i)}_{+j}(\cdot \mid y^{i-1}, x_i) \) denote the distribution of \(Y_i \) conditioned on \(v_j = +1, Y_1^{i-1} = y_1^{i-1}, \) and \(x_i \). Justify
\[
\|P^n_{+j} - P^n_{-j}\|_{TV}^2 \leq \frac{1}{2} \left(\frac{\delta^2}{\sigma^2} \right) \|x_i\|_2^2.
\]

(v) Then we have
\[
\sum_{j=1}^{d} D_{\text{kl}} \left(P^{(i)}_{+j}(\cdot \mid y^{i-1}, x_i) \mid P^{(i)}_{-j}(\cdot \mid y^{i-1}, x_i) \right) \leq \frac{2\delta^2}{\sigma^2} \|x_i\|_2^2.
\]

(vi) We have
\[
\sum_{j=1}^{d} \|P^n_{+j} - P^n_{-j}\|_{TV}^2 \leq \frac{\delta^2}{\sigma^2} \mathbb{E}[\|X\|_{F_1}^2],
\]

where the final expectation is over \(V \) drawn uniformly in \(\{-1, 1\}^d \) for all \(Y_i, X_i \).

(vii) Show how to choose \(\delta \) appropriately to conclude the minimax bound (9.3.2).

Question 9.2: Suppose under the setting of Question 9.1 that we may no longer be adaptive, meaning that the matrix \(X \in \mathbb{R}^{n \times d} \) must be chosen ahead of time (without seeing any data). Assuming \(n \geq d \), is it possible to attain (within a constant factor) the risk (9.3.2)? If so, give an example construction, if not, explain why not.
Chapter 10

Nonparametric regression: minimax upper and lower bounds

10.1 Introduction

We consider one of the two the most classical non-parametric problems in this example: estimating a regression function on a subset of the real line (the most classical problem being estimation of a density). In non-parametric regression, we assume there is an unknown function $f : \mathbb{R} \to \mathbb{R}$, where f belongs to a pre-determined class of functions \mathcal{F}; usually this class is parameterized by some type of smoothness guarantee. To make our problems concrete, we will assume that the unknown function f is L-Lipschitz and defined on $[0, 1]$. Let \mathcal{F} denote this class. (For a fuller technical introduction into nonparametric estimation, see the book by Tsybakov [139].)

Figure 10.1. Observations in a non-parametric regression problem, with function f plotted. (Here $f(x) = \sin(2x + \cos^2(3x))$.)
In the standard non-parametric regression problem, we obtain observations of the form
\[Y_i = f(X_i) + \epsilon_i \] (10.1.1)
where \(\epsilon_i \) are independent, mean zero conditional on \(X_i \), and \(\mathbb{E}[\epsilon_i^2] \leq \sigma^2 \). See Figure 10.1 for an example. We also assume that we fix the locations of the \(X_i \) as \(X_i = i/n \in [0,1] \), that is, the \(X_i \) are evenly spaced in \([0,1]\). Given \(n \) observations \(Y_i \), we ask two questions: (1) how can we estimate \(f \)? and (2) what are the optimal rates at which it is possible to estimate \(f \)?

10.2 Kernel estimates of the function

A natural strategy is to place small “bumps” around the observed points, and estimate \(f \) in a neighborhood of a point \(x \) by weighted averages of the \(Y \) values for other points near \(x \). We now formalize a strategy for doing this. Suppose we have a kernel function \(K : \mathbb{R} \to \mathbb{R}_+ \), which is continuous, not identically zero, has support \(\text{supp} K = [-1,1] \), and satisfies the technical condition

\[
\lambda_0 \sup_x K(x) \leq \inf_{|x| \leq 1/2} K(x),
\] (10.2.1)

where \(\lambda_0 > 0 \) (this says the kernel has some width to it). A natural example is the “tent” function given by \(K_{\text{tent}}(x) = [1 - |x|]_+ \), which satisfies inequality (10.2.1) with \(\lambda_0 = 1/2 \). See Fig. 10.2 for two examples, one the tent function and the other the function

\[
K(x) = 1 \{ |x| < 1 \} \exp \left(-\frac{1}{(x - 1)^2} \right) \exp \left(-\frac{1}{(x + 1)^2} \right),
\]

which is infinitely differentiable and supported on \([-1,1]\).

![Figure 10.2: Left: “tent” kernel. Right: infinitely differentiable compactly supported kernel.](image)

Now we consider a natural estimator of the function \(f \) based on observations (10.2.1) known as the Nadaraya-Watson estimator. Fix a bandwidth \(h \), which we will see later smooths the estimated functions \(f \). For all \(x \), define weights

\[
W_{ni}(x) := \frac{K \left(\frac{X_i - x}{h} \right)}{\sum_{j=1}^n K \left(\frac{X_j - x}{h} \right)}
\]
and define the estimated function
\[\hat{f}_n(x) := \sum_{i=1}^{n} Y_i W_{ni}(x). \]

The intuition here is that we have a locally weighted regression function, where points \(X_i \) in the neighborhood of \(x \) are given higher weight than further points. Using this function \(\hat{f}_n \) as our estimator, it is possible to provide a guarantee on the bias and variance of the estimated function at each point \(x \in [0, 1] \).

Proposition 10.1. Let the observation model (10.1.1) hold and assume condition (10.2.1). In addition assume the bandwidth is suitably large that \(h \geq 2/n \) and that the \(X_i \) are evenly spaced on \([0, 1]\). Then for any \(x \in [0, 1] \), we have
\[|E[\hat{f}_n(x)] - f(x)| \leq Lh \quad \text{and} \quad \text{Var}(\hat{f}_n(x)) \leq \frac{2\sigma^2}{\lambda_0 nh}. \]

Proof To bound the bias, we note that (conditioning implicitly on \(X_i \))
\[E[\hat{f}_n(x)] = \sum_{i=1}^{n} E[Y_i W_{ni}(x)] = \sum_{i=1}^{n} E[f(X_i)W_{ni}(x) + \varepsilon_i W_{ni}(x)] = \sum_{i=1}^{n} f(X_i)W_{ni}(x). \]

Thus we have that the bias is bounded as
\[\left| E[\hat{f}_n(x)] - f(x) \right| \leq \sum_{i=1}^{n} |f(X_i) - f(x)|W_{ni}(x) \]
\[\leq \sum_{i:|X_i-x|\leq h} |f(X_i) - f(x)|W_{ni}(x) \leq Lh \sum_{i=1}^{n} W_{ni}(x) = Lh. \]

To bound the variance, we claim that
\[W_{ni}(x) \leq \min \left\{ \frac{2}{\lambda_0 nh}, 1 \right\}. \tag{10.2.2} \]

Indeed, we have that
\[W_{ni}(x) = \frac{K \left(\frac{X_i-x}{h} \right)}{\sum_{j=1}^{n} K \left(\frac{X_j-x}{h} \right) = \frac{K \left(\frac{X_i-x}{h} \right)}{\sum_{j:|X_j-x|\leq h/2} K \left(\frac{X_j-x}{h} \right) \leq \frac{K \left(\frac{X_i-x}{h} \right)}{\lambda_0 \sup_{x} K(x)\{j:|X_j-x|\leq h/2\}},} \]
and because there are at least \(nh/2 \) indices satisfying \(|X_j-x| \leq h \), we obtain the claim (10.2.2).

Using the claim, we have
\[\text{Var}(\hat{f}_n(x)) = E \left[\left(\sum_{i=1}^{n} (Y_i - f(X_i))W_{ni}(x) \right)^2 \right] = E \left[\left(\sum_{i=1}^{n} \varepsilon_i W_{ni}(x) \right)^2 \right] \]
\[= \sum_{i=1}^{n} W_{ni}(x)^2 E[\varepsilon_i^2] \leq \sum_{i=1}^{n} \sigma^2 W_{ni}(x)^2. \]
Noting that \(W_{ni}(x) \leq 2/\lambda_0 n h \) and \(\sum_{i=1}^{n} W_{ni}(x) = 1 \), we have
\[
\sum_{i=1}^{n} \sigma^2 W_{ni}(x)^2 \leq \sigma^2 \max_i W_{ni}(x) \sum_{i=1}^{n} W_{ni}(x) \leq \sigma^2 \frac{2}{\lambda_0 n h},
\]
completing the proof. \(\square \)

With the proposition in place, we can then provide a theorem bounding the worst case pointwise mean squared error for estimation of a function \(f \in F \).

Theorem 10.2. Under the conditions of Proposition 10.1, choose \(h = \left(\frac{\sigma^2}{L^2 \lambda_0} \right)^{1/3} n^{-1/3} \). Then there exists a universal (numerical) constant \(C < \infty \) such that for any \(f \in F \),
\[
\sup_{x \in [0, 1]} \mathbb{E}[(\hat{f}_n(x) - f(x))^2] \leq C \left(\frac{L \sigma^2}{\lambda_0} \right)^{2/3} n^{-2/3}.
\]

Proof Using Proposition 10.1, we have for any \(x \in [0, 1] \) that
\[
\mathbb{E}[(\hat{f}_n(x) - f(x))^2] = \left(\mathbb{E}[\hat{f}_n(x)] - f(x) \right)^2 + \mathbb{E}[(\hat{f}_n(x) - \mathbb{E}[\hat{f}_n(x)])^2] \leq \frac{2 \sigma^2}{\lambda_0 n h} + L^2 h^2.
\]
Choosing \(h \) to balance the above bias/variance tradeoff, we obtain the theorem. \(\square \)

By integrating the result in Theorem 10.2 over the interval \([0, 1]\), we immediately obtain the following corollary.

Corollary 10.3. Under the conditions of Theorem 10.2, if we use the tent kernel \(K_{\text{tent}} \), we have
\[
\sup_{f \in F} \mathbb{E}_f[\|f_n - f\|_2^2] \leq C \left(\frac{L \sigma^2}{n} \right)^{2/3},
\]
where \(C \) is a universal constant.

In Proposition 10.1, it is possible to show that a more clever choice of kernels—ones that are not always positive—can attain bias \(\mathbb{E}[\hat{f}_n(x)] - f(x) = \mathcal{O}(h^\beta) \) if \(f \) has Lipschitz \((\beta - 1)\)th derivative. In this case, we immediately obtain that the rate can be improved to
\[
\sup_x \mathbb{E}[(\hat{f}_n(x) - f(x))^2] \leq C n^{-\frac{2\beta}{2\beta + 1}},
\]
and every additional degree of smoothness gives a corresponding improvement in convergence rate. We also remark that rates of this form, which are much larger than \(n^{-1} \), are characteristic of non-parametric problems; essentially, we must adaptively choose a dimension that balances the sample size, so that rates of \(1/n \) are difficult or impossible to achieve.
10.3 Minimax lower bounds on estimation with Assouad’s method

Now we can ask whether the results we have given are in fact sharp; do there exist estimators attaining a faster rate of convergence than our kernel-based (locally weighted) estimator? Using Assouad’s method, we show that, in fact, these results are all tight. In particular, we prove the following result on minimax estimation of a regression function \(f \in F \), where \(F \) consists of 1-Lipschitz functions defined on \([0, 1]\), in the \(\|\cdot\|_2 \) error, that is, \(\|f - g\|_2^2 = \int_0^1 (f(t) - g(t))^2 dt \).

Theorem 10.4. Let the observation points \(X_i \) be spaced evenly on \([0, 1]\), and assume the observation model (10.1.1). Then there exists a universal constant \(c > 0 \) such that

\[
M_n(F, \|\cdot\|_2) := \inf_{\hat{f}_n} \sup_{f \in F} \mathbb{E} \left[\|\hat{f}_n - f\|_2^2 \right] \geq c \left(\frac{\sigma^2}{n} \right)^{\frac{2}{3}}.
\]

Deferring the proof of the theorem temporarily, we make a few remarks. It is in fact possible to show—using a completely identical technique—that if \(F_\beta \) denotes the class of functions with \(\beta - 1 \) derivatives, where the \((\beta - 1)\)th derivative is Lipschitz, then

\[
M_n(F_\beta, \|\cdot\|_2) \geq c \left(\frac{\sigma^2}{n} \right)^{\frac{2\beta}{2\beta + 1}}.
\]

So for any smoothness class, we can never achieve the parametric \(\sigma^2/n \) rate, but we can come arbitrarily close. As another remark, which we do not prove, in dimensions \(d \geq 1 \), the minimax rate for estimation of functions \(f \) with Lipschitz \((\beta - 1)\)th derivative scales as

\[
M_n(F_\beta, \|\cdot\|_2) \geq c \left(\frac{\sigma^2}{n} \right)^{\frac{2\beta}{2\beta + d}}.
\]

This result can, similarly, be proved using a variant of Assouad’s method; see, for example, the book of Győrfi et al. [84, Chapter 3], which is available online. This is a striking example of the curse of dimensionality: the penalty for increasing dimension results in worse rates of convergence. For example, suppose that \(\beta = 1 \). In 1 dimension, we require \(n \geq 90 \approx (.05)^{-3/2} \) observations to achieve accuracy .05 in estimation of \(f \), while we require \(n \geq 8000 = (.05)^{-(2+d)/2} \) even when the dimension \(d = 4 \), and \(n \geq 64 \cdot 10^6 \) observations even in 10 dimensions, which is a relatively small problem. That is, the problem is made exponentially more difficult by dimension increases.

We now turn to proving Theorem 10.4. To establish the result, we show how to construct a family of problems—indexed by binary vectors \(v \in \{-1,1\}^k \)—so that our estimation problem satisfies the separation (9.1.1), then we show that information based on observing noisy versions of the functions we have defined is small. We then choose \(k \) to make our resulting lower bound as high as possible.

Construction of a separated family of functions To construct our separation in Hamming metric, as required by Eq. (9.1.1), fix some \(k \in \mathbb{N} \); we will choose \(k \) later. This approach is somewhat different from our standard approach of using a fixed dimensionality and scaling the separation directly; in non-parametric problems, we scale the “dimension” itself to adjust the difficulty of the estimation problem. Define the function \(g(x) = [1/2 - |x - 1/2|]_+ \), so that \(g \) is 1-Lipschitz and is 0 outside of the interval \([0, 1]\). Then for any \(v \in \{-1,1\}^k \), define the “bump” functions

\[
g_j(x) := \frac{1}{k} g \left(k \left(x - \frac{j - 1}{k} \right) \right) \quad \text{and} \quad f_v(x) := \sum_{j=1}^k v_j g_j(x),
\]
We claim that for any function \(f : [0, 1] \to \mathbb{R} \), and let \(E_j \) be shorthand for the intervals \(E_j = [(j-1)/k, j/k] \) for \(j = 1, \ldots, k \). We must find a mapping identifying a function \(f \) with points in the hypercube \(\{-1, 1\}^k \). To that end, we may define a vector \(\tilde{v}(f) \in \{-1, 1\}^k \) by

\[
\tilde{v}_j(f) = \arg\min_{s \in \{-1, 1\}} \int_{E_j} (f(t) - sg_j(t))^2 dt.
\]

We claim that for any function \(f \),

\[
\left(\int_{E_j} (f(t) - f_v(t))^2 dt \right)^{\frac{1}{2}} \geq 1 \{ \tilde{v}_j(f) \neq v_j \} \left(\int_{E_j} f_v(t)^2 dt \right)^{\frac{1}{2}}.
\]

Indeed, on the set \(E_j \), we have \(v_jg_j(t) = f_v(t) \), and thus \(\int_{E_j} g_j(t)^2 dt = \int_{E_j} f_v(t)^2 dt \). Then by the triangle inequality, we have

\[
2 \cdot 1 \{ \tilde{v}_j(f) \neq v_j \} \left(\sum_{j=1}^{k} \int_{E_j} g_j(t)^2 dt \right)^{\frac{1}{2}} = \left(\sum_{j=1}^{k} \int_{E_j} (\tilde{v}_j(f) - v_jg_j(t))^2 dt \right)^{\frac{1}{2}}
\]

\[
\leq \left(\sum_{j=1}^{k} \int_{E_j} (f(t) - v_jg_j(t))^2 dt \right)^{\frac{1}{2}} + \left(\sum_{j=1}^{k} \int_{E_j} (f(t) - \tilde{v}_j(f)g_j(t))^2 dt \right)^{\frac{1}{2}}
\]

\[
\leq 2 \left(\sum_{j=1}^{k} \int_{E_j} (f(t) - f_v(t))^2 dt \right)^{\frac{1}{2}},
\]

by definition of the sign \(\tilde{v}_j(f) \).

With the definition of \(\tilde{v} \) and inequality (10.3.1), we see that for any vector \(v \in \{-1, 1\}^k \), we have

\[
\|f - f_v\|^2 = \sum_{j=1}^{k} \int_{E_j} (f(t) - f_v(t))^2 dt \geq \sum_{j=1}^{k} 1 \{ \tilde{v}_j(f) \neq v_j \} \int_{E_j} f_v(t)^2 dt.
\]

In particular, we know that

\[
\int_{E_j} f_v(t)^2 dt = \frac{1}{k^2} \int_{0}^{1/k} g(kt)^2 dt = \frac{1}{k^3} \int_{0}^{1} g(u)^2 du \geq \frac{c}{k^3},
\]

where \(c \) is a numerical constant. In particular, we have the desired separation

\[
\|f - f_v\|^2 \geq \frac{c}{k^3} \sum_{j=1}^{k} 1 \{ \tilde{v}_j(f) \neq v_j \}.
\]

Bounding the binary testing error Let \(P^n_v \) denote the distribution of the \(n \) observations \(Y_i = f_v(X_i) + \varepsilon_i \) when \(f_v \) is the true regression function. Then inequality (10.3.2) implies via Assouad’s lemma that

\[
\mathfrak{M}_n(F, \|\cdot\|_2^2) \geq \frac{c}{k^3} \sum_{j=1}^{k} 1 - \|P^n_{+j} - P^n_{-j}\|_{TV}.
\]

Now, we use convexity and Pinsker’s inequality to note that

\[
\|P^n_{+j} - P^n_{-j}\|_{TV} \leq \max_v \|P^n_{v,+j} - P^n_{v,-j}\|_{TV} \leq \frac{1}{2} D_{KL}(P^n_{v,+j}\|P^n_{v,-j}).
\]
For any two functions \(f_v \) and \(f_{v'} \), we have that the observations \(Y_i \) are independent and normal with means \(f_v(X_i) \) or \(f_{v'}(X_i) \), respectively. Thus

\[
D_{\text{KL}}(P^n_v \| P^n_{v'}) = \sum_{i=1}^{n} D_{\text{KL}}(N(f_v(X_i), \sigma^2) \| N(f_{v'}(X_i), \sigma^2))
\]
\[
= \sum_{i=1}^{n} \frac{1}{2\sigma^2} (f_v(X_i) - f_{v'}(X_i))^2. \tag{10.3.4}
\]

Now we must show that the expression (10.3.4) scales more slowly than \(n \), which we will see must be the case as whenever \(d_{\text{ham}}(v, v') \leq 1 \). Intuitively, most of the observations have the same distribution by our construction of the \(f_v \) as bump functions; let us make this rigorous.

We may assume without loss of generality that \(v_j = v'_j \) for \(j > 1 \). As the \(X_i = i/n \), we thus have that only \(X_i \) for \(i \) near 1 can have non-zero values in the tensorization (10.3.4). In particular,

\[
f_v(i/n) = f_{v'}(i/n) \text{ for all } i \text{ s.t. } \frac{i}{n} \geq \frac{2}{k}, \text{ i.e. } i \geq \frac{2n}{k}.
\]

Rewriting expression (10.3.4), then, and noting that \(f_v(x) \in [-1/k, 1/k] \) for all \(x \) by construction, we have

\[
\sum_{i=1}^{n} \frac{1}{2\sigma^2} (f_v(X_i) - f_{v'}(X_i))^2 \leq \sum_{i=1}^{2n/k} \frac{1}{2\sigma^2} (f_v(X_i) - f_{v'}(X_i))^2 \leq \frac{1}{2\sigma^2} \frac{2n}{k} \frac{1}{k^2} = \frac{n}{k^3\sigma^2}.
\]

Combining this with inequality (10.3.4) and the minimax bound (10.3.3), we obtain

\[
\|P^n_{+j} - P^n_{-j}\|_{\text{TV}} \leq \sqrt{\frac{n}{2k^3\sigma^2}},
\]

so

\[
\mathcal{M}_n(\mathcal{F}, \|\cdot\|^2_2) \geq \frac{c}{k^3} \sum_{j=1}^{k} \left[1 - \sqrt{\frac{n}{2k^3\sigma^2}} \right].
\]

Choosing \(k \) for optimal tradeoffs Now we simply choose \(k \); in particular, setting

\[
k = \left\lceil \left(\frac{n}{2\sigma^2} \right)^{1/3} \right\rceil \quad \text{then} \quad 1 - \sqrt{\frac{n}{2k^3\sigma^2}} \geq 1 - \sqrt{1/4} = \frac{1}{2},
\]

and we arrive at

\[
\mathcal{M}_n(\mathcal{F}, \|\cdot\|^2_2) \geq \frac{c}{k^3} \sum_{j=1}^{k} \frac{1}{2} = \frac{c}{2k^2} \geq c' \left(\frac{\sigma^2}{n} \right)^{2/3},
\]

where \(c' > 0 \) is a universal constant. Theorem 10.4 is proved.
Chapter 11

Global Fano Method

In this chapter, we extend the techniques of Chapter 8.4 on Fano’s method (the local Fano method) to a more global construction. In particular, we show that, rather than constructing a local packing, choosing a scaling $\delta > 0$, and then optimizing over this δ, it is actually, in many cases, possible to prove lower bounds on minimax error directly using packing and covering numbers (metric entropy and packing entropy). The material in this chapter is based on a paper of Yang and Barron [146].

11.1 A mutual information bound based on metric entropy

To begin, we recall the classical Fano inequality, which says that for any Markov chain $V \to X \to \hat{V}$, where V is uniform on the finite set \mathcal{V}, we have

$$
P(\hat{V} \neq V) \geq 1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)}.
$$

(Recall Corollary 8.9.) Thus, there are two ingredients in proving lower bounds on the error in a hypothesis test: upper bounding the mutual information and lower bounding the size $|\mathcal{V}|$. Here, we state a proposition doing the former.

Before stating our result, we require a bit of notation. First, we assume that V is drawn from a distribution μ, and conditional on $V = v$, assume the sample $X \sim P_v$. Then a standard calculation (or simply the definition of mutual information; recall equation (8.4.4)) gives that

$$
I(V; X) = \int D_{\text{kl}}(P_v || P) \, d\mu(v), \quad \text{where} \quad P = \int P_v d\mu(v).
$$

(11.1.1)

Now, we show how to connect this mutual information quantity to a covering number of a set of distributions.

Assume that for all v, we have $P_v \in \mathcal{P}$, where \mathcal{P} is a collection of distributions. In analogy with Definition 8.1, we say that the collection of distributions $\{Q_i\}_{i=1}^{N}$ form an ϵ-cover of \mathcal{P} in KL-divergence if for all $P \in \mathcal{P}$, there exists some i such that $D_{\text{kl}}(P || Q_i) \leq \epsilon^2$. With this, we may define the KL-covering number of the set \mathcal{P} as

$$
N_{\text{kl}}(\epsilon, \mathcal{P}) := \inf \left\{ N \in \mathbb{N} \mid \exists Q_i, i = 1, \ldots, N, \sup_{P \in \mathcal{P}} \min_{Q_i} D_{\text{kl}}(P || Q_i) \leq \epsilon^2 \right\},
$$

(11.1.2)

where $N_{\text{kl}}(\epsilon, \mathcal{P}) = +\infty$ if no such cover exists. With definition (11.1.2) in place, we have the following proposition.
Proposition 11.1. Under conditions of the preceding paragraphs, we have
\[
I(V; X) \leq \inf_{\epsilon > 0} \left\{ \epsilon^2 + \log N_{\text{kl}} (\epsilon, \mathcal{P}) \right\}.
\] (11.1.3)

Proof First, we claim that
\[
\int D_{\text{kl}} (P_v \| P) \, d\mu(v) \leq \int D_{\text{kl}} (P_v \| Q) \, d\mu(v)
\] (11.1.4)
for any distribution Q. Indeed, briefly, we have
\[
\int D_{\text{kl}} (P_v \| P) \, d\mu(v) = \int_v \int_X dP_v \log \frac{dP_v}{dP} \, d\mu(v) = \int_v \int_X dP_v \left[\log \frac{dP_v}{Q} + \log \frac{dQ}{dP} \right] \, d\mu(v)
\]
\[
= \int_v D_{\text{kl}} (P_v \| Q) \, d\mu(v) + \int_X \underbrace{d\mu(v) dP_v \log \frac{dQ}{dP}}_{=dP}
\]
\[
= \int D_{\text{kl}} (P_v \| Q) \, d\mu(v) - D_{\text{kl}} (P_v \| Q) \leq \int D_{\text{kl}} (P_v \| Q) \, d\mu(v)
\]
so that inequality (11.1.4) holds. By carefully choosing the distribution Q in the upper bound (11.1.4), we obtain the proposition.

Now, assume that the distributions $Q_i, i = 1, \ldots, N$ form an ϵ^2-cover of the family \mathcal{P}, meaning that
\[
\min_{i \in [N]} D_{\text{kl}} (P_v \| Q_i) \leq \epsilon^2 \quad \text{for all } P \in \mathcal{P}.
\]
Let p_v and q_i denote the densities of P_v and Q_i with respect to some fixed base measure on X (the choice of based measure does not matter). Then defining the distribution $Q = (1/N) \sum_{i=1}^N Q_i$, we obtain for any v that in expectation over $X \sim P_v$,
\[
D_{\text{kl}} (P_v \| Q) = \mathbb{E}_{P_v} \left[\log \frac{p_v(X)}{q(X)} \right] = \mathbb{E}_{P_v} \left[\log \frac{p_v(X)}{\sum_{i=1}^N q_i(X)} \right]
\]
\[
= \log N + \mathbb{E}_{P_v} \left[\log \frac{p_v(X)}{\sum_{i=1}^N q_i(X)} \right] \leq \log N + \mathbb{E}_{P_v} \left[\log \frac{p_v(X)}{\max_i q_i(X)} \right]
\]
\[
\leq \log N + \min_i \mathbb{E}_{P_v} \left[\log \frac{p_v(X)}{q_i(X)} \right] = \log N + \min_i D_{\text{kl}} (P_v \| Q_i).
\]
By our assumption that the Q_i form a cover, this gives the desired result, as $\epsilon \geq 0$ was arbitrary, as was our choice of the cover.

By a completely parallel proof, we also immediately obtain the following corollary.

Corollary 11.2. Assume that X_1, \ldots, X_n are drawn i.i.d. from P_v conditional on $V = v$. Let $N_{\text{kl}} (\epsilon, \mathcal{P})$ denote the KL-covering number of a collection \mathcal{P} containing the distributions (over a single observation) P_v for all $v \in \mathcal{V}$. Then
\[
I(V; X_1, \ldots, X_n) \leq \inf_{\epsilon \geq 0} \left\{ n\epsilon^2 + \log N_{\text{kl}} (\epsilon, \mathcal{P}) \right\}.
\]
With Corollary 11.2 and Proposition 11.1 in place, we thus see that the global covering numbers in KL-divergence govern the behavior of information.

We remark in passing that the quantity (11.1.3), and its i.i.d. analogue in Corollary 11.2, is known as the index of resolvability, and it controls estimation rates and redundancy of coding schemes for unknown distributions in a variety of scenarios; see, for example, Barron [19] and Barron and Cover [20]. It is also similar to notions of complexity in Dudley’s entropy integral (cf. Dudley [64]) in empirical process theory, where the fluctuations of an empirical process are governed by a tradeoff between covering number and approximation of individual terms in the process.

11.2 Minimax bounds using global packings

There is now a four step process to proving minimax lower bounds using the global Fano method. Our starting point is to recall the Fano minimax lower bound in Proposition 8.10, which begins with the construction of a set of points \(\{ \theta(P_v) \}_{v \in V} \) that form a \(2\delta \)-packing of a set \(\Theta \) in some \(\rho \)-semimetric. With this inequality in mind, we perform the following four steps:

(i) **Bound the packing entropy.** Give a lower bound on the packing number of the set \(\Theta \) with \(2\delta \)-separation (call this lower bound \(M(\delta) \)).

(ii) **Bound the metric entropy.** Give an upper bound on the KL-metric entropy of the class \(\mathcal{P} \) of distributions containing all the distributions \(P_v \), that is, an upper bound on \(\log N_{\text{kl}}(\epsilon, \mathcal{P}) \).

(iii) **Find the critical radius.** Noting as in Corollary 11.2 that with \(n \) i.i.d. observations, we have

\[
I(V; X_1, \ldots, X_n) \leq \inf_{\epsilon \geq 0} \left\{ n\epsilon^2 + \log N_{\text{kl}}(\epsilon, \mathcal{P}) \right\},
\]

we now balance the information \(I(V; X^n) \) and the packing entropy \(\log M(\delta) \). To that end, we choose \(\epsilon_n \) and \(\delta > 0 \) at the critical radius, defined as follows: choose the any \(\epsilon_n \) such that

\[
n\epsilon_n^2 \geq \log N_{\text{kl}}(\epsilon_n, \mathcal{P}),
\]

and choose the largest \(\delta_n > 0 \) such that

\[
\log M(\delta_n) \geq 4n\epsilon_n^2 + 2 \log 2 \geq 2N_{\text{kl}}(\epsilon_n, \mathcal{P}) + 2n\epsilon_n^2 + 2 \log 2 \geq 2 (I(V; X^n) + \log 2).
\]

(We could have chosen the \(\epsilon_n \) attaining the infimum in the mutual information, but this way we need only an upper bound on \(\log N_{\text{kl}}(\epsilon, \mathcal{P}) \).)

(iv) **Apply the Fano minimax bound.** Having chosen \(\delta_n \) and \(\epsilon_n \) as above, we immediately obtain that for the Markov chain \(V \rightarrow X^n \rightarrow \tilde{V} \),

\[
P(V \neq \tilde{V}) \geq 1 - \frac{I(V; X_1, \ldots, X_n) + \log 2}{\log M(\delta_n)} \geq 1 - \frac{1}{2} = \frac{1}{2},
\]

and thus, applying the Fano minimax bound in Proposition 8.10, we obtain

\[
\mathbb{M}_n(\theta(\mathcal{P}); \Phi \circ \rho) \geq \frac{1}{2} \Phi(\delta_n).
\]
11.3 Example: non-parametric regression

In this section, we flesh out the outline in the prequel to show how to obtain a minimax lower bound for a non-parametric regression problem directly with packing and metric entropies. In this example, we sketch the result, leaving explicit constant calculations to the dedicated reader. Nonetheless, we recover an analogue of Theorem 10.4 on minimax risks for estimation of 1-Lipschitz functions on $[0, 1]$.

We use the standard non-parametric regression setting, where our observations Y_i follow the independent noise model (10.1.1), that is, $Y_i = f(X_i) + \varepsilon_i$. Letting

$$F := \{ f : [0, 1] \rightarrow \mathbb{R}, \ f(0) = 0, \ f \text{ is Lipschitz}\}$$

be the family of 1-Lipschitz functions with $f(0) = 0$, we have

Proposition 11.3. There exists a universal constant $c > 0$ such that

$$M_n(F, \| \cdot \|_\infty) := \inf_{\hat{f}_n} \sup_{f \in F} \mathbb{E}_{\hat{f}_n} \left[\| \hat{f}_n - f \|_\infty \right] \geq c \left(\frac{\sigma^2}{n} \right)^{1/3},$$

where \hat{f}_n is constructed based on the n independent observations $f(X_i) + \varepsilon_i$.

The rate in Proposition 11.3 is sharp to within factors logarithmic in n; a more precise analysis of the upper and lower bounds on the minimax rate yields

$$M_n(F, \| \cdot \|_\infty) := \inf_{\hat{f}_n} \sup_{f \in F} \mathbb{E}_{\hat{f}_n} \left[\| \hat{f}_n - f \|_\infty \right] \asymp \left(\frac{\sigma^2 \log n}{n} \right)^{1/3}.$$

See, for example, Tsybakov [139] for a proof of this fact.

Proof Our first step is to note that the covering and packing numbers of the set F in the ℓ_∞ metric satisfy

$$\log N(\delta, F, \| \cdot \|_\infty) \asymp \log M(\delta, F, \| \cdot \|_\infty) \asymp \frac{1}{\delta}. \quad (11.3.1)$$

To see this, fix some $\delta \in (0, 1)$ and assume for simplicity that $1/\delta$ is an integer. Define the sets $E_j = [\delta(j - 1), \delta j]$, and for each $v \in \{-1, 1\}^{1/\delta}$ define $h_v(x) = \sum_{j=1}^{1/\delta} v_j 1 \{ x \in E_j \}$. Then define the function $f_v(t) = \int_0^t h_v(t) \, dt$, which increases or decreases linearly on each interval of width δ in $[0, 1]$. Then these f_v form a 2δ-packing and a 2δ-cover of F, and there are $2^{1/\delta}$ such f_v. Thus the asymptotic approximation (11.3.1) holds. **TODO:** Draw a picture

Now, if for some fixed $x \in [0, 1]$ and $f, g \in F$ we define P_f and P_g to be the distributions of the observations $f(x) + \varepsilon$ or $g(x) + \varepsilon$, we have that

$$D_{kl}(P_f \| P_g) = \frac{1}{2\sigma^2} (f(X_i) - g(X_i))^2 \leq \frac{\| f - g \|_\infty^2}{2\sigma^2},$$

and if P_f^n is the distribution of the n observations $f(X_i) + \varepsilon_i$, $i = 1, \ldots, n$, we also have

$$D_{kl}(P_f^n \| P_g^n) = \sum_{i=1}^n \frac{1}{2\sigma^2} (f(X_i) - g(X_i))^2 \leq \frac{n}{2\sigma^2} \| f - g \|_\infty^2.$$
In particular, this implies the upper bound
\[
\log N_{\text{kl}}(\epsilon, \mathcal{P}) \lesssim \frac{1}{\sigma \epsilon}
\]
on the KL-metric entropy of the class \(\mathcal{P} = \{ P_f : f \in \mathcal{F} \} \), as \(\log N(\delta, \mathcal{F}, \|\cdot\|_{\infty}) \asymp \delta^{-1} \). Thus we have completed steps (i) and (ii) in our program above.

It remains to choose the critical radius in step (iii), but this is now relatively straightforward: by choosing \(\epsilon_n \asymp (1/\sigma n)^{1/3} \), and whence \(n \epsilon_n^2 \asymp (n/\sigma^2)^{1/3} \), we find that taking \(\delta \asymp (\sigma^2/n)^{1/3} \) is sufficient to ensure that \(\log N(\delta, \mathcal{F}, \|\cdot\|_{\infty}) \gtrsim \delta^{-1} \gtrsim 4n \epsilon_n^2 + 2 \log 2 \). Thus we have
\[
M_n(\mathcal{F}, \|\cdot\|_{\infty}) \gtrsim \delta_n \cdot \frac{1}{2} \gtrsim \left(\frac{\sigma^2}{n} \right)^{1/3}
\]
as desired. \(\square \)
Chapter 12

Constrained risk inequalities

In this chapter, we revisit our minimax bounds in the context of what we term *constrained* risk inequalities. While the minimax risk of previous chapters provides a first approach for providing fundamental limits on procedures, its reliance on the collection of *all* measurable functions as its class of potential estimators is somewhat limiting. Indeed, in most statistical and statistical learning problems, we have some type of constraint on our procedures: they must be efficiently computable, they must work with data arriving in a sequential stream, they must be robust, or they must protect the privacy of the providers of the data. In modern computational hardware, where physical limits prevent increasing clock speeds, we may like to use as much parallel computation as possible, though there are potential tradeoffs between “sequentialness” of procedures and their parallelism.

With this as context, we replace the minimax risk of Chapter 8.1 with the *constrained minimax risk*, which, given a collection \mathcal{C} of possible procedures—private, communication limited, or otherwise—defines

\[
\mathcal{M}(\theta(P), \Phi \circ \rho, \mathcal{C}) := \inf_{\theta \in \mathcal{C}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\Phi(\rho(\theta(X)), \theta(P)) \right],
\]

(12.0.1)

where as in the original defining equation (8.1.1) of the minimax risk, $\Phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a nondecreasing loss, ρ is a semimetric on the space Θ, and the expectation is taken over the sample $X \sim P$. In this chapter, we study the quantity (12.0.1) via a few examples, highlighting possibilities and challenges with its analysis. We will focus on a restricted class of examples—many procedures do not fall in the framework we consider—that assumes, given a sample X_1, \ldots, X_n, we can represent the class \mathcal{C} of estimators under consideration as acting on some view or processed version Z_i of X_i. In particular, this allows us to study communication complexity, memory complexity, and certain private estimators.

12.1 Strong data processing inequalities

The starting point for our results is to consider *strong data processing inequalities*, which improve upon the standard data processing inequality for divergences, as in Chapter 2.1.3, to provide more quantitative versions. The initial setting is straightforward: we have distributions P_0 and P_1 on a space \mathcal{X}, and a channel (Markov kernel) Q from \mathcal{X} to \mathcal{Z}. When Q is contractive on the space of distributions, we have a strong data processing inequality.
Definition 12.1 (Strong data processing inequalities). Let \(f : \mathbb{R}_+ \to \mathbb{R} \cup \{+\infty\} \) be convex and satisfy \(f(1) = 0 \). For distributions \(P_0, P_1 \) on \(\mathcal{X} \) and a channel \(Q \) from \(\mathcal{X} \) to a space \(\mathcal{Z} \), define the marginal distribution \(M_v(A) := \int Q(A \mid x) dP_v(x) \). The channel \(Q \) satisfies a strong data processing inequality with constant \(\alpha \leq 1 \) for the given \(f \)-divergence

\[
D_f(M_0 \| M_1) \leq \alpha D_f(P_0 \| P_1)
\]

for any choice of \(P_0, P_1 \) on \(\mathcal{X} \). For any such \(f \), we define the \(f \)-strong data processing constant

\[
\alpha_f(Q) := \sup_{P_0 \neq P_1} \frac{D_f(M_0 \| M_1)}{D_f(P_0 \| P_1)}.
\]

These types of inequalities are common throughout information and probability theory. Perhaps their most frequent use is in the development conditions for the fast mixing of Markov chains. Indeed, suppose the Markov kernel \(Q \) satisfies a strong data processing inequality with constant \(\alpha \) with respect to variation distance. If \(\pi \) denotes the stationary distribution of the Markov kernel \(Q \) and we use the operator \(\circ \) to denote one step of the Markov kernel,

\[
Q \circ P := \int Q(\cdot \mid x) dP(x),
\]

then for any initial distribution \(\pi_0 \) on the space \(\mathcal{X} \) we have

\[
\|Q \circ \cdots \circ Q \pi_0 - \pi\|_{TV} \leq \alpha^k \|\pi_0 - \pi\|_{TV}
\]

because \(Q \circ \pi = \pi \) by definition of the stationary distribution. Thus, the Markov chain enjoys geometric mixing.

To that end, a common quantity of interest is the Dobrushin coefficient, which immediately implies mixing rates.

Definition 12.2. The Dobrushin coefficient of a channel or Markov kernel \(Q \) is

\[
\alpha_{TV}(Q) := \sup_{x,y} \|Q(\cdot \mid x) - Q(\cdot \mid y)\|_{TV}.
\]

The Dobrushin coefficient satisfies many properties, some of which we discuss in the exercises and others of which we enumerate here. The first is that

Proposition 12.1. The Dobrushin coefficient is the strong data processing constant for the variation distance, that is,

\[
\alpha_{TV}(Q) = \sup_{P_0 \neq P_1} \frac{\|Q \circ P_0 - Q \circ P_1\|_{TV}}{\|P_0 - P_1\|_{TV}}.
\]

Proof There are two directions to the proof; one easy and one more challenging. For the easy direction, we see immediately that if \(1_x \) and \(1_y \) denote point masses at \(x \) and \(y \), then

\[
\sup_{P_0 \neq P_1} \frac{\|Q \circ P_0 - Q \circ P_1\|_{TV}}{\|P_0 - P_1\|_{TV}} \geq \sup_{x,y} \|Q(\cdot \mid x) - Q(\cdot \mid y)\|_{TV}
\]

\footnote{The standard notation is usually to right-multiply the measure \(P \), so that the marginal distribution \(M = PQ \) means \(M(A) = \int Q(A \mid x) dP(x) \); we find our notation more intuitive.}
as \(\|1_x - 1_y\|_{TV} = 1 \) for \(x \neq y \).

The other direction—that \(\|Q \circ P_0 - Q \circ P_1\|_{TV} \leq \alpha_{TV} \|P_0 - P_1\|_{TV} \)—is more challenging. For this, recall Lemma 2.10 characterizing the variation distance, and let \(Q_*(A) := \inf_y Q(A \mid y) \).

Then by definition of the Dobrushin coefficient \(\alpha = \alpha_{TV}(Q) \), we evidently have \(|Q(A \mid x) - Q_*(A)| \leq \alpha \). Let \(M_v = \int Q(\cdot \mid x)dP_v(x) \) for \(v \in \{0, 1\} \). By expanding \(dP_0 - dP_1 \) into its positive and negative parts, we thus obtain

\[
M_0(A) - M_1(A) = \int Q(A \mid x)(dP_0 - dP_1)(x)
\]

where the final equality uses Lemma 2.10. But of course we then obtain

\[
M_0(A) - M_1(A) = \int (Q(A \mid x) - Q_*(A))[dP_0(x) - dP_1(x)]_+ \leq \alpha \int [dP_0 - dP_1]_+ = \alpha \|P_0 - P_1\|_{TV},
\]

where the inequality follows as \(0 \leq Q(A \mid x) - Q_*(A) \leq \alpha \) and the equality is one of the characterizations of the total variation distance in Lemma 2.10.

A more substantial fact is that the Dobrushin coefficient upper bounds every other strong data processing constant.

Theorem 12.2. Let \(f : \mathbb{R}_+ \rightarrow \mathbb{R} \cup \{\infty\} \) satisfy \(f(1) = 0 \). Then for any channel \(Q \),

\[
\alpha_{TV}(Q) \geq \alpha_f(Q).
\]

The theorem is roughly a consequence of a few facts. First, Proposition 12.1 holds. Second, without loss of generality we may assume that \(f \geq 0 \); indeed, replace \(f(t) \) with \(h(t) = f(t) - f'(1)t \) for any \(f'(1) \in \partial f(1) \), we have \(h \geq 0 \) as \(0 \in \partial h(1) \) and \(D_h = D_f \). Third, any \(f \geq 0 \) with \(0 \in \partial f(1) \) can be approximated arbitrarily accurately with functions of the form \(h(t) = \sum_{i=1}^k a_i [t - c_i]_+ + \sum_{i=1}^k b_i [d_i - t]_+ \), where \(c_i \geq 1 \) and \(d_i \leq 1 \). For such \(h \), an argument shows that

\[
D_h(Q \circ P_0 \circ P_1) \leq \alpha_{TV}(Q) D_h(P_0 \circ P_1),
\]

which follows from the similarites between variation distance, with \(f(t) = \frac{1}{2}|t| \), and the positive part functions \([\cdot]_+ \). For a formal proof, see the papers of Del Moral et al. [56] and Cohen et al. [46].

In our context, that of (constrained) minimax lower bounds, such data processing inequalities immediately imply somewhat sharper lower bounds than the (unconstrained) applications in previous chapters. Indeed, let us revisit the situation present in the local Fano bound, where we the KL divergence has a Euclidean structure as in the bound (8.4.6), meaning that

\[
D_{KL}(P_0 \mid P_1) \leq \kappa^2 \sigma^2 \text{ when our parameters of interest } \theta_0 = \theta(P_0) \text{ satisfy } \rho(\theta_0, \theta_1) \leq \delta.
\]

We assume that the constraints \(\mathcal{C} \) impose that the data \(X_i \) is passed through a channel \(Q \) with KL-data processing constant \(\alpha_{KL}(Q) \leq 1 \). In
this case, in the basic Le Cam’s method (8.3.2), an application of Pinsker’s inequality yields that whenever \(\rho(\theta_0, \theta_1) \geq 2\delta \) then
\[
\mathcal{M}_n(\theta(P), \Phi \circ \rho, \mathcal{C}) \geq \Phi(\delta) \left[1 - \sqrt{\frac{n}{2} D_{\text{KL}}(M_0 || M_1)} \right] \geq \Phi(\delta) \left[1 - \sqrt{n\kappa^2 \alpha_{\text{KL}}(Q)} \delta^2/2 \right],
\]
and the “standard” choice of \(\delta \) to make the probability of error constant results in
\[
\delta^2 = (2n\kappa^2 \alpha_{\text{KL}}(Q))^{-1},
\]
or the minimax lower bound
\[
\mathcal{M}_n(\theta(P), \Phi \circ \rho, \mathcal{C}) \geq \frac{1}{4} \Phi \left(\frac{1}{\sqrt{2n\kappa^2 \alpha_{\text{KL}}(Q)}} \right),
\]
which suggests an effective sample size degradation of \(n \rightarrow n\alpha_{\text{KL}}(Q) \). Similarly, in the local Fano method in Chapter 8.4.1, we see identical behavior and an effective sample size degradation of \(n \rightarrow n\alpha_{\text{KL}}(Q) \), that is, if without constraints a sample size of \(n(\epsilon) \) is required to achieve some desired accuracy \(\epsilon \), with the constraint a sample size of at least \(n(\epsilon)/\alpha_{\text{KL}}(Q) \) is necessary.

12.2 Local privacy

Local privacy via strong data processing

(a) Suppose \(Q \) is an \(\epsilon \)-differentially private channel. We also allow sequential interactivity, meaning that the \(i \)th private variable \(Z_i \) may depend on both \(X_i \) and \(Z_{i-1} \). Under local differential privacy, we have
\[
Q(Z_i \in A \mid X_i = x, z_{i-1}^i) \leq e^{\epsilon}.
\]

(b) Have contraction inequality:

Theorem 12.3. If \(Q \) is \(\epsilon \)-differentially private, then
\[
D_{\text{KL}}(M_0 || M_1) + D_{\text{KL}}(M_1 || M_0) \leq 4(e^\epsilon - 1)^2 \|P_0 - P_1\|_{\text{TV}}^2.
\]

(c) In the case we have interactive (multi-sample) setting, i.e. \(Z_i \sim Q(\cdot \mid X_i, Z_{i-1}^i) \) and define \(M_n = \int Q(\cdot \mid x^n_i) dP_0(x^n_i) \) to be the marginal distribution over all the \(Z_{i}^n \), then

Corollary 12.4. Assume that each channel \(Q(\cdot \mid X_i, Z_{i-1}^i) \) is \(\varepsilon_i \)-differentially private. Then
\[
D_{\text{KL}}(M^n_0 || M^n_1) \leq 4 \sum_{i=1}^n (e^{\varepsilon_i} - 1)^2 \|P_0 - P_1\|_{\text{TV}}^2.
\]

(d) Examples:

12.3 Communication complexity

JCD Comment: Perhaps here we should talk a bit more about direct sums, cut and paste properties (because of being able to simulate protocols—see the paper Bar-Yossef et al. [16]). This would give some nicer applicability and allow decomposition of ideas into more and less complex settings.

205
A second major application of data processing inequalities, especially in the context of statistical estimation, is in communication complexity. In this context, we limit the amount of information—or perhaps bits—that a procedure may send about individual examples, and then ask to what extent this constrains the estimator. This has applications in situations in which the memory available to an estimator is limited, in situations with privacy—as we shall see—and of course, when we restrict the number of bits different machines storing distributed data may send.

The setting we consider is roughly as follows: m machines, or individuals, have data X_i, $i = 1, \ldots, m$. Communication proceeds in rounds $t = 1, 2, \ldots, T$, where in each round t machine i sends datum $Z_i^{(t)}$. To allow for powerful protocols—with little restriction except that each machine i may send only a certain amount of information—we allow $Z_i^{(t)}$ to depend arbitrarily on the previous messages $Z_1^{(t)}, \ldots, Z_{i-1}^{(t)}$ as well as $Z_k^{(\tau)}$ for all $k \in \{1, \ldots, m\}$ and $\tau < t$. We visualize this as a public xblackboard B, where in each round t each $Z_i^{(t)}$ is collected into $B^{(t)}$, along with the previous public blackboards $B^{(\tau)}$ for $\tau < t$, and all machines may read these public blackboards. Thus, in round t, individual i generates the communicated variable $Z_i^{(t)}$ according to the channel

$$Q_{Z_i^{(t)}}(\cdot \mid X_i, Z_{<i}^{(t)}, B^{(t-1)}) = Q_{Z_i^{(t)}}(\cdot \mid X_i, Z_i^{(t)}).$$

Here we have used the notation $Z_{<i} := (Z_1, \ldots, Z_{i-1})$, and we will use $Z_{\leq i} := (Z_1, \ldots, Z_i)$ and similarly for superscripts throughout. We will also use the notation $Z_{\rightarrow i}^{(t)} = (B^{(1)}, Z_{<i}^{(t)})$ to denote all the messages coming into communication of $Z_i^{(t)}$. In Figure 12.1 we illustrate two rounds of this communication scheme.

![Figure 12.1](image-url)

Figure 12.1. Left: single round of communication of variables, writing to public blackboard $B^{(1)}$. Right: two rounds of communication of variables, writing to public blackboards $B^{(1)}$ and $B^{(2)}$.

It turns out that we can provide lower bounds on the minimax risk of communication-constrained estimators by extending the data processing inequality approach we have developed. Our approach to the lower bounds, which we provide in Sections 12.3.1 and 12.3.2 to follow, is roughly as follows. First, we develop what is known in the communication complexity literature as a *direct sum* bound, meaning that the difficulty of solving a d-dimensional problem is roughly d-times that of solving a 1-dimensional version of the problem; thus, any lower bounds on the error in 1-dimensional problems imply lower bounds for d-dimensional problems. Second, we provide an extension of the data processing inequalities we have developed thus far to apply to particular communication scenarios.
The key to our reductions is that we consider families of distributions where the coordinates of X are independent, which dovetails with Assouad’s method. We thus index our distributions by $v \in \{-1, 1\}^d$, and in proving our lower bounds, we assume the typical Markov structure

$$V \rightarrow (X_1, \ldots, X_m) \rightarrow \Pi,$$

where V is chosen uniformly at random from $\{-1, 1\}^d$, and Π denotes the transcript of the entire communication—in this context, the transcript

$$\Pi = (B^{(1)}, \ldots, B^{(T)}),$$

so that it consists of all the blackboards (and the order in which things appeared on them). We assume that X follows a d-dimensional product distribution, so that conditional on $V = v$ we have

$$X \sim P_v = P_{v_1} \otimes P_{v_2} \otimes \cdots \otimes P_{v_d}. \quad (12.3.1)$$

With the generation strategy (12.3.1), conditional on the jth coordinate $V_j = v_j$, the coordinates $X_{i,j}$ are i.i.d. and independent of $V_{\setminus j} = (V_1, \ldots, V_{j-1}, V_{j+1}, \ldots, V_d)$ as well as independent of $X_{i',j}$ for data points $i' \neq i$.

12.3.1 Direct sum communication bounds

Our first step is to argue that, if we can prove a lower bound on the information complexity of one-dimensional, we can prove a lower bound on d-dimensional problems that scales with the dimension. To accomplish this reduction, we consider a simulator. This simulator (Fig. 12.2) considers an experiment whereby each individual i, instead of drawing X_i, draws a coordinate $X_{i,j}$ from the “correct” distribution (conditional on V_j) while then drawing all other variables from an alternative distribution conditional on a simulated $V_{\setminus j}$; this simulation idea suggests the importance of the independence structure (12.3.1), and allows us to develop the d-dimensional penalties in estimation.

Let $V \in \{-1, 1\}^d$ and $\hat{V} \in \{-1, 1\}^d$ be an arbitrary estimator of V, which is a function of Π. Then because the joint distributions (V, Π) and $((V_j, \hat{V}_{\setminus j}), \Pi_j)$ are identical, we obtain

$$\sum_{j=1}^d \mathbb{P}(\hat{V}_j(\Pi) \neq V_j) = \sum_{j=1}^d \mathbb{P}(\hat{V}_j(\Pi_j) \neq V_j).$$

Now, let $X_{\leq n,j} = (X_{i,j})_{i=1}^n$ be the jth coordinate of the data, and let $X_{\leq n,\setminus j}$ denote the remaining $d-1$ coordinates across all $i = 1, \ldots, n$. By construction of the simulator (Fig. 12.2), we have the Markov structure

$$V_j \rightarrow X_{\leq n,j} \rightarrow \Pi_j \leftarrow X_{\leq n,\setminus j} \leftarrow \hat{V}_{\setminus j},$$

| **Input:** Each $i = 1, \ldots, n$ gets a sample $X_{i,j} \sim P_{v_j}$ conditional on $V_j = v_j$. |
| **Draw:** Shared simulated indices $\hat{V}_{\setminus j} \in \{-1, 1\}^{d-1}$. |
| **For each:** $i = 1, 2, \ldots, n$, sample simulated $\hat{X}_{i,j} \overset{\text{iid}}{\sim} P_{v_j}$ conditional on $\hat{V}_{\setminus j} = v_{\setminus j}$. |
| **Execute:** Estimation protocol on simulated data $\hat{X} \in \mathcal{X}^n$ to obtain (simulated) private outputs $\tilde{\Pi}_j$. |

Figure 12.2: Simulation scheme for private estimation.
that is, we have (by independence of \tilde{V}_{ij} and $\tilde{X}_{\leq n,j}$)

$$V_j \rightarrow X_{\leq n,j} \rightarrow \tilde{\Pi}_j. \quad (12.3.2)$$

Now, define $M_{\pm j}$ to be the marginal distributions over the total communicated private variables $\tilde{\Pi}_j$ conditional on $V_j = \pm 1$. Then Le Cam’s inequalities (Proposition 2.18 and Proposition 2.11(a)) imply that

$$2 \sum_{j=1}^{d} P(\tilde{V}_j(\Pi) \neq V_j) \geq \sum_{j=1}^{d} (1 - \|M_{-j} - M_{+j}\|_{TV})$$

$$\geq \sum_{j=1}^{d} (1 - \sqrt{2d}_{h}(M_{-j}, M_{+j}))$$

$$\geq d \left(1 - \sqrt{\frac{2}{d} \sum_{j=1}^{d} d_{h}(M_{-j}, M_{+j})}\right) \quad (12.3.3)$$

by Cauchy-Schwarz. Summarizing, we have the following

Proposition 12.5 (Assouad’s method in communication). Let M_{+j} be the marginal distribution over $\tilde{\Pi}_j$ conditional on $V_j = 1$ and M_{-j} be the marginal distribution of $\tilde{\Pi}_j$ conditional on $V_j = -1$ in the simulation protocol of Fig. 12.2 and assume X_i follow the product distribution (12.3.1). Then

$$\sum_{j=1}^{d} P(\tilde{V}_j(\Pi) \neq V_j) \geq \frac{d}{2} \left(1 - \sqrt{\frac{2}{d} \sum_{j=1}^{d} d_{h}(M_{-j}, M_{+j})}\right).$$

Recalling Assouad’s method of Chapter 9.1, we see that any time we have a problem with separation with respect to the Hamming metric (9.1.1), we have a lower bound on its error in estimation problems.

12.3.2 Data processing for single-variable communication

We now revisit our data processing inequalities, where we consider a variant that allows us to prove lower bounds for estimation problems with limited communication. In this section, for notational reasons, it is more notationally convenient to index distributions by 0 and 1 rather than ± 1, which we now do without further comment. Our starting point is a revised strong data processing inequality, which we define as follows.

Definition 12.3. Let P_0, P_1 be arbitrary distributions on a space \mathcal{X}, let $V \in \{0, 1\}$ uniformly at random, and conditional on $V = v$, draw $X \sim P_v$. Then consider the Markov chain $V \rightarrow X \rightarrow Z$, where $X \rightarrow Z$ is arbitrary. The mutual information strong data processing constant $\beta(P_0, P_1)$ is

$$\beta(P_0, P_1) := \sup_{X \rightarrow Z} \frac{I(V; Z)}{I(X; Z)},$$

where the supremum is taken over all conditional distributions (Markov kernels) from X to Z.

208
The remarkable aspect of Definition 12.3 is that it extends to communication protocols, even with arbitrary interactions. Based on Section 12.3.1, we need consider only the case that we have single variables in a Markov chain

\[V \rightarrow (X_1, \ldots, X_m) \rightarrow \Pi, \tag{12.3.4} \]

where \(V \in \{0, 1\} \). To that end, in this section we state and prove the following theorem.

Theorem 12.6. Let \(P_0 \) and \(P_1 \) be distributions on \(X \) satisfying \(\frac{1}{c} P_0 \leq P_1 \leq c P_0 \) for some \(1 \leq c < \infty \). Assume additionally that \(\beta(P_0, P_1) = \beta \leq 1 \). Let \(M_v, v \in \{0, 1\} \) be the marginal distribution of the transcript \(\Pi \) conditional on \(V = v \) in the chain (12.3.4). Then

\[
d^2_{\text{hel}}(M_0, M_1) \leq \frac{7}{2} (c + 1) \beta \cdot \min \{ I(X_1, \ldots, X_m; \Pi | V = 0), I(X_1, \ldots, X_m; \Pi | V = 1) \}.
\]

In the remainder of the section, we prove Theorem 12.6. The proof is fairly involved, so we split it into several parts.

Sequential modification of marginals

The starting point is to relate the marginal distributions \(M_0 \) and \(M_1 \) by a sequence of one-variable changes. To that end, we abuse notation, and for \(\{e_l\}_{l=1}^m \) the standard basis vectors in \(\mathbb{R}^m \), we define \(M_{e_l} \) to be the marginal distribution over the protocol \(\Pi \) generated from \((X_1, \ldots, X_m)\), except that

\[X_i \sim \begin{cases} P_0 & \text{if } i \neq l \\ P_1 & \text{if } i = l. \end{cases} \tag{12.3.5} \]

Because \(M_0 \) should be close to \(M_{e_l} \), we hope for some type of tensorization behavior, where we can relate \(M_0 \) and \(M_1 \) via one-step changes from \(M_0 \) to \(M_{e_l} \). Indeed, we have

Lemma 12.7. Let \(M_0, M_1, \) and \(M_{e_l} \) be as above. Then

\[
d^2_{\text{hel}}(M_0, M_1) \leq \frac{7}{2} \sum_{l=1}^m d^2_{\text{hel}}(M_0, M_{e_l}). \tag{12.3.6} \]

Proof The proof is somewhat complex and relies on Euclidean structures that the Hellinger distance induces, as well as the specific structure that the probability distributions \(M \) and \(P \) have. We assume without loss of generality that \(\Pi \) is discrete, as the Hellinger distance is an \(f \)-divergence and so can be arbitrarily approximated by discrete random variables.

First, we introduce a particular tensorization property—the so-called “cut and paste” property in communication complexity [16, 35]—which will allow us to develop the decomposition bound (12.3.6). First, we note that for any \(X_1^m = x_1^m \), we may write

\[
Q(\Pi = \pi | x_1^m) = \prod_{i=1}^m f_{i,\pi}(x_i) \tag{12.3.7}
\]

for some functions \(f_{i,\pi} \) that may depend on \(\pi \). Indeed, for \(\pi = \{z_{i,t}^{(t)}\}_{i \leq n, t \leq T} \) we have

\[
Q(\pi | x_1^m) = \prod_{i,t} Q(z_{i,t}^{(t)} | x_1^m, z_{i,t}^{(t)}) = \prod_{i=1}^m \prod_{t=1}^T Q(z_{i,t}^{(t)} | x_i, z_{i,t}^{(t)}) =: f_{i,\pi}(x_i)
\]
where we have used that message $z_i^{(t)}$ depends only on x_i and $z_{
ightarrow i}^{(t)}$. Now we introduce yet a bit more notation. For a bit vector $b \in \{0,1\}^m$, we let M_b denote the marginal distribution over the transcript Π conditional on drawing $X_i \mid b \sim P_{b_i}$.

Then we can write $M_b(\Pi = \pi)$ as a product using Eq. (12.3.7): integrating over independent $X_i \sim P_{b_i}$, we have

$$M_b(\Pi = \pi) = \int Q(\pi \mid x_1^m) dP_{b_1}(x_1) \cdots dP_{b_m}(x_m) = \prod_{i=1}^m \int f_{i,\pi}(x_i) dP_{b_i}(x_i).$$

This gives the following lemma.

Lemma 12.8 (Cutting and pasting distances). Let $a, b, c, d \in \{0,1\}^m$ be bit vectors. Then if for each $i \in [m]$, $\{a_i, b_i\} = \{c_i, d_i\}$ as multi-sets, we have

$$M_a(\Pi = \pi)M_b(\Pi = \pi) = M_c(\Pi = \pi)M_d(\Pi = \pi)$$

and consequently

$$d^2_{\text{hel}}(M_a, M_b) = d^2_{\text{hel}}(M_c, M_d).$$

The second result we require is due to Jayram [97], and is the following:

Lemma 12.9. Let $\{P_b\}_{b \in \{0,1\}^m}$ be any collection of distributions satisfying the cutting and pasting property $d^2_{\text{hel}}(P_a, P_b) = d^2_{\text{hel}}(P_c, P_d)$ whenever $a, b, c, d \in \{0,1\}^m$ satisfy $\{a_i, b_i\} = \{c_i, d_i\}$ (as multisets) for $i = 1, \ldots, m$. Let $N = 2^k$ for some $k \in \mathbb{N}$. Then for any collection of bit vectors $\{b(i)\}_{i=1}^N \subset \{0,1\}^m$ with $\langle b(i), b(j) \rangle = 0$ for all $i \neq j$ and $b = \sum_i b(i)$,

$$\prod_{i=1}^k (1 - 2^{-i})d^2_{\text{hel}}(P_0, P_b) \leq \sum_{i=1}^m d^2_{\text{hel}}(P_0, P_{b(i)}).$$

I defer the proof, which is complex, to Section 12.5.1.

A computation shows that $\prod_{i=1}^k (1 - 2^{-i}) > \frac{2}{7}$. We see that Lemma 12.9 nearly gives us our desired result (12.3.6), except that Lemma 12.9 requires a power of 2. To that end, let k_0 be the largest $k \in \mathbb{N}$ such that $2^{k_0} \leq m$, and construct bit vectors $b^{(1)}, \ldots, b^{(2^{k_0})}$ satisfying $\sum_i b^{(i)} = 1$ and $1 \leq \|b^{(i)}\|_0 \leq 2$ for each i. Then Lemma 12.9, via the cutting-pasting property of the marginals M, implies

$$\frac{2}{7}d^2_{\text{hel}}(M_0, M_1) \leq \sum_{i=1}^{2^{k_0}} d^2_{\text{hel}}(M_0, M_{b^{(i)})}) \leq 2 \sum_{i=1}^m d^2_{\text{hel}}(M_0, M_{e_i}),$$

where the second inequality again follows from Lemma 12.9 as $b^{(i)} = e_j$ or $e_j + e_{j'}$ for some basis vectors $e_j, e_{j'}$. This gives the result.

\[\square\]
From Hellinger to Shannon information

Now we relate the strong data processing processing constants for mutual information in Definition 12.3 to compare Hellinger distances with mutual information. We claim the following lemma.

Lemma 12.10. Let the conditions of Theorem 12.6 hold. Let M_0 and M_{e_l} be defined as above and in Eq. (12.3.5). Then for any $l \in \{1, \ldots, m\}$, we have

$$d^2_{\text{hel}}(M_{e_l}, M_0) \leq \frac{c + 1}{2} \beta I(X_l; \Pi \mid V = 0).$$

Proof Consider the following alternative distributions. Let $W \sim \text{Uniform}\{0, 1\}$, and draw $X' \in X^m$ with independent coordinates according to

$$X'_i \overset{\text{iid}}{\sim} P_0 \quad \text{if} \ W = 0 \quad \text{or} \quad X'_i \sim \begin{cases} P_0 & \text{if} \ i \neq l \\ P_1 & \text{if} \ i = l \end{cases} \quad \text{if} \ W = 1.$$

Then we have the Markov chain $W \rightarrow X' \rightarrow \Pi'$, and moreover,

$$W \rightarrow X'_l \rightarrow \Pi' \leftarrow X' \setminus l,$$

so that additionally $W \rightarrow X'_l \rightarrow \Pi'$ is a Markov chain. As a consequence, by Definition 12.3 of the strong data processing inequality, we obtain

$$I(W; \Pi') \leq \beta I(X'_l; \Pi'),$$

and then using Proposition 2.13, we have

$$d^2_{\text{hel}}(M_{e_l}, M_0) \leq I(W; \Pi') \leq \beta I(X'_l; \Pi'). \tag{12.3.8}$$

It remains to relate $I(X'_l; \Pi')$ to $I(X_l; \Pi \mid V = 0)$. Here we use the lower bounds of P_0 by P_1. Indeed, we have

$$P_0 \geq \frac{1}{c} P_1 \quad \text{so} \quad (c + 1) P_0 \geq P_0 + P_1 \quad \text{or} \quad P_0 \geq \frac{2}{c + 1} \frac{P_0 + P_1}{2}.$$

As a consequence, we have

$$I(X_l; \Pi \mid V = 0) = \int D_{\text{kl}}(Q(\cdot \mid X_l = x) \| M_0) \, dP_0(x) \geq \frac{2}{c + 1} \int D_{\text{kl}}(Q(\cdot \mid X_l = x) \| M_0) \, \frac{dP_0(x) + dP_1(x)}{2} \geq \frac{2}{c + 1} \int D_{\text{kl}}(Q(\cdot \mid X_l = x) \| M) \, \frac{dP_0(x) + dP_1(x)}{2} = \frac{2}{c + 1} I(X'_l; \Pi'),$$

where the second inequality uses that $M = \int Q(\cdot \mid X_l = x) \frac{dP_0(x) + dP_1(x)}{2}$ minimizes the integrated KL-divergence (recall inequality (11.1.4)). Returning to inequality (12.3.8), we evidently have the result of the lemma. \qed
Completing the proof of Theorem 12.6

By combining the tensorization Lemma 12.7 with the information bound in Lemma 12.10, we obtain

\[
d^2_{\text{hel}}(M_0, M_1) \leq 7 \sum_{i=1}^{m} d^2_{\text{hel}}(M_0, M_{e_i}) \leq \frac{7}{2} (c + 1) \beta \sum_{i=1}^{m} I(X_i; \Pi | V = 0).
\]

By symmetry, we also have

\[
d^2_{\text{hel}}(M_0, M_1) \leq 7 \sum_{i=1}^{m} d^2_{\text{hel}}(M_0, M_{e_i}) \leq \frac{7}{2} (c + 1) \beta \sum_{i=1}^{m} I(X_i; \Pi | V = 1).
\]

Now, we note that as the \(X_i\) are independent conditional on \(V\) (and w.l.o.g. for the purposes of mutual information, we may assume they are discrete), for any \(v \in \{0, 1\}\) we have

\[
\sum_{i=1}^{m} I(X_i; \Pi | V = v) = \sum_{i=1}^{m} [H(X_i | V = v) - H(X_i | \Pi, V = v)]
\]

\[
= \sum_{i=1}^{m} [H(X_i | X_1^{-1}, V = v) - H(X_i | \Pi, V = v)]
\]

\[
\leq \sum_{i=1}^{m} [H(X_i | X_1^{-1}, V = v) - H(X_i | X_1^{-1}, \Pi, V = v)]
\]

\[
= \sum_{i=1}^{m} I(X_i; \Pi | X_1^{-1}, V = v) = I(X_1, \ldots, X_m; \Pi | V = v),
\]

where the inequality used that conditioning decreases entropy. We thus obtain

\[
d^2_{\text{hel}}(M_0, M_1) \leq \frac{7}{2} (c + 1) \beta \min_{v \in \{0, 1\}} I(X_1, \ldots, X_m; \Pi | V = v)
\]

as desired.

12.3.3 Data processing and Assouad’s method for multiple variables

By combining the results in Sections 12.3.2 and 12.3.1, we can obtain bounds on the probability of error—detection of \(d\)-dimensional signals—in higher dimensional problems based on mutual information alone. Because Theorem 12.6 provides a bound involving the minimum of the conditional mutual informations, we actually have substantial freedom in doing this. We provide perhaps the simplest variant of this development; there are other possibilities that we omit, such as situations in which we wish to estimate sparse signals.

We thus recall the definition (12.3.1) of our product distribution signals, where we assume that each individual datum \(X_i = (X_{i,1}, \ldots, X_{i,d}) = (X_{i,j})_{j=1}^{d}\) belongs to a \(d\)-dimensional set and conditional on \(V = v \in \{-1, 1\}^d\) has independent coordinates distributed as \(X_{i,j} \sim P_{v_j}\). With this, we have the following theorem, which follows by a combination of Assouad’s method (in the context of communication bounds, i.e. Proposition 12.5) and Theorem 12.6.

Theorem 12.11. Let \(\Pi\) be the transcript of the entire communication protocol in Figure 12.1, let \(V \in \{-1, 1\}^d\) be uniform, and generate \(X_i \overset{iid}{\sim} P_v\), \(i = 1, \ldots, m\), with independent coordinates as in
Eq. (12.3.1). Assume additionally that for each coordinate \(j = 1, \ldots, d \), the coordinate distributions \(P_{-1} \) and \(P_1 \) satisfy \(\frac{1}{c} P_{-1} \leq P_1 \leq c P_{-1} \) for some \(1 \leq c < \infty \), and that they satisfy the mutual information data processing inequality (Def. 12.3) with constant \(\beta(P_{-1}, P_1) \leq \beta \leq 1 \). Then for any estimator \(\hat{V} \),

\[
\sum_{j=1}^{d} \mathbb{P}(\hat{V}_j(\Pi) \neq V_j) \geq \frac{d}{2} \left(1 - \sqrt{7(c + 1)\frac{\beta}{d} \cdot I(X_1, \ldots, X_m; \Pi | V)} \right).
\]

Proof Under the given conditions, Proposition 12.5 and Theorem 12.6 immediately combine to give

\[
\sum_{j=1}^{d} \mathbb{P}(\hat{V}_j(\Pi) \neq V_j) \geq \frac{d}{2} \left(1 - \sqrt{7(c + 1)\frac{\beta}{d} \min_{v \in \{-1,1\}} I(X_{1,j}, \ldots, X_{m,j}; \Pi | V_j = v)} \right).
\]

Now, we note that

\[
\min_{v \in \{-1,1\}} I(X_{1,j}, \ldots, X_{m,j}; \Pi | V_j = v) \leq I(X_{1,j}, \ldots, X_{m,j}; \Pi | V_j).
\]

Then we have—assuming w.l.o.g. that the \(X_{i,j} \) are discrete—that

\[
\sum_{j=1}^{d} I((X_{i,j})_{i=1}^{m}; \Pi | V_j) = \sum_{j=1}^{d} [H((X_{i,j})_{i=1}^{m} | V_j) - H((X_{i,j})_{i=1}^{m} | \Pi, V_j)]
\]

\[
\overset{(i)}{=} \sum_{j=1}^{d} [H((X_{i,j})_{i=1}^{m} | (X_{i,j'})_{i\leq m,j' < j}, V) - H((X_{i,j})_{i=1}^{m} | \Pi, V_j)]
\]

\[
\leq \sum_{j=1}^{d} [H((X_{i,j})_{i=1}^{m} | (X_{i,j'})_{i\leq m,j' < j}, V) - H((X_{i,j})_{i=1}^{m} | (X_{i,j'})_{i\leq m,j' < j}, \Pi, V)]
\]

\[
= \sum_{j=1}^{d} I((X_{i,j})_{i=1}^{m}; \Pi | V, (X_{i,j'})_{i\leq m,j' < j}) = I(X_1, \ldots, X_m; \Pi | V),
\]

where equality \((i) \) used the independence of \(X_{i,j} \) from \(V_j \) and \(X_{i,j'} \) for \(j' \neq j \) given \(V_j \), and the inequality that conditioning reduces entropy. This gives the theorem. \(\square \)

12.4 Applications, examples, and lower bounds

Let us now turn to a few different applications of our lower bounds on communication-constrained estimators. To develop a lower bound based on Section 12.3, we evidently require two conditions: first, we must show that the distributions our data follows satisfy a strong (mutual information) data processing inequality. Second, we must provide a (good enough) upper bound on the mutual information \(I(X_1, \ldots, X_m; \Pi | V) \) between the actual data points \(X_i \) and the transcript or output \(\Pi \) of the protocol.

We thus begin with a lemma providing bounds on mutual information data processing for whenever the distributions generating \(X \) have bounded likelihood ratios.
Lemma 12.12. Let $V \to X \to Z$, where $X \sim P_v$ conditional on $V = v$. If $|\log \frac{dP_v}{dP_{v'}}| \leq \alpha$ for all v, v', then
\[
I(V; Z) \leq 4(e\alpha - 1)^2 \mathbb{E}_Z \left[\|P_X(\cdot \mid Z) - P_X\|^2_{TV} \right] \leq 2(e\alpha - 1)^2 I(X; Z).
\]

We leave the proof of this lemma as an exercise (See Question 12.5).

There are many additional strategies to providing bounds and strong data processing inequalities; we will focus mainly on situations with bounded likelihood ratio. A brief example may help to illustrate Lemma 12.12.

Example 12.13 (Bernoulli distributions): Let $P_v = \text{Bernoulli}\left(\frac{1+\delta v}{2}\right)$ for $v \in \{-1, 1\}$. Then we have likelihood ratio bound
\[
\left| \log \frac{dP_1}{dP_{-1}} \right| \leq \log \frac{1+\delta}{1-\delta}
\]
and so under the conditions of Lemma 12.12, for any Z we have
\[
I(V; Z) \leq 2\left(\frac{1+\delta}{1-\delta} - 1\right)^2 I(X; Z) \leq 2 \left(\frac{2\delta}{1-\delta}\right)^2 I(X; Z) \leq 10\delta^2 I(X; Z),
\]
where inequality (i) holds for $\delta \in [0, 1/5]$. ♦

12.4.1 Communication lower bounds

We now provide a few lower bounds on communication complexity in distributed estimation. We focus on the case where the generating distributions have bounded likelihood ratios, as this allows us to prove the results more straightforwardly. In this first section, we assume that each machine $i = 1, \ldots, m$ may send at most B_i total bits of information throughout the entire communication protocol—that is, for each pair i, t, we have a bound
\[
H(Z^{(t)}_i \mid Z^{(t)}_{-i}) \leq B_{i,t} \quad \text{and} \quad \sum_t B_{i,t} \leq B_i
\]
on the message from X_i in round t. (This is a weaker condition that $H(Z^{(t)}_i) \leq B_{i,t}$ for each i, t.) With this bound, we can provide minimax lower bounds on communication-constrained estimator.

For our first collection, we consider estimating the parameters of d-dimensional Bernoulli distributions in squared error. Let \mathcal{P}_d be the family of d-dimensional Bernoulli distributions, where we let the parameter $\theta \in [0, 1]^d$ be such that $P_\theta(X_j = 1) = \theta_j$. Then we have the following result.

Proposition 12.14. Let $\mathcal{M}_m(\theta(\mathcal{P}_d), \|\cdot\|_2^2, \{B_i\}_{i=1}^m)$ denote the minimax mean-square error for estimation of a d-dimensional Bernoulli under the information constraint (12.4.1). Then
\[
\mathcal{M}_m(\theta(\mathcal{P}_d), \|\cdot\|_2^2, \{B_i\}_{i=1}^m) \geq c \min \left\{ \frac{d}{m \frac{1}{m} \sum_{i=1}^m B_i}, \frac{d}{d} \right\},
\]
where $c > 0$ is a numerical constant.

Proof. By the standard Assouad reduction, by taking coordinates $P_{v_j} = \text{Bernoulli}\left(\frac{1+\delta v_j}{2}\right)$, we have a $c\delta^2$-separation in Hamming metric. Applying Theorem 12.6 and Example 12.13, we obtain the minimax lower bound, valid for $0 \leq \delta \leq \frac{1}{4}$, of
\[
\mathcal{M}_m(\theta(\mathcal{P}_d), \|\cdot\|_2^2, \{B_i\}_{i=1}^m) \geq c\delta^2 d \left(1 - \sqrt{\frac{d \delta^2}{d} I(X_1, \ldots, X_m; \Pi \mid V)} \right).
\]
Now, we note that for any Markov chain \(V \to X \to Z \), we have
\[
I(X; Z \mid V) = H(Z \mid V) - H(Z \mid X, V) = H(Z \mid V) - H(Z \mid X) \leq H(Z) - H(Z \mid X) = I(X; Z).
\]
Thus we obtain
\[
I(X_1, \ldots, X_m; \Pi \mid V) \leq \sum_{i=1}^{m} \sum_{t=1}^{T} I(X_1, \ldots, X_m; Z_t^{(i)} \mid Z_{\rightarrow i}^{(t)}).
\]
As \(Z_i^{(t)} \perp X_{\setminus i} \mid Z_{\rightarrow i}^{(t)}, X_i \), we have that this final quantity is equal to \(\sum_{i,t} I(X_i; Z_i^{(t)} \mid Z_{\rightarrow i}^{(t)}) \). But of course \(I(X_i; Z_i^{(t)} \mid Z_{\rightarrow i}^{(t)}) \leq H(Z_i^{(t)} \mid Z_{\rightarrow i}^{(t)}) \) by the inductive case, that is, it holds for \(m = 1, \ldots, 2^{k-1} \) and we consider \(m = 2^k \).

Choosing \(\delta = \min \{1/5, \frac{d}{2C \sum_i B_i^2} \} \) gives the result.

12.4.2 Lower bounds in locally private estimation

The key insight: if the channels are \(\varepsilon_{i,t} \)-differentially private, then
\[
I(X_1, \ldots, X_n; Z_t^{(i)} \mid 1 \leq t \leq n) \leq C \sum_{i,t} \varepsilon_{i,t} \wedge \varepsilon_{i,t}^2.
\]

12.5 Technical proofs and arguments

12.5.1 Proof of Lemma 12.9

We prove the result by induction. It is trivially true for \(m = 1 \), that is, \(k = 0 \), so now we consider the inductive case, that is, it holds for \(m = 1, \ldots, 2^{k-1} \) and we consider \(m = 2^k \).

First, we make the following claim: let \(\{u_i\}_{i=1}^N \) be arbitrary vectors, and define the distance matrix \(D = \|u_i - u_j\|_2^2 \), \(i, j \in \mathbb{R}^{N \times N} \). Then
\[
v^T D v \leq 0 \quad \text{for all } v \in \mathbb{R}^n \text{ s.t. } 1^T v \leq 0. \quad (12.5.1)
\]
Indeed, letting \(U = [u_1 \cdots u_N] \) be the matrix with columns \(u_i \), we have \(D = 11^T \text{diag}(U^T U) + \text{diag}(U^T U)11^T - U^T U \), so that \(v^T D v = -v^T U^T U v \leq 0 \). As a consequence of inequality (12.5.1), we obtain for any \(u_0, \ldots, u_N \) that
\[
\sum_{i=1}^{n} \|u_0 - u_i\|_2^2 \geq \frac{1}{N} \sum_{1 \leq i < j \leq N} \|u_i - u_j\|_2^2 \quad (12.5.2)
\]
by taking the vector \(v \) so that \(v_0 = N \) and \(v_1, \ldots, v_N = -1 \) in inequality (12.5.1).

Now, we return to the Hellinger distances. Evidently \(2d_{\text{hel}}^2(P_a, P_b) = \|\sqrt{P_a}(\cdot) - \sqrt{P_b}(\cdot)\|_2^2 \), so that it is a Euclidean distance. As a consequence, for any pairwise disjoint collection of \(N \) bit vectors \(b^{(i)} \), we have
\[
\sum_{i=1}^{N} d_{\text{hel}}^2(P_0, P_{b^{(i)}}) \geq \frac{1}{N} \sum_{1 \leq i < j \leq N} d_{\text{hel}}^2(P_{b^{(i)}}, P_{b^{(j)}}) = \frac{1}{N} \sum_{1 \leq i < j \leq N} d_{\text{hel}}^2(P_0, P_{b^{(i)} + b^{(j)}}) \quad (12.5.3)
\]
where the inequality follows from (12.5.2) and the equality by the assumed cut-and-paste property. Now, we apply Baranyai’s theorem, which says that we may decompose any complete graph K_N, where N is even, into $N - 1$ perfect matchings \mathcal{M}_i with $N/2$ edges—necessarily, as they form a perfect matching—where each \mathcal{M}_i is edge disjoint. Identifying the pairs $i < j$ with the complete graph, we thus obtain

$$\sum_{1 \leq i < j \leq N} d^2_{\text{hel}}(P_0, P_{b(i) + b(j)}) = \sum_{l=1}^{N-1} \sum_{(i,j) \in \mathcal{M}_l} d^2_{\text{hel}}(P_0, P_{b(i) + b(j)}).$$ \hfill (12.5.4)

Now fix $n \in \{1, \ldots, N-1\}$ and a matching \mathcal{M}_n. By assumption we have $\langle b(i) + b(j), b(i') + b(j') \rangle = 0$ for any distinct pairs $(i, j), (i', j') \in \mathcal{M}_n$, and moreover, $\sum_{(i,j) \in \mathcal{M}_n} (b(i) + b(j)) = b$. Thus, our induction hypothesis gives that for any $l \in \{1, \ldots, N-1\}$ and any of our matchings \mathcal{M}_n, we have

$$\sum_{(i,j) \in \mathcal{M}_n} d^2_{\text{hel}}(P_0, P_{b(i) + b(j)}) \geq d^2_{\text{hel}}(P_0, P_b) \prod_{l=1}^{k-1} (1 - 2^{-l}).$$

Substituting this lower bound into inequality (12.5.4) and using inequality (12.5.3), we obtain

$$\sum_{i=1}^{N} d^2_{\text{hel}}(P_0, P_{b(i)}) \geq \frac{1}{N} \cdot (N-1)d^2_{\text{hel}}(P_0, P_b) \prod_{l=1}^{k-1} (1 - 2^{-l}) = d^2_{\text{hel}}(P_0, P_b) \prod_{l=1}^{k} (1 - 2^{-l}),$$

where we have used $N = 2^k$.

12.6 Bibliography

Strong data processing inequalities are all over. Raginsky [124] provides a nice survey. Dobrushin [57] originally proposed the Dobrushin coefficient and used it to demonstrate sufficient mixing in Markov chains to achieve central limit theorems and proved Proposition 12.1 (see [1], Sec. 3.1); Cohen et al. [46] first proved Theorem 12.2 for finite state spaces using careful linear algebraic techniques, and later Del Moral et al. [56] proved the result with the approach we outline below the theorem.

Communication complexity is huge. Standard book is Kushilevitz and Nisan [104]. Our approach follows from Zhang, Duchi, Jordan, and Wainwright [148], our direct sum simulation argument is due to Garg, Ma, and Nguyen [76], and the strong data processing communication results we adapt from Braverman, Garg, Ma, Nguyen, and Woodruff [35].

12.7 Exercises

Question 12.1: For $k \in [1, \infty]$, we consider the collection of distributions

$$\mathcal{P}_k := \{P : \mathbb{E}_P[|X|^k]^{1/k} \leq 1\},$$

that is, distributions P supported on \mathbb{R} with kth moment bounded by 1. We consider minimax estimation of the mean $\mathbb{E}[X]$ for these families under ε-local differential privacy, meaning that for each observation X_i, we observe a private realization Z_i (which may depend on Z_1, \ldots, Z_{i-1}) where Z_i
is an \(\varepsilon \)-differentially private view of \(X_i \). Let \(Q_{\varepsilon} \) denote the collection of all \(\varepsilon \)-differentially private channels, and define the (locally) private minimax risk

\[
\mathcal{M}_n(\theta(P), (\cdot)^2, \varepsilon) := \inf_{\hat{\theta}_n} \inf_{Q \in Q_{\varepsilon}} \mathbb{E}_{P,Q}[\mathcal{L}_n(Z_1^n) - \theta(P)]^2.
\]

(a) Assume that \(\varepsilon \leq 1 \). For \(k \in [1,\infty] \), show that there exists a constant \(c > 0 \) such that

\[
\mathcal{M}_n(\theta(P_k), (\cdot)^2, \varepsilon) \geq c \left(\frac{1}{n\varepsilon^2} \right)^{\frac{k-1}{k}}.
\]

(b) Give an \(\varepsilon \)-locally differentially private estimator achieving the minimax rate in part (a).

JCD Comment: Clean this question up a little

Question 12.2: In this question, we explore estimation under a constraint known as differential privacy. In one version of private estimation, the collector of data is not trusted, so instead of seeing true data \(X_i \in X \) only a disguised version \(Z_i \in Z \) is viewed, where given \(X = x \), we have \(Z \sim Q(\cdot \mid X = x) \). We say that this \(Z_i \) is \(\varepsilon \)-differentially private if for any subset \(A \subset Z \) and any pair \(x, x' \in X \),

\[
\frac{Q(Z \in A \mid X = x)}{Q(Z \in A \mid X = x')} \leq \exp(\varepsilon).
\]

The intuition here, from a privacy standpoint, is that no matter what the true data \(X \) is, any points \(x \) and \(x' \) are essentially equally likely to have generated the observed signal \(Z \). We explore a few consequences of differential privacy in this question, including so-called quantitative data processing inequalities. We assume that \(\varepsilon < 1 \) for simplicity.

First, we show how differential privacy acts as a contraction on probability distributions. Let \(P_1 \) and \(P_2 \) be arbitrary distributions on \(X \) (with densities \(p_1 \) and \(p_2 \) w.r.t. a base measure \(\mu \)) and define the *marginal* distributions

\[
M_i(Z \in A) := \int_X Q(Z \in A \mid X = x)p_i(x)d\mu(x), \quad i \in \{1,2\}.
\]

We will prove that there is a universal (numerical) constant \(C < \infty \) such that for any \(P_1, P_2 \),

\[
D_{kl}(M_1 \| M_2) + D_{kl}(M_2 \| M_1) \leq C(e^\varepsilon - 1)^2 \| P_1 - P_2 \|^2_{TV}.
\]

(a) Show that for any \(a, b > 0 \)

\[
\log \frac{a}{b} \leq -\frac{|a - b|}{\min\{a, b\}}.
\]

(b) Use the shorthands \(q(z \mid x) = Q(Z = z \mid X = x) \) and \(m_i(z) = \int q(z \mid x)p_i(x)d\mu(x) \), where without loss of generality we assume \(Z \) is discrete. Show that there exists a universal constant \(c < \infty \) such that

\[
|m_1(z) - m_2(z)| \leq c(e^\varepsilon - 1) \inf_{x \in X} q(z \mid x) \| P_1 - P_2 \|_{TV}.
\]

(c) Combining parts (a) and (b), show inequality (12.7.2).
We note in passing that, except for perhaps the constant factor C, inequality (12.7.2) cannot be improved generally. This can be shown by letting P_1 and P_2 be Bernoulli distributions, taking $\|P_1 - P_2\|_{\text{TV}} \to 0$, and choosing a Bernoulli distribution for Q while taking $\varepsilon \to 0$. You do not need to prove this.

JCD Comment: Clean this question up a little

Question 12.3: In this question, we apply the results of Question 12.1 to a problem of estimation of drug use. Assume we interview a series of individuals $i = 1, \ldots, n$, asking each whether he or she takes illicit drugs. Let $X_i \in \{0, 1\}$ be 1 if person i uses drugs, 0 otherwise, and define $\theta^* = \mathbb{E}[X] = \mathbb{E}[X_i] = P(X = 1)$. To avoid answer bias, each answer X_i is perturbed by some channel Q, where Q is ε-differentially private. That is, we observe independent Z_i where conditional on X_i, we have

$$Z_i \mid X_i = x \sim Q(\cdot \mid X_i = x) .$$

To make sure everyone feels suitably private, we assume $\varepsilon < 1/2$ (so that $(e^\varepsilon - 1)^2 \leq 2e^2$). In the questions, let Q_ε denote the family of all ε-differentially private channels, and let P denote the Bernoulli distributions with parameter $\theta(P) = P(X_i = 1) \in [0, 1]$ for $P \in \mathcal{P}$.

(a) Use Le Cam’s method and the strong data processing inequality in Theorem 12.3 to show that the minimax rate for estimation of the proportion θ^* in absolute value satisfies

$$\mathcal{M}_n(\theta(\mathcal{P}), \cdot, \varepsilon) := \inf_{Q_\in \mathcal{Q}_\varepsilon} \inf_{\hat{\theta} \in \hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[|\hat{\theta}(Z_1, \ldots, Z_n) - \theta(P)| \right] \geq c \frac{1}{\sqrt{n\varepsilon^2}} ,$$

where $c > 0$ is a universal constant. Here the infimum is over channels Q and estimators $\hat{\theta}$, and the expectation is taken with respect to both the X_i (according to P) and the Z_i (according to $Q_\varepsilon(\cdot \mid X_i)$).

(b) Give a rate-optimal estimator for this problem. That is, define an ε-differentially private channel Q and an estimator $\hat{\theta}$ such that $\mathbb{E}[|\hat{\theta}(Z^n) - \theta|] \leq C/\sqrt{n\varepsilon^2}$, where C is a universal constant.

(c) Let \mathcal{P}_k, for $k \geq 2$, denote the family of distributions on \mathbb{R} such that $\mathbb{E}_P|X|^k \leq 1$ for $P \in \mathcal{P}_k$ (note that X is no longer restricted to have support $\{0, 1\}$). Show, similarly to part (a), that for $\theta(P) = \mathbb{E}_P[X]$

$$\mathcal{M}_n(\theta(\mathcal{P}_k), \cdot, \varepsilon) := \inf_{Q_\in \mathcal{Q}_\varepsilon} \inf_{\hat{\theta} \in \hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E} \left[|\hat{\theta}(Z_1, \ldots, Z_n) - \theta(P)| \right] \geq c \frac{1}{(n\varepsilon^2)^{\frac{k}{2k+1}}} .$$

What does this say about $k = 2$?

(d) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs (1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population proportion of drug abusers: give an estimated number of users for $\varepsilon \in \{2^{-k}, k = 0, 1, \ldots, 10\}$. Perform each experiment several times. Assuming that the proportion of users in the dataset is the true population proportion, how accurate is your estimator?

Question 12.4 (Lower bounds for private logistic regression): This question is (likely) challenging. Consider the logistic regression model for $y \in \{\pm 1\}, x \in \mathbb{R}^d$, that

$$p_\theta(y \mid x) = \frac{1}{1 + \exp(-y\langle \theta, x \rangle)} .$$

218
For a distribution P on $(X, Y) \in \mathbb{R}^d \times \{\pm 1\}$, where $Y \mid X = x$ has logistic distribution, define the excess risk

$$L(\theta, P) := \mathbb{E}_P[\ell(\theta; X, Y)] - \inf_\theta \mathbb{E}_P[\ell(\theta; X, Y)]$$

where $\ell(\theta; x, y) = \log(1 + \exp(-y(x, \theta)))$ is the logistic loss. Let \mathcal{P} be the collection of such distributions, where X is supported on $\{-1, 1\}^d$. Following the notation of Question 8.4, for a channel Q mapping $(X, Y) \to Z$, define

$$\mathcal{M}_n(\mathcal{P}, L, Q) := \inf_\theta \sup_{P \in \mathcal{P}} \mathbb{E}_{P, Q}[L(\theta(Z_1^n), P)],$$

where the expectation is taken over $Z_i \sim Q(\cdot \mid X_i, Z_1^{i-1})$. Assume that the channel releases are all (locally) ϵ-differentially private.

(a) Show that for all n large enough,

$$\mathcal{M}_n(\mathcal{P}, L, Q) \geq c \cdot \frac{d}{n} \cdot \frac{d}{\epsilon \wedge \epsilon^2}$$

for some (numerical) constant $c > 0$.

(b) Suppose we allow additional passes through the dataset (i.e. multiple rounds of communication), but still require that all data Z_i released from X_i be ϵ-differentially private. That is, assume we have the (sequential and interactive) release schemes of Fig. 12.1, and we guarantee that

$$Z_i^{(t)} \sim Q(\cdot \mid X_i, B_i^{(1)}, \ldots, B_i^{(t)}, Z_i^{(1)}, \ldots, Z_i^{(t-1)})$$

is $\epsilon_{i,t}$-differentially private, where $\sum_i \epsilon_{i,t} \leq \epsilon$ for all i. Does the lower bound of part (a) change?

Question 12.5: Prove Lemma 12.12.

Question 12.6 (Approximating nonnegative convex functions): Let $f : \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ be a closed, nonnegative convex function.

(a) Show that there exists a piecewise linear sequence of functions f_n satisfying $f_{n-1} \leq f_n \leq f$ for all n and for which $f_n(x) \uparrow f(x)$ pointwise for all x s.t. $f(x) < \infty$, and $f_n(x) \uparrow \infty$ otherwise. **Hint:** Let \mathcal{L} be the collection of linear functions below f, that is $\mathcal{L} = \{ l \mid l(x) = a + bx, l(x) \leq f(x) \text{ for all } x \}$, and note that $f(x) = \sup\{ l(x) \mid l \in \mathcal{L} \}$. You may replace \mathcal{L} with functions of the form $l(x) = f(x_0) + g(x - x_0)$, where $g \in \partial f(x_0)$ is a subderivative of f at x_0.

(b) Show that if $f(z_0) = 0$, then one may take the functions f_n to be of the form $f_n(x) = \sum_{i=1}^n a_i [b_i - x]_+ + \sum_{i=1}^n c_i [x - d_i]_+$, where $b_i \leq z_0$, $d_i \geq z_0$, and $a_i, c_i \geq 0$.

(c) Conclude that for any measure μ on \mathbb{R}_+, $\int f_n d\mu \uparrow \int f d\mu$.

Question 12.7 (Proving Theorem 12.2): In this question, we formalize the sketched proof of Theorem 12.2 by filling in details of the following steps. Let $\alpha = \alpha_{\text{TV}}(Q)$ be the Dobrushin coefficient of the channel Q and $f : \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ be a closed convex function.

(a) There exists a nondecreasing sequence f_n of piecewise linear functions, each of the form $f_n(x) = \sum_{i=1}^n a_i [b_i - x]_+ + \sum_{i=1}^n c_i [x - d_i]_+$, where $b_i \leq 1$, $d_i \geq 1$, and $a_i, c_i \geq 0$. **Hint:** Question 12.6.
(b) Let $M_v(A) = \int Q(A \mid x) dP_v(x)$ for $v \in \{0, 1\}$ be the induced marginal distributions. Show that for any function of the form $h(t) = [t - \Delta]_+$, where $\Delta > 1$,

$$D_h(M_0 \parallel M_1) \leq \alpha D_h(P_0 \parallel P_1)$$

(12.7.3)

by the following steps:

i. Define the set $X(\Delta) := \{x \mid dP_0(x) \leq \Delta dP_1(x)\}$. Argue that $X(\Delta)$ must be non-null (i.e., have positive measure).

ii. Define the probability distribution P_{Δ} with density

$$dP_{\Delta}(x) = \frac{\Delta P_1(x) - dP_0(x)}{\int \Delta dP_1(x) - dP_0(x)} 1\{x \in X(\Delta)\}.$$

Argue that the measure

$$G = \Delta P_1 - (\Delta - 1)P_{\Delta}$$

is a probability distribution.

iii. Show that

$$D_h(P_0 \parallel P_1) = \|P_0 - G\|_{TV}.$$

It may be useful to show that $dP_0 - dG \leq 0$ on $X(\Delta)$.

iv. Conclude that

$$D_h(P_0 \parallel P_1) \geq \frac{1}{\alpha} \|Q \circ P_0 - Q \circ G\|_{TV} \geq \frac{1}{\alpha} D_h(Q \circ P_0 \parallel Q \circ P_1).$$

(c) Using the monotone convergence theorem, show that $D_f(M_0 \parallel M_1) \leq \alpha D_f(P_0 \parallel P_1)$.

Question 12.8 (Markov chain mixing): Something about once you have a constant decrease after a few steps, you have exponentially fast mixing for any divergence.
Chapter 13

Estimation of functionals

Outline

I. Motivation: function values, testing certain quantities (e.g. is \(\|P - Q\|_{TV} \geq \epsilon \) or not), entropy and other quantities, and allows superefficiency guarantees in an elegant way

II. Le Cam’s methods

1. The general form with mixtures
2. The \(\chi^2 \)-type bounds, with mixtures to a point mass
3. Geometrizing rates of convergence
4. Examples: Fisher information in classical problems (especially for a one-dimensional quantity)
5. Example: testing distance to uniformity (failure from standard two-point bound)
6. More sophisticated examples:
 a. Smooth functionals (as in Birgé and Massart [30]), like differential entropy \(\int h(x) \log h(x) dx \)
 b. Higher-dimensional problems, which are hard

III. “Best possible” lower bounds, super-efficiency and constrained risk inequalities

1. Basic (two-point) constrained risk inequality (cf. [59])
2. Constrained risk inequality when \(P_1 \) is actually a mixture (easiest with a functional): means that any minimax bound around \(P_0 \) is quite strong
3. Potentially (?): Cai and Low [39] paper on minimax estimation for \(\frac{1}{n} \|\theta\|_1 \) when \(y = \theta + \epsilon \) in a Gaussian sequence model as an example and application of a constrained risk inequality. This is probably too challenging, though—can we find a case where polynomials actually allow us to do stuff?
 a. Hard because of all the polynomial approximation stuff... but maybe there is a simpler version that simply shows how approximation via polynomials allows lower bounds. Approach works for Gaussian stuff, as in Cai and Low [39] or the earlier paper “Effect of mean on variance function estimation in nonparametric regression” by Wang, Brown, Cai, Levine.
 b. Similar idea gives variation distance bounds for Poisson priors on parameters when seeking lower bounds on estimating entropy \(H(X) = - \sum_x p_x \log p_x \) of discrete distributions with (unknown) support; see [145].
13.1 A useful divergence calculation

Lemma 13.1. Let $P = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} P_v$. Then

$$D_{\chi^2}(P \| P_0) = \frac{1}{|\mathcal{V}|^2} \sum_{v,v' \in \mathcal{V}} \int \frac{dP_v dP_{v'}}{dP_0} - 1$$

Proof The starting point is to notice that for any two distributions P and Q we have $D_{\chi^2}(P \| Q) = \int (dP/dQ - 1)^2 dQ = \int \frac{dP^2}{dQ^2} - 2 \int \frac{dP}{dQ} dQ + \int dQ = \int \frac{dP^2}{dQ} - 1$. Then we proceed by recognizing that

$$(\frac{1}{N} \sum_{i=1}^N x_i)^2 = \frac{1}{N^2} \sum_{i,j} x_i x_j$$

for any sequence x_i, and so

$$D_{\chi^2}(P \| P_0) + 1 = \int \frac{(1/|\mathcal{V}|) \sum_{v \in \mathcal{V}} dP_v}{dP_0} - 1 = \frac{1}{|\mathcal{V}|^2} \sum_{v,v' \in \mathcal{V}} \int \frac{dP_v dP_{v'}}{dP_0}$$

as desired.

Now, let us suppose that we define the collection $\{P_v\}$ by tiltings of an underlying base distribution P_0, where each tilting is indexed by a function $g_v : \mathcal{X} \to [-1, \infty)$, and where

$$dP_v(x) = (1 + g_v(x))dP_0(x),$$

while $\int g_v dP_0 = 0$, so that each P_v is a valid distribution. Let P^n_v be the distribution of n observations $X_i \overset{iid}{\sim} P_v$, and let $\overline{P}^n = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} P_v$.

Lemma 13.2. Define the inner product $(f, g)_P = \int f(x) g(x) dP(x)$ and let $V, V' \overset{iid}{\sim} \text{Uniform}(\mathcal{V})$. Then

$$D_{\chi^2}(\overline{P}^n \| P_0) + 1 \leq \mathbb{E}[\exp(n(g_V, g_{V'})_P)].$$

Proof The simple technical lemma 13.1 essentially gives us the result. We observe that

$$D_{\chi^2}(\overline{P}^n \| P_0) + 1 = \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} \int \frac{dP^n_v dP^n_{v'}}{dP_0^n} = \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} \left(\int (1 + g_v(x))(1 + g_{v'}(x)) dP_0(x) \right)^n$$

because $P^n_v(x_1, \ldots, x_n) = \prod_{i=1}^n (1 + g_v(x_i))dP_0(x_i)$, so that the integral decomposes into a product of integrals. Then expanding $(1 + g_v)(1 + g_{v'})$ and noting that each has zero mean under P_0 gives

$$D_{\chi^2}(\overline{P}^n \| P_0) + 1 = \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} (1 + \mathbb{E}_0[g_v(X)g_{v'}(X)])^n.$$

Lastly, we note that $(1 + t) \leq e^t$ for all t, and so

$$\frac{1}{|\mathcal{V}|^2} \sum_{v,v'} (1 + \mathbb{E}_0[g_v(X)g_{v'}(X)])^n \leq \frac{1}{|\mathcal{V}|^2} \sum_{v,v'} \exp(n\mathbb{E}_0[g_v(X)g_{v'}(X)]),$$

which is of course equivalent to the result we desired.

A specialization of Lemma 13.2 follows when we choose our functions g to correspond to a partition of \mathcal{X}-space. Here, we define the following.
Definition 13.1. Let $k \in \mathbb{N}$ and the functions $\phi_j : \mathcal{X} \to [-b, b]$. Then the functions ϕ_j are an admissible partition with variances σ_j^2 of \mathcal{X} with respect to a probability distribution P_0 if

(i) The supports $E_j = \text{supp} \phi_j$ of each of the functions are disjoint.

(ii) Each function has P_0 mean 0, i.e., $\mathbb{E}_{P_0}[\phi_j(X)] = 0$ for each j.

(iii) Function j has variance $\sigma_j^2 = \mathbb{E}_{P_0}[\phi_j^2(X)] = \int \phi_j^2(x) dP_0(x)$.

With such a partition, we can define the functions $g_v(x) = t \langle v, \phi(x) \rangle = t \sum_{j=1}^k v_j \phi_j(x)$ for $|t| \leq 1/b$, and if we take $V = \{-1, 1\}^k$, we obtain the following.

Lemma 13.3. Let the functions $\{\phi_j\}_{j=1}^k$ be an admissible partition of \mathcal{X} with variances σ_j^2. Fix $|t| \leq \frac{1}{b}$, and let $dP_{tv} = (1 + t \langle v, \phi(x) \rangle) dP_0(x)$ and $P^m_t = \frac{1}{|V|} \sum_{v \in V} P^m_v$. Then

$$D_{\chi^2}(P^m_t \| P_0) \leq \exp \left(\frac{n t^2}{2} \sum_{j=1}^k \sigma_j^4 \right) - 1,$$

and if $|t| \leq \frac{1}{\sqrt{n} \left(\sum_{j=1}^k \sigma_j^2 \right)^{1/4}}$, then

$$D_{\chi^2}(P^m_t \| P_0) \leq n^2 t^4 \sum_{j=1}^k \sigma_j^4.$$

Proof First, if $\phi(x) = [\phi_j(x)]_{j=1}^k$, then $\mathbb{E}_0[\phi(X) \phi(X)^T] = \text{diag}(\sigma_j^2)$, that is, the diagonal matrix with σ_j^2 on its diagonal. By Lemma 13.2, we therefore have

$$D_{\chi^2}(P^m_t \| P_0) + 1 \leq \mathbb{E} \left[\exp \left(n t^2 \sum_{j=1}^k \sigma_j^2 V_j V_j' \right) \right] \leq \mathbb{E} \left[\exp \left(\frac{n^2 t^4}{2} \sum_{j=1}^k \sigma_j^4 V_j^2 \right) \right].$$

by Hoeffding’s Lemma (see Example 4.6), as $V_j \overset{iid}{\sim} \text{Uniform}(\{\pm 1\})$ Noting that $V_j^2 = 1$ gives the first part of the lemma. The final statement is immediate once we observe that $e^x \leq 1 + (e - 1) x \leq 1 + 2x$ for $0 \leq x \leq 1$.

13.2 A few useful lemmas

JCD Comment: This is now pretty deprecated, as the χ^2-type bounds dominate it

Let P_0 be a base measure on a space \mathcal{X}, and for a P_0-mean-zero and bounded function g, i.e., $\mathbb{E}_0[g] = 0$, for small enough $t \in \mathbb{R}$ define

$$dP_t = (1 + tg)dP_0.$$

Define the **Battacharya affinity** $\rho_{\text{hel}}(P, Q) = \int \sqrt{dPdQ}$.
Lemma 13.4. Let $\overline{P^n} = \frac{1}{2}(P^n_1 + P^n_{-1})$ for P_t as above, and assume that $|tg| \leq 1$, $E_0[g] = 0$, and $\mathbb{E}_0[g^2] = \sigma^2$. Then

$$\rho_{hel}(\overline{P^n}, P_0^n) \geq 1 - \frac{1}{2} \left[(1 + t^2 \sigma^2)^n + (1 - t^2 \sigma^2)^n - 2 \right].$$

Proof. We see immediately that we may write

$$\rho_{hel}(\overline{P^n}, P_0^n) = \mathbb{E}_0 \left[\left(\frac{dP^n_1 + dP^n_{-1}}{2dP^n_0} \right)^{1/2} \right] = \mathbb{E}_0 \left[\left(\frac{1}{2} \left(\prod_{i=1}^{n} (1 + tg(X_i)) + \prod_{i=1}^{n} (1 - tg(X_i)) \right) \right)^{1/2} \right] = T_n$$

(so that the $X_i \overset{iid}{\sim} P_0$). Then expanding the product, we see that the term T_n is

$$T_n = 2 + 2 \sum_{k \in 2\mathbb{N}, 2 \leq k \leq n} t^k \sum_{i_1 < \cdots < i_k} g(X_{i_1}) \cdots g(X_{i_k}),$$

where we have used that all terms with an odd number of factors cancel. In particular, for

$$Y = \sum_{k \in 2\mathbb{N}, 2 \leq k \leq n} t^k \sum_{i_1 < \cdots < i_k} g(X_{i_1}) \cdots g(X_{i_k}),$$

we may write $\sqrt{T_n/2} = \sqrt{1 + Y}$, where (as $T_n \geq 0$) we must have $1 + Y \geq 0$, and so using the elementary estimate that $\sqrt{1 + y} \geq 1 + y/2 - y^2/2$ whenever $y \geq -1$, we have

$$\rho_{hel}(\overline{P^n}, P_0^n) \geq 1 + \frac{1}{2} \mathbb{E}_0[Y] - \frac{1}{2} \mathbb{E}_0[Y^2] = 1 - \frac{1}{2} \sum_{k \in 2\mathbb{N}, 2 \leq k \leq n} \sum_{i_1 < \cdots < i_k} t^{2k} \mathbb{E}_0[g^2(X_{i_1}) \cdots g^2(X_{i_k})] = 1 - \frac{1}{2} \sum_{k \in 2\mathbb{N}, 2 \leq k \leq n} \binom{n}{k} t^{2k} \sigma^{2k},$$

where we have used that $\mathbb{E}_0[g] = 0$. But then

$$\sum_{k \in 2\mathbb{N}, 2 \leq k \leq n} \binom{n}{k} t^{2k} \sigma^{2k} = (1 + t^2 \sigma^2)^n + (1 - t^2 \sigma^2)^n - 2,$$

concluding the proof. \qed

Note: Birgé and Massart achieve a tighter factor than claimed here.

For shorthand, define the function $\psi(s, n) = (1 + s)^n + (1 - s)^n - 2$, so that Lemma 13.4 is equivalent to the statement that $\rho_{hel}(\overline{P^n}, P_0^n) \geq 1 - \frac{1}{2} \psi(t^2 \sigma^2, n)$.

Definition 13.2. Let $k \in \mathbb{N}$ and the functions $g_j : \mathcal{X} \to [-b, b]$. Then the functions are an admissible partition with variances σ_j^2 of \mathcal{X} with respect to a probability distribution P_0 if

(i) The supports $E_j = \text{supp } g_j$ of each of the functions are disjoint.
(ii) Each function has P_0 mean 0, i.e., $\mathbb{E}_{P_0}[g_j(X)] = 0$ for each j.

(iii) Function j has variance $\sigma_j^2 = \mathbb{E}_{P_0}[g_j^2(X)] = \int g_j^2(x) dP_0(x)$.

JCD Comment: Put some commentary about how the key is to use mixtures to prove lower bounds. Also, a more direct proof by Taylor expansions might be “easier” if you assume you can ignore all higher-order terms. Perhaps sketch that out, and then go back and prove the full theorem?

Theorem 13.5. Let the functions $\{g_j\}_{j=1}^k$ be an admissible partition of \mathcal{X} with variances σ_j^2 with respect to P_0 (Definition 13.2), $\mathcal{V} = \{-1,1\}^k$, and for $t \in \mathbb{R}$ define the distributions P_{tv} by

$$dP_{tv}(x) = \prod_{j=1}^k (1 + tv_j g_j(x)) dP_0(x) = (1 + t(v, g(x))) dP_0(x)$$

for $v \in \mathcal{V}$. Assume that $nt^2\sigma_j^2 \leq 2e$ for each j. Then

$$d_{\text{hel}}^2(P_n^t, P_0^n) \leq n^2 t^4 \sum_{j=1}^k \sigma_j^4.$$

A sharper result is possible: Birgé and Massart [30, Thm. 1] show that under the same setting,

$$d_{\text{hel}}^2(P_n^t, P_0^n) \leq C(t, b, \sigma) n^2 t^4 \sum_{j=1}^k \sigma_j^4 \leq \frac{1}{3} n^2 t^4 \sum_{j=1}^k \sigma_j^4,$$

where the constant $C = C(t, b, \sigma) < \frac{1}{2}$ but can be smaller for certain values of t, σ, and the bound b on the admissible partition in Def. 13.2.

Proof The essential idea is to reduce the problem to a series of simpler divergence calculations, where we may leverage Lemma 13.4. To do so, we first look abstractly at the affinity between distributions with a certain fixed number of samples from distinct product distributions, then treat the original problem as a multinomial mixture of such products.

Abstract fixed sample size affinities. Fix an integer vector $m = (m_1, \ldots, m_k) \in \mathbb{N}^k$, and let $v \in \mathcal{V}$. For each $j \in \{1, \ldots, k\}$, let $P_{j,0}$ be a distribution on \mathcal{X} and define the densities

$$dP_{+j} = (1 + tv_j g_j) dP_{j,0}, \quad dP_{-j} = (1 - tv_j g_j) dP_{j,0},$$

eliding the dependence on t for now. Then define the product distributions and averages

$$P_{mv} := \prod_{j:v_j=1}^k P_{+j}^m \prod_{j:v_j=-1}^k P_{-j}^m = \prod_{j=1}^k P_{v_j}^m, \quad \overline{P}^m := \frac{1}{2^k} \sum_{v \in \mathcal{V}} P_{mv}, \quad P_0^m := \prod_{j=1}^k P_{j,0}^m.$$

The affinity between \overline{P}^m and P_0^m is relatively straightforward to express as a product of affinities between averages of just two distributions, which allows us to leverage Lemma 13.4:
Lemma 13.6. For the distributions defined above, let $\tau_j^2 = \int g_j^2(x) dP_{j,0}(x)$. Then

$$\rho_{\text{hel}}(P^m, P_0^m) = \prod_{j=1}^k \rho_{\text{hel}} \left(P_{j,0}^{m_j}, \frac{1}{2} (P_{+,j}^{m_j} + P_{-,j}^{m_j}) \right)$$

$$\geq 1 - \frac{1}{2} \sum_{j=1}^k \left((1 + t^2 \tau_j^2)^n + (1 - t^2 \tau_j^2)^n - 2 \right).$$

(13.2.1)

Proof Denoting the likelihood ratio $L_{\pm j} := \frac{dP_{\pm j}}{dP_{j,0}^m}$, we therefore obtain that

$$\frac{dP_m}{dP_0} = \prod_{j=1}^k L_{v,j},$$

where we treat $L_{\pm j} \equiv 1$ whenever $m_j = 0$. By an inductive argument, we therefore can write

$$\frac{dP_m}{dP_0} = 2^{-k} \prod_{v \in V} L_{v,j} = 2^{-(k-1)} \left(\frac{1}{2} L_{+1} \sum_{v:v_j=1} \prod_{j=2}^k L_{v,j} + \frac{1}{2} L_{-1} \sum_{v:v_j=-1} \prod_{j=2}^k L_{v,j} \right)$$

$$\overset{(i)}{=} \frac{L_{+1} + L_{-1}}{2} 2^{-k+1} \sum_{v:v_j=1} \prod_{j=2}^k L_{v,j} \overset{(ii)}{=} \prod_{j=1}^k \frac{L_{+j} + L_{-j}}{2},$$

where step (i) uses that $L_{\pm j}$ is independent of $L_{\pm j'}$ for $j \neq j'$, and equality (ii) is the induction. In particular, we can write the ratio as the product

$$\frac{dP_m}{dP_0} = \prod_{j=1}^k \frac{dP_{+,j}^{m_j} + dP_{-,j}^{m_j}}{2dP_{j,0}^{m_j}}.$$

Substituting this product into the definition of the affinity ρ_{hel} gives the equality in (13.2.1).

To obtain the inequality in (13.2.1), we apply Lemma 13.4 to obtain

$$\rho_{\text{hel}} \left(P_{j,0}^{m_j}, \frac{1}{2} (P_{+,j}^{m_j} + P_{-,j}^{m_j}) \right) \geq 1 - \frac{1}{2} \left((1 + t^2 \tau_j^2)^n + (1 - t^2 \tau_j^2)^n - 2 \right),$$

then take the product and use that $\prod_{j=1}^k (1 - a_j) \geq 1 - \sum_{j=1}^k a_j$ for any $a_j \in [0,1]$. \qed

Multinomial mixtures and conditional affinities. With Lemma 13.6 in hand, we now proceed conditionally, by treating the sampling of the X_i as a multinomial and conditioning on the number of X_i in the regions that the g_j partition. Indeed, consider the original affinity:

$$\rho_{\text{hel}}(P^m_t, P_0^m) = \mathbb{E}_0 \left[\left(2^{-k} \sum_{v \in V} \frac{dP_t}{dP_0}(X_i) \right)^{1/2} \right].$$
For \(X_i \overset{\text{iid}}{\sim} P_0 \), if we let \(M = (M_0, M_1, \ldots, M_k) \) be a multinomial that counts the \(X_i \) falling in each set \(E_j = \text{supp} \ g_j \) (where we let \(E_0 = \mathcal{X} \setminus \bigcup_{j \geq 1} E_j \) be the subset of \(\mathcal{X} \) distinct from the supports of the \(g_j \)), then conditional on \(M = m \), we have

\[
\prod_{i=1}^{n} \frac{dP_{tw}(X_i)}{dP_0}(X_i) \mid (M = m) \overset{\text{dist}}{=} \prod_{j=1}^{k} \prod_{i=1}^{m_j} (1 + t g_j(Y_{ij})),
\]

where the \(Y_{ij} \) are i.i.d. from the conditional distribution of \(X_i \) falling within \(E_j \), i.e., \(Y_{ij} \overset{\text{iid}}{\sim} P_0(\cdot \mid X \in E_j) \). Lemma 13.6 then implies that if we define \(P_{j,0} = P_0(\cdot \mid X_i \in E_j) \) to be the law of \(Y_{ij} \) (i.e., \(X \) conditional on \(X \in E_j \)) and \(dP_{\pm j} = (1 \pm t g_j)dP_{j,0} \), then by construction of \(P_{tw} \),

\[
\mathbb{E}_0 \left[\left(2^{-k} \sum_{v \in V} \prod_{i=1}^{n} \frac{dP_{tw}(X_i)}{dP_0}(X_i) \right)^{1/2} \mid M = m \right] = \prod_{j=1}^{k} \rho_{\text{hel}}(P_{j,0}^{m_j}, \frac{1}{2}(P_{+j}^{m_j} + P_{-j}^{m_j})).
\]

If \(q_j = P_0(X_i \in E_j) \), then we have \(\int g_j^2(x)dP_{j,0}(x) = \int g_j^2(x)P_0(x)/P_0(X \in E_j) = \sigma_j^2/q_j \), and so setting \(\tau_j^2 = \sigma_j^2/q_j \) in inequality (13.2.1) yields

\[
\prod_{j=1}^{k} \rho_{\text{hel}}(P_{j,0}^{m_j}, \frac{1}{2}(P_{+j}^{m_j} + P_{-j}^{m_j})) \geq 1 - \frac{1}{2} \sum_{j=1}^{k} [(1 + t^2 \sigma_j^2/q_j)^{m_j} + (1 - t^2 \sigma_j^2/q_j)^{m_j} - 2].
\]

In particular, we have shown that

\[
\rho_{\text{hel}}(P_{tw}^n, P_0^n) \geq 1 - \frac{1}{2} \sum_{j=1}^{k} \mathbb{E} \left[(1 + t^2 \sigma_j^2/q_j)^{M_j} + (1 - t^2 \sigma_j^2/q_j)^{M_j} - 2 \right], \tag{13.2.2}
\]

where \(M = (M_0, M_1, \ldots, M_k) \) is the multinomial vector with probabilities \(q_j \) and \(\sum_j M_j = n \).

Lastly, we perform a few algebraic manipulations to get the theorem. Marginally, \(M_j \sim \text{Bin}(n, q_j) \), and for any \(M \sim \text{Bin}(n, p) \) and \(s > 0 \) we have \(\mathbb{E}[s^M] = \sum_{i=0}^{n} \binom{n}{i} (ps)^i (1-p)^{n-i} = (ps + (1-p))^n \), so

\[
\mathbb{E} \left[(1 + t^2 \sigma_j^2/q_j)^{M_j} + (1 - t^2 \sigma_j^2/q_j)^{M_j} \right] = (1 + t^2 \sigma_j^2)^n + (1 - t^2 \sigma_j^2)^n,
\]

and so inequality (13.2.2) becomes

\[
\rho_{\text{hel}}(P_{tw}^n, P_0^n) \geq 1 - \frac{1}{2} \sum_{j=1}^{k} [(1 + t^2 \sigma_j^2)^n + (1 - t^2 \sigma_j^2)^n - 2]
\]

We now use binomial identities (again) to control the final sum. Let \(a_j = t^2 \sigma_j^2 \) for shorthand, noting that \(na_j \leq 1 \) by assumption. We have

\[
\frac{1}{2} \sum_{j=1}^{k} [(1 + a_j)^n + (1 - a_j)^n - 2] \overset{(i)}{=} \sum_{j=1}^{k} \left[1 + \binom{n}{2} a_j^2 + \sum_{l=2}^{n} \binom{n}{l} a_j^l - 1 \right] = \binom{n}{2} \sum_{j=1}^{k} a_j^2 \left[1 + \sum_{l=2}^{\lfloor n/2 \rfloor} \binom{n}{2l} \left(\frac{n}{2l} \right) a_j^{2l-1} \right].
\]
where step (i) uses that the odd powers cancel. Noting that \(\binom{n}{2}^{-1} = \frac{1}{\binom{2l-1}{2(l-1)}} \), we obtain

\[
\frac{1}{2} \sum_{j=1}^{k} [(1 + a_j)^n + (1 - a_j)^n - 2] \leq \binom{n}{2} \sum_{j=1}^{k} a_j^2 \left[1 + \sum_{l=1}^{\lfloor n/2 \rfloor} \frac{n - 2}{2l^2} a_j^{2l} \right] \leq 2 \binom{n}{2} \sum_{j=1}^{k} a_j^2,
\]

where inequality (ii) follows because \(\binom{n}{l} \leq (\frac{ne}{l})^l \) for any \(l \in \mathbb{N} \) and inequality (iii) follows from the assumption that \(na_j = nt^2 \sigma_j^2 \leq \frac{2}{\delta} \). As \(2 \binom{n}{2} \leq n^2 \), we have

\[
d_{\text{hel}}^2(P^n_t, P^n_0) = 1 - \rho_{\text{hel}}(P^n_t, P^n_0) \leq n^2 \sum_{j=1}^{k} t^4 \sigma_j^4,
\]

which gives the theorem. \(\square \)
Part III

Entropy, predictions, divergences, and information
Chapter 14

Predictions, loss functions, and entropies

In prediction problems broadly construed, we have a random variable X and a label, or target or response, Y, and we wish to fit a model or predictive function that accurately predicts the value of Y given X. There are several perspectives possible when we consider such problems, each with attendant advantages and challenges. We can roughly divide these into three approaches, though there is considerable overlap between the tools, techniques, and goals of the three:

(1) Point prediction, where we wish to find a prediction function f so that $f(X)$ most accurately predicts Y itself.

(2) Probabilistic prediction, where we output a predicted distribution P of Y, and we seek $P(Y = y \mid X = x) \approx P(Y = y \mid X = x)$, where here P denotes the “true” probability and P the predicted one.

(3) Predictive inference, where for a given level $\alpha \in (0, 1)$, we seek a confidence set mapping C such that $P(Y \in C(X)) \approx 1 - \alpha$.

We focus mostly on the former two, though there is overlap between the approaches.

In this first chapter of the sequence, we focus on the probabilistic prediction problem. Our main goal will be to elucidate and identify loss functions for choosing probabilistic predictions that are proper, meaning that the true distribution of Y minimizes the loss, and strictly proper, meaning that the true distribution of Y uniquely minimizes the loss. As part of this, we will develop mappings between losses and entropy-type functionals; these will repose on convex analytic techniques for their cleanest statements, highlighting the links between convex analysis, prediction, and information. Moreover, we highlight how any proper loss (which will be defined) is in correspondence with a particular measure of entropy on the distribution P, and how these connect with an object known as the Bregman divergence central to convex optimization. For the deepest understanding of this chapter, it will therefore be useful to review the basic concepts of convexity (e.g., convex sets, functions, and subgradients) in Appendix A, as well as the more subtle tools on optimality and stability of solutions to convex optimization problems in Appendix B. We give an overview of the important results in Section 14.1.1.
14.1 Proper losses, scoring rules, and generalized entropies

As motivation, consider a weather forecasting problem: a meteorologist wishes to prediction the weather \(Y_t \) on days \(t = 1, 2, \ldots \), where \(Y_t = 1 \) indicates rain and \(Y_t = 0 \) indicates no rain. At time \(t \), using covariates \(X_t \) (for example, the weather the previous day, long term trends, or simulations), the forecaster predicts a probability \(p_t \in [0, 1] \). We would like the forecaster’s predictions to be as accurate as possible, so that \(P(Y_t = 1) \approx p_t \). Following the standard dicta of decision theory, we choose a loss function \(\ell(p, y) \) that scores a prediction \(p \) for a given outcome \(y \). Ideally, the forecaster should have an incentive to make predictions as accurately as possible, so the distribution minimizing the expected loss should coincide with the true distribution of \(Y \).

This leads to proper losses. In our treatment, we will sometimes allow infinite values, so we work with the upper and lower extended real lines, recalling that \(\mathbb{R} = \mathbb{R} \cup \{+\infty\} \) and \(\mathbb{R} = \mathbb{R} \cup \{-\infty\} \).

Definition 14.1. Let \(\mathcal{P} \) be a collection of distributions on \(Y \). A loss \(\ell: \mathcal{P} \times Y \to \mathbb{R} \) is proper if, whenever \(Y \sim p \in \mathcal{P} \),

\[
\mathbb{E}[\ell(P, Y)] \leq \mathbb{E}[\ell(Q, Y)] \quad \text{for all } Q \in \mathcal{P}.
\]

The loss is strictly proper if the preceding inequality is strict whenever \(Q \neq P \).

In much of the literature on prediction, one instead considers proper scoring rules, which are simply negative proper losses, that is, functions \(S: \mathcal{P} \times Y \) satisfying \(S(p, y) = -\ell(p, y) \) for a (strictly) proper loss. We focus on losses for consistency with the convex analytic tools we develop. In addition, frequently we will work with discrete distributions, so that \(Y \) has a probability mass function (p.m.f.), in which case we will use \(p \in \Delta_k := \{p \in \mathbb{R}_+^k \mid \langle 1, p \rangle = 1\} \) to identify the distribution and \(\ell(p, y) \) instead of \(\ell(P, y) \).

Perhaps the two most famous proper losses are the log loss and the squared loss (often termed Brier scoring). For simplicity let us assume that \(Y \in \{1, 2, \ldots, k\} \), and let \(\Delta_k = \{p \in \mathbb{R}_+^k \mid 1^T p = 1\} \) be the probability simplex; we then identify distributions \(P \) on \(Y \) with vectors \(p \in \Delta_k \), and abuse notation to write \(\ell(p, y) \) accordingly and when it is unambiguous. The squared loss is then

\[
\ell_{sq}(p, y) = (p_y - 1)^2 + \sum_{i \neq y} p_i^2 = \|p - e_y\|_2^2,
\]

where \(e_y \) is the \(y \)th standard basis vector, while the log loss (really, the negative logarithm) is

\[
\ell_{\log}(p, y) = -\log p_y.
\]

Both of these are strictly proper. To this propriety, let \(Y \) have p.m.f. \(p \in \Delta_k \), so that \(P(Y = y) = p_y \). Then for the squared loss and any \(q \in \Delta_k \), we have

\[
\mathbb{E}[\ell_{sq}(q, Y)] - \mathbb{E}[\ell_{sq}(p, Y)] = \mathbb{E}[\|q - e_Y\|_2^2] - \mathbb{E}[\|p - e_Y\|_2^2] = \|q\|_2^2 - 2\langle q, p \rangle + 2\langle p, p \rangle = ||q - p||_2^2.
\]

For the log loss, we have

\[
\mathbb{E}[\ell_{\log}(q, Y)] - \mathbb{E}[\ell_{\log}(p, Y)] = -\sum_{y=1}^k p_y \log q_y + \sum_{y=1}^k p_y \log p_y = \sum_{y=1}^k p_y \log \frac{p_y}{q_y} = D_{\text{kl}}(p\|q).
\]

It is immediate that \(q = p \) uniquely minimizes each loss.

That the gap between the expected losses at \(q \) and \(p \) reduced to a particular divergence-like measure—the squared \(\ell_2 \)-distance in the case of the squared loss and the KL-divergence in the
Recall that a function contains proofs of the results we require. Their truthfulness without necessitating deep dives into the appendices, though Chapters A and B require. We hope that by drawing figures representing these results, we can convince the reader of their truthfulness without necessitating deep dives into the appendices, though Chapters A and B contain proofs of the results we require.

14.1.1 A convexity primer

Recall that a function \(f : \mathbb{R}^d \to \mathbb{R} \) is convex if for all \(x, y \in \text{dom} f \) and \(\lambda \in [0, 1] \), we have

\[
 f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),
\]

where for \(x \notin \text{dom} f \) we define \(f(x) = +\infty \). We exclusively work with proper convex functions, so that \(f(x) > -\infty \) for each \(x \). Typically, we work with closed convex \(f \), meaning that the epigraph \(\text{epi} f = \{(x, t) \in \mathbb{R}^d \times \mathbb{R} \mid f(x) \leq t\} \subset \mathbb{R}^{d+1} \) is a closed set; equivalently, \(f \) is lower semi-continuous, so that \(\liminf_{y \to x} f(y) \geq f(x) \). A concave function \(f \) is one for which \(-f \) is convex.

Three main concepts form the basis for our development. The first is the subgradient (see Appendix A.3). For a function \(f : \mathbb{R}^d \to \mathbb{R} \), the subgradient set (also called the subdifferential) at the point \(x \) is

\[
 \partial f(x) := \{s \in \mathbb{R}^d \mid f(y) \geq f(x) + \langle s, y - x \rangle \text{ for all } y \in \mathbb{R}^d\}. \quad (14.1.1)
\]

If \(f \) is a convex function, then at any point \(x \) in the relative interior of its domain, \(\partial f(x) \) is non-empty (Theorem A.23). Moreover, a quick calculation shows that \(x \) minimizes \(f(x) \) if and only if \(0 \in \partial f(x) \), and (a more challenging calculation) that if \(\partial f(x) = \{s\} \) is a singleton, then \(s = \nabla f(x) \) is the usual gradient. We shall in some cases allow subgradients to take values in the extended reals \(\mathbb{R}^k \) and \(\mathbb{R}^k \), which will necessitate some additional care.

The second concept is that the supremum of a collection of convex functions is always convex, that is, if \(f_\alpha \) is convex for each index \(\alpha \in \mathcal{A} \), then

\[
 f(x) := \sup_{\alpha \in \mathcal{A}} f_\alpha(x)
\]

is convex, and \(f \) is closed in \(f_\alpha \) is closed for each \(\alpha \). The closure of \(f \) is immediate because \(\text{epi} f = \bigcap \text{epi} f_\alpha \), and convexity follows because

\[
 f(\lambda x + (1 - \lambda)y) \leq \sup_{\alpha \in \mathcal{A}} \{\lambda f_\alpha(x) + (1 - \lambda)f_\alpha(y)\} \leq \lambda \sup_{\alpha \in \mathcal{A}} f_\alpha(x) + (1 - \lambda) \sup_{\alpha \in \mathcal{A}} f_\alpha(y).
\]

One convenient thing about such suprema is that subdifferentiability of individual \(f_\alpha \) implies that of \(f \) when the supremum is attained. Indeed, let \(\mathcal{A}(x) = \{\alpha \mid f_\alpha(x) = f(x)\} \). Then

\[
 \partial f(x) \subset \text{Conv} \{s_\alpha \in \partial f_\alpha(x) \mid \alpha \in \mathcal{A}(x)\} \quad (14.1.2)
\]

because if \(s = \sum_{\alpha \in \mathcal{A}(x)} \lambda_\alpha s_\alpha \) for some \(\lambda_\alpha \geq 0 \) with \(\sum_\alpha \lambda_\alpha = 1 \), then

\[
 f(y) \geq \sum_{\alpha \in \mathcal{A}(x)} \lambda_\alpha f_\alpha(y) \geq \sum_{\alpha \in \mathcal{A}(x)} \lambda_\alpha [f_\alpha(x) + \langle s_\alpha, y - x \rangle] = f(x) + \langle s, y - x \rangle.
\]
Lastly, we revisit a special duality relationship that all closed convex functions f enjoy (see Appendix B.2 for a fuller treatment). The Fenchel-Legendre conjugate or convex conjugate of a function f is

$$f^*(s) := \sup_x \{\langle s, x \rangle - f(x) \}.$$ (14.1.3)

The function f^* is always convex, as it is the supremum of linear functions of s, and for any $x^*(s)$ maximizing $\langle s, x \rangle - f(x)$, we have that $x^*(s) \in \partial f^*(s)$ by the relationship (14.1.2); by a bit more work, we see that if $s \in \partial f(x)$, then $0 \in \partial_x \{f(x) - \langle s, x \rangle \}$ and so x maximizes $\langle s, x \rangle - f(x)$. Flipping this argument around by replacing f with f^* and x with s, when $s \in \partial f(x)$ and x maximizes $\langle s, x \rangle - f^*(s)$ in s, then $x \in \partial f^*(s)$ and so s maximizes $\langle s, x \rangle - f^*(s)$ in s. From this development comes the biconjugate, that is, $f^{**}(x) = \sup_s \{\langle s, x \rangle - f^*(s) \}$, or $f^{**} = (f^*)^*$. We view f^{**} as the supremum of all linear functionals underestimating f, because $\langle s, x \rangle - f^*(s) \leq f(x)$ for all s, and if $\partial f(x)$ is non-empty, then the preceding argument guarantees that $\langle s, x \rangle - f^*(s) = f(x)$ for $s \in \partial f(x)$. Theorem B.13 makes this rigorous, and shows that if f is a closed convex function, then

$$f(x) = f^{**}(x) = \sup_s \{\langle s, x \rangle - f^*(s) \}$$

for all x. In particular, by passing through the conjugate, we can recover the function f directly whenever f is closed convex.

What is more, we have the Fenchel-Young inequality (see Proposition B.14), which is that

$$f^*(s) + f(x) \geq \langle s, x \rangle \quad \text{for all } s, x,$$

and if f is a closed convex function, then equality holds if and only if

$$s \in \partial f(x) \quad \text{or} \quad x \in \partial f^*(s),$$ (14.1.4)

which are equivalent. Thus we obtain the identities

$$\partial f^* = (\partial f)^{-1} \quad \text{and} \quad \partial f = (\partial f^*)^{-1},$$

and we have the characterization

$$\partial f^*(s) = \arg\min_x \{ -\langle s, x \rangle + f(x) \} = \arg\max_x \{ \langle s, x \rangle - f(x) \}.$$

JCD Comment: Put figures here!

Figure 14.1:

14.1.2 From a proper loss to an entropy

The key construction underlying all of our proper losses is the optimal value of the expected loss. To any loss ℓ acting on a family \mathcal{P} of distributions, we construct the generalized entropy associated with the loss ℓ by

$$H_{\ell}(Y) := \inf_{Q \in \mathcal{P}} \mathbb{E}[\ell(Q, Y)],$$ (14.1.5)
where we have paralleled the typical notation $H(Y)$ for the Shannon entropy. In many cases, it will be more convenient to write this entropy directly as a function of the distribution P of Y, in which case we write

$$H_{\ell}(P) = \inf_{Q \in \mathcal{P}} \mathbb{E}_P[\ell(Q, Y)],$$

(14.1.6)

where Y follows the distribution P; we will use whichever is more convenient. As the notation (14.1.6) makes clear, $H_{\ell}(P)$ is the infimum of a collection of linear functions of the form $P \mapsto \mathbb{E}_P[\ell(Q, Y)]$, one for each $Q \in \mathcal{P}$, so that necessarily $H_{\ell}(P)$ is concave in P. The remainder of this chapter, and several parts of the coming chapters, highlights the ways that this particular quantity informs the properties of the loss ℓ, and more generally, how we may always view any concave function H on a family of distributions \mathcal{P} as a generalized entropy function.

In Section 14.2, we show how such entropy-type functionals map back to losses themselves, so for now we content ourselves with a few examples to see why we call these entropies. Let us temporarily have finite support $\{1, \ldots, k\}$ with $\mathcal{P} = \Delta_k = \{ p \in \mathbb{R}_+^k \mid \langle 1, p \rangle = 1 \}$ the collection of probability mass functions on elements $\{1, \ldots, k\}$. Consider the log loss $\ell(p, y) = -\log p_y$. Then

$$H_{\ell}(p) = \inf_{q \in \Delta_k} \mathbb{E}_p[-\log q_Y] = \inf_{q \in \Delta_k} \left\{ -\sum_{y=1}^k p_y \log \frac{q_y}{p_y} - \sum_{y=1}^k p_y \log p_y \right\} = -\sum_{y=1}^k p_y \log p_y,$$

the classical Shannon entropy. If instead we take the 0-1 loss, that is, $\ell(p, y) = 1$ if $p_y \leq p_j$ for some $j \neq y$ and $\ell(p, y) = 0$ otherwise, then

$$H_{\ell}(p) = \inf_{q \in \Delta_k} \mathbb{E}_p[\ell(q, y)] = 1 - \max_y p_y.$$

So $H_{\ell}(e_y) = 0$ for any standard basis vector, that is, distribution with all mass on a single point y, and $H_{\ell}(p) > 0$ otherwise. Moreover, the vector $p = 1/k$ maximizes $H_{\ell}(p)$, with $H_{\ell}(1/k) = \frac{k-1}{k}$. This highlights how these entropy functions are (essentially) uncertainty measures, giving rise to “maximally uncertain” distributions p, which are typically uniform on Y.

14.1.3 The “information” in an experiment

JCD Comment: Here, talk about information in a statistical problem as the gap between entropies. Also define condition $H_{\ell}(Y \mid X)$, etc. Give examples. This replaces what would be in the sequel part.

14.2 Characterizing proper losses and Bregman divergences

With the definition (14.1.5) of the fundamental generalized entropy, we can now proceed to a characterization of all proper losses. We do this in three settings: in the first (Section 14.2.1), we give a representation for proper losses when \mathcal{Y} is finite and discrete, so we can identify it with $\mathcal{Y} = \{1, \ldots, k\}$ and distributions P on \mathcal{Y} with probability mass functions $p \in \Delta_k$. We then demonstrate a full characterization of propriety (Section 14.2.2), which requires measure-theoretic tools and can be skipped. As the final approach to considering propriety, we modify the results for finite \mathcal{Y} to consider cases in which Y is vector-valued and $\mathcal{Y} \subset \mathbb{R}^k$ is contained in a compact set. This case transparently generalizes the finite representations of Section 14.2.1 and will form the basis of our development going forward, as it allows us to more directly apply to tools of convexity and analysis.
14.2.1 Characterizing proper losses for Y taking finitely many values

Here, we present the Savage representation of proper losses, which characterizes all proper losses using the entropies (14.1.5) or, equivalently, (14.1.6). To avoid pathological cases, we work with regular losses, which always assign a finite value to the correct predicted distribution.

Definition 14.2. Let \mathcal{P} be a family of distributions on \mathcal{Y}. The loss $\ell : \mathcal{P} \times \mathcal{Y} \rightarrow \mathbb{R}$ is regular for the family \mathcal{P} if $\mathbb{E}_P[\ell(P,Y)]$ is real valued for all $P \in \mathcal{P}$.

We do allow losses to attain infinite values, for example, we can allow $\ell(Q,y) = +\infty$ if Q assigns probability 0 to an event y, as in the case of the logarithmic loss. The following theorem then provides the promised representation of proper losses, and additionally, highlights the centrality of the generalized entropy functionals.

Theorem 14.1 (Proper scoring rules: the finite case). Let $\mathcal{Y} = \{1, \ldots, k\}$ be finite and $\mathcal{P} \subset \Delta_k$ a convex collection of distributions on \mathcal{Y}. Then the following are true.

(i) If the loss $\ell : \mathcal{P} \times \mathcal{Y} \rightarrow \mathbb{R}$ satisfies the representation

$$\ell(p,y) = -h(p) - \langle \nabla h(p), e_y - p \rangle$$

(14.2.1)

for a subdifferentiable convex function $h : \mathcal{P} \rightarrow \mathbb{R}$, where $\nabla h(p) \in \partial h(p)$, then ℓ is proper.

(ii) Conversely, if ℓ is proper, then choosing h to be the negative generalized entropy

$$h_\ell(p) := -H_\ell(p) = \sup_q \{-\mathbb{E}_p[\ell(q,Y)] \mid q \in \mathcal{P}\}$$

satisfies equality (14.2.1).

Additionally, if ℓ is real valued, then $\nabla h(p) \in \mathbb{R}^k$ in the representation (14.2.1). If $\ell(p,y)$ can take the value $+\infty$, then we allow $\nabla h(p) \in \mathbb{R}^k$ when $p \notin \text{relint} \Delta_k$. The loss is strictly proper if and only if the convex h is strictly convex.

Proof If ℓ has the given representation and $\mathbb{P}(Y = y) = p_y$, then we have

$$\mathbb{E}[\ell(q,Y)] = -h(q) - \langle \nabla h(q), p - q \rangle \geq -h(p) = \mathbb{E}[\ell(p,Y)]$$

by the first-order convexity property of convex functions (that is, the definition (14.1.1)) of a subdifferential).

Conversely, suppose that the loss is proper, and let $h(p) = h_\ell(p)$. Clearly h is convex, as it is the supremum of linear functionals of p. Moreover, propriety of ℓ guarantees that

$$h(p) \geq -\mathbb{E}[\ell(q,Y)] = h(q) + \sum_{y=1}^{k} -\ell(q,y)(p_k - q_k)$$

That is, for each $q \in \mathcal{P}$ the vector $[-\ell(q,y)]_{y=1}^{k} \in \partial h(q)$, so h is subdifferentiable. Choosing the vector $\nabla h(p) = [-\ell(p,y)]_{y=1}^{k}$, we have

$$\ell(p,y) = -h(p) + \ell(p,y) + h(p) = -h(p) - \sum_{i=1}^{k} p_i \ell(p,i) + \ell(p,y) = -h(p) - \langle \nabla h(p), e_y - p \rangle$$
as desired. Note that \(\ell(p, y) < \infty \) except when \(p_y = 0 \), in which case our definition \(\nabla h(p) = [-\ell(p, y)]_{y=1}^{k} \) remains sensible as \(-(\nabla h(p), e_y - p) = +\infty \).

For the strict inequalities and strict propriety, trace the argument replacing inequalities with strict inequalities for \(q \neq p \) and use Corollary A.22 or B.9.

We give a few examples that show how to recover standard losses. For each, we begin with a convex function \(h \), then exhibit the associated proper or strictly proper scoring rule. One thing to notice in this representation is that, typically, we do not expect to achieve a loss function convex in \(p \), which is a weakness of the representation (14.2.1). In Section 14.3, however, we will show how to convert suitable proper losses into surrogates that are convex in their arguments and which, after a particular transformation based on convex duality, are proper and yield the correct distributional predictions. We defer this, however, and instead provide a few examples.

Example 14.2 (Logarithmic losses): Consider the negative entropy \(h(p) = \sum_{y=1}^{k} p_y \log p_y \).

We have \(\frac{\partial}{\partial p_y} h(p) = 1 + \log p_y \in [-\infty, 1] \), and

\[
\ell_{\log}(p, y) = -\sum_{j=1}^{k} p_j \log p_j + \sum_{j=1}^{k} p_y(1 + \log p_j) - (1 + \log p_y) = -\log p_y,
\]

yielding the log loss. Note that for this case, we do require that the gradients \(\nabla h(p) \) take values in the (downward) extended reals \(\mathbb{R}^k \).

Example 14.3 (Brier scores and squared error): When we have the squared error \(\ell_{\text{sq}}(p, y) = \| p - e_y \|^2_2 \), we can directly check that \(h(p) = \| p \|^2_2 \) gives the loss. Indeed,

\[
-\| p \|^2_2 - 2\langle p, e_y - p \rangle = \| p \|^2_2 - 2\langle p, e_y \rangle + 1 - 1 = \| p - e_y \|^2_2 - 1.
\]

So aside from an additive constant, we have the desired result.

More esoteric examples exist in the literature, such as the spherical score arising from \(h(p) = \| p \|^2_2 \) (note the lack of a square).

Example 14.4 (Spherical scores): Let \(h(p) = \| p \|^2_2 \), which is strictly convex on \(\Delta_k \). Then

\[
\nabla h(p) = p/\| p \|^2_2
\]

and \(\ell(p, y) = -\| p \|^2_2 - \frac{1}{\| p \|^2_2} \langle p, e_y - p \rangle = -p_y/\| p \|^2_2 \), which is strictly proper but does not retain convexity.

Bregman divergences

A key aspect of this representation is that associated to any proper loss is a particular divergence called the Bregman divergence. For a function function \(h : \mathbb{R}^k \to \mathbb{R} \), the Bregman divergence associated with \(h \) is

\[
D_h(u, v) := h(u) - h(v) - \langle \nabla h(v), u - v \rangle.
\]

(14.2.2)

In typical definitions of the Bregman divergence, one requires that \(h \) be differentiable; here, we allow non-differentiable \(h \) so long as the choice \(\nabla h(v) \in \partial h(v) \) is given. In particular, we see that

\[
D_h(u, v) \geq 0
\]
for all u and v, and moreover, if h is strictly convex
\[D_h(u, v) > 0 \quad \text{whenever} \quad u \neq v. \]
(See, e.g., Corollaries A.22 and B.9 in the appendices.)

Familiar examples include the squared Euclidean norm $h(u) = \frac{1}{2} \|u\|^2$, which by inspection gives
\[D_h(u, v) = \frac{1}{2} \|u - v\|^2, \]
and the negative entropies $h(u) = \sum_{j=1}^k u_j \log u_j$, which implicitly encodes the constraint that $u > 0$. This gives
\[D_h(u, v) = \sum_{j=1}^k u_j \log u_j - \sum_{j=1}^k v_j \log v_j - \sum_{j=1}^k (1 + \log v_j)(u_j - v_j) = \sum_{j=1}^k u_j \log \frac{u_j}{v_j} + 1^T(u - v). \]

If $u, v \in \Delta_k$, then evidently $D_h(u, v) = D_{kl}(u\|v)$ because $1^T u = 1^T v = 1$, where we identify u and v with probability mass functions.

Continuing this identification of distributions on \mathcal{Y} with elements $p \in \Delta_k$ in the probability simplex, we can reconsider the gaps between a loss evaluated at a true distribution and an alternative q. In this case, the representation Theorem 14.1 provides allows us to connect proper losses with Bregman divergences immediately. Indeed, let $h : \Delta_k \to \mathbb{R}$ be a convex function and loss ℓ be the associated proper loss, with $\ell(p, y) = -h(p) - \langle \nabla h(p), e_y - p \rangle$. Now, suppose that Y has p.m.f. p; then for any $q \in \Delta_k$, the gap
\[\mathbb{E}_p[\ell(q, Y)] - \mathbb{E}_q[\ell(p, Y)] = h(p) - h(q) - \sum_{y=1}^k p_y \langle \nabla h(q), e_y - q \rangle = h(p) - h(q) - \langle \nabla h(q), p - q \rangle = D_h(p, q). \]

We record this as a corollary to Theorem 14.1, highlighting the links between propriety, Bregman divergences, and proper loss functions.

Corollary 14.5. Let the conditions of Theorem 14.1 hold. Then ℓ is (strictly) proper if and only if there exists a (strictly) convex $h : \Delta_k \to \mathbb{R}$ for which
\[\mathbb{E}_p[\ell(q, Y)] - \mathbb{E}_p[\ell(p, Y)] = D_h(p, q) \]
for all $p, q \in \Delta_k$.

14.2.2 General proper losses

The general case of Theorem 14.1 requires measure theory to properly define, but the result holds in substantially more generality and does not require a particularly more sophisticated proof. For a (convex) function on a family of distributions \mathcal{P} on a set \mathcal{Y} and a function $h : \mathcal{P} \to \mathbb{R}$, we say $h' : \mathcal{P} \to \mathbb{R}$ is a subderivative of h at $P \in \mathcal{P}$ whenever
\[h(Q) \geq h(P) + \int_{\mathcal{Y}} h'(P, y)(dQ(y) - dP(y)) \quad \text{for all} \quad Q \in \mathcal{P}. \quad (14.2.3) \]

When \mathcal{Y} is discrete and we can identify \mathcal{P} with the simplex Δ_k, the inequality (14.2.3) is simply the typical subgradient inequality (14.1.1) that $h(q) \geq h(p) + \langle \nabla h(p), q - p \rangle$ for $p, q \in \Delta_k$, where $\nabla h(p) \in \partial h(p)$. We then have the following generalization of Theorem 14.1.
Theorem 14.6. Let \mathcal{P} be a convex collection of distributions on \mathcal{Y}. Then the following are true.

(i) If the loss $\ell : \mathcal{P} \times \mathcal{Y} \to \mathbb{R}$ satisfies the representation
\[
\ell(P, y_0) = -h(P) - h'(P, y_0) + \int h'(P, y)dP(y), \quad \text{for all } y_0 \in \mathcal{Y}, \tag{14.2.4}
\]
where $h'(P, \cdot) : \mathcal{Y} \to \mathbb{R}$ is a subderivative of h at $P \in \mathcal{P}$, then it is proper.

(ii) Conversely, if ℓ is proper, then choosing h to be the negative generalized entropy $h_\ell(P) = -H_\ell(P) = \sup\{-E_P[\ell(Q, Y)] \mid Q \in \mathcal{P}\}$ satisfies equality (14.2.4).

The loss is strictly proper if and only if the convex h is strictly convex.

Proof If ℓ has the representation (14.2.4), then we have
\[
-E_P[\ell(P, Y)] = h(P) \geq h(Q) + \int h'(Q, y)(dP(y) - dQ(y)) = -E_P[\ell(Q, Y)]
\]
for any $Q \in \mathcal{P}$ by the definition (14.2.3) of a subderivative. Rewriting, we have $E_P[\ell(P, Y)] \leq E_P[\ell(Q, Y)]$ and ℓ is proper.

Conversely, if ℓ is proper and regular, then as in the proof of Theorem 14.1 we define
\[
h(P) := \sup_{Q \in \mathcal{P}} -E_P[\ell(Q, Y)] = -E_P[\ell(P, Y)],
\]
which is the supremum of linear functionals of P and hence convex. If we let $h'(P, y) = -\ell(P, y) \in \mathbb{R}$ for $P \in \mathcal{P}$, then
\[
h(P) \geq -E_P[\ell(Q, Y)] = h(Q) + EE_Q[\ell(Q, Y)] - E_P[\ell(Q, Y)] = h(Q) + \int h'(P, y)(dP(y) - dQ(y))
\]
by propriety, so that evidently $h'(P, y)$ is a subderivative of h at $P \in \mathcal{P}$. That $L(P, y_0) = -h(P) - h'(P, y_0) + \int h'(P, y)dP(y)$ is then immediate.

The arguments for strict propriety/convexity are similar. \hfill \qed

14.2.3 Proper losses and vector-valued Y

The final variant of propriety we consider generalizes that when \mathcal{Y} is finite and identified with $\{1, \ldots, k\}$ in Section 14.2.1. Now, we assume that Y is vector-valued, with $\mathcal{Y} \subset \mathbb{R}^k$, and assume the convex hull
\[
\text{Conv}(\mathcal{Y}) = \{E_P[Y] \mid P \text{ is a distribution on } \mathcal{Y}\}
\]
is bounded. (Typically, it will also be compact, though this will not be central to our development, and pathological cases, such as $\mathcal{Y} = \{1/n\}_{n \in \mathbb{N}}$, exist.) An example showing how to use this representation for multinomial $Y \in \{1, \ldots, k\}$ may be clarifying.

Example 14.7 (Multinomial Y as vectors): If Y is a multinomial taking values in a discrete set of size k, we can instead identify Y with the first k standard basis vectors e_1, \ldots, e_k. Then $p = E[Y] \in \Delta_k$ is the p.m.f. of Y, and $\text{Conv}(\mathcal{Y}) = \Delta_k$. \hfill \diamond
Example 14.8 (Binary Y as a scalar): When $Y \in \{0, 1\}$ is a Bernoulli random variable, we identify Y with itself, so that $p = \mathbb{E}[Y] = \mathbb{P}(Y = 1) \in [0, 1]$ and $\text{Conv} (\mathcal{Y}) = [0, 1]$. ◦

Example 14.9 (Ordinal Y as a scalar): Consider a rating problem of predicting the rating Y of a movie from 1 to 5 stars. In this case, Y takes values $\{1, \ldots, 5\} \subset \mathbb{R}$, but the ordering between the elements is important; it is unnatural to treat Y as a multinomial. More generally, Y may take values in $\{y_1, \ldots, y_k\} \subset \mathbb{R}$, where $y_1 < \cdots < y_k$. As in the binary case, we identify Y with its scalar value, so that $\mathbb{E}[Y] \in [y_1, y_k]$ and $\text{Conv} (\mathcal{Y}) = [y_1, y_k]$. ◦

In this vector-valued Y case, instead of prediction distributions P, the goal is to predict elements c of $\text{Conv}(\mathcal{Y}) = \{\mathbb{E}_P[Y] \mid P \in \mathcal{P}\}$, where \mathcal{P} is the collection of distributions on Y. Our goal is to reward predictions of the correct expectation, leading to the following definition.

Definition 14.3. Let $C = \text{cl Conv}(\mathcal{Y})$ be a convex set. Then $\ell : C \times \mathcal{Y} \to \mathbb{R}$ is proper if

$$\mathbb{E}_P[\ell(c, Y)] \geq \mathbb{E}_P[\ell(\mathbb{E}_P[Y], Y)] \quad \text{for all } c \in C,$$

and strictly proper if the inequality is strict whenever $c \neq \mathbb{E}_P[Y]$.

Definition 14.3 generalizes Definition 14.2 in the multinomial case, where \mathcal{Y} is a discrete set that we may identify with the basis vectors $\{e_1, \ldots, e_k\}$, as Example 14.7 makes clear.

With this definition, we can extend Theorem 14.1 to a more general case, where as usual we say that ℓ is regular if $\mathbb{E}_P[\ell(\mathbb{E}_P[Y], Y)] < \infty$ for all distributions P on \mathcal{Y}.

Theorem 14.10. Let $\mathcal{Y} \subset \mathbb{R}^k$ be finite, \mathcal{P} be the collection of distributions on \mathcal{Y}, and $C = \text{Conv}(\mathcal{Y}) = \{\mathbb{E}_P[Y] \mid P \in \mathcal{P}\}$. A regular loss $\ell : C \times \mathcal{Y} \to \mathbb{R}$ is proper if and only if there exists a convex $h : C \to \mathbb{R}$ such that

$$\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle$$

for some subgradient $\nabla h(c) \in \partial h(c)$. If $\ell : C \times \mathcal{Y} \to \mathbb{R}$, then $\partial h(c) \subset \mathbb{R}^k$. In the case that $c \in \text{relint} C$, we have $\partial h(c) \subset \mathbb{R}^k$, while for $c \in \text{bd} C$ we allow the extended reals. The loss is strictly proper if and only if the associated h is strictly convex.

With this theorem, we have an essentially complete analogy with Theorem 14.1. There are subtleties in the proof because the mapping from probabilities P to $\mathbb{E}_P[Y]$ can be many-to-one, necessitating some care in the calculations, and making infinite losses somewhat challenging. A few examples centered around ordinal regression illustrate the scenarios.

Example 14.11 (Ordinal regression, Example 14.9 continued): Let $Y \in \{0, 1, \ldots, k\}$ be a value to be predicted, where the ordering on Y is important, as in ratings of items. In this case, the set $C = \text{Conv}(\mathcal{Y}) = [0, k]$, and any strictly convex loss with domain $[0, k]$ gives rise to a proper loss via the construction $\ell_h(c, y) = -h(c) - h'(c)(y - c)$. First, we take $h(c) = \frac{1}{2} c^2$. This gives rise to a (modified) squared error

$$\ell_h(c, y) = \frac{1}{2} (c - y)^2 - \frac{1}{2} y^2,$$

which is strictly convex and proper. Other choices of h are possible. One natural choice is a variant of the negative binary entropy, and we define

$$h(c) = (k - c) \log(k - c) + c \log c,$$
which is convex in $c \in [0, k]$, with $h(c) = +\infty$ for $c > k$ or $c < 0$, while $h(0) = h(k) = k \log k$. We have $h'(c) = \log \frac{c}{E-c}$, and so
\[\ell_h(c, y) = (y - k) \log(k - c), \]
which is convex in c for all $y \in \{0, \ldots, k\}$. Here, however, note the importance of allowing infinite values in the loss ℓ. ◇

Proof One direction is, as in the previous cases, straightforward. Let ℓ have the given representation. Then
\[E_p[\ell(c, Y)] = -h(c) - \langle \nabla h(c), E_P[Y] - c \rangle \geq -h(E_P[Y]) = E_P[\ell(E_P[Y], Y)], \]
and the inequality is strict if h is strictly convex.

The converse direction (from a proper loss to function h) is more subtle. We first give the argument in the case that the losses ℓ are finite-valued, so that $\ell(c, y) < \infty$ for each $c \in C$ and $y \in Y$, deferring the proof of the general case to Section 14.5.1 as it yields little additional intuition. Let $Y = \{y_1, \ldots, y_m\} \subset \mathbb{R}^k$, and assume w.l.o.g. that the matrix $A = [y_1 \cdots y_m]$ with columns y_j has rank k (otherwise, we simply work in a subspace). We may identify P with the probability simplex Δ_m, and we have $Ap = \sum_{i=1}^m p_i y_i$ for $p \in \mathbb{R}^m$ is a surjective mapping. For $c \in C$, define $A^{-1}(c) = \{ p \in \Delta_m \mid Ap = c \}$, that is, as those p.m.f.s on Y such that $E_P[Y] = c$. Now define
\[h(c) := \inf_p \sup_{\alpha \in A^{-1}(c)} \{ -E_p[\ell(\alpha, Y)] \} \overset{(\ast)}{=} \inf_{p \in \Delta_m} \{ -E_p[\ell(c, Y)] \mid Ap = c \}, \]
where the equality (\ast) follows because ℓ is proper. The function h is convex, as it is the partial infimum of the closed convex function $p \mapsto -E_p[\ell(c, Y)] + \mathbb{I}_{\Delta_m}(p)$, where we recall $\mathbb{I}_{\Delta_m}(p) = 0$ if $p \in \Delta_m$ and $+\infty$ otherwise (see Proposition A.30).

We compute $\partial h(c)$ directly now. The infimum over p in the definition of $h(c)$ is attained, as Δ_m is compact and $g(p) := -E_p[\ell(c, Y)]$ is necessarily continuous in p satisfying $Ap = c$, because regularity of the loss guarantees $\ell(c, y_i) \in \mathbb{R}$ whenever $p_i > 0$ is feasible in the constraint $Ap = c$. Moreover, it is immediate that
\[\nabla g(p) = \begin{bmatrix} -L(c, y_1) \\ \vdots \\ -L(c, y_m) \end{bmatrix} \in \mathbb{R}^m. \]
Let $p^*(c)$ be any p attaining the infimum. By Proposition A.46 on the subgradients of partial minimization, we thus obtain
\[\partial h(c) = \left\{ s \in \mathbb{R}^k \mid A^T s = \nabla g(p^*(c)) \right\} = \left\{ s \in \mathbb{R}^k \mid y_i^T s = -L(c, y_i) \text{ for } i = 1, \ldots, m \right\}, \]
and moreover, this set is necessarily non-empty for all $c \in \text{relint } C = \{ Ap \mid p \succ 0, p \in \Delta_m \}$. Using this equality, we have
\[\ell(c, y) = -h(c) + h(c) + \ell(c, y) = -h(c) + E_{p^*(c)}[-\ell(c, Y)] + \ell(c, y) \]
\[= -h(c) + \sum_{i=1}^m p_i^*(c)y_i^T s - y^T s \]
\[= -h(c) + \langle s, E_{p^*(c)}[Y] - y \rangle = -h(c) - \langle s, y - c \rangle \]
for any \(s \in \partial h(c) \), as \(\mathbb{E}_p[Y] = c \) for all \(p \) satisfying \(Ap = c \).

Lastly, to obtain strict convexity of \(h \), note that if \(\mathbb{E}_p[Y] = c \), then we can use the Bregman representation
\[
\mathbb{E}_p[\ell(c', Y)] - \mathbb{E}_p[\ell(c, Y)] = -h(c') - \langle \nabla h(c'), c - c' \rangle + h(c) = D_h(c, c')
\]
which is positive whenever \(c \neq c' \) if and only if \(h \) is strictly convex.

14.3 Link functions, convex losses, and arbitrary predictions

It is frequently the case that, when we fit models, it is inconvenient to directly model or predict probabilities, that is, to minimize over probabilistic predictions. Instead, we often wish to fit some real-valued prediction and then transform it into a probabilistic prediction. This is perhaps most familiar from binary and multiclass logistic regression, where a link function transforms real-valued predictions into probabilistic predictions. For the binary logistic regression case with \(Y \in \{-1, 1\} \), we assume that we predict a score \(s \in \mathbb{R} \), where \(s > 0 \) indicates a prediction that \(Y \) is more likely to be 1 and \(s < 0 \) that it is more likely negative. The implied (modelled) probability that \(Y = y \) is then
\[
p(y \mid s) = \frac{1}{1 + \exp(-ys)} \text{ for } y \in \{-1, 1\}.
\]
Similarly, for \(k \)-class classification problems, when using multiclass logistic regression, we predict a score vector \(s \in \mathbb{R}^k \), where \(s_y \) indicates a score associated to one of the \(k \) potential class labels \(y \); this then implies the probabilities
\[
p(y \mid s) = \frac{\exp(s_y)}{\sum_{i=1}^k \exp(s_i)} = \frac{1}{1 + \sum_{i \neq y} \exp(s_i - s_y)},
\]
where we clearly have \(\sum_y p(y \mid s) = 1 \).

In binary and logistic regression, instead of directly minimizing negative log probabilities of error over the probability simplex (though one does this implicitly), instead we use surrogate logistic losses whose arguments can range over all of \(\mathbb{R} \) or \(\mathbb{R}^k \). In the case of binary logistic regression with \(y \in \{-1, 1\} \), this is
\[
\varphi(s, y) = \log(1 + \exp(-sy)),
\]
while in the multiclass case we use the multiclass logistic loss
\[
\varphi(s, y) = -s_y + \log \left(\sum_{i=1}^k \exp(s_i) \right) = \log \left(1 + \sum_{i \neq y} \exp(s_i - s_y) \right).
\]
Note that for each of these, we have a direct relationship between the probabilistic predictions and derivatives of \(\varphi \). In the binary logistic regression case, we have
\[
p(y \mid s) = 1 + \frac{\partial}{\partial s} \varphi(s, y) = 1 - \frac{1}{1 + \exp(ys)} = \frac{1}{1 + \exp(-ys)},
\]
while in the multiclass case we similarly have
\[
p(y \mid s) = 1 + \frac{\partial}{\partial s_y} \varphi(s, y) = \frac{\exp(s_y)}{\sum_{i=1}^k \exp(s_i)}.
\]
14.3.1 Convex conjugate linkages

These dualities turn out to hold in substantially more generality, and they are the key to transforming proper losses (as applied on probabilities) into proper surrogate losses that apply directly to real-valued scores and which are convex in their arguments, allowing us to bring the tools of convex optimization to bear on actually fitting predictive models. We work in the general setting of Section 14.2.3 of losses for vector-valued y where $Y \subset \mathbb{R}^k$, so that instead of predicting probability distributions on Y itself we predict elements c of the set $\{E_P[Y]\} = \text{Conv}(Y)$, and let ℓ be a strictly proper loss. Theorems 14.1 and 14.10 demonstrate that if the loss ℓ for which Y is proper, there exists a (negative) generalized entropy, which in the case of Theorem 14.1 is

$$\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle,$$

for which

The key will be to consider what we term convex-conjugate-linkages, or conjugate linkages for short. Recall the convex conjugate (14.1.3) and the duality relationships (14.1.4) from the Fenchel-Young inequality we present in the convexity primer in Section 14.1.1. The negative generalized entropy h is convex, and so its conjugate $h^*(s) = \sup_c \{\langle s, c \rangle - h(c)\}$ and associated duality properties will form the basis of our transformations. We first give a somewhat heuristic presentation, as the intuition is important (but details to make things precise can be a bit tedious). Essentially, we require that h^* and h are continuously differentiable, in which case we have

$$\nabla h(c) = s \text{ if and only if } \nabla h^*(s) = c \text{ if and only if } h^*(s) + h(c) = \langle s, c \rangle$$

by the Fenchel-Young inequalities (14.1.4). That is, the gradient ∇h^* of the conjugate transforms a score vector $s \in \mathbb{R}^k$ into elements c to predict Y. That is, we transform s into a prediction c via the conjugate link function

$$\text{pred}_h(s) = \arg\max_c \{\langle s, c \rangle - h(c)\} = \nabla h^*(s) = (\nabla h)^{-1}(s), \quad (14.3.1)$$

which finds the c that best trades having maximal "entropy" $-h(c)$, or uncertainty, with alignment with the scores $\langle s, c \rangle$.

With this, it is then natural to consider the function substituting the prediction $c = \text{pred}_h(s)$ into $\ell(c, y)$, and so we define define

$$\varphi(s, y) := \ell(\text{pred}_h(s), y). \quad (14.3.2)$$

Then it is immediate that if $c = \text{pred}_h(s) = \nabla h^*(s)$, we have $s = \nabla h(c)$ by construction (or the Fenchel-Young inequality (14.1.4)), and so $h(c) = \langle s, c \rangle - h^*(s)$ for this particular pair (s, c) and $\nabla h(c) = \nabla h(\nabla h^*(s)) = s$, because ∇h and ∇h^* are inverses. Substituting, we obtain

$$\varphi(s, y) = -h(\text{pred}_h(s)) - \langle \nabla h(\text{pred}_h(s)), y - \text{pred}_h(s) \rangle$$

$$= -h(c) - \langle s, y - c \rangle = h^*(s) - \langle s, c \rangle - \langle s, y - c \rangle,$$

that is,

$$\varphi(s, y) = h^*(s) - \langle s, y \rangle. \quad (14.3.3)$$

The surrogate loss (14.3.3) constructed from to h is the key transformation of the loss ℓ into a convex loss, and (no matter the properties of ℓ) is always convex.

All that remains is to give more precise conditions under which the prediction (14.3.1) is always unique and exists for all possible score vectors $s \in \mathbb{R}^k$. To that end, we make the following definition.
Definition 14.4. Let \(h : \mathbb{R}^k \to \mathbb{R} \). Then \(h \) is a Legendre negative entropy if it is strictly convex, continuously differentiable, and

\[
\| \nabla h(c) \| \to \infty \quad \text{if either} \quad \begin{cases} c \to \text{bd dom } h & \text{or} \\ \| c \| \to \infty \end{cases}
\]

(14.3.4)

This is precisely the condition we require to make each step in the development of the surrogate (14.3.3) airtight; we state this as a corollary to Theorem B.21 in the appendices, is the following.

Corollary 14.12. Let \(h \) be a Legendre negative entropy. Then the conjugate link prediction (14.3.1) is unique and exists for all \(s \in \mathbb{R}^k \). In particular, the conjugate \(h^* \) is strictly convex, continuously differentiable, satisfies \(\text{dom } h^* = \mathbb{R}^k \), and \(\nabla h^* = (\nabla h)^{-1} \).

With this corollary in place, we can then give a theorem showing the equivalence of the strictly proper loss \(\ell \) and its surrogate.

Theorem 14.13. Let \(\ell : C \times Y \to \mathbb{R} \) be the strictly proper loss associated with the Legendre negative entropy \(h \). Then

\[
\ell(\text{pred}_h(s), y) = \varphi(s, y) := h^*(s) - \langle s, y \rangle.
\]

Moreover, the convex surrogate \(\varphi \) satisfies the consistency that if

\[
\mathbb{E}[\varphi(s_n, Y)] \to \inf_s \mathbb{E}[\varphi(s, Y)]
\]

then \(c_n = \text{pred}_h(s_n) \) satisfies

\[
\mathbb{E}[\ell(c_n, Y)] \to \inf_c \mathbb{E}[\ell(c, Y)].
\]

Proof. The first equality we have already demonstrated. For the minimization claim, we note that if \(c = \mathbb{E}[Y] \), then \(\mathbb{E}[\varphi(s, Y)] = h^*(s) - \langle c, s \rangle \) and \(\inf_s \{ h^*(s) - \langle c, s \rangle \} = -h(c) \). Strict propriety of \(\ell \) then gives \(\inf_c \mathbb{E}[\ell(c', Y)] = -h(c) \).

Said differently, the surrogate \(\varphi \) is consistent with the loss \(\ell \) and (strictly) proper, in that if \(s \) minimizes \(\mathbb{E}[\varphi(s, Y)] \), then \(\text{pred}_h(s) \) is the minimizer of \(\mathbb{E}[\ell(c, Y)] \). The statement in terms of limits is necessary, however, as simple examples show, because with some link functions it is in fact impossible to achieve the extreme points of \(\text{Conv}(Y) \), as in logistic regression. We provide a few example applications (and non-applications) of Theorem 14.13. For the first, let us consider binary logistic regression.

Example 14.14 (Binary logistic regression): For a label \(Y \in \{0, 1\} \) and predictions \(p \in [0, 1] \), take the generalized entropy

\[
h(p) = p \log p + (1 - p) \log(1 - p).
\]

By inspection, \(\text{dom } h = [0, 1] \), and \(h'(p) = \log \frac{p}{1 - p} \) satisfies \(|h'(p)| \to \infty \) as \(p \to \{0, 1\} \). For \(s \in \mathbb{R} \), the conjugate is

\[
h^*(s) = \sup_p \{ sp - p \log p - (1 - p) \log(1 - p) \} = \log(1 + e^s),
\]
where the supremum is achieved by \(p = \text{pred}_h(s) = \frac{e^s}{1 + e^s} \). Then we have
\[
\varphi(s, y) = \log(1 + e^s) - sy = -\log p(y \mid s),
\]
where \(p(y \mid s) = \frac{e^{ys}}{1 + e^s} \) is the binary logistic probability of the label \(y \in \{0, 1\} \).

For the induced loss \(\ell(p, y) = -y \log p - (1 - y) \log(1 - p) \) (the log loss), if \(P(Y = 1) = 1 \), then \(p = 1 \) minimizes \(E[\ell(p, Y)] \). Similarly, if \(P(Y = 0) = 1 \), then \(p = 0 \) minimizes \(E[\ell(p, Y)] \).

Neither of these is achievable by a finite \(\ell \) in \(p(y \mid s) = \frac{e^{ys}}{1 + e^s} \), showing how the limiting argument in Theorem 14.13 is necessary.

The next example shows that we sometimes need to elaborate the setting of Theorem 14.13 to deal with constraints.

Example 14.15 (Multiclass logistic regression): Identify the set \(\mathcal{Y} = \{e_1, \ldots, e_k\} \) with the \(k \) standard basis vectors, and for \(p \in \Delta_k = \{p \in \mathbb{R}_+^k \mid 1^T p = 1\} \), consider the negative entropy
\[
h(p) = \sum_{y=1}^k p_y \log p_y.
\]

This function is strictly convex and of Legendre type for the positive orthant \(\mathbb{R}_+^k \) but not for \(\Delta_k \). Shortly, we shall allow linear constraints on the predictions to address this shortcoming. As an alternative, take \(\mathcal{Y} = \{0, e_1, \ldots, e_{k-1}\} \), so that \(\text{Conv}(\mathcal{Y}) = \{p \in \mathbb{R}_+^{k-1} \mid 1^T p \leq 1\} \), which has an interior and so more easily admits a conjugate duality relationship. In this case, the negative entropy-type function
\[
h(p) = \sum_{y=1}^{k-1} p_y \log p_y + (1 - 1^T p) \log(1 - 1^T p) \tag{14.3.5}
\]
is of Legendre type. A calculation for \(s \in \mathbb{R}^{k-1} \) yields
\[
h^*(s) = \log \left(1 + \sum_{y=1}^{k-1} e^{ys}\right),
\]
with
\[
\text{pred}_h(s) = \left(\frac{e^{s_1}}{1 + \sum_{j=1}^{k-1} e^{sj}}, \ldots, \frac{e^{s_{k-1}}}{1 + \sum_{j=1}^{k-1} e^{sj}}\right).
\]

Letting \(p \) denote the entries of this vector, we can then assign a probability to class \(k \) via \(p_k = 1 - \sum_{j=1}^{k-1} p_j \).

14.3.2 Convex conjugate linkages with affine constraints

As Example 14.15 shows, in some cases a “natural” formulation fails to satisfy the desiderata of our link functions. Accordingly, we make a slight modification to the Legendre type (14.3.4) negative entropy \(h \) to allow for affine constraints, which still allows us to develop the precise convexity dualities with proper losses we require. Continuing to work in the scenario in which \(\mathcal{Y} \subset \mathbb{R}^k \), suppose now that the affine hull
\[
\mathcal{A} = \text{aff}(\mathcal{Y}) := \left\{ \sum_{j=1}^m \alpha_j y_j \mid y_j \in \mathcal{Y}, \alpha^T 1 = 1, m \in \mathbb{N} \right\}
\]

244
is a proper subspace of \mathbb{R}^k. The key motivating example here is the “failure” case of Example 14.15 on multiclass logistic regression, where $\mathcal{Y} = \{e_1, \ldots, e_k\}$, whose affine hull is exactly those vectors $p \in \mathbb{R}^k$ satisfying $\langle p, 1 \rangle = 1$. Naturally, in this case we wish to predict probabilities, and so given a score vector $s \in \mathbb{R}^k$ and using the negative entropy $h(p) = \sum_{y=1}^k p_y \log p_y$, we let

$$\text{pred}(s) = \arg\min_p \left\{ h(p) - \langle s, p \rangle \mid 1^T p = 1 \right\} = \left[e^{s_y} / \sum_{j=1}^k e^{s_j} \right]_{y=1}^k.$$

Generalizing this approach to arbitrary regularizers h, we modify the prediction (14.3.1) to be

$$\text{pred}_{h,\mathcal{A}}(s) = \arg\max_{c \in \mathcal{A}} \{ \langle s, c \rangle - h(c) \}. \quad (14.3.6)$$

Then for the loss $\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle$ associated with the negative entropy h, we define the surrogate

$$\varphi(s, y) := \ell(\text{pred}_{h,\mathcal{A}}(s), y). \quad (14.3.7)$$

Perhaps remarkably, this construction still yields a well-defined convex loss with the same consistency properties as those in Theorem 14.13. Indeed, defining

$$h_{\mathcal{A}}(c) = h(c) + \mathbb{I}_{\mathcal{A}}(c)$$

and the associated conjugate $h^*_{\mathcal{A}}(s) = \sup_{c \in \mathcal{A}} \{ \langle s, c \rangle - h(c) \}$, we have the following theorem.

Theorem 14.16. Let $\ell : C \times \mathcal{Y} \to \mathbb{R}$ be the strictly proper loss associated with the Legendre negative entropy h and $\mathcal{A} = \text{aff}(\mathcal{Y})$ be the affine hull of \mathcal{Y}. Then

$$\varphi(s, y) := \ell(\text{pred}_{h,\mathcal{A}}(s), y) = h^*_{\mathcal{A}}(s) - \langle s, y \rangle.$$

Moreover, the convex surrogate φ satisfies the consistency that if

$$\mathbb{E}[\varphi(s_n, Y)] \to \inf_s \mathbb{E}[\varphi(s, Y)]$$

then $c_n = \text{pred}_{h,\mathcal{A}}(s_n)$ satisfies

$$\mathbb{E}[\ell(c_n, Y)] \to \inf_c \mathbb{E}[\ell(c, Y)].$$

We return to proving the theorem presently, focusing here on how it applies to Example 14.15.

Example 14.17 (Multiclass logistic regression): Consider Example 14.15, where we identify $\mathcal{Y} = \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$, which has affine hull $\mathcal{A} = \{ p \in \mathbb{R}^k \mid \langle 1, p \rangle = 1 \}$. Then taking $h(p) = \sum_{y=1}^k p_y \log p_y$, a calculation with a Lagrangian shows that

$$\text{pred}_{h,\mathcal{A}}(s) = \arg\min_{p \in \Delta_k} \{ -\langle s, p \rangle + h(p) \} = \left[e^{s_y} / \sum_{j=1}^k e^{s_j} \right].$$

In turn, this gives surrogate logistic loss

$$\varphi(s, y) = \log \left(\sum_{j=1}^k e^{s_j - s_y} \right).$$

Notably, the logistic loss is not strictly convex, as $\varphi(s + t1, y) = \varphi(s, y)$ for $t \in \mathbb{R}$. If Y is a multinomial random variable with $\mathbb{P}(Y = e_y) = p_y$, then by another calculation, the vector with entries $s^*_y = \log p_y$ minimizes $\mathbb{E}[\varphi(s, Y)]$, which in turn gives $\text{pred}_{h,\mathcal{A}}(s^*) = p$, maintaining propriety. ◇
Proof of Theorem 14.16

Before proving the theorem proper, we show how the key identity we use to develop equality (14.3.3), that \(s = \nabla h(c) \), generalizes in the presence of the affine constraint. The function \(h_A \) is strictly convex on its domain \(\text{dom} h \cap A \), and moreover, \(\nabla h_A^* \) exists and is continuous. The following corollary (a consequence of Corollary B.24 in Appendix B.2) extends Corollary 14.12 and allows us to address equality (14.3.3).

Corollary 14.18. The conjugate \(h_A^* \) is continuously differentiable with \(\text{dom} h_A^* = \mathbb{R}^k \), and if \(c = \nabla h_A^*(s) \), then \(c \in \text{dom} h \) and
\[
\nabla h(c) = s + v
\]
for some vector \(v \) normal to \(A \), that is, a vector \(v \in \mathbb{R}^k \) satisfying \(\langle v, c_0 - c_1 \rangle = 0 \) for all \(c_0, c_1 \in A \).

While the proof of the corollary requires some care to make precise, a sketch can give intuition.

Sketch of Proof Because \(h \) is strictly convex and its derivatives \(\nabla h(c) \) explode as \(c \to \text{bd} \text{ dom} h \), the minimizer of \(-\langle s, c \rangle + h(c) \) over \(c \in A \) exists and is unique. Let \(A = \{ c \mid Ac = b \} \) for shorthand, where \(A \in \mathbb{R}^{n \times k} \) for some \(n < k \). Then introducing Lagrange multiplier \(w \in \mathbb{R}^n \) for the constraint \(c \in A \), the Lagrangian for finding \(\text{pred}_{h_A}(s) = \arg\min_c \{ h(c) - \langle s, c \rangle \mid c \in A \} \) is
\[
\mathcal{L}(c, w) = h(c) - \langle s, c \rangle + w^T(Ac - b).
\]
Minimizing out \(c \) by setting \(\nabla_c \mathcal{L}(c, w) = 0 \), we obtain
\[
\nabla h(c) - s + A^Tw = 0.
\]
But if \(c_0, c_1 \in A \), then \(v = A^Tw \) satisfies \(\langle v, c_0 - c_1 \rangle = w^TA(c_0 - c_1) = w^T(b - b) = 0 \), so that \(v \) is normal to \(A \).

Finally, we return to prove the theorem. Take any vector \(s \in \mathbb{R}^k \). Then because \(\text{pred}_{h_A}(s) = \nabla h_A^*(s) \), we have
\[
\varphi(s, y) = \ell(\text{pred}_{h_A}(s), y) = -h(\nabla h_A^*(s)) - \langle \nabla h(\nabla h_A^*(s)), y - \nabla h_A^*(s) \rangle.
\]
As \(\nabla h_A^*(s) \in A \) and using the shorthand \(c = \nabla h_A^*(s) \in A \), we have \(\nabla h(c) = s + v \) for some \(v \) normal to \(A \). Moreover, \(h(c) = h_A(c) \), and so the Fenchel-Young inequality (14.1.4) guarantees \(-h_A(c) = h_A^*(s) - \langle s, c \rangle \). Substituting in the expression for \(\varphi \), we obtain
\[
\varphi(s, y) = h_A^*(s) - \langle s, c \rangle - \langle s + v, y - c \rangle
\]
\[
= h_A^*(s) - \langle s, c \rangle + \langle s, c - y \rangle = h_A^*(s) - \langle s, y \rangle
\]
where the second equality follows because \(v \perp c - y \).

For the consistency argument, let \(c_n = \text{pred}_{h_A}(s_n) \). Then \(\mathbb{E}[\ell(c_n, Y)] = \mathbb{E}[\varphi(s_n, Y)] \) and if \(c = \mathbb{E}[Y] \), then \(\mathbb{E}[\varphi(s, Y)] = h_A^*(s) - \langle c, s \rangle \) and \(\inf_s \mathbb{E}[\varphi(s, Y)] = -h_A(c) = -h(c) \). Strict propriety of \(\ell \) gives \(\inf_{c'} \mathbb{E}[\ell(c', Y)] = -h(c) \).
14.4 On uniqueness of losses and entropies

JCD Comment: Here is what comes next:

1. Something about the transformations back and forth and back and forth
2. examples with log loss and 0-1 loss
3. show how the proper scoring rules are basically 1-to-1 with their entropies
4. show how there is sort of a unique loss associated to each entropy for probabilistic predictions

JCD Comment: Also exhibit examples with regression perhaps for \(Y = \mathbb{R} \), noting how going from entropy to a proper loss can do a lot. Then revisit that in an example below. Maybe use \(h(c) = \frac{1}{2} c^2 \) to make life easy.

14.5 Technical and deferred proofs

14.5.1 Finalizing the proof of Theorem 14.10

The issue remaining in the proof of Theorem 14.10 occurs when \(\ell(c, y_i) = +\infty \) for some \(i \). In this case, we necessarily have \(p_i = 0 \) for all \(p \in \Delta_m \) satisfying \(E_p[Y] = c \); define the set of infinite loss indices \(\mathcal{I}(c) := \{ i \mid L(c, y_i) = +\infty \} \), which is evidently in the set \(\{ i \mid p_i = 0 \text{ whenever } Ap = 0 \} \). Because of this containment, we vectors \(\{ y_i \}_{i \in \mathcal{I}(c)} \) are independent and independent of \(\{ y_i \}_{i \notin \mathcal{I}(c)} \). In particular, there exists \(\Delta \in \mathbb{R}^k \) such that \(y_i^T \Delta = 0 \) for all \(i \notin \mathcal{I}(c) \) but for which \(y_i^T \Delta > 0 \) for each \(i \in \mathcal{I}(c) \). Working on the subspace \(\{ p \in \Delta_m \mid p_i = 0, i \in \mathcal{I}(c) \} \), we can perform precisely the same derivation except that \(G(c) = \{ s \in \mathbb{R}^k \mid y_i^T s = -\ell(c, y_i) \text{ for } i \notin \mathcal{I}(c) \} \) is non-empty. Then we have

\[
h(c') = -E_{p^*(c')}[\ell(c', Y)] \overset{(i)}{\geq} -E_{p^*(c')}[\ell(c, Y)] = -E_{p^*(c')}[\ell(c, Y)] + \sum_{i=1}^{m} \ell(c, y_i)(p^*_i(c) - p^*_i(c')),
\]

where inequality \((i)\) follows because \(\ell \) is proper. We then have

\[
\sum_{i=1}^{m} \ell(c, y_i)(p^*_i(c) - p^*_i(c')) \overset{(ii)}{=} \sum_{i \notin \mathcal{I}(c)} \ell(c, y_i)(p^*_i(c) - p^*_i(c')) - \sum_{i \in \mathcal{I}(c)} \ell(c, y_i)p^*_i(c')
\]

\[
= \sum_{i \notin \mathcal{I}(c)} s^T y_i(p^*_i(c) - p^*_i(c')) - \sum_{i \in \mathcal{I}(c)} \ell(c, y_i)p^*_i(c')
\]

for any \(s \in G(c) \), where equality \((ii)\) follows because \(p^*_i(c) = 0 \) for \(i \in \mathcal{I}(c) \). As we allow extended reals, replace \(s \) with \(s_\infty = \lim_{t \to \infty} (s + t\Delta) \), which satisfies \(\langle s_\infty, y_i \rangle = \infty = \ell(c, y_i) \) for \(i \in \mathcal{I}(c) \), and we finally obtain

\[
h(c') \geq h(c) + \sum_{i=1}^{m} \langle s_\infty, y_i(p^*_i(c) - p^*_i(c')) \rangle = h(c) + \langle s_\infty, c - c' \rangle.
\]

The equality of the loss is as before.
Bibliography

14.6 Exercises

Question 14.1 (Strict propriety of the log loss): Let $\Delta_k = \{ p \in \mathbb{R}^k_+ \mid 1^T p = 1 \}$ be the probability simplex. Show that if $\ell(q, y) = -\log q_y$ and $P(Y = y) = p_y$, then

$$\arg\min_{q \in \Delta_k} E[\ell(q, Y)] = p,$$

where we treat $0 \log 0$ as 0 (which is the natural limit of $t \log t$ as $t \downarrow 0$).

Question 14.2: Go from squared error $\frac{1}{2}(c - y)^2$ to $h(c)$ using Theorem 14.10.

Question 14.3: Work out the details of Example 14.15.

Question 14.4: Let $y \in \{0, 1\}$ and take the regularization function $h(p) = -\log p - \log(1 - p)$. Give the associated loss and surrogate loss.

Question 14.5: Maybe work out self-concordance of h and (then) h^*, esp. for the previous question.

Question 14.6: Regression and surrogates. Let $h(c) = \frac{1}{4} c^4$. Work out loss and surrogate for regression, getting $E[Y]$ as minimizer.

Question 14.7: Use squared error and constraint $1^T p = 1$ in multinomial case. What is resulting surrogate loss?

Question 14.8: Predicting CDFs or Quantile functions? Inverse ranked probability scores?
Chapter 15

Calibration and Proper Losses

In Chapter 14, we encountered proper losses, in which we assume we predict probability distributions on outcomes Y. In typical problems, we wish to predict things about Y from a given set of covariates or inputs X, and in focusing exclusively on the losses ℓ themselves, we implicitly assume that we can model $Y \mid X$ basically perfectly. Here, we move away from this focus exclusively on the loss itself to incorporate discussion of predictions, where we seek a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ (or some other output space) that yields the most accurate predictions.

In this chapter, we adopt the view of Section 14.2.3, where the target $Y \subset \mathbb{R}^k$ is vector-valued, and we wish to predict its expectation $E[Y \mid X]$ as accurately as possible. For binary prediction, we have $Y \in \{0, 1\}$, so that $E[Y \mid X] = P(Y = 1 \mid X)$; in the case of multiclass prediction problems, it is easy to represent Y as an element of the k standard basis vectors $\{e_1, \ldots, e_k\} \subset \mathbb{R}^k$, so that $p = E[Y \mid X]$ is simply the p.m.f. of Y given X with entries $p_y = P(Y = y \mid X)$. We focus here, therefore, on choosing functions to minimize the risk, or expected population loss,

$$L(f) := E[\ell(f(X), Y)].$$

When f is chosen from a collection $\mathcal{F} \subset \{\mathcal{X} \rightarrow \mathbb{R}^k\}$ of functions, for example, to guarantee that we can generalize, we do not expect to be able to perfectly minimize the population loss. Accordingly, even though the loss is proper and hence minimized by $f^*(x) = E[Y \mid X = x]$, we cannot perfectly model reality, and so it is unrealistic to expect to be able to find f satisfying $f(x) = E[Y \mid X = x]$, even approximately, for all x.

We therefore depart from the goal of perfection to address a somewhat simpler criterion: that of calibration. Here, the idea is that a predictor should be accurate on average conditional on its own predictions. Consider again a weather forecasting problem, where $Y_t = 1$ indicates it rains on day t and $Y_t = 0$ indicates no rain, and we wish to predict Y_t based on observable covariates X_t at time t. While we would like a forecaster to have perfect predictions $p_t = E[Y_t \mid X_t]$, we instead ask that on days where the forecaster makes a given prediction, it should rain (roughly) with that given frequency. In particular, we seek calibration, which is that

$$f(X) = E[Y \mid f(X)]. \quad (15.0.1)$$

That is, given that the forecaster makes a prediction with value $p = f(X)$, we should have

$$E[Y \mid f(X) = p] = p.$$

While in general it is challenging to achieve this perfect calibration, in this chapter we investigate several variants of the desideratum (15.0.1) that allow for more elegant statistical and information-theoretic approaches, as well as procedures to achieve calibration.
It is important to note that in this chapter, we take an approach to calibration based around random variables and vectors. Much of the research and literature on calibration, by contrast, considers more adversarial and sequential settings, where instead of any probabilistic underpinnings, nature (an adversary) plays a game against the player (or predictor). In this setting, at times $t = 1, 2, \ldots, T$, the player makes a prediction p_t of the outcome, and then nature may choose the outcome Y_t. In this fully adversarial setting, calibration is impossible: say that $Y \in \{0, 1\}$, and nature plays $Y_t = 1$ if $p_t \leq .5$ and $Y_t = 0$ if $p_t > .5$. Then any player is miscalibrated at least by an amount .5. Astoundingly, \[\] show that if the player is allowed to randomize, then the forecasted probabilities p_t can be made arbitrarily close to the empirical averages of the observed Y_t. While many of the techniques we consider and develop arise from this adversarial setting in the literature, we shall mostly address the scenarios in which Y is indeed random.

15.1 Proper losses and calibration error

When we use a proper loss to measure the error $\ell(f(x), y)$ in making the prediction $f(x)$ for the value y, it turns out we can always improve the losses by modifying f to be a calibrated version of itself: calibration is always useful. To make this precise, assume we are making predictions in the convex hull of Y, that is, that can be represented as $E[Y]$ for some distribution, so $f : X \to C = \text{Conv}(Y)$. Then by Theorems 14.1 and 14.10, there exists a convex function h such that

\[
\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle
\]

(15.1.1)

for all $c \in C, y \in Y$. Recall the Bregman divergence (14.2.2)

\[
D_h(u, v) = h(u) - h(v) - \langle \nabla h(v), u - v \rangle,
\]

which is nonnegative for all convex h (and strictly positive whenever h is strictly convex and $u \neq v$), and Corollary 14.5. Then for any prediction function f, if we condition on the predicted value $S = f(X)$, then

\[
E[\ell(S, Y) \mid S] = E[\ell(E[Y \mid S], Y) \mid S] + E[\ell(S, Y) - \ell(E[Y \mid S], Y) \mid S] = E[\ell(E[Y \mid S], Y) \mid S] + E[D_h(E[Y \mid S], Y) \mid S],
\]

where the second equality follows because $E[\ell(S, Y) \mid S] = \ell(S, E[Y \mid S])$ by linearity and $E[\ell(E[Y \mid S], Y) \mid S] = \ell(E[Y \mid S], E[Y \mid S])$. We record this as a theorem.

Theorem 15.1. Let ℓ be a regular proper loss with representation (15.1.1). Then for any predictor f,

\[
E[\ell(f(X), Y)] = E[\ell(E[Y \mid f(X)], Y)] + E[D_h(E[Y \mid f(X)], f(X))].
\]

In particular, the predictor $g : \mathbb{R}^k \to \mathbb{R}^k$ defined by

\[
g(x) := E[Y \mid f(X) = f(x)]
\]

is calibrated and satisfies

\[
E[\ell(g \circ f(X), Y)] = E[\ell(E[Y \mid f(X)], Y)] \leq E[\ell(f(X), Y)],
\]

and the inequality is strict whenever f is not calibrated and ℓ is strictly proper.
Theorem 15.2. Let φ be the surrogate loss defined above. Then for any $f : \mathcal{X} \rightarrow \mathbb{R}^k$, we have
\[
\mathbb{E}[\varphi(f(X), Y)] = \mathbb{E}[\ell(\mathbb{E}[Y | f(X)], Y)] + \mathbb{E}[D_h(\mathbb{E}[Y | f(X)], \text{pred}_h(f(X)))].
\]

Proof The key is to rely on the duality relationships inherent in the definition of the surrogate $\varphi(s, y) = h^*(s) - \langle s, y \rangle$. Let $c \in \text{Conv}(\mathcal{Y})$. Then $\varphi(s, c) = h^*(s) - \langle s, c \rangle$ by linearity, and $\inf_s \varphi(s, c) = -h(c)$. Additionally, if $c^*(s) = \nabla h^*(s) = \text{pred}_h(s)$, then the conjugate duality relationships (14.1.4) guarantee $h^*(s) = \langle s, c^*(s) \rangle - h(c^*(s))$ and $s = \nabla h(c^*(s))$. Thus
\[
\varphi(s, c) - \inf_{s'} \varphi(s, c') = h^*(s) - \langle s, c \rangle + h(c) = h(c) - h(c^*(s)) - \langle s, c - c^*(s) \rangle
\]
\[
= h(c) - h(c^*(s)) - \langle \nabla h(c^*), c - c^*(s) \rangle = D_h(c, c^*(s)).
\]

Expanding the losses and using the shorthand $S = f(X)$, we thus obtain
\[
\mathbb{E}[\varphi(S, Y)] = \mathbb{E}[\varphi(S, \mathbb{E}[Y | S])]
\]
\[
= \mathbb{E}\left[\inf_s \varphi(s, \mathbb{E}[Y | S])\right] + \mathbb{E}[D_h(\mathbb{E}[Y | s], \text{pred}_h(s))].
\]

Lastly, we use that $\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle$ is proper, so $\inf_s \varphi(s, c) = -h(c) = \ell(c, c)$ giving the first claim of the theorem. \(\square\)
As in Theorem 15.1, Theorem 15.2 shows that calibrating a predictor f can only improve the surrogate loss associated with h. Any predictor $f : \mathcal{X} \rightarrow \mathbb{R}^k$ has unnecessary error arising from the average divergence of the prediction from being calibrated,

$$E[D_h(\mathbb{E}[Y \mid f(X)], \text{pred}_h(f(X)))].$$

In both cases, we see that any proper (or derived proper) loss has a natural decomposition into an error term relating to the typical error in predicting Y from $\mathbb{E}[Y \mid f(X)]$, which one frequently refers to as sharpness of the predictor. Replacing $f(X)$ with the expectation of Y given $f(X)$ (or a particular transformation thereof) does not increase this first term, but improves the second term, which measures the typical error of a prediction from calibration.

Let us consider an example with squared error:

Example 15.3 (Squared error and calibration): In the case that $h(p) = \frac{1}{2} \|p\|_2^2$, we have $h^* = h$ and $\nabla h = \nabla h^*$ is the identity. Then Theorems 15.1 and 15.2 reduce to the statement that

$$E[\|Y - f(X)\|_2^2] = E[\|Y - \mathbb{E}[Y \mid X]\|_2^2] + E[\|\mathbb{E}[Y \mid X] - f(X)\|_2^2],$$

so we may also see the decompositions of the theorems as bias/variance expansions. \diamond

15.2 Continuous calibration measures

Defining calibration is the first step into building our understanding, but it becomes substantially more useful once we can build calculus and tools to measure calibration, how “close” to calibration a particular function is, and whether we can indeed improve calibration of predictors without impairing their performance otherwise. Theorems 15.1 and 15.2 do not, a priori, guarantee that it is easy to transform a predictor $f : \mathcal{X} \rightarrow \mathbb{R}^k$ into a calibrated predictor. It is thus interesting to define quantities that measure distances of a predictor f to being calibrated and to build theory around this.

We begin with a natural candidate for calibration: the expected difference, or expected calibration error,

$$\text{ece}(f) := E[\|\mathbb{E}[Y \mid f(X)] - f(X)\|]. \tag{15.2.1}$$

The calibration error (15.2.1) is 0 if and only if f is perfectly calibrated, as then $\mathbb{E}[Y \mid f(X)] = f(X)$, and it is positive otherwise. Unfortunately, while the next lemma guarantees that ece is lower semi-continuous, it is not continuous.

Lemma 15.4. The expected calibration error ece is lower semi-continuous with respect to $L^1(P)$ on \mathcal{F}, that is, if $E[\|f_n(X) - f(X)\|] \rightarrow 0$ and $f \in L^1(P)$, then

$$\liminf_n \text{ece}(f_n) \geq \text{ece}(f).$$

This result requires some delicate measure-theoretic arguments, so we defer it to the technical proofs (see Section 15.5.1). The discontinuity of ece is relatively easy to show, however, even in very simple cases.

Example 15.5 (Discontinuity of the calibration error): Let $Y \in \{0, 1\}$ be a Bernoulli random variable, and let $X \in \{0, 1\}$. Take $Y = X$ with probability 1. Then the predictor that always predicts $\frac{1}{2}$ is perfectly calibrated, but if for $\epsilon \in [0, \frac{1}{2}]$ we define f_ϵ by

$$f_\epsilon(0) = \frac{1}{2} - \epsilon \quad \text{and} \quad f_\epsilon(1) = \frac{1}{2} + \epsilon$$
We begin by considering types of distance to calibration. Let $C(P)$ denote those functions g that are perfectly calibrated for P, that is, $C(P) = \{g: X \rightarrow \mathbb{R}^k \mid \mathbb{E}_P[Y \mid g(X)] = g(X)\}$ (where the defining equality holds with P-probability 1 over X). Then we call the minimum $L^1(P)$ distance of a function f to the set $C(P)$ the distance to calibration

$$d_{\text{cal}}(f) := \inf_{g \in C(P)} \mathbb{E}_P[\|g(X) - f(X)\|].$$

(15.2.2)

The measure (15.2.2) is in some sense the largest Lipschitz measure of calibration. Let $C(P)$ denote those functions g that are perfectly calibrated for P with constant $C = 1$ in Definition 15.1.(ii), then we have $e(g) = 0$. Taking the infimum over such g guarantees $e(f) = e(f) - e(g) \leq \mathbb{E}_P\|f(X) - g(X)\|$ and taking an infimum over such g guarantees $e(f) \leq d_{\text{cal}}(f)$.

The second desideratum (ii) is a bit of a matter of taste: the central idea is that some type of continuity is essential for efficient modeling, estimation, and analysis. We consider two types of measures, which are (almost) dual to one another, as examples. Both use a variational representation, where in one we essentially look for the "closest" function that is calibrated, while in the other, we investigate the ease with which we can (quantitatively) certify that a predictor is uncalibrated.

15.2.1 Distances to calibration

We would like, instead, to have a calibration error measure that is continuous yet still identifies when a function is calibrated. We focus on the general setting of this chapter, where the label space $Y \subset \mathbb{R}^k$ and P is a distribution on $X \times Y$. Let F be a collection of functions mapping $X \rightarrow \mathbb{R}^k$ and integrable with respect to P, that is, $\mathbb{E}_P[\|f(X)\|] < \infty$ for each $f \in F$. We can then define the types of calibration measures we seek.

Definition 15.1. A function $e: F \rightarrow \mathbb{R}^+$ is a Lipschitz calibration measure for the distribution P on $X \times Y$ if

(i) it identifies calibration, that is, $e(f) = 0$ if and only if f is calibrated for P, and

(ii) it is Lipschitz continuous with respect to the $L^1(P)$ metric on F, that is, for some $C < \infty$ for all $f_0, f_1 \in F$.

We leave the norm $\|\cdot\|$ implicit in the definition; it need not be the ℓ_2-norm. We typically omit the distribution P from the calibration metric as it is clear from context. The two parts of Definition 15.1 admit a number of different possible calibration measures. We consider two types, which are (almost) dual to one another as examples. Both use a variational representation, where in one we essentially look for the "closest" function that is calibrated, while in the other, we investigate the ease with which we can (quantitatively) certify that a predictor is uncalibrated.
The second related quantity, which admits cleaner properties for analysis, is the penalized calibration distance, which we define as

\[
\text{dcal}(f) := \inf_g \{ E[\|f(X) - g(X)\|] + E[\|E[Y \mid g(X)] - g(X)\|]\}.
\]

These quantities are strongly related, and in the sequel (see Corollary 15.19), we show that

\[
\text{dcal}(f) \leq \text{dcal}_0(f) \leq \text{dcal}(f) + C_Y \sqrt{\text{dcal}(f)},
\]

where \(C_Y\) is a constant depending only on the set \(\mathcal{Y}\).

To build intuition for the definition (15.2.3), consider the two quantities. The first measures the usual \(L^1\) distance between the function \(f\) and a putative alternative \(g\). The second is the expected calibration error of \(g\). By restricting the infimum in definition (15.2.2) to functions \(g\) with \(\text{ece}(g) = 0\), we simply have the \(L^1\) distance to the nearest calibrated function; as is, the additional term in (15.2.3) allows trading between the distance to a calibrated function and the actual calibration error. We also have the following proposition.

Proposition 15.6. The functions \(\text{dcal}_0\) and \(\text{dcal}\) are Lipschitz calibration measures.

Proof If \(f\) is calibrated, then \(\text{dcal}(f) = \text{dcal}_0(f) = 0\) immediately. Conversely, if \(\text{dcal}(f) = 0\), there exists a sequence of functions \(g_n\) satisfying \(E[\|f(X) - g_n(X)\|] \to 0\), as each term in the definition (15.2.3) is nonnegative. Additionally, we must have that \(\text{ece}(g_n) = E[\|E[Y \mid g_n(X)] - g_n(X)\|] \to 0\). Applying Lemma 15.4 we have \(0 \geq \liminf_n \text{ece}(g_n) \geq \text{ece}(f)\). If \(\text{dcal}_0(f) = 0\), then there exists a sequence of functions \(g_n\) with \(\text{ece}(g_n) = 0\) and \(E[\|f(X) - g_n(X)\|] \to 0\). Again, the lower semicontinuity of \(\text{ece}\) from Lemma 15.4 gives \(0 = \liminf_n \text{ece}(g_n) \geq \text{ece}(f)\).

To see that \(\text{dcal}\) is Lipschitz in \(f\), let \(f_0, f_1 : X \to \mathbb{R}^k\), and let \(g_0, g_1\) be within \(\epsilon > 0\) of achieving the infima in definition (15.2.3) for \(f_0\) and \(f_1\), respectively. Then

\[
\text{dcal}(f_0) - \text{dcal}(f_1) \leq \inf_g \{ E[\|f_0(X) - g(X)\|] + E[\|E[Y \mid g(X)] - g(X)\|]\}
- E[\|f_1(X) - g_1(X)\|] + E[\|E[Y \mid g_1(X)] - g_1(X)\|] + \epsilon
\leq E[\|f_0(X) - g_1(X)\|] - E[\|f_1(X) - g_1(X)\|] + \epsilon
\leq E[\|f_0(X) - f_1(X)\|] + \epsilon.
\]

Take \(\epsilon \downarrow 0\). The lower inequality is similar, as is the proof for \(\text{dcal}_0\). \qed

15.2.2 Weak calibration

We also consider a complementary quantity that relies on an alternative variational characterization. Let \(W \subset \{\mathbb{R}^k \to \mathbb{R}^k\}\) be a symmetric collection of functions, meaning that \(w \in W\) implies \(-w \in W\). We can view any such collection as potential witnesses of miscalibration, in that

\[
E[\langle w(f(X)), Y - f(X) \rangle] = E[\langle w(f(X)), E[Y \mid f(X)] - f(X) \rangle]
\]

and so if \(w\) can “witness” the portions of space where \(f(X) \neq E[Y \mid f(X)]\), it can certify miscalibration. We then arrive at what we term the calibration error relative to the class \(W\),

\[
\text{CE}(f, W) := \sup_{w \in W} E[\langle w(f(X)), Y - f(X) \rangle].
\]

(15.2.4)
Depending on the class \mathcal{W}, this is sometimes called the *weak calibration error*, and with large enough classes, we can recover the classical expected calibration error (15.2.1). Indeed, if for a norm $\|\cdot\|$ the set \mathcal{W} is the collection of all functions w with bound $\sup_s \|w(s)\|_s \leq 1$, then

$$CE(f, \mathcal{W}) = \mathbb{E}\left[\sup_{\|w\|_s \leq 1} \langle w, \mathbb{E}[Y \mid f(X)] - f(X) \rangle \right] = \mathbb{E}[\|\mathbb{E}[Y \mid f(X)] - f(X)\|] = ece(f).$$

It is more interesting to consider restricted classes; one of particular interest to us is that of bounded Lipschitz functions. Let

$$\mathcal{W}_\| := \left\{ w : \mathbb{R}^k \rightarrow \mathbb{R}^k \mid \|w(s_0) - w(s_1)\|_s \leq \|s_0 - s_1\| \text{ and } \|w(s)\|_s \leq 1 \text{ for all } s, s_0, s_1 \right\} \quad (15.2.5)$$

denote the collection of functions bounded by 1 in $\|\cdot\|_s$ and that are 1-Lipschitz with respect to $\|\cdot\|$. Then CE also satisfies our desiderata for a calibration measure when $\mathcal{W} = \mathcal{W}_\|$, which we record as the next proposition:

Proposition 15.7. Assume that $\text{diam}(\mathcal{Y})$ is finite and that \mathcal{F} is a collection of bounded functions $\mathcal{X} \rightarrow \mathbb{R}^k$. Then $CE(\cdot, \mathcal{W}_\|)$ is a Lipschitz calibration measure over \mathcal{F}.

Proof Let $\mathcal{W} = \mathcal{W}_\|$ for shorthand. That $CE(f, \mathcal{W}) = 0$ when f is calibrated is immediate, as by definition of conditional expectation we have

$$\mathbb{E}[\langle w(f(X)), Y - f(X) \rangle] = \mathbb{E}[\langle w(f(X)), \mathbb{E}[Y \mid f(X)] - f(X) \rangle] = 0.$$

To obtain the converse that $CE(f, \mathcal{W}) = 0$ implies f is calibrated, we require an intermediate lemma, which leverages the density of Lipschitz functions in L^p spaces. As was the case for the lower semi-continuity lemma 15.4 central to the proof of the converse in Proposition 15.6, this lemma is technical and requires somewhat technical approximation arguments, so we defer its proof to Section 15.5.2.

Lemma 15.8. Let $S \in \mathbb{R}^k$ be a random variable and $\mathbb{E}[\|g(S)\|] < \infty$. If $\mathbb{E}[\langle w(S), g(S) \rangle] = 0$ for all bounded and 1-Lipschitz functions w, then $g(S) = 0$ with probability 1.

The converse is now trivial: let $S = f(X)$, and note that $CE(f, \mathcal{W}) = \sup_{w \in \mathcal{W}} \mathbb{E}[\langle w(S), \mathbb{E}[Y \mid S] - S \rangle]$, and take $g(S) = \mathbb{E}[Y \mid S] - S$ in Lemma 15.8.

To see that CE is Lipschitz, let $w_0 \in \mathcal{W}$ be such that $CE(f_0, \mathcal{W}) \geq \mathbb{E}[\langle w_0(f_0(X)), Y - f_0(X) \rangle] - \epsilon$, and let $C < \infty$ satisfy $C \geq \sup_{y \in \mathcal{Y}, x \in \mathcal{X}, f \in \mathcal{F}} \|y - f(x)\|$. Then

$$CE(f_0, \mathcal{W}) - CE(f_1, \mathcal{W}) \leq \mathbb{E}[\langle w_0(f_0(X)), Y - f_0(X) \rangle] - \mathbb{E}[\langle w_0(f_1(X)), Y - f_1(X) \rangle] + \epsilon$$

$$\leq \mathbb{E}[\langle w_0(f_0(X)) - w_0(f_1(X)), Y - f_0(X) \rangle] + \epsilon \leq CE[\|w_0(f_0(X)) - w_0(f_1(X))\|_s] + \mathbb{E}[\|f_1(X) - f_0(X)\|] + \epsilon$$

$$\leq (1 + C)\mathbb{E}[\|f_1(X) - f_0(X)\|] + \epsilon.$$

Repeating the same argument, *mutatis mutandis*, for the lower bound gives the Lipschitz continuity as desired. \(\square\)

The family of weak calibration measures $CE(f, \mathcal{W})$ as we vary the collection of potential witness functions \mathcal{W} yields a variety of behaviors. Different choices of \mathcal{W} can give different continuous calibration measures, where we may modify Definition 15.1 part (ii) to other definitions of continuity,
such as Lipschitzness with respect to $L^2(P)$ norms, simple continuity, or other basic conditions. We explore a few of these in the exercises at the end of the chapter.

JCD Comment: A few potential exercises:

(i) Modify Definition 15.1 to be “continuous” calibration or something, then have exercise on CE being continuous (then it won’t require that Y be bounded, which is annoying)

(ii) Deal with any class W for which $E[⟨w,f⟩] = 0$ for all $w ∈ W$ means $f = 0$, then still get a continuous calibration measure

15.3 Auditing and improving calibration

Theorems 15.1 and 15.2 provide decompositions of the expected loss of a predictor

$$E[ℓ(f(X), Y)] = E[ℓ(E[Y | f(X)], Y)] + E[D_h(E[Y | f(X)], f(X))]$$

into an average loss and an expected Bregman divergence between $f(X)$ and $E[Y | f(X)]$, where h is the negative (generalized) entropy (14.1.6) associated with the loss $ℓ$, so that the loss has representation $ℓ(c, y) = -h(c) − ⟨∇h(c), y − c⟩$. This suggests an approach to improving a predictor $f : X → ℝ^k$ without compromising its average loss: make it closer to being calibrated, so that $E[Y | f(X)] ≈ f(X)$. Here, we make this idea precise by using the weak calibration (15.2.4): if there exists a witness function w certifying that $E[⟨w(f(X)), Y − f(X)⟩] ≥ 0$, then we can post-process f to $f(X) + ηw(f(X))$ for some stepsize $η > 0$ and only improve the expected loss. We begin by developing this idea in the context of the squared error, where the calculations are cleanest, and extend it to general proper losses based on convex conjugates (as in Section 14.3) immediately after. Combining the ideas we develop, we also can provide a (population-level) algorithm that transforms a function f by post-processing its outputs and guarantees the result is nearly calibrated relative to a class W of witnesses.

15.3.1 The post-processing gap and calibration audits for squared error

Consider a thought experiment: instead of using f to make predictions, we use a postprocessing $g ◦ f$, where $g : ℝ^k → ℝ^k$ has the (suggestively chosen) form $g(v) = v + ηw(v)$, where $|η| < 1$ and $w(v) = η^{-1}(g(v) − v)$ is at most 1-Lipschitz. Then g is invertible, as

$$∥g(v) − g(v')∥ = ∥v + ηw(v) − v' − ηw(v')∥ ≥ ∥v − v'∥ − η∥w(v) − w(v')∥ ≥ (1 − η)∥v − v'∥.$$

Then because g is invertible, we have

$$E[Y | g ◦ f(X)] = E[Y | f(X)],$$

and so

$$E[ℓ(g ◦ f(X), Y)] = E[ℓ(f(X) + ηw(f(X)), Y)]$$

$$= E[ℓ(E[Y | f(X)], Y)] + E[D_h(E[Y | f(X)], f(X) + ηw(f(X)))] \tag{15.3.1}$$

With the expansion (15.3.1) we can then demonstrate that by postprocessing any prediction function $f : X → ℝ^k$, we can both (i) obtain calibration relative to a class of functions W, as in
Definition (15.2.4), and (ii) improve the expected loss $\mathbb{E}[\ell(f(X), Y)]$. Moreover, this improvement is monotone, in that small changes “toward” calibration guarantee smaller expected loss, an improvement over the less refined results in Theorems 15.1 and 15.2. To that end, define the post-processing gap for the (proper) loss ℓ and function f relative to the class W of functions $\mathbb{R}^k \to \mathbb{R}^k$ by

$$\text{gap}(\ell, f, W) := \mathbb{E}[\ell(f(X), Y)] - \inf_{w \in W} \mathbb{E}[\ell(f(X) + w(f(X)), Y)]. \quad (15.3.2)$$

At least for appropriate loss functions, this gap (15.3.2) is fundamentally tied to the calibration error relative to the class W.

We specialize here to the simpler case of the squared error, as the statements are most transparent. We focus exclusively on symmetric convex collections of functions W, meaning that if $w \in W$, then $-w \in W$, and W is convex.

Proposition 15.9. Let $\ell(c, y) = \frac{1}{2}||y - c||^2_2$ be the squared error (Brier score), and let W be a symmetric convex collection of functions, each (at most) 1-Lipschitz with respect to the ℓ_2-norm $\|\cdot\|_2$. Define $R^2(f) = \sup_{w \in W} \mathbb{E}[||w(f(X))||^2_2]$. Then

$$\frac{1}{2} \min \left\{ \text{CE}(f, W), \frac{\text{CE}(f, W)^2}{R^2(f)} \right\} \leq \text{gap}(\ell, f, W) \leq \text{CE}(f, W)$$

Proof For $h(c) = \frac{1}{2}||c||^2_2$, we have the proper loss representation $\ell(c, y) = -h(c) - \langle \nabla h(c), y - c \rangle$, and to provide continuity with the coming results, we maintain the h notation in the divergence measures as in (15.3.1).

Fix x, and let $c = \mathbb{E}[Y \mid f(X) = f(x)]$ be an element of $\text{Conv}(Y)$ and $p = f(x)$ be the value f predicts at x. Then $D_h(c, p) = \frac{1}{2}||c - p||^2_2$, and for any $w \in \mathbb{R}^k$ and $\eta \in \mathbb{R}$

$$D_h(c, p + \eta w) = \frac{1}{2}||c - p - \eta w||^2_2 = \frac{1}{2}||c - p||^2_2 + \frac{\eta}{2}||w||^2_2 - \eta \langle w, c - p \rangle = D_h(c, p) - \eta \langle w, c - p \rangle + \frac{\eta^2}{2}||w||^2_2.$$

Thus for $\eta \geq 0$ we have

$$\inf_{w \in W} \mathbb{E}[D_h(\mathbb{E}[Y \mid f(X)], f(X) + \eta w(f(X)))]$$

$$= \mathbb{E}[D_h(\mathbb{E}[Y \mid f(X)], f(X))] - \eta \sup_{w \in W} \left\{ \mathbb{E}[(w(f(X)), Y - f(X))] - \frac{\eta}{2} \mathbb{E}\left[||w(f(X))||^2_2\right] \right\}$$

and

$$\text{gap}(\ell, f, W) = \sup_{\eta \in [0, 1]} \eta \sup_{w \in W} \left\{ \mathbb{E}[(w(f(X)), Y - f(X))] - \frac{\eta}{2} \mathbb{E}\left[||w(f(X))||^2_2\right] \right\}$$

because W is symmetric and convex about 0.

We then recognize further that if $R^2(f) = \sup_{w \in W} \mathbb{E}[||w(f(X))||^2_2]$, then we always have

$$\text{CE}(f, W) - \frac{\eta}{2}R^2(f) \leq \sup_{w \in W} \left\{ \mathbb{E}[(w(f(X)), Y - f(X))] - \frac{\eta}{2} \mathbb{E}\left[||w(f(X))||^2_2\right] \right\} \leq \text{CE}(f, W).$$

Combining the preceding two displays, we find

$$\sup_{\eta \in [0, 1]} \left\{ \eta \text{CE}(f, W) - \frac{\eta^2}{2}R^2(f) \right\} \leq \text{gap}(\ell, f, W) \leq \text{CE}(f, W).$$
Optimizing over η on the left side by setting $\eta = \min\{1, \frac{\text{CE}(f,W)}{R_2(f)}\}$ gives the proposition.

As an immediate corollary, we see that if $W = \mathcal{W}_{\|\cdot\|_2}$ consists of the 1-Lipschitz functions with $\|w(v)\|_2 \leq 1$ for all v, we have a cleaner guarantee.

Corollary 15.10. Let $W = \mathcal{W}_{\|\cdot\|_2}$ and the conditions of Proposition 15.9 hold. Then

$$\frac{1}{2 \text{diam}(Y)^2} \text{CE}(f,W)^2 \leq \text{gap}(\ell, f, W) \leq \text{CE}(f, W).$$

Thus, the calibration error upper and lower bounds the gap between the expected loss of f and a post-processed version of f.

15.3.2 Calibration audits for losses based on conjugate linkages

Recall as in Section 14.3.1 that, by a transformation tied to the loss ℓ via its associated generalized negative entropy, we may define the surrogate

$$\varphi(s, y) := h^*(s) - \langle s, y \rangle,$$

and we may transform arbitrary scores $s \in \mathbb{R}^k$ to predictions via the conjugate link (14.3.1), that is,

$$\text{pred}_h(s) = \arg\min_c \{-\langle s, c \rangle + h(c)\} = \nabla h^*(s).$$

So long as h is appropriately smooth, these satisfy $\ell(\text{pred}_h(s), y) = \varphi(s, y)$. In complete analogy with the post-processing gap (15.3.2) when we assume f makes predictions in (the affine hull of) Y, we can define the *surrogate post-processing gap*

$$\text{gap}(\varphi, f, W) := \mathbb{E}[\varphi(f(X), Y)] - \inf_{w \in W} \mathbb{E}[\varphi(f(X) + w(f(X)), Y)].$$

(15.3.3)

In spite of the similarity with definition (15.3.2), the actual predictions of Y from f in this case come via the link $\text{pred}_h(f(X))$. Thus, in this case we instead consider the calibration error relative to a class W but after the composition of f with $\text{pred}_h = \nabla h^*$, so that

$$\text{CE}(\text{pred}_h \circ f, W) = \sup_{w \in W} \mathbb{E}[\langle w(f(X)), Y - \text{pred}_h(f(X)) \rangle] = \sup_{w \in W} \mathbb{E}[\langle w(f(X)), Y - \nabla h^*(f(X)) \rangle],$$

where as always we assume that the class of witness functions satisfies $W = -W$. When the prediction function is continuous enough in s, we can give an analogue of Proposition 15.9 to the more general surrogate case. To that end, we assume that the conjugate h^* has Lipschitz continuous gradient with respect to the dual norm $\|\cdot\|_*$, meaning that

$$\|\nabla h^*(s_0) - \nabla h^*(s_1)\| \leq \|s_0 - s_1\|_*$$

for all $s_0, s_1 \in \mathbb{R}^k$. This is equivalent (see Proposition B.19) to the negative entropy h being strongly convex with respect to the norm $\|\cdot\|$, and also immediately implies that

$$\varphi(s + w, y) \leq \varphi(s, y) + \langle \nabla_s \varphi(s, y), w \rangle + \frac{\|w\|_*^2}{2}$$

(see again Proposition B.19).
Example 15.11 (Multiclass logistic regression): For multiclass logistic regression, where we take \(h(p) = \sum_{j=1}^{k} p_j \log p_j \), we know that \(h \) is strongly convex with respect to the \(\ell_1 \) norm (this is Pinsker’s inequality; see inequality (2.5.1)). Thus, the conjugate \(h^*(s) = \log(\sum_{j=1}^{k} e^{s_j}) \) has Lipschitz gradient with respect to the \(\ell_\infty \) norm, meaning that for the prediction link
\[
\text{pred}_h(s) = \left[\frac{e^{s_y}}{\sum_{j=1}^{k} e^{s_j}} \right]_{y=1}^{k},
\]
we have
\[
\| \text{pred}_h(s) - \text{pred}_h(s') \|_1 \leq \| s - s' \|_\infty
\]
for all \(s, s' \in \mathbb{R}^k \).

Example 15.12 (The squared error): When we measure the error of a predictions in \(\mathbb{R}^k \) by the squared \(\ell_2 \)-norm \(\frac{1}{2} \| f(x) - y \|_2^2 \), this corresponds to the generalized negative entropy \(h(c) = \frac{1}{2} \| c \|_2^2 \). In this case, the norm \(\| \cdot \| = \| \cdot \|_2 = \| \cdot \|_s \), and we have the self duality \(h^* = h \), so that the prediction mapping \(\text{pred}_h \) is the identity.

With these examples as motivation, we then have the following generalization of Proposition 15.9.

Proposition 15.13. Let the negative generalized entropy \(h \) be strongly convex with respect to the norm \(\| \cdot \| \) and consider surrogate loss \(\varphi(s, y) = h^*(s) - \langle s, y \rangle \). Define \(R^2_s(f) := \sup_{w \in \mathcal{W}} \mathbb{E}[\| w(f(X)) \|_2^2] \). Then
\[
\frac{1}{2} \min \left\{ \text{CE}(\text{pred}_h \circ f, \mathcal{W}), \frac{\text{CE}(\text{pred}_h \circ f, \mathcal{W})^2}{R^2_s(f)} \right\} \leq \text{gap}(\varphi, f, \mathcal{W}) \leq \text{CE}(\text{pred}_h \circ f, \mathcal{W}).
\]

Proof. Fix \(x \) and let \(s = f(x) \) and \(w = w(f(x)) \), and notice that for any \(y \) we have
\[
\varphi(s, y) + \langle \nabla \varphi(s, y), w \rangle \leq \varphi(s + w, y) \leq \varphi(s, y) + \langle \nabla \varphi(s, y), w \rangle + \frac{1}{2} \| w \|_s^2.
\]

Recognizing that \(\nabla \varphi(s, y) = \nabla h^*(s) - y \), for any \(w \in \mathcal{W} \) we have
\[
-\mathbb{E}[\langle \nabla \varphi(f(X), Y), w(f(X)) \rangle] - \frac{1}{2} \mathbb{E}[\| w(f(X)) \|_s^2] \leq \mathbb{E}[\varphi(f(X), Y)] - \mathbb{E}[\varphi(f(X) + w(f(X)), Y)] \leq -\mathbb{E}[\langle \nabla \varphi(f(X), Y), w(f(X)) \rangle].
\]

Taking suprema over \(w \) on each side and using the symmetry of \(\mathcal{W} \) gives
\[
\sup_{w \in \mathcal{W}} \left\{ \mathbb{E}[\langle \nabla h^*(f(X)) - Y, w(f(X)) \rangle] - \frac{1}{2} \mathbb{E}[\| w(f(X)) \|_s^2] \right\} \leq \text{gap}(\varphi, f, \mathcal{W}) \leq \sup_{w \in \mathcal{W}} \mathbb{E}[\langle \nabla h^*(f(X)) - Y, w(f(X)) \rangle].
\]

Because \(\text{CE}(\text{pred}_h \circ f, \mathcal{W}) = \sup_{w \in \mathcal{W}} \mathbb{E}[\langle \nabla h^*(f(X)) - Y, w(f(X)) \rangle] \), we can use the convexity of \(\mathcal{W} \) and the definition \(R^2_s(f) := \sup_{w \in \mathcal{W}} \mathbb{E}[\| w(f(X)) \|_2^2] \), to see that for any \(\eta \in [0, 1] \), we may replace \(w \) with \(\eta \cdot w \in \mathcal{W} \) and
\[
\sup_{\eta \in [0, 1]} \left[\eta \text{CE}(\text{pred}_h \circ f, \mathcal{W}) - \frac{\eta^2}{2} R^2_s(f) \right] \leq \text{gap}(\varphi, f, \mathcal{W}) \leq \text{CE}(\text{pred}_h \circ f, \mathcal{W}).
\]
Set \(\eta = \min\{1, \frac{\text{CE}(\text{pred}_h \circ f, W)}{R_2(f)} \} \).

A corollary specializing to the case of bounded witness functions allows a somewhat cleaner statement.

Corollary 15.14. Let the conditions of Proposition 15.13 hold, and additionally assume that the witness functions \(W \) satisfy \(\|w(s)\|_* \leq 1 \) for all \(s \in \mathbb{R}^k \). Then

\[
\frac{1}{2} \text{diam}(\text{dom } h)^2 \text{CE}(\text{pred}_h \circ f, W)^2 \leq \text{gap}(\varphi, f, W) \leq \text{CE}(\text{pred}_h \circ f, W).
\]

We can give an alternative perspective for this section by focusing on the definitions (15.3.2) and (15.3.3) of the post-processing gap. Suppose we have a proper loss \(\eta \) and we wish to improve the expected loss of a predictor \(f \) by post-processing \(f \). When there is little to be gained by replacing \(f \) with an adjusted version \(f(x) + w(f(x)) \) for some \(w \in W \), then \(f \) must be calibrated with respect to the class \(W \). So, for example, for a surrogate \(\varphi \), the function \(f \) (really, its associated prediction function \(\text{pred}_h \circ f \)) is calibrated with respect to \(W \) if and only if \(\mathbb{E}[\varphi(f(X)) + w(f(X)), Y] \leq \mathbb{E}[\varphi(f(X), Y)] \) for all \(w \in W \).

As a particular special case to close this section, the standard multiclass logistic loss provides a clean example.

Example 15.15 (Multiclass logistic losses, continued): Let \(h \) be the negative entropy \(h(p) = \sum_{j=1}^k p_j \log p_j \) restricted to the probability simplex \(\Delta_k = \{ p \in \mathbb{R}_+^k \mid (1, p) = 1 \} \) and the surrogate \(\varphi(s, y) = \log(\sum_{j=1}^k e^{s_j}) - s_y \). Then for any class \(W \) consisting of functions with \(\|w(s)\|_\infty \leq 1 \) for all \(s \in \mathbb{R}^k \) and any function \(f : \mathcal{X} \to \mathbb{R}^k \),

\[
\frac{1}{2} \text{CE}(\text{pred}_h \circ f, W)^2 \leq \mathbb{E}[\varphi(f(X), Y)] - \inf_{w \in W} \mathbb{E}[\varphi(f(X) + w(f(X)), Y)].
\]

(Note that \(\text{dom } h \) has diameter 1 in the \(\ell_1 \)-norm.) \(\diamond \)

15.3.3 An algorithm for calibration

Implicit in each of the calibration gap bounds in Propositions 15.9 and 15.13 is bound on the improvement of a predictor \(f \) relative to processing outputs with a class \(W \) of functions. This suggests an algorithm for updating the predictions of \(f \) to make them calibrated, after which no improvement is possible. While we work at the population level here, similar procedures can allow calibration given access to additional data.

Working in the more general setting of surrogate losses based on the generalized negative entropy \(h \), as these include the standard squared error as a special case, the key idea is that if we find the witness \(w \) maximizing \(\mathbb{E}[\langle w(f(X)), Y - \text{pred}_h(f(X)) \rangle] \) we can update \(f \) with \(f - \eta \cdot w \circ f \) for some stepsize \(\eta \), thus improving the calibration of \(f \) relative to the class \(W \) of potential witnesses. In Figure 15.1, we present a prototypical algorithm for achieving this.

The following theorem bounds the convergence of the algorithm.

Theorem 15.16. Assume that the surrogate loss \(\varphi \) is nonnegative and that the class of witnesses \(W \) satisfies \(R_* := \sup_s \|w(s)\|_* < \infty \). Then the algorithm in Figure 15.1 guarantees that

\[
\min_{\tau < t} \text{CE}(\text{pred}_h \circ f_\tau, W) \leq \sqrt{\frac{2R_* \mathbb{E}[\varphi(f_0(X), Y)]}{\sqrt{t}}}.
\]
We begin by showing a one-step progress guarantee beginning from a fixed function \(f \). For any \(w \), we have

\[
E[\langle w(f(X)), Y - \text{pred}_h(f_t(X)) \rangle]
\]

and in particular terminates with \(CE(\text{pred}_h \circ f_t, W) \leq \epsilon \) for some \(t \) with

\[
t \leq \frac{2R_s^2 E[\varphi(f_0(X), Y)]}{\epsilon^2}.
\]

Proof We begin by showing a one-step progress guarantee beginning from a fixed function \(f \). For any \(w : \mathbb{R}^k \to \mathbb{R}^k \) and any \(f \), we have

\[
E[\varphi(f(X) + \eta w(f(X)), Y)] \leq E[\varphi(f(X), Y)] + \eta E[\langle w(f(X)), \nabla h^*(f(X)) - Y \rangle] + \frac{\eta^2}{2} E[\|w(f(X))\|_s^2].
\]

Let \(w \) maximize \(E[\langle w(f(X)), \nabla h^*(f(X)) - Y \rangle] \), so that

\[
E[\varphi(f(X) - \eta w(f(X)), Y)] \leq E[\varphi(f(X), Y)] - \eta CE(\text{pred}_h \circ f, W) + \frac{\eta^2}{2} R_s^2.
\]

Choose \(\eta_f = \frac{CE(\text{pred}_h \circ f, W)}{R_s^2} \) to obtain

\[
E[\varphi(f(X) - \eta_f w(f(X)), Y)] \leq E[\varphi(f(X), Y)] - \frac{1}{2} \frac{CE(\text{pred}_h \circ f, W)^2}{R_s^2}.
\]

(15.3.4)

Now we apply the obvious inductive argument. Let \(f_t \) be a function in the iteration of Algorithm 15.1. Then inequality (15.3.4) guarantees that if \(\delta_t^2 := \frac{1}{2} \frac{CE(\text{pred}_h \circ f_t, W)^2}{R_s^2} \), then

\[
E[\varphi(f_{t+1}(X), Y)] \leq E[\varphi(f_t(X), Y)] - \delta_t^2.
\]

In particular,

\[
0 \leq E[\varphi(f_t(X), Y)] \leq \delta_0^2.
\]

In particular,

\[
t \min_{\tau < t} \delta_\tau^2 \leq E[\varphi(f_0(X), Y)],
\]

so that \(\min_{\tau < t} \delta_\tau \leq \sqrt{E[\varphi(f_0(X), Y)]/t} \). Replacing \(\delta_\tau \) with its definition gives the theorem. \(\square \)
15.4 Equivalent calibration measures

That both the measures $\text{dcal}(f)$ and $\text{CE}(f, W_{\|\|})$ are Lipschitz calibration measures when the label space \mathcal{Y} is bounded is suggestive of deeper relationships between the two, and perhaps other notions of calibration. We use this chapter to elucidate a few of these relationships, as well as introducing a few alternative measures of calibration that we use as stepping stones toward our final results. While many of our derivations will apply for general sets \mathcal{Y}, in some cases we will restrict to multiclass classification problems, so that $\mathcal{Y} = \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$ are the k standard basis vectors. We present two main results: the first, Theorem 15.17, shows an equivalence (up to a square root) between the penalized calibration distance (15.2.3) and a form of calibration error based on partitioning the space $\text{Conv}(\mathcal{Y})$ of potential predictions. As a corollary of this result, we obtain the equivalence of the distances to calibration (15.2.2) and (15.2.3). The second main result, Theorem 15.20, gives a similar equivalence between the penalized distance (15.2.3) and the calibration error relative to Lipschitz functions (15.2.4). Throughout, to make the calculations cleaner and more transparent, we restrict our functions to make predictions in Conv(\mathcal{Y}); predicting outside of Conv(\mathcal{Y}) can only make losses worse in any case.

15.4.1 Partition-based calibration measures and lifting to random variables

To develop the different equivalent calibration measures we consider, it is easier to first move directly to the space of predictions $f(X) \in \mathbb{R}^k$ rather than addressing the underlying space \mathcal{X}. To that end, let $S = f(X)$ be the random vector (use the mnemonic that S is for “scores”) induced by $f(X)$ and taking values in Conv(\mathcal{Y}), which has a joint distribution (S, Y) with the label Y. Then, for example, the expected calibration error of f is simply

$$\text{ece}(f) = \mathbb{E}[\|\mathbb{E}[Y \mid S] - S\|].$$

Once we move to the space of predicted scores themselves, it is then natural to propose calibration measures directly on the random variables (S, Y).

The brittleness of ece we have exhibited suggests an alternative approach—often described as “binning” predictions in the literature—which is to consider averages of Y conditioned on predictions in larger sets. If we wish to evaluate the calibration of S, we can relax perfect conditioning $\mathbb{E}[Y \mid S]$ to look instead at the expectation of Y conditional on $S \in A$ for a set A, so that a predicted score is (nearly) calibrated if the diameter $\text{diam}(A)$ is small, and $\mathbb{E}[Y \mid S \in A] \approx s$ for some $s \in A$. Given a partition A of the space $\text{Conv}(\mathcal{Y})$, it is then natural to evaluate the average error for each element of A (weighting by the probability of A), and consider the calibration error (15.2.4) for indicator functions of $A \in \mathcal{A}$, where we abuse notation slightly to define

$$\text{CE}(S, A) := \sum_{A \in \mathcal{A}} \|\mathbb{E}[(S - Y)1\{S \in A}\]| = \sum_{A \in \mathcal{A}} \|\mathbb{E}[S - Y \mid S \in A]\| \mathbb{P}(S \in A).$$

Indeed, taking a supremum over all such partitions gives $\sup_A \text{CE}(S \mid A) = \mathbb{E}[\|\mathbb{E}[Y \mid S] - S\|]$, which is the original expected calibration error (15.2.1). Additionally, and here we elide details, if S is a continuous random variable with suitably nice density and \mathcal{A}_n denotes any partition satisfying $\text{diam}(A) \leq 1/n$ for $A \in \mathcal{A}_n$, then $\lim_n \text{CE}(S \mid \mathcal{A}_n) = \mathbb{E}[\|\mathbb{E}[Y \mid S] - S\|]$. Instead of considering CE(S, A) directly, we optimize over all partitions, but penalize the average size of elements of \mathcal{A}, giving the partitioned calibration error

$$\text{pce}(S) := \inf_{\mathcal{A}} \left\{ \text{CE}(S, A) + \sum_{A \in \mathcal{A}} \text{diam}(A)\mathbb{P}(S \in A) \right\}. \quad (15.4.1)$$
The partitioned calibration error (15.4.1) provides upper and lower bounds on the (penalized) distances to calibration (15.2.2) and (15.2.3), and to show this, we consider two related bounds on the calibration distances. Once we work exclusively in the space of random scores \(S = f(X) \), we may define the lower distances to calibration in analogy with the (penalized) distances to calibration. Thus, we define

\[
\text{dcal}_{\text{low}, 0}(f) := \inf_{V} \{ \mathbb{E}[\|S - V\|] \text{ s.t. } \mathbb{E}[Y | V] = V \}
\]

and

\[
\text{dcal}_{\text{low}}(f) := \inf_{V} \{ \mathbb{E}[\|S - V\|] + \mathbb{E}[\|\mathbb{E}[Y | V] - V\|] \},
\]

where the infimum are over all random variables \(V \) taking values in \(\text{Conv}(\mathcal{Y}) \), which can have arbitrary distribution with \((S, Y)\) (but do not modify the joint \((S, Y)\)), and in case (15.4.2a) are calibrated. This formulation is convenient in that we can represent it as a convex optimization problem, allowing us to bring the tools of duality to bear on it, though we defer this temporarily. By considering \(V = g(X) \) for functions \(g : \mathcal{X} \to \text{Conv}(\mathcal{Y}) \), we immediately see that \(\text{dcal}(f) \geq \text{dcal}_{\text{low}}(f) \).

We can also consider upper distances

\[
\text{dcal}_{\text{up}, 0}(f) := \inf_{g} \{ \mathbb{E}[\|S - g(S)\|] \text{ s.t. } \mathbb{E}[Y | g(S)] = g(S) \}
\]

and

\[
\text{dcal}_{\text{up}}(f) := \inf_{g : \mathbb{R}^k \to \text{Conv}(\mathcal{Y})} \{ \mathbb{E}[\|S - g(S)\|] + \mathbb{E}[\|\mathbb{E}[Y | g(S)] - g(S)\|] \},
\]

which restrict the definitions (15.2.2) and (15.2.3) to compositions. We therefore evidently have the inequalities

\[
\text{dcal}_{\text{low}, 0}(f) \leq \text{dcal}_{0}(f) \leq \text{dcal}_{\text{up}, 0}(f) \quad \text{and} \quad \text{dcal}_{\text{low}}(f) \leq \text{dcal}(f) \leq \text{dcal}_{\text{up}}(f),
\]

(15.4.3)

The partitioned calibration error (15.4.1) allows us to provide a bound relating the calibration error and the lower and upper calibration errors. To state the theorem, we make a normalization with \(\|\cdot\| \), assuming without loss of generality that \(\|\cdot\|_{\infty} \leq \|\cdot\| \).

Theorem 15.17. Let \(\mathcal{Y} \subset \mathbb{R}^k \) have finite diameter \(\text{diam}(\mathcal{Y}) \) in the norm \(\|\cdot\| \). Let \(S = f(X) \in \mathbb{R}^k \). Then for all \(\varepsilon > 0 \),

\[
\text{dcal}_{\text{up}}(f) \leq \text{dcal}_{\text{up}, 0}(f) \leq \text{pce}(S) \leq \left(1 + \frac{2k \text{diam}(\mathcal{Y})}{\varepsilon} \right) \text{dcal}_{\text{low}}(f) + \|1_k\|_* \varepsilon
\]

\[
\leq \left(1 + \frac{2k \text{diam}(\mathcal{Y})}{\varepsilon} \right) \text{dcal}_{\text{low}, 0}(f) + \|1_k\|_* \varepsilon.
\]

While the first inequality in Theorem 15.17 is relatively straightforward to prove, the second requires substantially more care, so we defer the proof of the theorem to Section 15.5.3.

We record a few corollaries, one consequence of which is to show that the partitioned calibration error (15.4.1) is at least a calibration measure in the sense of Definition 15.1.(i). Theorem 15.17 also shows that the penalized calibration distance \(\text{dcal}(f) \) is equivalent, up to taking a square root, to the upper and lower calibration “distances”. In each corollary, we let \(c_k = \|1_k\|_* \) for shorthand.

Corollary 15.18. Let the conditions of Theorem 15.17 hold. Then

\[
\text{dcal}_{\text{low}}(f) \leq \text{dcal}(f) \leq \text{dcal}_{\text{low}}(f) + 2\sqrt{c_k k \text{diam}(\mathcal{Y})} \sqrt{\text{dcal}_{\text{low}}(f)}
\]

and

\[
\text{dcal}_{\text{low}, 0}(f) \leq \text{dcal}_{0}(f) \leq \text{dcal}_{\text{low}, 0}(f) + 2\sqrt{c_k k \text{diam}(\mathcal{Y})} \sqrt{\text{dcal}_{\text{low}, 0}(f)}
\]
The first lower bound is immediate (recall the naive inequalities (15.4.3)). Now set \(\varepsilon = \sqrt{2k \text{diam}(\mathcal{Y}) / \text{dcal}_{\text{low}}(f) / c_k} \) in Theorem 15.17, and recognize that \(\text{dcal}_{\text{low}}(f) \leq \text{dcal}_{\text{up}}(f) \).

We also obtain an approximate equivalence between the calibration distance \(\text{dcal}_0 \) and penalized calibration distance \(\text{dcal} \) from definitions (15.2.2) and (15.2.3).

Corollary 15.19. Let the conditions of Theorem 15.17 hold. Then

\[
\text{dcal}(f) \leq \text{dcal}_0(f) \leq \text{dcal}(f) + 2 \sqrt{c_k k \text{diam}(\mathcal{Y})} \sqrt{\text{dcal}(f)}.
\]

Proof The first inequality is immediate by definition. For the second, note (see Lemma 15.25 in the proof of Theorem 15.17 in Section 15.5.3) that \(\text{dcal}_{\text{low}}(f) \leq p_{c_k}(S) \) for \(S = f(X) \). Then apply Theorem 15.17 with \(\varepsilon = \sqrt{2k \text{diam}(\mathcal{Y}) / \text{dcal}_{\text{low}}(f) / c_k} \) as in Corollary 15.18, and recognize that \(\text{dcal}_{\text{low}} \leq \text{dcal} \).

Let us instantiate the theorem and its corollaries in a few special cases. If we make binary predictions with \(\mathcal{Y} = \{0, 1\} \), then \(c_k = k = \text{diam}(\mathcal{Y}) = 1 \), and Theorem 15.17 implies that

\[
\text{dcal}_{\text{low}}(f) \leq \text{dcal}(f) \leq \text{dcal}_{\text{low}}(f) + 2 \sqrt{\text{dcal}_{\text{low}}(f)}.
\]

For \(k \)-class multiclass classification, where we identify \(\mathcal{Y} = \{e_1, \ldots, e_k\} \) with the \(k \) standard basis vectors, we have the bounds

\[
\text{dcal}_{\text{low}}(f) \leq \text{dcal}(f) \leq \text{dcal}_{\text{low}}(f) + 2k \sqrt{\text{dcal}_{\text{low}}(f)},
\]

so long as we measure calibration errors with respect to the \(\ell_1 \)-norm, that is, \(\|y - f(x)\|_1 \).

JCD Comment: Remark on sharpness here.

15.4.2 The equivalence between calibration error and the calibration distance

We can rewrite the calibration error \(\text{CE}(S, \mathcal{A}) \) relative to partitions in the definition (15.4.1) as the supremum over a collection \(\mathcal{W}_A \) of functions of the form \(w(s) = v1 \{s \in A\} \), where \(\|v\|_* \leq 1 \), so that

\[
\text{CE}(S, \mathcal{W}_A) = \sup_{w \in \mathcal{W}_A} E[|w(S) - Y|] = \sum_{A \in \mathcal{A}} E[|E[Y | S] - S|].
\]

Relaxing this supremum, and removing the infimum over partitions, we might expect a similar relationship to Theorem 15.17 to hold. Via a duality argument that the definition (15.4.2) of the lower calibration error as an infimum over joint distributions makes possible, we can directly relate the measures.

Theorem 15.20. Let \(\mathcal{Y} \subset \mathbb{R}^k \) have finite diameter in the norm \(\|\cdot\| \) and \(\mathcal{W}_\|\cdot\| \) be the collection (15.2.5) of bounded Lipschitz functions. Then

\[
\text{CE}(f, \mathcal{W}_\|\cdot\|) \leq (1 + \text{diam}(\mathcal{Y})) \cdot \text{dcal}_{\text{low}}(f).
\]

Conversely, let \(\mathcal{Y} = \{e_1, \ldots, e_k\} \) and define \(C_k := \|1_k\|_* \max\{1, \text{diam}(\mathcal{Y})\} \). Then

\[
\text{dcal}_{\text{low},0}(f) \leq C_k \cdot \text{CE}(f, \mathcal{W}_\|\cdot\|).
\]

This proof, while nontrivial, is more elementary than the others in this chapter, so we present it here. Before giving it, however, we give a few corollaries that give a fuller picture of the relationships between the different calibration measures we have developed.
Corollary 15.21. Let $\mathcal{Y} = \{e_1, \ldots, e_k\}$ and $\|\cdot\| = \|\cdot\|_2$. Then for any $f : \mathcal{X} \to \text{Conv}(\mathcal{Y})$, we have
\[
\frac{1}{2} \text{CE}(f, W_{\|\cdot\|}) \leq \text{dcal}(f) \leq C_k \left[\text{CE}(f, W_{\|\cdot\|}) + \sqrt{\text{CE}(f, W_{\|\cdot\|})} \right],
\]
where C_k depends only on k.

Proof of Theorem 15.20

The proof of the upper bound is fairly straightforward. For any $w \in W_{\|\cdot\|}$, we have
\[
\mathbb{E}[\langle w(S), Y - S \rangle] = \mathbb{E}[\langle w(S), V - S \rangle] + \mathbb{E}[\langle w(S) - w(V), Y - V \rangle] + \mathbb{E}[\langle w(V), Y - V \rangle]
\leq \mathbb{E}[\|V - S\|] + \text{diam}(\mathcal{Y}) \mathbb{E}[\|V - S\|] + \mathbb{E}[\langle w(V), \mathbb{E}[Y | V] - V \rangle]
\leq (1 + \text{diam}(\mathcal{Y})) \mathbb{E}[\|V - S\|] + \mathbb{E}[\|\mathbb{E}[Y | V] - V\|].
\]

To prove the converse requires more; we present most of the argument for an arbitrary discrete space \mathcal{Y} and specialize to the multiclass setting only at the end. The starting point is to reduce the problem to a discrete problem over probability mass functions rather than general distributions, as then it is much easier to apply the standard tools of convex duality. Consider the value
\[
\text{dcal}_{\text{low},0}(S) = \inf_V \{ \mathbb{E}[\|S - V\|] \text{ s.t. } \mathbb{E}[Y | V] = V \}.
\]

Let $b \in \mathbb{N}$ and S_b be a (minimal) $1/b$ covering $\{s_1, \ldots, s_N\}$ of $\text{Conv}(\mathcal{Y})$, and define S_b to be the projection of S to the nearest s_i. Then $\|S - V\| = \|S_b - V\| \pm 1/b$, and
\[
\text{dcal}_{\text{low},0}(S) = \inf_V \{ \mathbb{E}[\|S_b - V\|] \text{ s.t. } \mathbb{E}[Y | V] = V \} \pm \frac{1}{b}.
\]

Now, if we replace the infimum over arbitrary joint distributions of (S_b, Y, V) leaving the marginal (S_b, Y) unchanged (with V calibrated) with an infimum over only discrete distributions on V, we have
\[
\text{dcal}_{\text{low},0}(S) \leq \inf_{V \text{ finitely supported}} \{ \mathbb{E}[\|S_b - V\|] \text{ s.t. } \mathbb{E}[Y | V] = V \} + \frac{1}{b}. \tag{15.4.4}
\]
Notably, the infimum is non-empty, as we can always choose $V = Y$.

With the problem (15.4.4) in hand, we can write a finite dimensional optimization problem whose optimal value is the discretized infimum on the right side. Without loss of generality assuming that S is finitely supported, we let $p_{sy} = \mathbb{P}(S = s, Y = y)$ be the probability mass function of (S, Y). Then introducing the joint distribution Q with p.m.f. $q_{syv} = Q(S = s, Y = y, V = v)$, the infimum (15.4.4) has the constraint that $\sum_v q_{syv} = p_{sy}$. Then $\mathbb{E}[\|S - V\|] = \sum_{s,y,v} q_{syv} \|s - v\|$ and the calibration constraint $\mathbb{E}[Y | V] = V$ is equivalent to the equality constraint that $\sum_{s,y} q_{syv}(y - v) = 0$ for each v. This yields the convex optimization problem
\[
\text{minimize } \sum_{s,y,v} q_{syv} \|s - v\|
\text{subject to } \sum_v q_{syv} = p_{sy}, \quad q \geq 0, \quad \sum_v q_{syv}(y - v) = 0 \text{ for all } v. \tag{15.4.5}
\]
in the variable \(q\). We take the dual of this problem. Taking Lagrange multipliers \(\lambda_{sy}\) for each equality constraint that \(\sum_v q_{syv} = p_{sy}, \theta_{syv} \geq 0\) for the nonnegativity constraints on \(q\), and \(\beta_v \in \mathbb{R}^k\) for each equality constraint that \(0 = \sum_{s,y} q_{syv}(y - v)\), we have Lagrangian

\[
\mathcal{L}(q, z, \lambda, \theta, \beta) = \sum_{s,y,v} q_{syv} \|s - v\| + \sum_{s,y,v} q_{syv} \beta_v^T(y - v) - \sum_{s,y} \lambda_{sy} \left(\sum_v q_{syv} - p_{sy} \right) - \langle \theta, q \rangle.
\]

Taking an infimum over \(q\), we see that unless

\[
\|s - v\| + \beta_v^T(y - v) - \lambda_{sy} - \theta_{syv} = 0
\]

for each triple \((s, y, v)\), we have \(\inf_q \mathcal{L}(q, \lambda, \theta, \beta) = -\infty\). The equality in the preceding display is equivalent to \(\|s - v\| + \beta_v^T(y - v) \geq \lambda_{sy}\), so that eliminating \(\theta \geq 0\) variables, we have the dual

\[
\begin{aligned}
\text{maximize} & \quad \sum_{s,y} \lambda_{sy} p_{sy} \\
\text{subject to} & \quad \lambda_{sy} \leq \|s - v\| + \beta_v^T(y - v), \; \text{all } s, y, v
\end{aligned}
\]

(15.4.6)

in the variables \(\beta_v\), and strong duality obtains.

The dual problem (15.4.6) is the key to the final step in the proof. To make the functional notation clearer, let us fix any collection of vectors \(\beta_v\) and define \(\lambda_y(s) = \min_v \{ \|s - v\| + \beta_v^T(y - v) \}\) for each \(y \in \mathcal{Y}\). If we can exhibit a \(C\)-Lipschitz function \(s \mapsto w(s)\) that satisfies

\[
\langle w(s), y - s \rangle \geq \lambda_y(s)
\]

(15.4.7)

for each \(y \in \mathcal{Y}\) and \(\|w(s)\|_* \leq C\), we will evidently have shown that

\[
\sup \mathbb{E}[\langle w(S), Y - S \rangle] \geq \frac{1}{C} \text{dcal}_{\text{low,0}}(S),
\]

by the dual formulation (15.4.6).

The functions \(\lambda_y\) are each \(1\)-Lipschitz with respect to \(\|\cdot\|\), as

\[
\lambda_y(s) - \lambda_y(s') \geq \min_v \{ \|s - v\| + \beta_v^T(y - v) - \|s' - v\| - \beta_v^T(y - v) \}
\]

\[
= \min_v \{ \|s - v\| - \|s' - v\| \} \geq -\|s - s'\|,
\]

and similarly

\[
\lambda_y(s) - \lambda_y(s') \leq \max_v \{ \|s - v\| + \beta_v^T(y - v) - \|s' - v\| - \beta_v^T(y - v) \} \leq \|s - s'\|
\]

by the triangle inequality. Here, we specialize to the particular multiclass classification case in which the set \(\mathcal{Y} = \{e_1, \ldots, e_k\}\) consists of extreme points of the probability simplex, so that \(s \in \text{Conv}(\mathcal{Y})\)
means that \(\langle 1, s \rangle = 1 \) and \(s \geq 0 \). Abusing notation slightly, let \(\lambda_i = \lambda_{e_i} \) for \(i = 1, \ldots, k \). Then define the function

\[
w(s) := \begin{bmatrix} \lambda_1(s) \\ \vdots \\ \lambda_k(s) \end{bmatrix}.
\]

By inspection, we have

\[
\|w(s) - w(s')\|_* \leq \|s - s'\|_1 = \|1\|_* \|s - s'\|.
\]

Additionally, because \(\lambda_i(s) \leq \|s - e_i\| \) (take \(v = e_i \) in the definition of \(\lambda_i \)), we have \(\|w(s)\|_* \leq 1 \) for all \(s \in \mathcal{W} \). Finally, we have

\[
\langle w(s), e_i - s \rangle = (1 - s_i)\lambda_i(s) - \sum_{j \neq i} s_j \lambda_j(s)
\]

\[
\geq (1 - s_i)\lambda_i(s) - \sum_{j \neq i} s_j \langle \beta_s, e_j - s \rangle
\]

because \(\lambda_j(s) \leq \langle \beta_s, e_j - s \rangle \) by taking \(v = s \) in the definition of \(\lambda_j \). Adding and subtracting \(s_i \langle \beta_s, e_i - s \rangle \), we obtain

\[
\langle w(s), e_i - s \rangle \geq (1 - s_i)\lambda_i(s) - \sum_{j = 1}^k s_j \langle \beta_s, e_j - s \rangle + s_i \langle \beta_s, e_i - s \rangle
\]

\[
= (1 - s_i)\lambda_i(s) + s_i \langle \beta_s, e_i - s \rangle \geq \lambda_i(s),
\]

because \(s \geq 0 \) and \(\langle \beta_s, e_i - s \rangle \geq \lambda_i(s) \). This is the desired inequality (15.4.7).

15.5 Deferred technical proofs

Several of the proofs in this chapter rely on standard results from analysis and measure theory; we give these as base lemmas, as any book on graduate level real analysis (implicitly) contains them (see, e.g., [3, Chapters 1.3 and 1.13] or [6]).

Lemma 15.22 (Egorov’s theorem). Let \(f_n \rightarrow f \) in \(L^p(P) \) for some \(p \geq 1 \). Then for each \(\epsilon > 0 \), there exists a set \(A \) of measure at least \(P(A) \geq 1 - \epsilon \) such that \(f_n \rightarrow f \) uniformly on \(A \).

Lemma 15.23 (Monotone convergence). Let \(f_n : \mathcal{X} \rightarrow \mathbb{R}_+ \) be a monotone increasing sequence of functions and \(f(x) = \lim_n f_n(x) \) (which may be infinite). Then \(\int f(x) d\mu(x) = \lim_n \int f_n(x) d\mu(x) \) for any measure \(\mu \).

Lemma 15.24 (Density of Lipschitz functions). Let \(\mathcal{C}_c^{\text{Lip}} \) be the collection of compactly supported Lipschitz functions on \(\mathbb{R}^k \) and \(P \) a probability distribution on \(\mathbb{R}^k \). Then \(\mathcal{C}_c^{\text{Lip}} \) is dense in \(L^p(P) \), that is, for each \(\epsilon > 0 \) and \(f \) with \(\mathbb{E}_P[|f(X)|^p] < \infty \), there exists \(g \in \mathcal{C}_c^{\text{Lip}} \) with \(\mathbb{E}_P[|g(X) - f(X)|^p]^{1/p} \leq \epsilon \).

15.5.1 Proof of Lemma 15.4

Let \(\mathcal{W}_k \) be the collection of \(k \)-Lipschitz functions \(w \) with \(\|w(s)\|_* \leq 1 \) for all \(s \), and let \(\mathcal{W} \) denote the collection of measurable functions with \(\|w(s)\|_* \leq 1 \) for all \(s \). Recall the definition CE\((g, \mathcal{W}_k) = \)
sup_{w \in W_k} \mathbb{E}[\langle w(g(X)), Y - g(X) \rangle]. \text{ Then if } f_n \to f \text{ in } L^1(P), \text{ by Egorov's theorem (Lemma 15.22), for each } \epsilon > 0 \text{ there exists a set } A \text{ with } P(A) \geq 1 - \epsilon \text{ and } f_n \to f \text{ uniformly on } A. \text{ Then }

\begin{align*}
\mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle] \\
= \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle 1 \{X \in A\}] + \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle 1 \{X \in A^c\}] \\
\geq \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle 1 \{X \in A\}] - \mathbb{E}[\|Y - f_n(X)\| 1 \{X \in A^c\}] \\
\geq \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle 1 \{X \in A\}] - \epsilon_1
\end{align*}

because \(\|w(s)\|_s \leq 1\). As \(\|y - f_n(x)\| 1 \{x \in A^c\} - \|y - f(x)\| 1 \{x \in A\}\) by the triangle inequality, the last term in inequality (15.5.1) converges to \(\mathbb{E}[\|Y - f(X)\| 1 \{X \in A^c\}]\) as \(n \to \infty\). Focusing on the first term in (15.5.1), for any \(\epsilon_1 > 0\) the uniform convergence of \(f_n\) to \(f\) on \(A\) guarantees that for large enough \(n\), we have

\begin{align*}
\mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle] \\
= \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] + \mathbb{E}[\langle w(f_n(X)) - w(f(X)), Y - f_n(X) \rangle 1 \{X \in A\}] \\
\geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] - k \sup_{x \in A} \|f(x) - f_n(x)\|_s \mathbb{E}[\|Y - f_n(X)\|] \\
\geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] - \epsilon_1
\end{align*}

Adding and subtracting \(f(X)\) in the final expectation, we have

\begin{align*}
\mathbb{E}[\langle w(f(X)), Y - f_n(X) \rangle 1 \{X \in A\}] \\
= \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] + \mathbb{E}[\langle w(f(X)) - f(X), f(X) - f_n(X) \rangle 1 \{X \in A\}] \\
\geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] - \mathbb{E}[\|Y - f(X)\| 1 \{X \in A^c\}] - \mathbb{E}[\|f(X) - f_n(X)\|] \\
\to \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A\}] - \mathbb{E}[\|Y - f(X)\| 1 \{X \in A^c\}].
\end{align*}

Substituting these bounds into inequality (15.5.1), we have for any \(\epsilon > 0\) that there exists a set \(A_\epsilon\) with \(P(A_\epsilon) \geq 1 - \epsilon\) and for which

\[
\liminf_{n} \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle] \\
\geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in A_\epsilon\}] - \mathbb{E}[\|Y - f(X)\| 1 \{X \in A^c_\epsilon\}].
\]

For each \(m \in \mathbb{N}\), let \(B_m = \bigcup_{n \leq m} A_{1/n}\). Certainly \(P(B_m) \geq 1 - 1/m\), and \(f_n \to f\) uniformly on \(B_m\) (as the guarantees on \(A_{1/n}\) from Egorov’s theorem apply); the same argument thus gives

\[
\liminf_{n} \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle] \\
\geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle 1 \{X \in B_m^c\}] - \mathbb{E}[\|Y - f(X)\| 1 \{X \in B_m\}].
\]

Because \(B_m\) is an increasing sequence of sets with \(P(B_m) \geq 1 - 1/m\), the limit \(B_\infty = \bigcup_m B_m\) satisfies \(P(B_\infty) = 1\). For any \(x \in B_\infty\), we see that \(x \in B_m\) for some finite \(m\); trivially, for \(x \in B_\infty\) we thus have \(\|y - f(x)\| 1 \{x \notin B_m\} \to \|y - f(x)\| 1 \{x \notin B_\infty\} = 0\) as \(m \to \infty\). Said differently, except on a null set, we have \(\|y - f(x)\| 1 \{x \notin B_m\} \to 0\) for \(P\)-almost all \((x,y)\), and this is certainly dominated by \(\|y - f(x)\|\). Lebesgue’s dominated convergence theorem then implies \(\mathbb{E}[\|Y - f(X)\| 1 \{X \notin B_m\}] \to 0\) as \(m \to \infty\). Summarizing, we have shown that for any \(w \in W_k\), we have

\[
\liminf_{n} \mathbb{E}[\langle w(f_n(X)), Y - f_n(X) \rangle] \geq \mathbb{E}[\langle w(f(X)), Y - f(X) \rangle].
\]
Lemma 15.25. For $S = f(X)$, we have
\[\text{dcal}_{up}(f) \leq \text{dcal}_{up,0}(f) \leq \text{pce}(S). \]
Proof Fix any partition \(\mathcal{A} \), and define \(q_A(s) \) to be the (unique) set \(A \) such that \(s \in A \) (so we quantize \(s \)). Then set \(g(s) = \mathbb{E}[Y \mid S \in q_A(s)] \) to be the expectation of \(Y \) conditional on \(S \) being in the same partition element as \(s \). Then \(g(S) = \mathbb{E}[Y \mid g(S)] \) with probability 1, so that \(g \) is perfectly calibrated, and

\[
d_{\text{cal}}(f) \leq d_{\text{cal}}(f) \leq \mathbb{E}[\|S - g(S)\|] = \sum_{A \in \mathcal{A}} \mathbb{E}[\|S - \mathbb{E}[Y \mid S \in A]\| \mathbb{1}\{S \in A\}] \leq \sum_{A \in \mathcal{A}} \mathbb{E}[\|S - \mathbb{E}[S \mid S \in A]\| + \|\mathbb{E}[S - Y \mid S \in A]\|] \mathbb{1}\{S \in A\}] \leq \sum_{A \in \mathcal{A}} \text{diam}(A)\mathbb{P}(S \in A) + \sum_{A \in \mathcal{A}} \|\mathbb{E}[(S - Y)\mathbb{1}\{S \in A\}]\|.
\]

Taking an infimum gives the claim (15.5.2).

To prove the claimed upper bound requires more work. For pedagogical reasons, let us attempt to prove a similar upper bound relating \(pce(S) \) to \(d_{\text{cal}}(f) \). We might begin with a partition \(\mathcal{A} \) with maximal diameter \(\text{diam}(A) \leq \epsilon \) for \(A \in \mathcal{A} \), and for random variables \((S, V, Y) \), begin with the first term in the partition error, whence

\[
\text{CE}(S, \mathcal{A}) \leq \sum_{A \in \mathcal{A}} \|\mathbb{E}[(S - V)\mathbb{1}\{S \in A\}]\| + \|\mathbb{E}[(V - Y)\mathbb{1}\{S \in A\}]\|
\]

\[
\leq \mathbb{E}[\|S - V\|] + \sum_{A \in \mathcal{A}} \|\mathbb{E}[(V - Y)\mathbb{1}\{V \in A\}]\| + \sum_{A \in \mathcal{A}} \|\mathbb{E}[(V - Y)(\mathbb{1}\{S \in A\} - \mathbb{1}\{V \in A\})]\|
\]

by Jensen’s inequality applied to conditional expectations, once we recognize \(\mathbb{E}[(Y - V)\mathbb{1}\{V \in A\}] = \mathbb{E}[(\mathbb{E}[Y \mid V] - V)\mathbb{1}\{V \in A\}] \). For the final term, a straightforward computation yields

\[
\sum_{A \in \mathcal{A}} \|\mathbb{E}[(V - Y)(\mathbb{1}\{S \in A\} - \mathbb{1}\{V \in A\})]\| \leq \text{diam}(Y) \sum_{A \in \mathcal{A}} \|\mathbb{P}(S \in A, V \notin A) + \mathbb{P}(S \notin A, V \notin A)\|
\]

\[
= 2 \text{diam}(Y)\mathbb{P}(S \text{ and } V \text{ belong to different } A \in \mathcal{A}).
\]

If \(S \) and \(V \) had continuous distributions, we would expect the probability that they fail to belong to the same partition element to scale as \(\mathbb{E}[\|S - V\|] \). This may fail, but to rectify the issue, we can randomize.

Consequently, let us consider the randomized partition error, which we index with \(\epsilon > 0 \) and for \(U \sim \text{Uniform}[-1, 1]^k \) define as

\[
r_{\text{pce}}(S) := \inf_{A} \left\{ \sum_{A \in \mathcal{A}} \|\mathbb{E}[(S - Y)\mathbb{1}\{S + \epsilon U \in A\}]\| + \sum_{A \in \mathcal{A}} \text{diam}(A)\mathbb{P}(S \in A) \right\}.
\]

(15.5.3)

(The choice of uniform \([-1, 1]^k \) is only made for convenience in the calculations to follow.) Letting \(c_k = \|1_k\|_\infty \), we see immediately that

\[
pce(S) \leq r_{\text{pce}}(S) + c_k\epsilon
\]

for all \(\epsilon \geq 0 \). We can say more.
Lemma 15.26. Let \(\varepsilon > 0 \). Then for any random variable \(V \),
\[
\text{rpce}_\varepsilon(S) \leq \mathbb{E}[\|S - V\|] + \mathbb{E}[\mathbb{E}[|Y \mid V] - V\|] + \frac{2k}{\varepsilon} \mathbb{E}[\|Y - S\| \|V - S\|_\infty].
\]

Note that by combining Lemma 15.26 with the display above and recognizing that \(\|Y - S\| \leq \text{diam}(Y) \) with probability 1, we have the theorem.

Proof We replicate the calculation bounding \(\text{CE}(S,A) \) above, but while allowing the randomization. Let \(A \) be a partition of \(\mathbb{R}^k \) into hypercubes of width \(\varepsilon \), that is, \([-\varepsilon, \varepsilon]^k + \varepsilon z\), where \(z \in 2\mathbb{Z}^k \) ranges over integer vectors with even entries. Then \(\text{diam}(A) \leq c_k \varepsilon \), and
\[
\|\mathbb{E}((S - Y)1 \{S + \varepsilon U \in A\})\| \\
\leq \|\mathbb{E}((S - V)1 \{S + \varepsilon U \in A\})\| + \|\mathbb{E}((V - Y)1 \{V + \varepsilon U \in A\})\| \\
+ \|\mathbb{E}((V - Y)1 \{S + \varepsilon U \in A\} - 1 \{S + \varepsilon U \in A\})\| \\
\leq \|\mathbb{E}((S - V)1 \{S + \varepsilon U \in A\})\| + \|\mathbb{E}((V - Y)1 \{V + \varepsilon U \in A\})\| \\
+ \mathbb{E}[\|V - Y\| \cdot (\mathbb{P}(V + \varepsilon U \in A, S + \varepsilon U \notin A \mid V, S) + \mathbb{P}(S + \varepsilon U \in A, V + \varepsilon U \notin A \mid V, S, Y))] \\
\]

Summing over sets \(A \) and using the triangle inequality and that \(S + \varepsilon U \in A \) for some \(A \), we find
\[
\sum_{A \in A} \|\mathbb{E}((S - Y)1 \{S + \varepsilon U \in A\})\| \leq \mathbb{E}[\|S - V\|] + \mathbb{E}[\mathbb{E}[Y \mid V] - V\|] \\
+ 2\mathbb{E}[\|V - Y\| \sum_{A \in A} \mathbb{P}(V + \varepsilon U \in A, S + \varepsilon U \notin A \mid V, S, Y)]. \tag{15.5.4}
\]

We now may bound the probability in inequality (15.5.4). Recall that \(A = [-\varepsilon, \varepsilon]^k + \varepsilon z \) for some \(z \in 2\mathbb{Z}^k \), and fix \(v, s \in \mathbb{R}^k \). Let \(B = [-1, 1]^k \) be the \(\ell_\infty \) ball. Then
\[
\mathbb{P}(v + \varepsilon U \in B, s + \varepsilon U \notin B) = \mathbb{P}(U \notin \varepsilon^{-1}(B - s) \mid U \in \varepsilon^{-1}(B - v))\mathbb{P}(v + \varepsilon U \in B) \\
\leq \frac{k}{\varepsilon} \|s - v\|_\infty \mathbb{P}(v + \varepsilon U \in B), \tag{15.5.5}
\]

where inequality (15.5.5) follows because if \(s, v \in \mathbb{R}^k \) are the centers of two \(\ell_\infty \) balls \(B_s \) and \(B_v \) of radius 1, and if \(\delta = \|s - v\|_\infty \), then the volume of \(B_v \setminus B_s \) is at most \(k\delta^k / \delta^{k-1} = k\delta \). (See Figure 15.2. The \(k \)-dimensional surface area of one side of a hypercube of radius \(\delta \) is \(2k\delta^{k-1} \), and we can put at most \(1 / \delta^{k-1} \) boxes in each facial part of the grey region.)

Substituting inequality (15.5.5) into the bound (15.5.4) and conditioning and deconditioning on \(V, S \), we find that
\[
\sum_{A \in A} \|\mathbb{E}((S - Y)1 \{S + \varepsilon U \in A\})\| \\
\leq \mathbb{E}[\|S - V\|] + \mathbb{E}[\mathbb{E}[Y \mid V] - V\|] + \frac{2k}{\varepsilon} \mathbb{E}[\|V - Y\| \sum_{A \in A} \|V - S\|_\infty 1 \{V + \varepsilon U \in A\}] \\
= \mathbb{E}[\|S - V\|] + \mathbb{E}[\mathbb{E}[Y \mid V] - V\|] + \frac{2k}{\varepsilon} \mathbb{E}[\|Y - V\| \|V - S\|_\infty].
\]

Taking an infimum over partitions \(A \) gives the lemma.

\[\square\]
15.2. The volume argument in inequality (15.5.5). In k dimensions, the hypercube of side-length δ can be replicated $1/\delta^{k-1}$ times on each exposed base of the cube centered at v, where $\delta = \|s - v\|_\infty$. There are at most k such faces, giving volume at most $k\delta^k/\delta^{k-1} = k\delta$ to the gray region.

15.6 Bibliography

Calibration remains an active research area.

15.7 Exercises

[JCD Comment: Add a uniform convexity version of Proposition 15.13 as an exercise.]
Chapter 16

Surrogate Risk Consistency: the Classification Case

I. The setting: supervised prediction problem

(a) Have data coming in pairs \((X, Y)\) and a loss \(L : \mathbb{R} \times \mathcal{Y} \to \mathbb{R}\) (can have more general losses)
(b) Often, it is hard to minimize \(L\) (for example, if \(L\) is non-convex), so we use a surrogate \(\varphi\)
(c) We would like to compare the risks of functions \(f : \mathcal{X} \to \mathbb{R}\):

\[
R_{\varphi}(f) := \mathbb{E}[\varphi(f(X), Y)] \quad \text{and} \quad R(f) := \mathbb{E}[L(f(X), Y)]
\]

In particular, when does minimizing the surrogate give minimization of the true risk?
(d) Our goal: when we define the Bayes risks \(R_{\varphi}^*\) and \(R^*\)

Definition 16.1 (Fisher consistency). We say the loss \(\varphi\) is Fisher consistent if for any sequence of functions \(f_n\)

\[
R_{\varphi}(f_n) \to R_{\varphi}^* \quad \text{implies} \quad R(f_n) \to R^*
\]

II. Classification case

(a) We focus on the binary classification case so that \(Y \in \{-1, 1\}\)

1. Margin-based losses: predict sign correctly, so for \(s \in \mathbb{R}\),

\[
L(s, y) = 1 \{sy \leq 0\} \quad \text{and} \quad \varphi(s, y) = \phi(y s).
\]

2. Consider conditional version of risks. Let \(\eta(x) = \mathbb{P}(Y = 1 \mid X = x)\) be conditional probability, then

\[
R(f) = \mathbb{E}[1 \{f(X)Y \leq 0\}] = \mathbb{P}(\text{sign}(f(X)) \neq Y) = \mathbb{E}[\eta(X)1 \{f(X) \leq 0\} + (1 - \eta(X))1 \{f(X) \geq 0\}] = \mathbb{E}[\ell(f(X), \eta(X))]
\]

and

\[
R_{\phi}(f) = \mathbb{E}[\phi(Y f(X))]
\]

\[
= \mathbb{E}[\eta(X)\phi(f(X)) + (1 - \eta(X))\phi(-f(X))] = \mathbb{E}[\ell_{\phi}(f(X), \eta(X))]
\]

where we have defined the conditional risks

\[
\ell(s, \eta) = \eta 1 \{s \leq 0\} + (1 - \eta) 1 \{s \geq 0\} \quad \text{and} \quad \ell_{\phi}(s, \eta) = \eta \phi(s) + (1 - \eta) \phi(-s).
\]
3. Note the minimizer of ℓ: we have $s^*(\eta) = \text{sign}(\eta - 1/2)$, and $f^*(X) = \text{sign}(\eta(X) - 1/2)$ minimizes risk $R(f)$ over all f

4. Minimizing f can be achieved pointwise, and we have

$$R^* = \mathbb{E}[\inf_s \ell(s, \eta(X))] \quad \text{and} \quad R^*_\phi = \mathbb{E}[\inf_s \ell_\phi(s, \eta(X))].$$

(b) **Example 16.1** (Exponential loss): Consider the exponential loss, used in AdaBoost (among other settings), which sets $\phi(s) = e^{-s}$. In this case, we have

$$\arg\min_s \ell_\phi(s, \eta) = \frac{1}{2} \log \frac{\eta}{1-\eta} \quad \text{because} \quad \frac{\partial}{\partial s} \ell_\phi(s, \eta) = -\eta e^{-s} + (1-\eta)e^s.$$

Thus $f^*_\phi(x) = \frac{1}{2} \log \frac{\eta(x)}{1-\eta(x)}$, and this is Fisher consistent. ◯

(c) Classification calibration

1. Consider pointwise versions of risk (all that is necessary, turns out)

2. Define the infimal conditional ϕ-risks as

$$\ell^*_\phi(\eta) := \inf_s \ell_\phi(s, \eta) \quad \text{and} \quad \ell^{\text{wrong}}_\phi(\eta) := \inf_{s \in [\eta - 1/2] \leq 0} \ell_\phi(s, \eta).$$

3. Intuition: if we always have $\ell^*_\phi(\eta) \leq \ell^{\text{wrong}}_\phi(\eta)$ for all η, we should do fine

4. Define the sub-optimality function $H : [0, 1] \to \mathbb{R}$

$$H(\delta) := \ell^{\text{wrong}}_\phi \left(\frac{1+\delta}{2} \right) - \ell^*_\phi \left(\frac{1+\delta}{2} \right).$$

Definition 16.2. The margin-based loss ϕ is classification calibrated if $H(\delta) > 0$ for all $\delta > 0$. Equivalently, for any $\eta \neq \frac{1}{2}$, we have $\ell^*_\phi(\eta) < \ell^{\text{wrong}}_\phi(\eta)$.

5. **Example** (Example 16.1 continued): For the exponential loss, we have

$$\ell^{\text{wrong}}_\phi(\eta) = \inf_{s \in [2(\eta - 1)] \leq 0} \{\eta e^{-s} + (1-\eta)e^s\} = e^0 = 1$$

while the unconstrained minimal conditional risk is

$$\ell^*_\phi(\eta) = \eta \sqrt{\frac{1-\eta}{\eta}} + (1-\eta) \sqrt{\frac{\eta}{1-\eta}} = 2\sqrt{\eta(1-\eta)},$$

so that $H(\delta) = 1 - \sqrt{1 - \delta^2} \geq \frac{1}{2}\delta^2$. ◯

Example 16.2 (Hinge loss): We can also consider the hinge loss, which is defined as $\phi(s) = [1-s]^+$. We first compute the minimizers of the conditional risk; we have

$$\ell_\phi(s, \eta) = \eta [1-s]^+ + (1-\eta) [1+s]^+, \quad \text{whose unique minimizer (for } \eta \notin \{0, \frac{1}{2}, 1\} \text{) is } s(\eta) = \text{sign}(2\eta - 1).$$

We thus have

$$\ell^*_\phi(\eta) = 2 \min \{\eta, 1-\eta\} \quad \text{and} \quad \ell^{\text{wrong}}_\phi(\eta) = \eta + (1-\eta) = 1.$$

We obtain $H(\delta) = 1 - \min \{1+\delta, 1-\delta\} = \delta$. ◯

Comparing to the sub-optimality function for exp-loss, is tighter.
6. Pictures: use exponential loss, with η and without.

(d) Our goal: using classification calibration, find some function ψ such that $\psi(R_\phi(f) - R_\phi^*) \leq R(f) - R^*$, where $\psi(\delta) > 0$ for all $\delta > 0$. Can we get a convex version of H, then maybe use Jensen’s inequality to get the results? Turns out we will be able to do this.

III. Some necessary asides on convex analysis

(a) Epigraphs and closures

1. For a function f, the epigraph $\text{epi } f$ is the set of points (x, t) such that $f(x) \leq t$

2. A function f is said to be closed if its epigraph is closed, which for convex f occurs if and only if f is lower semicontinuous (meaning $\lim \inf_{x \to x_0} f(x) \geq f(x_0)$)

3. Note: a one-dimensional closed convex function is continuous

Lemma 16.3. Let $f : \mathbb{R} \to \mathbb{R}$ be convex. Then f is continuous on the interior of its domain.

(Proof in notes; just give a picture)

Lemma 16.4. Let $f : \mathbb{R} \to \mathbb{R}$ be closed convex. Then f is continuous on its domain.

4. The closure of a function f is the function $\text{cl } f$ whose epigraph is the closed convex hull of $\text{epi } f$ (picture)

(b) Conjugate functions (Fenchel-Legendre transform)

1. Let $f : \mathbb{R}^d \to \mathbb{R}$ be an (arbitrary) function. Its conjugate (or Fenchel-Legendre conjugate) is defined to be

 $$f^*(s) := \sup_t \{ \langle t, s \rangle - f(t) \}.$$

 (Picture here) Note that we always have $f^*(s) + f(t) \geq \langle s, t \rangle$, or $f(t) \geq \langle s, t \rangle - f^*(s)$

2. The Fenchel biconjugate is defined to be $f^{**}(t) = \sup_s \{ \langle t, s \rangle - f^*(s) \}$ (Picture here, noting that $f'(t) = -s$ implies $f^*(t) = ts - f(t)$)

3. In fact, the biconjugate is the largest closed convex function smaller than f:

 Lemma 16.5. We have

 $$f^{**}(x) = \sup_{a \in \mathbb{R}^d, b \in \mathbb{R}} \{ \langle a, x \rangle - b : \langle a, t \rangle - b \leq f(t) \text{ for all } t \}.$$

 Proof Let $A \subset \mathbb{R}^d \times \mathbb{R}$ denote all the pairs (a, b) minorizing f, that is, those pairs such that $f(t) \geq \langle a, t \rangle - b$ for all t. Then we have

 $$(a, b) \in A \iff f(t) \geq \langle a, t \rangle - b \text{ for all } t$$

 $$\iff b \geq \langle a, t \rangle - f(t) \text{ all } t$$

 $$\iff b \geq f^*(a) \text{ and } a \in \text{dom } f^*.$$

 Thus we obtain the following sequence of equalities:

 $$\sup_{(a,b) \in A} \{ \langle a, t \rangle - b \} = \sup \{ \langle a, t \rangle - b : a \in \text{dom } f^*, -b \leq -f^*(a) \}$$

 $$= \sup \{ \langle a, t \rangle - f^*(a) \}.$$

 So we have all the supporting hyperplanes to the graph of f as desired. \qed
4. Other interesting lemma:

Lemma 16.6. Let h be either (i) continuous on $[0, 1]$ or (ii) non-decreasing on $[0, 1]$. (And set $h(1 + \delta) = +\infty$ for $\delta > 0$.) If h satisfies $h(t) > 0$ for $t > 0$ and $h(0) = 0$, then $f(t) = h^{**}(t)$ satisfies $f(t) > 0$ for any $t > 0$.

(Proof by picture)

IV. Classification calibration results:

(a) Getting quantitative bounds on risk: define the ψ-transform via

$$
\psi(\delta) := H^{**}(\delta). \tag{16.0.1}
$$

(b) Main theorem for today:

Theorem 16.7. Let ϕ be a margin-based loss function and ψ the associated ψ-transform. Then for any $f : \mathcal{X} \to \mathbb{R}$,

$$
\psi(R(f) - R^*) \leq R_\phi(f) - R_\phi^*. \tag{16.0.2}
$$

Moreover, the following three are equivalent:

1. The loss ϕ is classification-calibrated
2. For any sequence $\delta_n \in [0, 1]$,

$$
\psi(\delta_n) \to 0 \iff \delta_n \to 0.
$$

3. For any sequence of measurable functions $f_n : \mathcal{X} \to \mathbb{R}$,

$$
R_\phi(f_n) \to R_\phi^* \implies R(f_n) \to R^*.
$$

1. Some insights from theorem. Recall examples 16.1 and 16.2. For both of these, we have that $\psi(\delta) = H(\delta)$, as H is convex. For the hinge loss, $\phi(s) = [1 - s]_+$, we obtain for any f that

$$
\mathbb{P}(Y f(X) \leq 0) - \inf_f \mathbb{P}(Y f(X) \leq 0) \leq \mathbb{E} \left[[1 - Y f(X)]_+ \right] - \inf_f \mathbb{E} \left[[1 - Y f(X)]_+ \right].
$$

On the other hand, for the exponential loss, we have

$$
\frac{1}{2} \left(\mathbb{P}(Y f(X) \leq 0) - \inf_f \mathbb{P}(Y f(X) \leq 0) \right)^2 \leq \mathbb{E} \left[\exp(-Y f(X)) \right] - \inf_f \mathbb{E} \left[\exp(-Y f(X)) \right].
$$

The hinge loss is sharper.

2. **Example 16.8** (Regression for classification): What about the surrogate loss $\frac{1}{2} (f(x) - y)^2$? In the homework, show which margin ϕ this corresponds to, and moreover, $H(\delta) = \frac{1}{2} \delta^2$. So regressing on the labels is consistent. ◯

(c) Proof of Theorem 16.7 The proof of the theorem proceeds in several parts.

1. We first state a lemma, which follows from the results on convex functions we have already proved. The lemma is useful for several different parts of our proof.

Lemma 16.9. We have the following.

a. The functions H and ψ are continuous.
b. We have $H \geq 0$ and $H(0) = 0$.

c. If $H(\delta) > 0$ for all $\delta > 0$, then $\psi(\delta) > 0$ for all $\delta > 0$.

Because $H(0) = 0$ and $H \geq 0$: we have

$$\ell^\text{wrong}_\phi(1/2) := \inf_{s(1-\delta) \leq 0} \ell_\phi(s, 1/2) = \inf_s \ell_\phi(s, 1/2) = \ell^*_\phi(1/2),$$

so $H(0) = \ell^*_\phi(1/2) - \ell^*_\phi(1/2) = 0$. (It is clear that the sub-optimality gap $H \geq 0$ by construction.)

2. We begin with the first statement of the theorem, inequality (16.0.2). Consider first

$$\ell(s, \eta) - \inf_s \ell(s, \eta) = \eta \{ s \leq 0 \} + (1 - \eta) \mathbf{1} \{ s \geq 0 \} - \eta \mathbf{1} \{ \eta \leq 1/2 \} - (1 - \eta) \mathbf{1} \{ \eta \geq 1/2 \}$$

$$= \begin{cases} 0 & \text{if } \text{sign}(s) = \text{sign}(\eta - \frac{1}{2}) \\ \eta \vee (1 - \eta) - \eta \wedge (1 - \eta) = |2\eta - 1| & \text{if } \text{sign}(s) \neq \text{sign}(\eta - \frac{1}{2}). \end{cases}$$

In particular, we obtain that the gap in risks is

$$R(f) - R^* = \mathbb{E} [\mathbf{1} \{ \text{sign}(f(X)) \neq \text{sign}(2\eta(X) - 1) \} | 2\eta(X) - 1]] \quad (16.0.3)$$

Now we use expression (16.0.3) to get an upper bound on $R(f) - R^*$ via the ϕ-risk. Indeed, consider the ψ-transform (16.0.1). By Jensen’s inequality, we have that

$$\psi(R(f) - R^*) \leq \mathbb{E} [\psi(\mathbf{1} \{ \text{sign}(f(X)) \neq \text{sign}(2\eta(X) - 1) \} | 2\eta(X) - 1])].$$

Now we recall from Lemma 16.9 that $\psi(0) = 0$. Thus we have

$$\psi(R(f) - R^*) \leq \mathbb{E} [\psi(\mathbf{1} \{ \text{sign}(f(X)) \neq \text{sign}(2\eta(X) - 1) \} | 2\eta(X) - 1])]$$

$$= \mathbb{E} [\mathbf{1} \{ \text{sign}(f(X)) \neq \text{sign}(2\eta(X) - 1) \} \psi(|2\eta(X) - 1|)] \quad (16.0.4)$$

Now we use the special structure of the suboptimality function we have constructed. Note that $\psi \leq H$, and moreover, we have for any $s \in \mathbb{R}$ that

$$\mathbf{1} \{ \text{sign}(s) \neq \text{sign}(2\eta - 1) \} H(|2\eta - 1|) = \mathbf{1} \{ \text{sign}(s) \neq \text{sign}(2\eta - 1) \} \left[\inf_{s(2\eta - 1) \leq 0} \ell_\phi(s, \eta) - \ell^*_\phi(\eta) \right]$$

$$\leq \ell_\phi(s, \eta) - \ell^*_\phi(\eta), \quad (16.0.5)$$

because $(1 + |2\eta - 1|)/2 = \max\{\eta, 1 - \eta\}$.

Combining inequalities (16.0.4) and (16.0.5), we see that

$$\psi(R(f) - R^*) \leq \mathbb{E} [\mathbf{1} \{ \text{sign}(f(X)) \neq \text{sign}(2\eta(X) - 1) \} H(|2\eta(X) - 1|)]$$

$$\leq \mathbb{E} [\ell_\phi(f(X), \eta(X)) - \ell^*_\phi(\eta(X))]$$

$$= R_\phi(f) - R^*_\phi,$$

which is our desired result.

3. Having proved the quantitative bound (16.0.2), we now turn to proving the second part of Theorem 16.7. Using Lemma 16.9, we can prove the equivalence of all three items.

We begin by showing that IV(b)1 implies IV(b)2. If ϕ is classification calibrated, we have $H(\delta) > 0$ for all $\delta > 0$. Because ψ is continuous and $\psi(0) = 0$, if $\delta \to 0$, then
\[\psi(\delta) \to 0. \] It remains to show that \(\psi(\delta) \to 0 \) implies that \(\delta \to 0. \) But this is clear because we know that \(\psi(0) = 0 \) and \(\psi(\delta) > 0 \) whenever \(\delta > 0, \) and the convexity of \(\psi \) implies that \(\psi \) is increasing.

To obtain IV(b)3 from IV(b)2, note that by inequality (16.0.2), we have

\[\psi(R(f_n) - R^*) \leq R_\phi(f_n) - R_\phi^* \to 0, \]

so we must have that \(\delta_n = R(f_n) - R^* \to 0. \)

Finally, we show that IV(b)1 follows from IV(b)3. Assume for the sake of contradiction that IV(b)3 holds but IV(b)1 fails, that is, \(\phi \) is not classification calibrated. Then there must exist \(\eta < 1/2 \) and a sequence \(s_n \geq 0 \) (i.e. a sequence of predictions with incorrect sign) satisfying

\[\ell_\phi(s_n, \eta) \to \ell_\phi^*(\eta). \]

Construct the classification problem with a singleton \(X = \{x\}, \) and set \(\mathbb{P}(Y = 1) = \eta. \) Then the sequence \(f_n(x) = s_n \) satisfies \(R_\phi(f_n) \to R_\phi^* \) but the true 0-1 risk \(R(f_n) \neq R^*. \)

V. Classification calibration in the convex case

a. Suppose that \(\phi \) is convex, which we often use for computational reasons

b. **Theorem 16.10** (Bartlett, Jordan, McAuliffe [21]). If \(\phi \) is convex, then \(\phi \) is classification calibrated if and only if \(\phi'(0) \) exists and \(\phi'(0) < 0. \)

Proof First, suppose that \(\phi \) is differentiable at 0 and \(\phi'(0) < 0. \) Then

\[\ell_\phi(s, \eta) = \eta \phi(s) + (1 - \eta) \phi(-s) \]

satisfies \(\ell'(0, \eta) = (2\eta - 1)\phi'(0), \) and if \(\phi'(0) < 0, \) this quantity is negative for \(\eta > 1/2. \) Thus the minimizing \(s(\eta) \in (0, \infty). \) (Proof by picture, but formalize in full notes.)

For the other direction assume that \(\phi \) is classification calibrated. Recall the definition of a subgradient \(g_s \) of the function \(\phi \) at \(s \in \mathbb{R} \) is any \(g_s \) such that \(\phi(t) \geq \phi(s) + g_s(t - s) \) for all \(t \in \mathbb{R}. \) (Picture.) Let \(g_1, g_2 \) be such that \(\ell(s) \geq \ell(0) + g_1 s \) and \(\ell(s) \geq \ell(0) + g_2 s, \) which exist by convexity. We show that both \(g_1, g_2 \) are unique. By convexity we have

\[\ell_\phi(s, \eta) \geq \eta(\phi(0) + g_1 s) + (1 - \eta)(\phi(0) - g_2 s) \]

\[= [\eta g_1 - (1 - \eta) g_2] s + \phi(0). \] (16.0.6)

We first show that \(g_1 = g_2, \) meaning that \(\phi \) is differentiable. Without loss of generality, assume \(g_1 > g_2. \) Then for \(\eta > 1/2, \) we would have \(\eta g_1 - (1 - \eta) g_2 > 0, \) which would imply that

\[\ell_\phi(s, \eta) \geq \phi(0) \geq \inf_{s' \leq 0} \left\{ \eta \phi(s') + (1 - \eta) \phi(-s') \right\} = \ell_\phi^{\text{wrong}}(\eta), \]

for all \(s \geq 0 \) by (16.0.6), by taking \(s' = 0 \) in the second inequality. By our assumption of classification calibration, for \(\eta > 1/2 \) we know that

\[\inf_s \ell_\phi(s, \eta) < \inf_{s \leq 0} \ell_\phi(s, \eta) = \ell_\phi^{\text{wrong}}(\eta) \quad \text{so} \quad \ell_\phi^*(\eta) = \inf_{s \geq 0} \ell_\phi(s, \eta), \]

and under the assumption that \(g_1 > g_2 \) we obtain \(\ell_\phi^*(\eta) = \inf_{s \geq 0} \ell_\phi(s, \eta) > \ell_\phi^{\text{wrong}}(\eta), \) which is a contradiction to classification calibration. We thus obtain \(g_1 = g_2, \) so that the function \(\phi \) has a unique subderivative at \(s = 0 \) and is thus differentiable.
Now that we know \(\phi \) is differentiable at 0, consider
\[
\eta \phi(s) + (1 - \eta)\phi(-s) \geq (2\eta - 1)\phi'(0)s + \phi(0).
\]
If \(\phi'(0) \geq 0 \), then for \(s \geq 0 \) and \(\eta > 1/2 \) we must have the right hand side is at least \(\phi(0) \), which contradicts classification calibration, because we know that \(\ell^*_\phi(\eta) < \ell^*_{\phi^{\text{wrong}}}(\eta) \) exactly as in the preceding argument.

\[\square\]

16.1 General results

JCD Comment: Here we should have some more general results on surrogate risk consistency.

I. Setting: we have a loss (risk) \(L : \mathbb{R}^k \times \mathcal{Y} \to \mathbb{R}_+ \) and instead wish to minimize a surrogate \(\varphi : \mathbb{R}^k \times \mathcal{Y} \to \mathbb{R} \) for it
 a. Say it’s *Fisher consistent* (or infinite sample consistent) if \(R_\varphi(f_n) \to R^* \) implies \(R(f_n) \to R^* \)
 b. Reduce to pointwise cases, compare non-uniform to uniform results (noting that in cases where \(L \) is discrete, they are the same—requires a proof)
 c. Basically, this is Question 16.4, except we will use finite \(\mathcal{Y} \) I think (can still leave the super general version in)

16.2 Proofs of convex analytic results

16.2.1 Proof of Lemma 16.4

First, let \((a, b) \subset \text{dom} \ f \) and fix \(x_0 \in (a, b) \). Let \(x \uparrow x_0 \), which is no loss of generality, and we may also assume \(x \in (a, b) \). Then we have
\[
x = sa + (1 - s)x_0 \quad \text{and} \quad x_0 = \beta b + (1 - \beta)x
\]
for some \(s, \beta \in [0, 1] \). Rearranging by convexity,
\[
f(x) \leq sf(a) + (1 - s)f(x_0) = f(x_0) + s(f(a) - f(x_0))
\]
and
\[
f(x_0) \leq \beta f(b) + (1 - \beta)f(x), \quad \text{or} \quad \frac{1}{1 - \beta} f(x_0) \leq f(x) + \frac{\beta}{1 - \beta} f(b).
\]
Taking \(s, \beta \to 0 \), we obtain
\[
\liminf_{x \to x_0} f(x) \geq f(x_0) \quad \text{and} \quad \limsup_{x \to x_0} f(x) \leq f(x_0)
\]
as desired.
16.2.2 Proof of Lemma 16.4

We need only consider the endpoints of the domain by Lemma 16.3, and we only need to show that \(\limsup_{x \to x_0} f(x) \leq f(x_0) \). But this is obvious by convexity: let \(x = ty + (1 - t)x_0 \) for any \(y \in \text{dom } f \), and taking \(t \to 0 \), we have \(f(x) \leq tf(y) + (1 - t)f(x_0) \to f(x_0) \).

16.2.3 Proof of Lemma 16.6

We begin with the case (i). Define the function \(h_{\text{low}}(t) := \inf_{s \geq t} h(s) \). Then because \(h \) is continuous, we know that over any compact set it attains its infimum, and thus (by assumption on \(h \)) \(h_{\text{low}}(t) > 0 \) for all \(t > 0 \). Moreover, \(h_{\text{low}} \) is non-decreasing. Now define \(f_{\text{low}}(t) = h_{\text{low}}^{**}(t) \) to be the biconjugate of \(h_{\text{low}} \); it is clear that \(f \geq f_{\text{low}} \) as \(h \geq h_{\text{low}} \). Thus we see that case (ii) implies case (i), so we turn to the more general result to see that \(f_{\text{low}}(t) > 0 \) for all \(t > 0 \).

For the result in case (ii), assume for the sake of contradiction there is some \(z \in (0, 1) \) satisfying \(h^{**}(z) = 0 \). It is clear that \(h^{**}(0) = 0 \) and \(h^{**} \geq 0 \), so we must have \(h^{**}(z/2) = 0 \). Now, by assumption we have \(h(z/2) = b > 0 \), whence we have \(h(1) \geq b > 0 \). In particular, the piecewise linear function defined by
\[
g(t) = \begin{cases} 0 & \text{if } t \leq z/2 \\ b & \text{if } t > z/2 \\ \frac{b}{1 - z/2} (t - z/2) & \text{if } t > z/2 \end{cases}
\]
is closed, convex, and satisfies \(g \leq h \). But \(g(z) > 0 = h^{**}(z) \), a contradiction to the fact that \(h^{**} \) is the largest (closed) convex function below \(h \).

16.3 Exercises

Question 16.1: Find the suboptimality function \(H_\phi \) and \(\psi \)-transform for the binary classification problem with the following losses.

(a) Logistic loss. That is, \(\phi(s) = \log(1 + e^{-s}) \)

(b) Squared error (ordinary regression). The surrogate loss in this case for the pair \((x, y) \) is \(\frac{1}{2}(f(x) - y)^2 \). Show that for \(y \in \{-1, 1\} \), this can be written as a margin-based loss, and compute the associated suboptimality function \(H_\phi \) and \(\psi \)-transform. Is the squared error classification calibrated?

Question 16.2: Suppose we have a regression problem with data (independent variables) \(x \in X \) and \(y \in \mathbb{R} \). We wish to find a predictor \(f : X \to \mathbb{R} \) minimizing the probability of being far away from the true \(y \), that is, for some \(c > 0 \), our loss is of the form
\[
L(f(x), y) = 1\{|y - f(x)| \geq c\}.
\]
Show that no loss of the form \(\varphi(s, y) = |s - y|^p \), where \(p \geq 1 \), is Fisher consistent for the loss \(L \), even if the distribution of \(Y \) conditioned on \(X = x \) is symmetric about its mean \(\mathbb{E}[Y | X] \). That is, show there exists a distribution on pairs \(X, Y \) such that the set of minimizers of the surrogate
\[
R_\varphi(f) := \mathbb{E}[\varphi(f(X), Y)]
\]
is not included in the set of minimizers of the true risk, \(R(f) = \mathbb{P}(|Y - f(X)| \geq c) \), even if the distribution of \(Y \) (conditional on \(X \)) is symmetric.
Question 16.3 (Empirics of classification calibration): In this problem you will compare the performance of hinge loss minimization and an ordinary linear regression in terms of classification performance. Specifically, we compare the performance of the hinge surrogate loss with the regression surrogate when the data is generated according to the model

$$y = \text{sign}(\langle \theta^*, x \rangle + \sigma Z), \quad Z \sim \mathcal{N}(0, 1)$$

(16.3.1)

where $\theta^* \in \mathbb{R}^d$ is a fixed vector, $\sigma \geq 0$ is an error magnitude, and Z is a standard normal random variable. We investigate the model (16.3.1) with a simulation study.

Specifically, we consider the following set of steps:

(i) Generate two collections of n datapoints in d dimensions according to the model (16.3.1), where $\theta \in \mathbb{R}^d$ is chosen (ahead of time) uniformly at random from the sphere $\{\theta \in \mathbb{R}^d : \|\theta\|_2 = R\}$, and where each $x_i \in \mathbb{R}^d$ is chosen as $\mathcal{N}(0, I_{d \times d})$. Let (x_i, y_i) denote pairs from the first collection and $(x_{i\text{test}}, y_{i\text{test}})$ pairs from the second.

(ii) Set

$$\hat{\theta}_{\text{hinge}} = \arg\min_{\theta : \|\theta\|_2 \leq R} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \langle x_i, \theta \rangle]_+$$

and

$$\hat{\theta}_{\text{reg}} = \arg\min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \langle x_i, \theta \rangle)^2 = \arg\min_{\theta} \|X\theta - y\|_2^2.$$

(iii) Evaluate the 0-1 error rate of the vectors $\hat{\theta}_{\text{hinge}}$ and $\hat{\theta}_{\text{reg}}$ on the held-out data points $\{(x_{i\text{test}}, y_{i\text{test}})\}_{i=1}^{n}$.

Perform the preceding steps (i)-(iii), using any $n \geq 100$ and $d \geq 10$ and a radius $R = 5$, for different standard deviations $\sigma = \{0, 1, \ldots, 10\}$; perform the experiment a number of times. Give a plot or table exhibiting the performance of the classifiers learned on the held-out data. How do the two compare? Given that for the hinge loss we know $H_\theta(\delta) = \delta$ (as presented in class), what would you expect based on the answer to Question 16.1?

I have implemented (in the julia language; see http://julialang.org/) methods for solving the hinge loss minimization problem with stochastic gradient descent so that you do not need to. The file is available at this link. The code should (hopefully) be interpretable enough that if julia is not your language of choice, you can re-implement the method in an alternative language.

Question 16.4: In this question, we generalize our results on classification calibration and surrogate risk consistency to a much broader supervised learning setting. Consider the following general supervised learning problem, where we assume that we have data in pairs $(X, Y) \in \mathcal{X} \times \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are general spaces.

Let $L : \mathbb{R}^m \times \mathcal{Y} \rightarrow \mathbb{R}_+$ be a loss function we wish to minimize, so that the loss of a prediction function $f : \mathcal{X} \rightarrow \mathbb{R}^m$ for the pair (x, y) is $L(f(x), y)$. Let $\varphi : \mathbb{R}^m \times \mathcal{Y} \rightarrow \mathbb{R}$ be an arbitrary surrogate, where $\varphi(f(x), y)$ is the surrogate loss. Define the risk and φ-risk

$$R(f) := \mathbb{E}[L(f(X), Y)] \quad \text{and} \quad R_\varphi(f) := \mathbb{E}[\varphi(f(X), Y)].$$

Let \mathcal{P}_Y denote the space of all probability distributions on \mathcal{Y}, and define the conditional (pointwise) risks $\ell : \mathbb{R}^m \times \mathcal{P}_Y \rightarrow \mathbb{R}$ and $\ell_\varphi : \mathbb{R}^m \times \mathcal{P}_Y \rightarrow \mathbb{R}$ by

$$\ell(s, P) = \int_{\mathcal{Y}} L(s, y)p(y)dy \quad \text{and} \quad \ell_\varphi(s, P) = \int_{\mathcal{Y}} \varphi(s, y)p(y)dy.$$
(Here for simplicity we simply write integration against \(dy\); you may make this fully general if you wish.) Let \(\ell^*(P) = \inf_s \ell(s, P)\) denote the minimal conditional risk, and similarly for \(\ell^*_\varphi(P)\), when \(Y\) has distribution \(P\). If \(P_x\) denotes the distribution of \(Y\) conditioned on \(X = x\), then we may rewrite the risk functionals as

\[
R(f) = \mathbb{E}[\ell(f(X), P_X)] \quad \text{and} \quad R_\varphi(f) = \mathbb{E}[\ell_\varphi(f(X), P_X)].
\]

We will show that the same machinery we developed for classification calibration extends to this general supervised learning setting.

For \(\epsilon \geq 0\), define the suboptimality gap function

\[
\Delta_\varphi(\epsilon, P) := \inf_{s \in \mathbb{R}^m} \{ \ell_\varphi(s, P) - \ell^*_\varphi(P) : \ell(s, P) - \ell^*(P) \geq \epsilon \},
\]

which measures the gap between achievable (pointwise) risk and the best surrogate risk when we enforce that the true loss is not minimized. Also define the uniform suboptimality function

\[
\Delta_\varphi(\epsilon) := \inf_{s \in \mathbb{R}^m, P \in \mathcal{P}_Y} \{ \ell_\varphi(s, P) - \ell^*_\varphi(P) : \ell(s, P) - \ell^*(P) \geq \epsilon \}.
\]

(Compare this with the definition of \(\Delta\) for the classification case to gain intuition.)

(a) A uniform result: let \(\Delta^{**}_\varphi(\epsilon)\) be the biconjugate of \(\Delta_\varphi\) (that is, \(\Delta^{**}_\varphi\) is the largest convex function below \(\Delta_\varphi\)). Show that

\[
\Delta^{**}_\varphi(R(f) - R^*) \leq R_\varphi(f) - R^*_\varphi.
\]

Prove that \(\Delta_\varphi(\epsilon) > 0\) for all \(\epsilon > 0\) implies if \(R_\varphi(f_n) \to R^*_\varphi\), then \(R(f_n) \to R^*\).

(b) We say that the loss \(\varphi\) is uniformly calibrated if \(\Delta_\varphi(\epsilon) > 0\) for all \(\epsilon > 0\). Show that, in the margin-based binary classification case with loss \(\phi : \mathbb{R} \to \mathbb{R}\), uniform calibration as defined here is equivalent to classification-calibration as defined in class. You may assume that the margin-based loss \(\phi\) is continuous.

(c) A non-uniform result: assume that for all distributions \(P \in \mathcal{P}_Y\) on the set \(\mathcal{Y}\), we have

\[
\Delta_\varphi(\epsilon, P) > 0
\]

if \(\epsilon > 0\). (We call this calibration.) Assume that there exists an upper bound function \(B : \mathcal{X} \to \mathbb{R}_+\) such that \(\mathbb{E}[B(X)] < \infty\) and \(\ell(s, P_x) \leq \ell^*(P_x) + B(x)\) for all \(x\) and \(s \in \mathbb{R}^m\). For example, if the loss \(L\) is bounded, this holds. Show that if the sequence of functions \(f_n : \mathcal{X} \to \mathbb{R}^m\) satisfies

\[
R_\varphi(f_n) \to R^*_\varphi \quad \text{then} \quad R(f_n) \to R^*.
\]

Equivalently, show that for any distribution \(P\) on \(\mathcal{X} \times \mathcal{Y}\), for all \(\epsilon > 0\) there exists a \(\delta > 0\) such that

\[
R_\varphi(f) \leq R^*_\varphi + \delta \quad \text{implies} \quad R(f) \leq R^* + \epsilon.
\]

(You may ignore any measurability issues that come up.)
Chapter 17

Exponential families and maximum entropy

In this set of notes, we give a very brief introduction to exponential family models, which are a broad class of distributions that have been extensively studied in the statistics literature [36, 5, 17, 142]. There are deep connections between exponential families, convex analysis [142], and information geometry and the geometry of probability measures [5], and we will only touch briefly on a few of those here.

We now give a few examples of exponential family models.

17.1 Shannon entropy

We now explore a generalized version of entropy known as Shannon entropy, which allows us to define an entropy functional for essentially arbitrary distributions. This comes with a caveat, however: to define this entropy, we must fix a base measure \(\mu \) ahead of time against which we integrate. In this case, we have

Definition 17.1. Let \(\mu \) be a base measure on \(\mathcal{X} \) and assume \(P \) has density \(p \) with respect to \(\mu \). Then the Shannon entropy of \(P \) is

\[
H(P) = -\int p(x) \log p(x) d\mu(x).
\]

Notably, if \(\mathcal{X} \) is a discrete set and \(\mu \) is counting measure, then \(H(P) = -\sum_x p(x) \log p(x) \) is simply the standard entropy. However, for other base measures the calculation is different. For example, if we take \(\mu \) to be Lebesgue measure, meaning that \(d\mu(x) = dx \) and giving rise to the usual integral on \(\mathbb{R} \) (or \(\mathbb{R}^d \)), then we obtain differential entropy [49, Chapter 8].

Example 17.1: Let \(P \) be the uniform distribution on \([0, a]\). Then the differential entropy \(H(P) = -\log(1/a) = \log a \). ◇
Example 17.2: Let P be the normal distribution $N(\mu, \Sigma)$ and μ be Lebesgue measure. Then

$$H(P) = - \int p(x) \left[\log \frac{1}{\sqrt{2\pi \det(\Sigma)}} - \frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu) \right] dx$$

$$= \frac{1}{2} \log(2\pi \det(\Sigma)) + \frac{1}{2} \mathbb{E}[(X - \mu)^\top \Sigma^{-1}(X - \mu)]$$

$$= \frac{1}{2} \log(2\pi \det(\Sigma)) + \frac{d}{2}.$$

\[\Diamond \]

17.2 Maximizing Entropy

The maximum entropy principle, proposed by Jaynes in the 1950s (see Jaynes [96]), originated in statistical mechanics, where Jaynes showed that (in a sense) entropy in statistical mechanics and information theory were equivalent. The maximum entropy principle is this: given some constraints (prior information) about a distribution P, we consider all probability distributions satisfying said constraints. Then to encode our prior information while being as “objective” or “agnostic” as possible (essentially being as uncertain as possible), we should choose the distribution P satisfying the constraints to maximize the Shannon entropy.

While there are many arguments for and against the maximum entropy principle, we shall not dwell on them here, instead showing how maximizing entropy naturally gives rise to exponential family models. We will later see connections to Bayesian and minimax procedures. The one thing that we must consider, about which we will be quite explicit, is that the base measure μ is essential to all our derivations: it radically effects the distributions P we consider.

17.2.1 The maximum entropy problem

We begin by considering linear (mean-value) constraints on our distributions. In this case, we are given a function $\phi: \mathcal{X} \rightarrow \mathbb{R}^d$ and vector $\alpha \in \mathbb{R}^d$, we wish to solve

$$\text{maximize } H(P) \quad \text{subject to } \mathbb{E}_P[\phi(X)] = \alpha$$

over all distributions P having densities with respect to the base measure μ, that is, we have the (equivalent) absolute continuity condition $P \ll \mu$. Rewriting problem (17.2.1), we see that it is equivalent to

$$\text{maximize } -\int p(x) \log p(x) d\mu(x)$$

subject to

$$\int p(x) \phi_i(x) d\mu(x) = \alpha_i, \quad p(x) \geq 0 \text{ for } x \in \mathcal{X}, \quad \int p(x) d\mu(x) = 1.$$

Let

$$\mathcal{P}^\text{lin}_\alpha := \{P \ll \mu : \mathbb{E}_P[\phi(X)] = \alpha\}$$

be distributions with densities w.r.t. μ satisfying the expectation (linear) constraint $\mathbb{E}[\phi(X)] = \alpha$. We then obtain the following theorem.
Theorem 17.3. For $\theta \in \mathbb{R}^d$, let P_θ have density

$$p_\theta(x) = \exp(\langle \theta, \phi(x) \rangle - A(\theta)), \quad A(\theta) = \log \int \exp(\langle \theta, \phi(x) \rangle)d\mu(x),$$

with respect to the measure μ. If $\mathbb{E}_{P_\theta}[\phi(X)] = \alpha$, then P_θ maximizes $H(P)$ over $\mathcal{P}_\alpha^{\text{lin}}$; moreover, the distribution P_θ is unique.

Proof We first give a heuristic derivation—which is not completely rigorous—and then check to verify that our result is exact. First, we write a Lagrangian for the problem (17.2.1). Introducing the distribution P with respect to the measure μ, we write a Lagrangian for the problem (17.2.1). Introducing Lagrange multipliers $\lambda(x) \geq 0$ for the constraint $p(x) \geq 0$, $\theta_0 \in \mathbb{R}$ for the normalization constraint that $P(\mathcal{X}) = 1$, and θ_i for the constraints that $\mathbb{E}_p[\phi_i(X)] = \alpha_i$, we obtain the following Lagrangian:

$$\mathcal{L}(p, \theta, \theta_0, \lambda) = \int p(x) \log p(x)d\mu(x) + \sum_{i=1}^d \theta_i \left(\alpha_i - \int p(x)\phi_i(x)d\mu(x) \right) + \theta_0 \left(\int p(x)d\mu(x) - 1 \right) - \int \lambda(x)p(x)d\mu(x).$$

Now, heuristically treating the density $p = [p(x)]_{x \in \mathcal{X}}$ as a finite-dimensional vector (in the case that \mathcal{X} is finite, this is completely rigorous), we take derivatives and obtain

$$\frac{\partial}{\partial p(x)} \mathcal{L}(p, \theta, \theta_0, \lambda) = 1 + \log p(x) - \sum_{i=1}^d \theta_i \phi_i(x) + \theta_0 - \lambda(x) = 1 + \log p(x) - \langle \theta, \phi(x) \rangle + \theta_0 - \lambda(x).$$

To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero to find that

$$p(x) = \exp \left(\langle \theta, \phi(x) \rangle - 1 - \theta_0 - \lambda(x) \right).$$

Now, we note that with this setting, we always have $p(x) > 0$, so that the constraint $p(x) \geq 0$ is unnecessary and (by complementary slackness) we have $\lambda(x) = 0$. In particular, by taking $\theta_0 = -1 + A(\theta) = -1 + \log \int \exp(\langle \theta, \phi(x) \rangle)d\mu(x)$, we have that (according to our heuristic derivation) the optimal density p should have the form

$$p_\theta(x) = \exp \left(\langle \theta, \phi(x) \rangle - A(\theta) \right).$$

So we see the form of distribution we would like to have.

Let us now consider any other distribution $P \in \mathcal{P}_\alpha^{\text{lin}}$, and assume that we have some θ satisfying $\mathbb{E}_{P_\theta}[\phi(X)] = \alpha$. In this case, we may expand the entropy $H(P)$ as

$$H(P) = -\int p \log p d\mu = -\int p \log \frac{p}{p_\theta} d\mu - \int p \log p_\theta d\mu$$

$$= -D_{\text{kl}} (P|P_\theta) - \int p(x)[\langle \theta, \phi(x) \rangle - A(\theta)]d\mu(x)$$

$$\overset{(*)}{=} -D_{\text{kl}} (P|P_\theta) - \int p_\theta(x)[\langle \theta, \phi(x) \rangle - A(\theta)]d\mu(x)$$

$$= -D_{\text{kl}} (P|P_\theta) - H(P_\theta),$$

where in the step $(*)$ we have used the fact that $\int p(x)\phi(x)d\mu(x) = \int p_\theta(x)\phi(x)d\mu(x) = \alpha$. As $D_{\text{kl}} (P|P_\theta) > 0$ unless $P = P_\theta$, we have shown that P_θ is the unique distribution maximizing the entropy, as desired. \qed
The semidefinite cone is also self-dual. For a vector y, we write $y \succeq 0$ if $y \in \mathbb{C}$ is in the dual cone.

Given a convex cone \mathcal{C}, we associate a cone ordering \geq with the cone and say that for two elements $x, y \in \mathcal{C}$, we have $x \geq y$ if $x - y \geq 0$, that is, $x - y \in \mathcal{C}$. In the orthant case, this simply means that x is component-wise larger than y. For a given inner product $\langle \cdot, \cdot \rangle$, we define the dual cone

$$\mathcal{C}^* := \{y : \langle y, x \rangle \geq 0 \text{ for all } x \in \mathcal{C}\}.$$

For the standard (Euclidean) inner product, the positive orthant is thus self-dual, and similarly the semidefinite cone is also self-dual. For a vector y, we write $y \succeq 0$ if $y \in \mathbb{C}$ is in the dual cone.

With this generality in mind, we may consider the following linearly constrained maximum entropy problem, which is predicated on a particular cone \mathcal{C} with associated cone ordering \preceq and a function ψ mapping into the ambient space in which \mathcal{C} lies:

$$\max P \quad \text{subject to} \quad \mathbb{E}_P[\phi(X)] = \alpha, \quad \mathbb{E}_P[\psi(X)] \leq \beta,$$

(17.2.2)
where the base measure μ is implicit. We denote the family of distributions (with densities w.r.t. μ) satisfying the two above constraints by $\mathcal{P}_{\alpha,\beta}^{\text{lin}}$. Equivalently, we wish to solve

$$
\text{maximize} \quad -\int p(x) \log p(x) d\mu(x)
$$

subject to

$$
\int p(x) \phi(x) d\mu(x) = \alpha, \quad \int p(x) \psi(x) d\mu(x) \leq \beta,
$$

$p(x) \geq 0$ for $x \in \mathcal{X}$, \quad $\int p(x) d\mu(x) = 1$.

We then obtain the following theorem:

Theorem 17.7. For $\theta \in \mathbb{R}^d$ and $K \in \mathcal{C}^*$, the dual cone to \mathcal{C}, let $P_{\theta,K}$ have density

$$p_{\theta,K}(x) = \exp ((\theta, \phi(x)) - \langle K, \psi(x) \rangle - A(\theta, K)), \quad A(\theta, K) = \log \int \exp((\theta, \phi(x)) - \langle K, \psi(x) \rangle) d\mu(x),$$

with respect to the measure μ. If

$$E_{P_{\theta,K}}[\phi(X)] = \alpha \quad \text{and} \quad E_{P_{\theta,K}}[\psi(X)] = \beta,$$

then $P_{\theta,K}$ maximizes $H(P)$ over $\mathcal{P}_{\alpha,\beta}^{\text{lin}}$. Moreover, the distribution $P_{\theta,K}$ is unique.

We make a few remarks in passing before proving the theorem. First, we note that we must assume both equalities are attained for the theorem to hold. We may also present an example.

Example 17.8 (Normal distributions maximize entropy subject to covariance constraints): Suppose that the cone \mathcal{C} is the positive semidefinite cone in $\mathbb{R}^{d \times d}$, that $\alpha = 0$, that we use the Lebesgue measure as our base measure, and that $\psi(x) = xx^\top \in \mathbb{R}^{d \times d}$. Let us fix $\beta = \Sigma$ for some positive definite matrix Σ. This gives us the problem

$$\text{maximize} \quad -\int p(x) \log p(x) dx \quad \text{subject to} \quad E_P[XX^\top] \preceq \Sigma$$

Then we have by Theorem 17.7 that if we can find a density $p_K(x) \propto \exp(-\langle K, xx^\top \rangle)$ satisfying $E[XX^\top] = \Sigma$, this distribution maximizes the entropy. But this is not hard: simply take the normal distribution $N(0, \Sigma)$, which gives $K = \frac{1}{2} \Sigma^{-1}$. ◇

Now we provide the proof of Theorem 17.7.

Proof We can provide a heuristic derivation of the form of $p_{\theta,K}$ identically as in the proof of Theorem 17.3, where we also introduce the dual variable $K \in \mathcal{C}^*$ for the constraint $\int p(x) \psi(x) d\mu(x) \leq \beta$. Rather than going through this, however, we simply show that the distribution $P_{\theta,K}$ maximizes $H(P)$. Indeed, we have for any $P \in \mathcal{P}_{\alpha,\beta}^{\text{lin}}$ that

$$H(P) = -\int p(x) \log p(x) d\mu(x) = -\int p(x) \log \frac{p(x)}{p_{\theta,K}(x)} d\mu(x) - \int p(x) \log p_{\theta,K}(x) d\mu(x)$$

$$= -D_{\text{KL}}(P || P_{\theta,K}) - \int p(x) ([\theta, \phi(x)] - \langle K, \psi(x) \rangle - A(\theta, K)) d\mu(x)$$

$$\leq -D_{\text{KL}}(P || P_{\theta,K}) - [\langle \theta, \alpha \rangle - \langle K, \beta \rangle - A(\theta, K)],$$

287
where the inequality follows because $K \succeq 0$ so that if $\mathbb{E}[\psi(X)] \preceq \beta$, we have
\[
\langle K, \mathbb{E}[\psi(X) - \beta] \rangle \leq \langle K, 0 \rangle = 0 \quad \text{or} \quad \langle K, \mathbb{E}[\psi(X)] \rangle \leq \langle K, \beta \rangle.
\]
Now, we note that $\int \theta, K(x) \psi(x) d\mu(x) = \alpha$ and $\int \theta, K(x) \phi(x) d\mu(x) = \beta$ by assumption. Then we have
\[
H(P) \leq -D_{\text{KL}}(P || P_{\theta,K}) - \langle \theta, \alpha \rangle - \langle K, \beta \rangle - A(\theta, K)
\]
\[
= -D_{\text{KL}}(P || P_{\theta,K}) - \int \theta, K(x) \psi(x) - \langle K, \psi(x) \rangle - A(\theta, K) d\mu(x)
\]
\[
= -D_{\text{KL}}(P || P_{\theta,K}) - \int \theta, K(x) \psi(x) d\mu(x) = -D_{\text{KL}}(P || P_{\theta,K}) + H(P_{\theta,K}).
\]
As $D_{\text{KL}}(P || P_{\theta,K}) > 0$ unless $P = P_{\theta,K}$, this gives the result.

\section*{17.3 Deferred proofs}

\section*{17.4 Exercises}

\textbf{Question 17.1:} Prove that the log determinant function is concave over the positive semidefinite matrices. That is, show that for $X, Y \in \mathbb{R}^{d \times d}$ satisfying $X \succeq 0$ and $Y \succeq 0$, we have
\[
\log \det(\lambda X + (1 - \lambda)Y) \geq \lambda \log \det(X) + (1 - \lambda) \log \det(Y)
\] for any $\lambda \in [0, 1]$. \textit{Hint: think about log-partition functions.}

\textbf{Question 17.2 (Entropy and log-determinant maximization):} Consider the following optimization problem over symmetric positive semidefinite matrices in $\mathbb{R}^{d \times d}$:
\[
\max_{\Sigma \succeq 0} \log \det(\Sigma) \quad \text{subject to} \quad \Sigma_{ij} = \sigma_{ij}
\]
where σ_{ij} are specified only for indices $i, j \in S$ (but we know that $\sigma_{ij} = \sigma_{ji}$ and $(i, i) \in S$ for all i). Let Σ^* denote the solution to this problem, assuming there is a positive definite matrix Σ satisfying $\Sigma_{ij} = \sigma_{ij}$ for $i, j \in S$. Show that for each unobserved pair $(i, j) \notin S$, the (i, j) entry $[\Sigma^{* - 1}]_{ij}$ of the inverse $\Sigma^{* - 1}$ is 0. \textit{Hint: The distribution maximizing the entropy $H(X) = -\int p(x) \log p(x) dx$ subject to $\mathbb{E}[X_i X_j] = \sigma_{ij}$ has Gaussian density of the form $p(x) = \exp(\sum_{(i,j) \in S} L_{ij} x_i x_j - \Lambda_0)$}.

\textbf{Question 17.3:} Something about moment generating functions and log-barriers.
Chapter 18

Robustness, duality, maximum entropy, and exponential families

In this lecture, we continue our study of exponential families, but now we investigate their properties in somewhat more depth, showing how exponential family models provide a natural robustness against model mis-specification, enjoy natural projection properties, and arise in other settings.

18.1 The existence of maximum entropy distributions

As in the previous chapter of these notes, we again consider exponential family models. For simplicity throughout this chapter, and with essentially no loss of generality, we assume that all of our exponential family distributions have (standard) densities. Moreover, we assume there is some fixed density (or, more generally, an arbitrary function) \(p \) satisfying \(p(x) \geq 0 \) and for which

\[
p_\theta(x) = p(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta)),
\]

where the log-partition function or cumulant generating function \(A(\theta) = \log \int p(x) \exp(\langle \theta, \phi(x) \rangle) dx \) as usual, and \(\phi \) is the usual vector of sufficient statistics. In the previous chapter, we saw that if we restricted consideration to distributions satisfying the mean-value (linear) constraints of the form

\[
\mathcal{P}_\alpha^{\text{lin}} := \left\{ Q : q(x) = p(x)f(x), \text{ where } f \geq 0 \text{ and } \int q(x)\phi(x)dx = \alpha, \int q(x)dx = 1 \right\},
\]

then the distribution with density \(p_\theta(x) = p(x)\exp(\langle \theta, \phi(x) \rangle - A(\theta)) \) uniquely maximized the (Shannon) entropy over the family \(\mathcal{P}_\alpha^{\text{lin}} \) if we could find any \(\theta \) satisfying \(\mathbb{E}_{P_\theta}[\phi(X)] = \alpha \). (Recall Theorem 17.3.) Now, of course, we must ask: does this actually happen? For if it does not, then all of this work is for naught.

Luckily for us, the answer is that we often find ourselves in the case that such results occur. Indeed, it is possible to show that, except for pathological cases, we are essentially always able to find such a solution. To that end, define the mean space

\[
\mathcal{M}_\phi := \left\{ \alpha \in \mathbb{R}^d : \exists Q \text{ s.t. } q(x) = f(x)p(x), f \geq 0, \text{ and } \int q(x)\phi(x)dx = \alpha \right\}
\]

Then we have the following result, which is well-known in the literature on exponential family modeling; we refer to Wainwright and Jordan [142, Proposition 3.2 and Theorem 3.3] for the proof.

In the statement of the theorem, we recall that the domain \(\text{dom } A \) of the log partition function is defined as those points \(\theta \) for which the integral \(\int p(x) \exp(\langle \theta, \phi(x) \rangle) dx < \infty \).
Theorem 18.1. Assume that there exists some point $\theta_0 \in \text{int} \, \text{dom} \, A$, where $\text{dom} \, A := \{\theta \in \mathbb{R}^d : A(\theta) < \infty\}$. Then for any α in the interior of \mathcal{M}_ϕ, there exists some $\theta = \theta(\alpha)$ such that $\mathbb{E}_{P_\theta}[\phi(X)] = \alpha$.

Using tools from convex analysis, it is possible to extend this result to the case that $\text{dom} \, A$ has no interior but only a relative interior, and similarly for \mathcal{M}_ϕ (see Hiriart-Urruty and Lemaréchal [89] or Rockafellar [129] for discussions of interior and relative interior). Moreover, it is also possible to show that for any $\alpha \in \mathcal{M}_\phi$ (not necessarily the interior), there exists a sequence $\theta_1, \theta_2, \ldots$ satisfying the limiting guarantee $\lim_n \mathbb{E}_{P_{\theta_n}}[\phi(X)] = \alpha$. Regardless, we have our desired result: if \mathcal{P}^{lin} is not empty, maximum entropy distributions exist and exponential family models attain these maximum entropy solutions.

18.2 I-projections and maximum likelihood

We first show one variant of the robustness of exponential family distributions by showing that they are (roughly) projections onto constrained families of distributions, and that they arise naturally in the context of maximum likelihood estimation. First, suppose that we have a family Π of distributions and some fixed distribution P (this last assumption of a fixed distribution is not completely essential, but it simplifies our derivation). Then the I-Projection (for information projection) of the distribution P onto the family Π is

$$P^* := \text{argmin}_{Q \in \Pi} D_{\text{kl}}(Q \| P), \quad (18.2.1)$$

when such a distribution exists. (In nice cases, it does.)

Perhaps unsurprisingly, given our derivations with maximum entropy distributions and exponential family models, we have the next proposition. The proposition shows that I-Projection is essentially the same as maximum entropy, and the projection of a distribution P onto a family of linearly constrained distributions yields exponential family distributions.

Proposition 18.2. Suppose that $\Pi = \mathcal{P}^{\text{lin}}_\alpha$. If $p_\theta(x) = p(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta))$ satisfies $\mathbb{E}_{P_\theta}[\phi(X)] = \alpha$, then p_θ solves the I-projection problem (18.2.1). Moreover we have (the Pythagorean identity)

$$D_{\text{kl}}(Q \| P) = D_{\text{kl}}(P_\theta \| P) + D_{\text{kl}}(Q \| P_\theta)$$

for $Q \in \mathcal{P}^{\text{lin}}_\alpha$.

Proof. Our proof is to perform an expansion of the KL-divergence that is completely parallel to that we performed in the proof of Theorem 17.3. Indeed, we have

$$D_{\text{kl}}(Q \| P) = \int q(x) \log \frac{q(x)}{p(x)} \, dx$$

$$= \int q(x) \log \frac{p_\theta(x)}{p(x)} \, dx + \int q(x) \log \frac{q(x)}{p_\theta(x)} \, dx$$

$$= \int q(x)[\langle \theta, \phi(x) \rangle - A(\theta)] \, dx + D_{\text{kl}}(Q \| P_\theta)$$

$$(*) \quad = \int p_\theta(x)[\langle \theta, \phi(x) \rangle - A(\theta)] \, dx + D_{\text{kl}}(Q \| P_\theta)$$

$$= \int p_\theta(x) \log \frac{p_\theta(x)}{p(x)} + D_{\text{kl}}(Q \| P_\theta),$$
where equality (⋆) follows by assumption that $\mathbb{E}_{P_\theta}[\phi(X)] = \alpha$.

Now we consider maximum likelihood estimation, showing that—in a completely handwavy fashion—approximates I-projection. First, suppose that we have an exponential family $\{P_\theta\}_{\theta \in \Theta}$ of distributions, and suppose that the data comes from a true distribution P. Then to maximizing the likelihood of the data is equivalent to maximizing the log likelihood, which, in the population case, gives us the following sequence of equivalences:

$$
\text{maximize } \mathbb{E}_P[\log p_\theta(X)] \equiv \text{minimize } \mathbb{E}_P[\log \frac{1}{p_\theta(X)}] \\
\equiv \text{minimize } \mathbb{E}_P[\log \frac{p(X)}{p_\theta(X)}] + H(P) \\
\equiv \text{minimize } D_{\text{KL}}(P||P_\theta),
$$

so that maximum likelihood is essentially a different type of projection.

Now, we also consider the empirical variant of maximum likelihood, where we maximize the likelihood of a given sample X_1, \ldots, X_n. In particular, we may study the structure of maximum likelihood exponential family estimators, and we see that they correspond to simple moment matching in exponential families. Indeed, consider the sample-based maximum likelihood problem of solving

$$
\text{maximize } \frac{1}{n} \sum_{i=1}^n \log p_\theta(X_i), \quad (18.2.2)
$$

where as usual we assume the exponential family model $p_\theta(x) = p(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta))$. We have the following result.

Proposition 18.3. Let $\hat{\alpha} = \frac{1}{n} \sum_{i=1}^n \phi(X_i)$. Then the maximum likelihood solution is given by any θ such that $\mathbb{E}_{P_\theta}[\phi(X)] = \hat{\alpha}$.

Proof The proof follows immediately upon taking derivatives. We define the empirical negative log likelihood (the empirical risk) as

$$
\hat{R}_n(\theta) := -\frac{1}{n} \sum_{i=1}^n \log p_\theta(X_i) = -\frac{1}{n} \sum_{i=1}^n \langle \theta, \phi(X_i) \rangle + A(\theta) - \frac{1}{n} \sum_{i=1}^n \log p(X_i),
$$

which is convex as $\theta \mapsto A(\theta)$ is convex (recall Proposition 3.6). Taking derivatives, we have

$$
\nabla_\theta \hat{R}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \phi(X_i) + \nabla A(\theta) \\
= -\frac{1}{n} \sum_{i=1}^n \phi(X_i) + \frac{1}{\int p(x) \exp(\langle \theta, \phi(x) \rangle) dx} \int \phi(x) p(x) \exp(\langle \theta, \phi(x) \rangle) dx \\
= -\frac{1}{n} \sum_{i=1}^n \phi(X_i) + \mathbb{E}_{P_\theta}[\phi(X)].
$$

In particular, finding any θ such that $\nabla A(\theta) = \mathbb{E}_{\hat{P}_n}[\phi(X)]$ gives the result.

291
As a consequence of the result, we have the following rough equivalences tying together the preceding material. In short, maximum entropy subject to (linear) empirical moment constraints (Theorem 17.3) is equivalent to maximum likelihood estimation in exponential families (Proposition 18.3), which is equivalent to I-projection of a fixed base distribution onto a linearly constrained family of distributions (Proposition 18.2).

18.3 Basics of minimax game playing with log loss

The final set of problems we consider in which exponential families make a natural appearance are in so-called minimax games under the log loss. In particular, we consider the following general formulation of a two-player minimax game. First, we choose a distribution Q on a set X (with density q). Then nature (or our adversary) chooses a distribution $P \in \mathcal{P}$ on the set X, where \mathcal{P} is a collection of distributions on X, so we suffer loss

$$
\sup_{P \in \mathcal{P}} \mathbb{E}_P \left[-\log q(X) \right] = \sup_{P \in \mathcal{P}} \int p(x) \log \frac{1}{q(x)} \, dx.
$$

(18.3.1)

In particular, we would like to solve the minimax problem

$$
\minimize_{Q} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[-\log q(X) \right].
$$

To motivate this abstract setting we give two examples, the first abstract and the second somewhat more concrete.

Example 18.4: Suppose that receive n random variables $X_i \overset{iid}{\sim} P$; in this case, we have the sequential prediction loss

$$
\mathbb{E}_P \left[-\log q(X^n) \right] = \sum_{i=1}^{n} \mathbb{E}_P \left[\log \frac{1}{q(X_i | X_{1:i-1})} \right],
$$

which corresponds to predicting X_i given $X_{1:i-1}$ as well as possible, when the X_i follow an (unknown or adversarially chosen) distribution P.

Example 18.5 (Coding): Expanding on the preceding example, suppose that the set X is finite, and we wish to encode X into $\{0, 1\}$-valued sequences using as few bits as possible. In this case, the Kraft inequality (recall Theorem 2.24) tells us that if $C : X \rightarrow \{0, 1\}^*$ is an uniquely decodable code, and $\ell_C(x)$ denotes the length of the encoding for the symbol $x \in X$, then

$$
\sum_x 2^{-\ell_C(x)} \leq 1.
$$

Conversely, given any length function $\ell : X \rightarrow \mathbb{N}$ satisfying $\sum_x 2^{-\ell(x)} \leq 1$, there exists an instantaneous (prefix) code C with the given length function. Thus, if we define the p.m.f.

$$
q_C(x) = 2^{-\ell_C(x)} / \sum_x 2^{-\ell_C(x)},
$$

we have

$$
-\log_2 q_C(x^n) = \sum_{i=1}^{n} \left[\ell_C(x_i) + \log \sum_x 2^{-\ell_C(x)} \right] \leq \sum_{i=1}^{n} \ell_C(x_i).
$$
In particular, we have a coding game where we attempt to choose a distribution Q (or sequential coding scheme C) that has as small an expected length as possible, uniformly over distributions P. (The field of universal coding studies such questions in depth; see Tsachy Weissman’s course EE376b.)

We now show how the minimax game (18.3.1) naturally gives rise to exponential family models, so that exponential family distributions are so-called robust Bayes procedures (cf. Grünwald and Dawid [81]). Specifically, we say that Q is a robust Bayes procedure for the class P of distributions if it minimizes the supremum risk (18.3.1) taken over the family P; that is, it is uniformly good for all distributions $P \in P$. If we restrict our class P to be a linearly constrained family of distributions, then we see that the exponential family distributions are natural robust Bayes procedures: they uniquely solve the minimax game. More concretely, assume that $P = P_{\alpha}$ and that P_{θ} denotes the exponential family distribution with density $p_{\theta}(x) = p(x)e^{\langle \theta, \phi(x) \rangle - A(\theta)}$, where p denotes the base density. We have the following.

Proposition 18.6. If $E_{P_{\theta}}[\phi(X)] = \alpha$, then

$$\inf_{Q} \sup_{P \in P_{\alpha}} E_{P}[-\log q(X)] = \sup_{P \in P_{\alpha}} E_{P}[-\log p_{\theta}(X)] = \inf_{P \in P_{\alpha}} \sup_{Q} E_{P}[-\log q(X)].$$

Proof This is a standard saddle-point argument (cf. [129, 89, 33]). First, note that

$$\sup_{P \in P_{\alpha}} E_{P}[-\log p_{\theta}(X)] = \sup_{P \in P_{\alpha}} E_{P}[-\langle \phi(X), \theta \rangle + A(\theta)]$$

$$= -\langle \alpha, \theta \rangle + A(\theta) = E_{P_{\theta}}[-\langle \theta, \phi(X) \rangle + A(\theta)] = H(P_{\theta}),$$

where H denotes the Shannon entropy, for any distribution $P \in P_{\alpha}$. Moreover, for any $Q \neq P_{\theta}$, we have

$$\sup_{P} E_{P}[-\log q(X)] \geq E_{P_{\theta}}[-\log q(X)] > E_{P_{\theta}}[-\log p_{\theta}(X)] = H(P_{\theta}),$$

where the inequality follows because $D_{KL}(P_{\theta}||Q) = \int p_{\theta}(x) \log \frac{p_{\theta}(x)}{q(x)} dx > 0$. This shows the first equality in the proposition.

For the second equality, note that

$$\inf_{Q} \sup_{P \in P_{\alpha}} E_{P}[-\log q(X)] = \inf_{Q} \sup_{P \in P_{\alpha}} E_{P} \left[\log \frac{p(X)}{q(X)} \right] = E_{P}[-\log p(X)] = H(P).$$

But we know from our standard maximum entropy results (Theorem 17.3) that P_{θ} maximizes the entropy over P_{α}, that is, $\sup_{P \in P_{\alpha}} H(P) = H(P_{\theta})$. □

In short: maximum entropy is equivalent to robust prediction procedures for linear families of distributions P_{α}, which is equivalent to maximum likelihood in exponential families, which in turn is equivalent to I-projection.
Chapter 19

Divergences, classification, and risk

JCD Comment: There is so much to do in this section.

1. Change entropies to all be $H(Y)$ and $H(Y \mid X)$ or $H(Y \mid q(X))$

2. For losses or risks, probably ℓ would be better and L for population loss (risk), but not sure

3. Connect information to amount of entropy left, so there are alternative informations

4. Give proof of universal equivalence for the binary case, which is “easy” (at least, easier...) because we can just use binary entropies of the form $h(p) = \inf_{\alpha} \{p\ell(\alpha) + (1-p)\ell(-\alpha)\}$, choosing distributions in a fairly transparent way to get them. (Will probably write this down in afternoon.)

New outline:

I. Generalized entropies

 (a) Definitions as infima of losses

 (b) Gaps in prior and posterior risk become statistical information

II. From entropy to losses

 (a) Basically that each entropy gives rise to a loss

 (b) Generalized version of this: structured prediction problems (with an example)

III. Predictions with entropies and scoring rules

 (a) Some similarity to the ideas in the Fenchel-Young losses paper, where given a vector s of scores, we make predictions

 $$\text{pred}_\Omega(s) := \arg\max \{ \langle p, s \rangle - \Omega(p) \}$$

 (b) If loss is generalized entropy loss, then there is duality in that loss minimizers s give calibrated p when Ω is strictly (or perhaps uniformly?) convex

IV. Surrogate risk consistency with convex entropy-based losses

294
(a) Multiclass case: any time we have a uniformly convex loss, we get consistency (or uniformly convex entropy I guess)

(b) The discrete losses for structured prediction

V. Loss equivalence

(a)

I. Bayes risk in classification problems

a. Recall definition (2.2.3) of f-divergence between two distributions P and Q as

$$D_f(P||Q) := \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx,$$

where $f : \mathbb{R}_+ \to \mathbb{R}$ is a convex function satisfying $f(1) = 0$. If f is not linear, then $D_f(P||Q) > 0$ unless $P = Q$.

b. Focusing on binary classification case, let us consider some example risks and see what connections they have to f-divergences. (Recall we have $X \in \mathcal{X}$ and $Y \in \{-1, 1\}$ we would like to classify.)

1. We require a few definitions to understand the performance of different classification strategies. In particular, we consider the difference between the risk possible when we see a point to classify and when we do not.

2. The prior risk is the risk attainable without seeing x, we have for a fixed sign $\alpha \in \mathbb{R}$ the definition

$$R_{\text{prior}}(\alpha) := P(Y = 1) \mathbf{1}\{\alpha \leq 0\} + P(Y = -1) \mathbf{1}\{\alpha \geq 0\},$$

and similarly the minimal prior risk, defined as

$$R^*_{\text{prior}} := \inf_{\alpha} \{P(Y = 1) \mathbf{1}\{\alpha \leq 0\} + P(Y = -1) \mathbf{1}\{\alpha \geq 0\}\} = \min\{P(Y = 1), P(Y = -1)\}.$$

(19.0.2)

3. Also have the prior ϕ-risk, defined as

$$R_{\phi,\text{prior}}(\alpha) := P(Y = 1)\phi(\alpha) + P(Y = -1)\phi(-\alpha),$$

and the minimal prior ϕ-risk, defined as

$$R^*_{\phi,\text{prior}} := \inf_{\alpha} \{P(Y = 1)\phi(\alpha) + P(Y = -1)\phi(-\alpha)\}.$$

(19.0.4)

c. Examples of 0-1 loss and its friends: have $X \in \mathcal{X}$ and $Y \in \{-1, 1\}$.

1. **Example 19.1** (Binary classification with 0-1 loss): What is Bayes risk of binary classifier? Let

$$p_{+1}(x) = p(x \mid Y = 1) = \frac{P(Y = 1 \mid X = x)p(x)}{P(Y = 1)}$$
be the density of X conditional on $Y = 1$ and similarly for $p_{-1}(x)$, and assume that each class occurs with probability $1/2$. Then

$$R^* = \inf_{\gamma} \int \left[1 \{ \gamma(x) \leq 0 \} P(Y = 1 \mid X = x) + 1 \{ \gamma(x) \geq 0 \} P(Y = -1 \mid X = x) \right] p(x) dx$$

$$= \frac{1}{2} \inf_{\gamma} \int \left[1 \{ \gamma(x) \leq 0 \} p_{+1}(x) + 1 \{ \gamma(x) \geq 0 \} p_{-1}(x) \right] dx = \frac{1}{2} \int \min\{p_{+1}(x), p_{-1}(x)\} dx.$$

Similarly, we may compute the minimal prior risk, which is simply $\frac{1}{2}$ by definition (19.0.2). Looking at the gap between the two, we obtain

$$R_{\text{prior}}^* - R^* = \frac{1}{2} - \frac{1}{2} \int \min\{p_{+1}(x), p_{-1}(x)\} dx = \frac{1}{2} \int [p_1 - p_{-1}]_+ = \frac{1}{2} \|P_1 - P_{-1}\|_{\text{TV}}.$$

That is, the difference is half the variation distance between P_1 and P_{-1}, the distributions of x conditional on the label Y. ◇

2. Example 19.2 (Binary classification with hinge loss): We now repeat precisely the same calculations as in Example 19.1, but using as our loss the hinge loss (recall Example 16.2). In this case, the minimal ϕ-risk is

$$R_{\phi}^* = \inf_{\alpha} \left[[1 - \alpha]_+ P(Y = 1 \mid X = x) + [1 + \alpha]_+ P(Y = -1 \mid X = x) \right] p(x) dx$$

$$= \frac{1}{2} \inf_{\alpha} \int \left[[1 - \alpha]_+ p_1(x) + [1 + \alpha]_+ p_{-1}(x) \right] dx = \int \min\{p_1(x), p_{-1}(x)\} dx.$$

We can similarly compute the prior risk as $R_{\phi, \text{prior}}^* = 1$. Now, when we calculate the improvement available via observing $X = x$, we find that

$$R_{\phi, \text{prior}}^* - R_{\phi}^* = 1 - \int \min\{p_1(x), p_{-1}(x)\} dx = \|P_1 - P_{-1}\|_{\text{TV}},$$

which is suggestively similar to Example 19.1. ◇

d. Is there anything more we can say about this?

II. Statistical information, f-divergences, and classification problems

a. Statistical information

1. Suppose we have a classification problem with data $X \in X$ and labels $Y \in \{-1, 1\}$. A natural notion of information that X carries about Y is the gap

$$R_{\text{prior}}^* - R^*,$$ (19.0.5)

that between the prior risk and the risk attainable after viewing $x \in X$.

2. Didn’t present this. True definition of statistical information: suppose class 1 has prior probability π and class -1 has prior $1 - \pi$, and let P_1 and P_{-1} be the distributions of $X \in X$ given $Y = 1$ and $Y = -1$, respectively. The Bayes risk associated with the problem is then

$$B_\pi(P_1, P_{-1}) := \inf_{\gamma} \int \left[1 \{ \gamma(x) \leq 0 \} p_1(x)\pi + 1 \{ \gamma(x) \geq 0 \} p_{-1}(x)(1 - \pi) \right] dx$$ (19.0.6)

$$= \int p_1(x)\pi \wedge p_{-1}(x)(1 - \pi) dx$$

296
and similarly, the prior Bayes risk is

$$B_\pi := \inf_\alpha \{ 1 \{ \alpha \leq 0 \} \pi + 1 \{ \alpha \geq 0 \} (1 - \pi) \} = \pi \wedge (1 - \pi).$$ \hfill (19.0.7)

Then statistical information is

$$B_\pi - B_\pi(P_1, P_{-1}).$$ \hfill (19.0.8)

3. Measure proposed by DeGroot [55] in experimental design problem; goal is to infer state of world based on further experiments, want to measure quality of measurement.

4. Saw that for 0-1 loss, when \textit{a-priori} each class was equally likely, then

$$R_{\phi, prior}^* - R_{\phi}^* = \frac{1}{2} \parallel P_1 - P_{-1} \parallel_{TV},$$

and similarly for hinge loss (Example 19.2) that

$$R_{\phi, prior}^* = R_{\phi}^* = \parallel P_1 - P_{-1} \parallel_{TV}.$$

5. Note that if $P_1 \neq P_{-1}$, then the statistical information is positive.

b. \textbf{Did present this.} More general story? Yes.

1. Consider any margin-based surrogate loss ϕ, and look at the difference between

$$B_{\phi, \pi}(P_1, P_{-1}) := \inf_\gamma \int [\phi(\gamma(x))p_1(x)\pi + \phi(-\gamma(x))p_{-1}(x)(1 - \pi)] \, dx$$

$$= \int \inf_\alpha [\phi(\alpha)p_1(x)\pi + \phi(-\alpha)p_{-1}(x)(1 - \pi)] \, dx$$

and the prior ϕ-risk, $B_{\phi, \pi}$.

2. Note that

$$B_{\phi, \pi} - B_{\phi, \pi}(P_1, P_{-1})$$

is simply gap in ϕ-risk $R_{\phi, prior}^* - R_{\phi}^*$ for distribution with $P(Y = 1) = \pi$ and

$$P(Y = y \mid X = x) = \frac{p(x \mid Y = y)P(Y = y)}{p(x)} = \frac{p_y(x)\pi_1^{\{y=1\}}(1 - \pi)_1^{\{y=-1\}}}{\pi p_1(x) + (1 - \pi)p_{-1}(x)}. \hfill (19.0.9)$$

c. Have theorem (see, for example, Liese and Vajda [110], or Reid and Williamson [126]):

\textbf{Theorem 19.3.} Let P_1 and P_{-1} be arbitrary distributions on \mathcal{X}, and let $\pi \in [0, 1]$ be a prior probability of a class label. Then there is a convex function $f_{\pi, \phi} : \mathbb{R}_+ \to \mathbb{R}$ satisfying $f_{\pi, \phi}(1) = 0$ such that

$$B_{\phi, \pi} - B_{\phi, \pi}(P_1, P_{-1}) = D_{f_{\pi, \phi}}(P_{-1} \mid P_1).$$

Moreover, this function $f_{\pi, \phi}$ is

$$f_{\pi, \phi}(t) = \sup_\alpha \left[\ell_{\phi}^*(\pi) - \frac{\pi \phi(\alpha)t + (1 - \pi)\phi(-\alpha)}{\pi t + (1 - \pi)} \right] (t\pi + (1 - \pi)). \hfill (19.0.10)$$

\textbf{Proof} First, consider the integrated Bayes risk. Recalling the definition of the conditional distribution $\eta(x) = P(Y = 1 \mid X = x)$, we have

$$B_{\phi, \pi} - B_{\phi, \pi}(P_1, P_{-1}) = \int \left[\ell_{\phi}^*(\pi) - \ell_{\phi}^*(\eta(x)) \right] \, p(x) \, dx$$

$$= \int \sup_\alpha \left[\ell_{\phi}^*(\pi) - \phi(\alpha)P(Y = 1 \mid x) - \phi(-\alpha)P(Y = -1 \mid x) \right] \, p(x) \, dx$$

$$= \int \sup_\alpha \left[\ell_{\phi}^*(\pi) - \phi(\alpha)\frac{p_1(x)\pi}{p(x)} - \phi(-\alpha)\frac{p_{-1}(x)(1 - \pi)}{p(x)} \right] \, p(x) \, dx,$$
where we have used Bayes rule as in (19.0.9). Let us now divide all appearances of the density \(p_1\) by \(p_{-1}\), which yields

\[
B_{\phi,\pi} - B_{\phi,\pi}(P_1, P_{-1}) = \int \sup_{\alpha} \left[\ell^*_\phi(\pi) - \frac{\phi(\alpha) p_1(x) \pi}{p_{-1}(x) \pi + (1-\pi)} \right] \left(\frac{p_1(x)}{p_{-1}(x)} \pi + (1-\pi) \right) p_{-1}(x) dx.
\]

(19.0.11)

By inspection, the representation (19.0.11) gives the result of the theorem if we can argue that the function \(f_\pi\) is convex, where we substitute \(p_1(x)/p_{-1}(x)\) for \(t\) in \(f_\pi(t)\).

To see that the function \(f_\pi\) is convex, consider the intermediate function

\[
s_\pi(u) := \sup_{\alpha} \{-\pi \phi(\alpha) u - (1-\pi) \phi(-\alpha)\}.
\]

This is the supremum of a family of linear functions in the variable \(u\), so it is convex. Moreover, as we noted in the first exercise set, the perspective of a convex function \(g\), defined by \(h(u,t) = tg(u/t)\) for \(t \geq 0\), is jointly convex in \(u\) and \(t\). Thus, as

\[
f_\pi(t) = \ell^*_\phi(\pi) + s_\pi \left(\frac{t}{\pi t + (1-\pi)} \right) (\pi t + (1-\pi)),
\]

we have that \(f_\pi\) is convex. It is clear that \(f_\pi(1) = 0\) by definition of \(\ell^*_\phi(\pi)\).

d. Take-home: any loss function induces an associated \(f\)-divergence. (There is a complete converse, in that any \(f\)-divergence can be realized as the difference in prior and posterior Bayes risk for some loss function; see, for example, Liese and Vajda [110] for results of this type.)

III. Quantization and other types of empirical minimization

a. Do these equivalences mean anything? What about the fact that the suboptimality function \(H_\phi\) was linear for the hinge loss?

b. Consider problems with quantization: we must jointly learn a classifier (prediction or discriminant function) \(\gamma\) and a quantizer \(q : X \rightarrow \{1,\ldots,k\}\), where \(k\) is fixed and we wish to find an optimal quantizer \(q \in Q\), where \(Q\) is some family of quantizers. Recall the notation (2.2.1) of quantization of \(f\)-divergence, so

\[
D_f(P_0\|P_1 \mid q) = \sum_{i=1}^{k} P_1(q^{-1}(i)) f \left(\frac{P_0(q^{-1}(i))}{P_1(q^{-1}(i))} \right) = \sum_{i=1}^{k} P_1(A_i) f \left(\frac{P_0(A_i)}{P_1(A_i)} \right)
\]

where the \(A_i\) are the quantization regions of \(X\).

c. Using Theorem 19.3, we can show how quantization and learning can be unified.

1. Quantized version of risk: for \(q : X \rightarrow \{1,\ldots,k\}\) and \(\gamma : [k] \rightarrow \mathbb{R},\n
\[
R_\phi(\gamma \mid q) = \mathbb{E} [\phi(Y \gamma(q(X)))]
\]

298
2. Rearranging and using integration,

\[R_\phi(\gamma | q) = \mathbb{E}[\phi(Y \gamma(q(X)))] = \sum_{z=1}^{k} \mathbb{E}[\phi(Y \gamma(z)) | q(X) = z]P(q(X) = z) \]

\[= \sum_{z=1}^{k} \left[\phi(\gamma(z))P(Y = 1 | q(X) = z) + \phi(-\gamma(z))P(Y = -1 | q(X) = z) \right]P(q(X) = z) \]

\[= \sum_{z=1}^{k} \left[\phi(\gamma(z)) \frac{P(q(X) = z | Y = 1)P(Y = 1)}{P(q(X) = z)} + \phi(-\gamma(z)) \frac{P(q(X) = z | Y = -1)P(Y = -1)}{P(q(X) = z)} \right]P(q(X) = z) \]

\[= \sum_{z=1}^{k} [\phi(\gamma(z))P_1(q(X) = z) + \phi(-\gamma(z))P_{-1}(q(X) = z)](1 - \pi) \].

3. Let \(P^q \) denote the distribution with probability mass function

\[P^q(z) = P(q(X) = z) = P(q^{-1}\{\{z\}\}), \]

and define quantized Bayes \(\phi \)-risk

\[R_\phi^*(q) = \inf_{\gamma} R_\phi(\gamma | q) \]

Then for problem with \(P(Y = 1) = \pi \), we have

\[R_{\phi, prior}^* - R_{\phi}^*(q) = B_{\phi, \pi} - B_{\phi, \pi}(P^q, P^q_{-1}) = D_{f_{\pi, \phi}}(P_{-1} \| P_1 | q). \] \hspace{1cm} (19.0.12)

d. Result unifying quantization and learning: we say that loss functions \(\phi_1 \) and \(\phi_2 \) are \textit{universally equivalent} if they induce the same \(f \) divergence (19.0.10), that is, there is a constant \(c > 0 \) and \(a, b \in \mathbb{R} \) such that

\[f_{\pi, \phi_1}(t) = cf_{\pi, \phi_2}(t) + at + b \text{ for all } t. \] \hspace{1cm} (19.0.13)

Theorem 19.4. Let \(\phi_1 \) and \(\phi_2 \) be equivalent margin-based surrogate loss functions. Then for any quantizers \(q_1 \) and \(q_2 \),

\[R_{\phi_1}^*(q_1) \leq R_{\phi_2}^*(q_2) \text{ if and only if } R_{\phi_2}^*(q_1) \leq cR_{\phi_2}^*(q_2). \]

Proof The proof follows straightforwardly via the representation (19.0.12). If \(\phi_1 \) and \(\phi_2 \) are equivalent, then we have that

\[R_{\phi_1, prior}^* - R_{\phi_1}^*(q) = D_{f_{\pi, \phi_1}}(P_{-1} \| P_1 | q) = cD_{f_{\pi, \phi_2}}(P_{-1} \| P_1 | q) + a + b \]

\[= c \left[R_{\phi_2, prior}^* - R_{\phi_2}^*(q) \right] + a + b \]

for any quantizer \(q \). In particular, we have that

\[R_{\phi_1}^*(q_1) \leq R_{\phi_1}^*(q_2) \text{ if and only if } R_{\phi_1, prior}^* - R_{\phi_1}^*(q_1) \geq R_{\phi_1, prior}^* - R_{\phi_1}^*(q_2) \]

\[\text{if and only if } D_{f_{\pi, \phi_1}}(P_{-1} \| P_1 | q_1) \geq D_{f_{\pi, \phi_1}}(P_{-1} \| P_1 | q_2) \]

\[\text{if and only if } D_{f_{\pi, \phi_2}}(P_{-1} \| P_1 | q_1) \geq D_{f_{\pi, \phi_2}}(P_{-1} \| P_1 | q_2) \]

\[\text{if and only if } R_{\phi_2, prior}^* - R_{\phi_2}^*(q_1) \geq R_{\phi_2, prior}^* - R_{\phi_2}^*(q_2). \]

Subtracting \(R_{\phi_2, prior}^* \) from both sides gives our desired result. \(\square \)
e. Some comments:

1. We have an interesting thing: if we wish to learn a quantizer and a classifier jointly, then this is possible by using any loss equivalent to the true loss we care about.
2. Example: hinge loss and 0-1 loss are equivalent.
3. Turns out that the condition that the losses ϕ_1 and ϕ_2 be equivalent is (essentially) necessary and sufficient for two quantizers to induce the same ordering [122]. This equivalence is necessary and sufficient for the ordering conclusion of Theorem 19.4.

19.1 Generalized entropies

19.2 From entropy to losses

19.2.1 Classification case

JCD Comment: Notation: let P be the distribution on Y and let p the associated p.m.f., with $p_y = P(Y = y)$ for notational simplicity.

Say we have a (generalized) entropy $H : \Delta_k \to \mathbb{R}$, a concave function with $H(p) > -\infty$ except (potentially) when one of the $p_j = 0$. From any generalized entropy H, we can define a convex loss ϕ for which

$$H(p) = \inf_s \sum_{y=1}^k p_y L(s, y),$$

and this loss is

$$\phi(s, y) = -s y + (-H)^*(s).$$

19.2.2 Structured prediction case

In the structured prediction case, where we represent y by a statistic $\tau(y) \in \mathbb{R}^m$ so that

$$L(y', y) := \tau(y')^\top A \tau(y),$$

we can define the generalized entropy (with some abuse of notation)

$$H_L(P) := \min_y \mathbb{E}_P \left[\tau(y)^\top A \tau(Y) \right].$$

We define the *marginal polytope*

$$\mathcal{M} := \text{Conv}(\{\tau(y)\}_{y \in \mathcal{Y}}) = \left\{ \sum_{y \in \mathcal{Y}} p_y \tau(y) \mid p \in \Delta_{\mathcal{Y}} \right\}$$

and if we define the mean mapping $\mu : \Delta_{\mathcal{Y}} \to \mathcal{M}$ by

$$\mu(P) := \mathbb{E}_P[\tau(Y)] = \sum_{y \in \mathcal{Y}} p_y \tau(y),$$

we see that

$$H_L(P) = \min_{y \in \mathcal{Y}} \tau(y)^\top A \mu(P) = \inf_{\nu \in \mathcal{M}} \nu^\top A \mu(P).$$
Notably, H_L is concave in p, as it is the infimum of linear functionals, and with some abuse of notation, we can also define the negative entropy mapping

$$\Omega(\mu) := -\min_{y \in \mathcal{Y}} \tau(y) \top A\mu + I_M(\mu),$$

which evidently satisfies $\Omega(\nu) = H_L(P)$ for any $\nu \in \mathcal{M}$ satisfying $\nu = \mu(P)$ and is convex. The associated surrogate loss is

$$\varphi(s, y) := -s \top \tau(y) + \Omega^*(s), \quad (19.2.1)$$

and we have

$$\mathbb{E}_p[\varphi(s, Y)] = -s \top \mu(p) + \Omega^*(s),$$

so that

$$\inf_s \mathbb{E}_p[\varphi(s, Y)] = \inf_s \left\{ -s \top \mu(p) + \Omega^*(s) \right\} = -\Omega(\mu(p)) = H_L(p).$$

19.3 Predictions, calibration, and scoring rules

19.4 Surrogate risk consistency

19.4.1 Uniformly convex case

19.4.2 Structured prediction (discrete) case

The amazing thing is that the construction (19.2.1) is surrogate-risk consistent under fairly weak conditions. We have the prediction function

$$\hat{y}(s) \equiv \text{pred}(s) := \arg\max_{y \in \mathcal{Y}} \left\{ \tau(y) \top s \right\},$$

where we choose the element arbitrarily if the maximizer is non-unique.

The first question is why this should be (surrogate-risk) consistent. To gain some intuition for this case, we present a few heuristic calculations that rely on convex analysis, before we move the more sophisticated (and rigorous) argument to come. As always, we consider only pointwise versions of the risk—as surrogate risk consistency requires only this—and fix a $P \in \Delta_{\mathcal{Y}}$ and its induced $\mu = \mu(P)$. Consider the s minimizing the conditional surrogate risk

$$\ell_{\varphi}(s, P) = -s \top \mu + \Omega^*(s).$$

As s minimizes ℓ, we have $\Omega(\mu) - s \top \mu + \Omega^*(s) = 0$, and thus (using some duality results in the appendices) we necessarily have

$$s \in \partial \Omega(\mu).$$

As $\Omega(\mu) = \max_{y \in \mathcal{Y}} -\tau(y) \top A\mu + I_M(\mu)$, we see that

$$\partial \Omega(\mu) = \text{Conv}\left\{ -A\top \tau(y) \mid \tau(y) \top A\mu = \min_{y'} \tau(y') \top A\mu \right\} + N_M(\mu)$$

$$= \{ -A\top \nu \mid \nu \top A\mu = H_L(P), \nu \in \mathcal{M} \} + N_M(\mu), \quad (19.4.1)$$

where we recall that $\mu = \mu(P)$. If we make the (unrealistically) simplifying assumption that μ is interior to \mathcal{M} (say, for example, if P assigns positive probability to all $y \in \mathcal{Y}$), i.e. $\mu \in \text{int} \mathcal{M}$, then
$N_M(\mu) = \{0\}$. If we also assume there is only a single label $y^* \in Y$ minimizing $\tau(y^*)^\top A\mu$, that is, a single best prediction for the probabilities P on Y, then we obtain that $s = -A^\top \tau(y^*)$. Then of course the prediction function becomes

$$\text{pred}(s) = \arg\max_{y \in Y} \left\{ -\tau(y)^\top A^\top \tau(y^*) \right\} = y^*$$

by the assumed identifiability condition on L.

We can actually make this fully rigorous under a few additional assumptions.

Assumption 19.1. The loss L is symmetric, and if y minimizes $E_P[L(y, Y)] = E_P[\tau(y)^\top A\tau(Y)]$ then $P(Y = y) > 0$.

We have the following theorem.

Theorem 19.5. The surrogate φ is consistent for the discrete structured prediction loss L.

19.4.3 Proof of Theorem 19.5

The proof proceeds similarly to the heuristic guarantee that $\text{pred}(s)$ is correct in this case. Recall the gap functional (16.3.2),

$$\Delta_\varphi(\epsilon, P) := \inf_s \left\{ \ell_\varphi(s, P) - \ell^*_\varphi(P) \mid \ell(s, P) - \ell^*(P) \geq \epsilon \right\}.$$

In this case, we may simplify the quantities by writing out the entropy functionals explicitly as $\ell(s, P) = \tau(b_y(s))^\top A\mu - \inf_{\nu \in \mathcal{M}} \nu^\top A\mu$, where $b_y(s)$ is (an arbitrary) element of the prediction set $\arg\max_s s^\top \tau(y)$. We need only show that $\Delta_\varphi(\epsilon, P) > 0$ whenever $\epsilon > 0$, which we prove by contradiction.

Thus, assume for the sake of contradiction that $\Delta_\varphi(\epsilon, P) = 0$. As the losses φ are piecewise linear and the set of s such that $\ell(s, P) - \ell^*(P) \geq \epsilon$ is a union of polyhedra, there must be s achieving the infimum, and so for some vector of scores s, we have

$$\Omega^*(s) - s^\top \mu + \Omega(\mu) = 0$$

while $\tilde{g}(s)$ is incorrect. Following the calculation (19.4.1), we thus obtain that for some $\nu^* \in \mathcal{M}$ satisfying $\langle \nu^*, A\mu \rangle = \min_y \tau(y)^\top A\mu$ and a vector $w \in N_M(\mu)$, we have

$$s = -A^\top \nu^* + w.$$

For any $\nu \in \mathcal{M}$, define the shorthand let $y^*(\mu) = \arg\min_y \tau(y)^\top A\mu$, which is a set-valued mapping, and let $y^*(P) = y^*(\mu(P))$ when there is no chance of notational confusion. If we can show the inclusions

$$\tilde{g}(s) \subset y^*(\nu^*) \subset y^*(\mu(P)),$$

then the proof is complete, as we would evidently have our desired contradiction because necessarily $\tau(\tilde{g})^\top A\mu = \min_y \tau(y)^\top A\mu$ for any $\tilde{g} \in \tilde{g}(s)$.

To see the inclusion $y^*(\nu^*) \subset y^*(\mu(P))$ is relatively straightforward. Let

$$\nu' \in \text{Conv} \left\{ \tau(y) \mid \tau(y)^\top A\mu(P) = \min_{y'} E_P[L(y', Y)] = H_L(P) \right\}$$

(19.4.3)
be otherwise arbitrary. For all P' such that $\nu' = \mu(P')$, the identifiability assumption 19.1 guarantees that if $y \in y^*(\nu')$, we must have $P'(Y = y) > 0$. That is, we have

$$y^*(\nu') \subset \pi P' \{ \text{supp } P' \mid \nu' = \mu(P') \}.$$

In particular, Assumption 19.1 guarantees there is at least one P' satisfying $\text{supp } P' \subset y^*(\mu(P))$ and $\nu' = \mu(P')$, so that $y^*(\nu') \subset y^*(\mu(P))$ for all ν' in the convex hull (19.4.3), and in particular for ν^*.

The first inclusion in the chain (19.4.2) is more challenging. We begin a convex analytic result that allows us to simplify maximizers of $s^T \tau(y)$ in y.

Lemma 19.6. Let $w \in N_M(\mu)$ be the element satisfying $s = -A^T \nu^* + w$. Then for any $y \in Y$ and any $z \in \text{supp } P$,

$$\langle \tau(z) - \tau(y), w \rangle \geq 0.$$

Proof Fix any $y \in Y$ and let $z \in \text{supp } P$, so that $p_z > 0$. Then for a vector $\alpha \in \text{Conv}(\tau(y') \mid y \notin \{y, z\})$, we can write $\mu(P) = \lambda_y \tau(y) + \lambda_z \tau(z) + (1 - \lambda_y - \lambda_z) \alpha$, where $\lambda_y \geq 0, \lambda_z \geq p_z > 0$, and $\lambda_y + \lambda_z \leq 1$. The vector $\nu = (\lambda_y + \lambda_z) \tau(y) + (1 - \lambda_y - \lambda_z) \alpha$ similarly satisfies $\nu \in M$. By the definition of the normal cone $N_M(\mu)$, we know that $w^T (\mu' - \mu) \leq 0$ for all $\mu' \in M$, and in particular this holds for $\mu' = \nu$. As

$$\nu - \mu = \lambda_z (\tau(y) - \tau(z)),$$

we obtain

$$\lambda_z w^T (\tau(y) - \tau(z)) \leq 0,$$

and as $\lambda_z > 0$ the lemma follows. \hfill \Box

With Lemma 19.6 in hand, we can consider the predictions $\text{pred}(s) = \arg \max_y s^T \tau(y)$. As $s = -A^T \nu^* + w$, we have

$$\hat{y}(s) = \arg \max_{y \in Y} \{-\tau(y)^T A^T \nu^* + \tau(y)^T w\} = \arg \max_{y \in Y} \{-\tau(y)^T A \nu^* + \tau(y)^T w\},$$

where we have used the assumed symmetry of A. Let $y \in y^*(\nu^*)$ and $y' \notin y^*(\nu^*)$, so that $\tau(y')^T A \nu^* > \tau(y)^T A \nu^*$. Then by our earlier argument that $P(Y = y) > 0$, we obtain from Lemma 19.6 that

$$\tau(y')^T w \leq \tau(y)^T w.$$

We then see that

$$-\tau(y')^T A \nu^* + \tau(y')^T w < -\tau(y)^T A \nu^* + \tau(y)^T w,$$

and so $y' \notin \hat{y}(s)$. In particular, $\hat{y}(s) \subset y^*(\nu^*)$ as desired.

19.5 Loss equivalence

Definition 19.1. The generalized entropy associated with a vector of losses $(\ell_y)_{y=1}^k : \mathbb{R}^k \to \mathbb{R}_+$ is

$$H_{\ell}(Y) := \inf_s \left\{ \frac{1}{k} \sum_{y=1}^k P(Y = y) \ell_y(s) \right\}.$$

303
The associated conditional entropy of \(Y \) given \(X = x \) is

\[
H_\ell(Y \mid X = x) = \inf_s \sum_{y=1}^k P(Y = y \mid X = x) \ell_y(s),
\]
and the conditional entropy of \(Y \) given \(X \) is

\[
H_\ell(Y \mid X) := \int_X H_\ell(Y \mid X = x)dP(x).
\]

From the definition, it is immediate that such entropies obey similar properties to the typical (Shannon) entropy \(H(Y) = -\sum y p(y) \log p(y) \) of a discrete random variable. Indeed, they are non-negative, and

\[\text{JCD Comment: Fill this out in more detail, giving examples, motivation, etc. Some examples that would be worth doing (maybe earlier): multiclass with sums of hinge losses, and also the multiclass with order statistics (both from my papers). Can leave giving “gap” calculations as exercises.}\]

We can associate a natural information measure to such entropies: the loss-based information that \(X \) carries about a target \(Y \) is

\[
I_\ell(X; Y) := H_\ell(Y) - H_\ell(Y \mid X),
\]
which is clearly nonnegative.

In cases such as margin-based binary classification, when it is more natural to think of prediction functions as mapping into \(\mathbb{R} \), it is more convenient to work with a slight modification of these entropies, where for a margin-based loss \(\phi \) and \(Y \in \{ \pm 1 \} \), we define

\[
H_\phi(Y) := \inf_{s \in \mathbb{R}} \{ P(Y = 1)\phi(-s) + P(Y = -1)\phi(s) \},
\]
so that \(H_\phi \) is really a concave function on \(p \in [0, 1] \) with \(H_\phi(Y) = h_\phi(P(Y = 1)) \), where the binary generalized entropy is

\[
h_\phi(p) := \inf_{s \in \mathbb{R}} \{ p\phi(-s) + (1 - p)\phi(s) \}.
\]

Definition 19.2. Losses \(\ell_1 \) and \(\ell_2 \) are universally equivalent if for all distributions on \((X, Y)\) and all quantizers \(q_1 \) and \(q_2 \),

\[
I_{\ell_1}(q_1(X); Y) \leq I_{\ell_1}(q_2(X); Y) \quad \text{if and only if} \quad I_{\ell_2}(q_1(X); Y) \leq I_{\ell_2}(q_2(X); Y).
\]

We note in passing that swapping the roles of \(q_1 \) and \(q_2 \) and taking contrapositives, we an equivalent formulation to Definition 19.2 is that

\[
I_{\ell_1}(q_1(X); Y) < I_{\ell_1}(q_2(X); Y) \quad \text{if and only if} \quad I_{\ell_2}(q_1(X); Y) < I_{\ell_2}(q_2(X); Y).
\]

Theorem 19.7. Let the multiclass losses \(\ell_1 \) and \(\ell_2 \) be bounded below and \(H_1 \) and \(H_2 \) be the associated generalized entropies. Then \(\ell_1 \) and \(\ell_2 \) are universally equivalent if and only if there exist \(a > 0 \), \(b \in \mathbb{R}^k \), and \(c \in \mathbb{R} \) such that for all distributions on \(Y \in [k] \),

\[
H_1(Y) = aH_2(Y) + b^\top p + c,
\]

where \(p = [P(Y = y)]_{y=1}^k \) is the p.m.f. of \(Y \).

\[\text{JCD Comment: Do the easy version here.}\]
19.6 Proof of Theorem 19.7

We give the proof of the “hard” direction of Theorem 19.7: that is, if ℓ_1 and ℓ_2 are universally equivalent, then their associated entropies are necessary linearly related (19.5.1). We prove the result in the slightly simpler case of binary classification, as the more general result introduces few new ideas except that it requires more technical care.

We thus work with margin-based losses $\phi_i : \mathbb{R} \to \mathbb{R}_+$, where without any loss of generality we assume $\inf_s \ell_i(s) = 0$ (as we may subtract a constant), and we have generalized (binary) entropies

$$h_i(p) := \inf_s \{p\phi_i(-s) + (1 - p)\phi(s)\}.$$

By inspection, each h_i is a closed concave function (as it is the infimum of linear functions of p), and by symmetry they satisfy $h_i(0) = h_i(1) = 0$ and $h_i(\frac{1}{2}) = \sup_{p \in [0,1]} h_i(p)$. We show that these entropies satisfy a particular order equivalence property on $[0,1]$, which will turn out to be sufficient to prove their equality.

To motivate what follows, recall that universal equivalence (Def. 19.2) must hold for all distributions on (X,Y), and hence all (measurable) spaces \mathcal{X} and joint distributions on $\mathcal{X} \times \{\pm 1\}$. Thus, consider a space \mathcal{X} that we can partition into sets $\{A,A^c\}$ or $\{B,B^c\}$, where we take the conditional distributions

$$Y \mid X \in A = \begin{cases} 1 \text{ w.p. } p_a, \\ -1 \text{ w.p. } 1 - p_a, \end{cases}$$

and

$$Y \mid X \in B = \begin{cases} 1 \text{ w.p. } p_b, \\ -1 \text{ w.p. } 1 - p_b, \end{cases}$$

where we require the consistency conditions that the marginals over Y remain constant, that is, if $P(A) = P(X \in A)$, we have

$$P(A)p_a + P(A^c)q_a = P(Y = 1) = P(B)p_b + P(B^c)q_b.$$

Then evidently by defining quantizers q_1 and q_2 such that $q_1(x) = 1 \{x \in A\}$ and $q_2(x) = 1 \{x \in B\}$, we have

$$I_{\phi_1}(q_1(X);Y) = h_1(P(Y = 1)) - P(A)h_1(p_a) - (1 - P(A))h_1(q_a),$$

$$I_{\phi_1}(q_2(X);Y) = h_1(P(Y = 1)) - P(B)h_1(p_b) - (1 - P(B))h_1(q_b),$$

and similarly for I_{ϕ_2}. Then universal equivalence implies that

$$P(A)h_1(p_a) + (1 - P(A))h_1(q_a) \leq P(B)h_1(p_b) + (1 - P(B))h_1(q_b) \quad \text{if and only if}$$

$$P(A)h_2(p_a) + (1 - P(A))h_2(q_a) \leq P(B)h_2(p_b) + (1 - P(B))h_2(q_b)$$

whenever the consistency condition $P(A)p_a + (1 - P(A))q_a = P(B)p_b + (1 - P(B))q_b$ holds. As we may choose \mathcal{X} and the probabilities, we can take $P(A) = P(B) = \frac{1}{2}$ (so that their are two equiprobable partitions), and the preceding conditions become

$$h_1(p_a) + h_1(q_a) \leq h_1(p_b) + h_1(q_b) \quad \text{if and only if}$$

$$h_2(p_a) + h_2(q_a) \leq h_2(p_b) + h_2(q_b)$$

whenever $p_a + q_a = p_b + q_b$.

305
Generalizing this construction by taking distributions over \mathcal{X} that partition it into k equiprobable sets $\{A_1, \ldots, A_k\}$ or $\{B_1, \ldots, B_k\}$, each with $P(A_i) = P(B_i) = 1/k$, we see that universal equivalence implies that for any vectors $p \in [0, 1]^k$ and $q \in [0, 1]^k$ satisfies $1^\top p = 1^\top q$,

\[
\sum_{i=1}^{k} h_1(p_i) \leq \sum_{i=1}^{k} h_1(q_i) \quad \text{if and only if} \quad \sum_{i=1}^{k} h_2(p_i) \leq \sum_{i=1}^{k} h_2(q_i).
\]

(19.6.1)

We shall give condition (19.6.1) a name, as it implies certain equivalence properties for convex functions (we can replace h_i with $-h_i$ and obtain convex functions).

Definition 19.3. Let $\Omega \subset \mathbb{R}$ be a closed interval and let $f_1, f_2 : \Omega \rightarrow \mathbb{R}$ be closed convex functions. Then f_1 and f_2 are order equivalent if for any $k \in \mathbb{N}$ and vectors $s \in \Omega^k$ and $t \in \Omega^k$ satisfying $1^\top s = 1^\top t$, we have

\[
\sum_{i=1}^{k} f_1(s_i) \leq \sum_{i=1}^{k} f_1(t_i) \quad \text{if and only if} \quad \sum_{i=1}^{k} f_2(s_i) \leq \sum_{i=1}^{k} f_2(t_i)
\]

As in the brief remark following Definition 19.2, by taking complements we have as well that

\[
\sum_{i=1}^{k} f_1(s_i) < \sum_{i=1}^{k} f_1(t_i) \quad \text{if and only if} \quad \sum_{i=1}^{k} f_2(s_i) < \sum_{i=1}^{k} f_2(t_i)
\]

The theorem will then be proved if we can show the following lemma.

Lemma 19.8. Let f_1 and f_2 be order equivalent on Ω. Then there exist $a > 0$, and $b, c \in \mathbb{R}$ such that $f_1(t) = af_2(t) + bt + c$ for all $t \in \Omega$.

The proof of Lemma 19.8 is somewhat involved, and we proceed in three parts. The key is that order equivalence actually implies a strong relationship between affine combinations of points in the domain of the functions f_i, not just convex combinations of points, which guarantees that we can predict values of $f_2(v)$ for any $v \in \Omega$ by just three values of f_1 evaluate in Ω. We state this as a lemma, whose proof we defer temporarily to Sec. 19.6.1

Lemma 19.9. If f_1 and f_2 are order equivalent on Ω, then for any $\lambda \in \mathbb{R}^k$ satisfying $\lambda^\top 1 = 1$ and any $u \in \Omega^k$, if $\lambda^\top u = v \in \Omega$ then

\[
\sum_{i=1}^{k} \lambda_i f_1(u_i) \leq f_1(v) \quad \text{if and only if} \quad \sum_{i=1}^{k} \lambda_i f_2(u_i) \leq f_2(v),
\]

and the statement still holds with both inequalities replaced with strict inequalities.

In particular, if

\[
\sum_{i=1}^{k} \lambda_i f_1(u_i) = f_1(v) \quad \text{then necessarily} \quad \sum_{i=1}^{k} \lambda_i f_2(u_i) = f_2(v)
\]

(19.6.2)

whenever $\lambda \in \mathbb{R}^k$ satisfies $\lambda^\top 1 = 1$ and $u^\top \lambda = \sum_{i=1}^{k} \lambda_i u_i = v$.

Second, we recognize that we may assume both f_1 and f_2 are nonlinear in the lemma; otherwise, it is immediate. Nonlinearity guarantees that
Lemma 19.10. Let f be convex on \mathbb{R}. Let $u_0 < u_1$ and for $\lambda \in [0,1]$, define $u_\lambda = (1-\lambda)u_0 + \lambda u_1$. If there exists any $\lambda \in (0,1)$ such that $f(u_\lambda) = \lambda f(u_0) + (1-\lambda)f(u_1)$, then f is linear on $[u_0, u_1]$.

We leave the proof (an algebraic manipulation using the definitions of convexity) as Question 19.2.

The last intermediate step we require in the proof of Lemma 19.8 is that at three particular points in the domain Ω, we can satisfy Lemma 19.8.

Lemma 19.11. Let f_1, f_2 be order equivalent on $\Omega = [u_0, u_1]$ and $u_c = \frac{1}{2}(u_0 + u_1)$. There are $a > 0$ and $b, c \in \mathbb{R}$ such that $f_1(t) = af_2(t) + bt + c$ for $t \in \{u_0, u_c, u_1\}$.

We can now finalize the proof of Lemma 19.8:

Proof Without loss of generality by an affine rescaling, we can assume that $f_1(t) = f_2(t)$ for $t \in \{u_0, u_c, u_1\}$, and our goal will be to show that $f_1(t) = f_2(t)$ for all $t \in \Omega$.

Let $v \in \Omega$ with $v \not\in \{u_0, u_c, u_1\}$, and $u = [u_0 \ u_c \ u_1]^\top$ for shorthand. We seek $\lambda = (\lambda_0, \lambda_c, \lambda_1) \in \mathbb{R}^3$, where $\lambda^\top 1 = 1$, such that both $\lambda^\top u = v$ and $\lambda_0 f_1(u_0) + \lambda_c f_1(u_c) + \lambda_1 f_1(u_1) = f_1(v)$. If we can find such a λ, then equality (19.6.2) guarantees that $f_1(v) = f_2(v)$, and we are done. As the points $(u_i, f_1(u_i))_{i=1}^3$ are not collinear (recall Lemma 19.10), the matrix

$$A := \begin{bmatrix} 1 & 1 & 1 \\ u_0 & u_c & u_1 \\ f_1(u_0) & f_1(u_c) & f_1(u_1) \end{bmatrix}$$

is full rank. In particular, there is a vector λ solving

$$A\lambda = [1 \ v \ f_1(v)]^\top,$$

i.e. $\lambda = A^{-1}[1 \ v \ f_1(v)]^\top$,

which evidently satisfies our desiderata. Thus $f_1(v) = f_2(v)$, and as v was arbitrary, the proof is complete.

\[\square \]

19.6.1 Proof of Lemma 19.9

We prove the result first for λ with rational entries, as a continuity argument will give the rest. For each i, let $\alpha_i = [\lambda_i]_+$ and $\beta_i = [-\lambda_i]_+$ be the positive and negative parts of λ, so that $\lambda = \alpha - \beta$. Let $k \in \mathbb{N}$ be such that we can write $\alpha_i = \frac{a_i}{k}$ and $\beta_i = \frac{b_i}{k}$, where $a_i, b_i \in \mathbb{N}$. Then we have

$$\alpha^\top u = v + \beta^\top u \quad \text{or} \quad a^\top u = kv + b^\top u,$$

where $1^\top a = k + 1^\top b$, as $1^\top \lambda = \frac{1}{k}1^\top(a - b) = 1$. Then we may define the two vectors

$$s = [u_1 \cdots u_1 \cdots u_m \cdots u_m]^\top \quad \text{and} \quad t = [v \cdots v \ u_1 \cdots u_1 \cdots u_m \cdots u_m]^\top.$$

Then each has entries in Ω, and we have $1^\top t = 1^\top s$. Then order equivalence (Def. 19.3) guarantees that

$$\sum_{i=1}^m a_i f_1(u_i) \leq k f_1(v) + \sum_{i=1}^m b_i f_1(u_i) \quad \text{if and only if} \quad \sum_{i=1}^m a_i f_2(u_i) \leq k f_2(v) + \sum_{i=1}^m b_i f_2(u_i),$$

307
and (as per the remark following the definition)
\[
\sum_{i=1}^{m} a_i f_1(u_i) = k f_1(v) + \sum_{i=1}^{m} b_i f_1(u_i) \quad \text{if and only if} \quad \sum_{i=1}^{m} a_i f_2(u_i) = k f_2(v) + \sum_{i=1}^{m} b_i f_2(u_i).
\]

These two displays are equivalent to \(\sum_{i=1}^{m} \lambda_i f_j(u_i) \leq f_j(v) \) and \(\sum_{i=1}^{m} \lambda_i f_j(u_i) = f_j(v) \), respectively, for \(j = 1, 2 \).

We have therefore proved Lemma 19.9 for \(\lambda \) taking rational values. Because closed convex functions on \(\mathbb{R} \) are continuous on their domains (Lemma 16.4) the result extends to real-valued \(\lambda \).

19.6.2 Proof of Lemma 19.11

If either of \(f_1 \) or \(f_2 \) is linear, the other is as well, and the proof becomes trivial, so we assume w.l.o.g. they are both nonlinear.

Without loss of generality, we take \(u_0 = 0, u_1 = 1 \), and \(u_c = \frac{1}{2} \) by scaling. Then we must solve the three equations

\[
f_1(0) = af_2(0) + c, \quad f_1\left(\frac{1}{2}\right) = af_2\left(\frac{1}{2}\right) + \frac{b}{2} + c, \quad f_1(1) = af_2(1) + b + c.
\]

From the first we obtain \(c = f_1(0) - af_2(0) \), and substituting this into the third yields \(b = f_1(1) - af_1(0) - a(f_2(1) - f_2(0)) \). Finally, substituting both equalities into the equality with \(f_1\left(\frac{1}{2}\right) \) yields that

\[
f_1\left(\frac{1}{2}\right) = a \left[f_2\left(\frac{1}{2}\right) - \frac{f_2(1) - f_2(0)}{2}\right] + \frac{f_1(1) - f_1(0)}{2} + f_1(0) - af_2(0)
= a \left[f_2\left(\frac{1}{2}\right) - \frac{f_2(1) + f_2(0)}{2}\right] + \frac{f_1(1) + f_1(0)}{2}.
\]

As we know that \(f_1, f_2 \) are nonlinear, Lemma 19.10 applies, so that the convexity gaps \(f_1\left(\frac{1}{2}\right) - \frac{f_1(1) + f_1(0)}{2} \) and \(f_2\left(\frac{1}{2}\right) - \frac{f_2(1) + f_2(0)}{2} \) are both positive, and thus we take

\[
a = \frac{f_1\left(\frac{1}{2}\right) - \frac{f_1(0) + f_1(1)}{2}}{f_2\left(\frac{1}{2}\right) - \frac{f_2(0) + f_2(1)}{2}} > 0.
\]

19.7 Bibliography

Point to full proof of Theorem 19.7.

19.8 Exercises

Question 19.1 (Bayes risk gaps): Consider a general binary classification problem with \((X, Y) \in \mathcal{X} \times \{-1, 1\}\). Let \(\phi(\alpha) = \log(1 + e^{-\alpha}) \), so that we use the logistic loss. Show that the surrogate risk gap

\[
L_{\phi, \text{prior}}^{\ast} - L_{\phi}^{\ast} = I(X; Y),
\]

where \(I \) is the mutual information.

Question 19.2: Prove Lemma 19.10. **Hint:** without loss of generality, you may take \(u_0 = 0, u_1 = 1 \). Then for any \(u \in [0, 1] \), write \(\lambda \) as a convex combination of either \(\{0, u\} \) or \(\{u, 1\} \) and use the definition of convexity.
Chapter 20

Fisher Information

Having explored the definitions associated with exponential families and their robustness properties, we now turn to a study of somewhat more general parameterized distributions, developing connections between divergence measures and other geometric ideas such as the Fisher information. After this, we illustrate a few consequences of Fisher information for optimal estimators, which gives a small taste of the deep connections between information geometry, Fisher information, exponential family models. In the coming chapters, we show how Fisher information measures come to play a central role in sequential (universal) prediction problems.

20.1 Fisher information: definitions and examples

We begin by defining the Fisher information. Let \(\{P_\theta\}_{\theta \in \Theta} \) denote a parametric family of distributions on a space \(\mathcal{X} \), each where \(\theta \in \Theta \subset \mathbb{R}^d \) indexes the distribution. Throughout this lecture and the next, we assume (with no real loss of generality) that each \(P_\theta \) has a density given by \(p_\theta \). Then the Fisher information associated with the model is the matrix given by

\[
I_\theta := \mathbb{E}_\theta \left[\nabla_\theta \log p_\theta(X) \nabla \log p_\theta(X)^\top \right] = \mathbb{E}_\theta [\dot{\ell}_\theta \dot{\ell}_\theta^\top],
\]

where the score function \(\dot{\ell}_\theta = \nabla_\theta \log p_\theta(x) \) is the gradient of the log likelihood at \(\theta \) (implicitly depending on \(X \)) and the expectation \(\mathbb{E}_\theta \) denotes expectation taken with respect to \(P_\theta \). Intuitively, the Fisher information captures the variability of the gradient \(\nabla \log p_\theta \); in a family of distributions for which the score function \(\dot{\ell}_\theta \) has high variability, we intuitively expect estimation of the parameter \(\theta \) to be easier—different \(\theta \) change the behavior of \(\dot{\ell}_\theta \)—though the log-likelihood functional \(\theta \mapsto \mathbb{E}_{\theta_0} [\log p_\theta(X)] \) varies more in \(\theta \).

Under suitable smoothness conditions on the densities \(p_\theta \) (roughly, that derivatives pass through expectations; see Remark 20.1 at the end of this chapter), there are a variety of alternate definitions of Fisher information. These smoothness conditions hold for exponential families, so at least in the exponential family case, everything in this chapter is rigorous. (We note in passing that there are more general definitions of Fisher information for more general families under quadratic mean differentiability; see, for example, van der Vaart [140].) First, we note that the score function has
mean zero under P_θ: we have

$$
\mathbb{E}_\theta[\hat{\theta}_\theta] = \int p_\theta(x) \nabla \log p_\theta(x) dx = \int \frac{\nabla p_\theta(x)}{p_\theta(x)} p_\theta(x) dx
$$

$$
= \int \nabla p_\theta(x) dx = \nabla \int p_\theta(x) dx = \nabla 1 = 0,
$$

where in equality (\ast) we have assumed that integration and derivation may be exchanged. Under similar conditions, we thus attain an alternate definition of Fisher information as the negative expected hessian of $\log p_\theta(X)$. Indeed,

$$
\nabla^2 \log p_\theta(x) = \frac{\nabla^2 p_\theta(x)}{p_\theta(x)} - \frac{\nabla p_\theta(x) \nabla p_\theta(x)^T}{p_\theta(x)^2} = \frac{\nabla^2 p_\theta(x)}{p_\theta(x)} - \hat{\theta}_\theta \hat{\theta}_\theta^T,
$$

so we have that the Fisher information is equal to

$$
I_\theta = \mathbb{E}_\theta[\hat{\theta}_\theta \hat{\theta}_\theta^T] = -\int p_\theta(x) \nabla^2 \log p_\theta(x) dx + \int \nabla^2 p_\theta(x) dx
$$

$$
= -\mathbb{E}[\nabla^2 \log p_\theta(x)] + \nabla^2 \int p_\theta(x) dx = -\mathbb{E}[\nabla^2 \log p_\theta(x)].
$$

(20.1.2)

Summarizing, we have that

$$
I_\theta = \mathbb{E}_\theta[\hat{\theta}_\theta \hat{\theta}_\theta] = -\mathbb{E}_\theta[\nabla^2 \log p_\theta(X)].
$$

This representation also makes clear the additional fact that, if we have n i.i.d. observations from the model P_θ, then the information content similarly grows linearly, as $\log p_\theta(X^n) = \sum_{i=1}^n \log p_\theta(X_i)$.

We now give two examples of Fisher information, the first somewhat abstract and the second more concrete.

Example 20.1 (Canonical exponential family): In a canonical exponential family model, we have $\log p_\theta(x) = \langle \theta, \phi(x) \rangle - A(\theta)$, where ϕ is the sufficient statistic and A is the log-partition function. Because $\hat{\theta}_\theta = \phi(x) - \nabla A(\theta)$ and $\nabla^2 \log p_\theta(x) = -\nabla^2 A(\theta)$ is a constant, we obtain

$$
I_\theta = \nabla^2 A(\theta).
$$

\diamond

Example 20.2 (Two parameterizations of a Bernoulli): In the canonical parameterization of a Bernoulli as an exponential family model (Example 3.1), we had $p_\theta(x) = \exp(\theta x - \log(1 + e^\theta))$ for $x \in \{0, 1\}$, so by the preceding example the associated Fisher information is $\frac{e^\theta}{1 + e^\theta} \frac{1}{1 + e^\theta}$. If we make the change of variables $p = P_\theta(X = 1) = e^\theta/(1 + e^\theta)$, or $\theta = \log \frac{p}{1-p}$, we have $I_\theta = p(1-p)$. On the other hand, if $P(X = x) = p^x(1-p)^{1-x}$ for $p \in [0, 1]$, the standard formulation of the Bernoulli, then $\nabla \log P(X = x) = \frac{x}{p} - \frac{1-x}{1-p}$, so that

$$
I_p = \mathbb{E}_p \left[\left(\frac{X}{p} - \frac{1-X}{1-p} \right)^2 \right] = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}.
$$

That is, the parameterization can change the Fisher information. \diamond
20.2 Estimation and Fisher information: elementary considerations

The Fisher information has intimate connections to estimation, both in terms of classical estimation and the information games that we discuss subsequently. As a motivating calculation, we consider estimation of the mean of a Bernoulli(p) random variable, where $p \in [0, 1]$, from a sample $X_1^n \overset{iid}{\sim} \text{Bernoulli}(p)$. The sample mean \hat{p} satisfies

$$E[(\hat{p} - p)^2] = \frac{1}{n} \text{Var}(X) = \frac{p(1 - p)}{n} = \frac{1}{I_p} \cdot \frac{1}{n},$$

where I_p is the Fisher information for the single observation Bernoulli(p) family as in Example 20.2. In fact, this inverse dependence on Fisher information is unavoidable, as made clear by the Cramér Rao Bound, which provides lower bounds on the mean squared error of all unbiased estimators.

Proposition 20.3 (Cramér Rao Bound). Let $\phi : \mathbb{R}^d \to \mathbb{R}$ be an arbitrary differentiable function and assume that the random function (estimator) T is unbiased for $\phi(\theta)$ under P_θ. Then

$$\text{Var}(T) \geq \nabla \phi(\theta)^\top I_\theta^{-1} \nabla \phi(\theta).$$

As an immediate corollary to Proposition 20.3, we may take $\phi(\theta) = \langle \lambda, \theta \rangle$ for $\lambda \in \mathbb{R}^d$. Then varying λ over all of \mathbb{R}^d, and we obtain that for any unbiased estimator T for the parameter $\theta \in \mathbb{R}^d$, we have $\text{Var}(\langle \lambda, T \rangle) \geq \lambda^\top I_\theta^{-1} \lambda$. That is, we have

Corollary 20.4. Let T be unbiased for the parameter θ under the distribution P_θ. Then the covariance of T has lower bound

$$\text{Cov}(T) \succeq I_\theta^{-1}.$$

In fact, the Cramér-Rao bound and Corollary 20.4 hold, in an asymptotic sense, for substantially more general settings (without the unbiasedness requirement). For example, see the books of van der Vaart [140] or Le Cam and Yang [107, Chapters 6 & 7], which show that under appropriate conditions (known variously as quadratic mean differentiability and local asymptotic normality) that no estimator can have smaller mean squared error than Fisher information in any uniform sense.

We now prove the proposition, where, as usual, we assume that it is possible to exchange differentiation and integration.

Proof Throughout this proof, all expectations and variances are computed with respect to P_θ. The idea of the proof is to choose $\lambda \in \mathbb{R}^d$ to minimize the variance

$$\text{Var}(T - \langle \lambda, \hat{\theta} \rangle) \geq 0,$$

then use this λ to provide a lower bound on $\text{Var}(T)$.

To that end, let $\hat{\ell}_{\theta,j} = \frac{\partial}{\partial \theta_j} \log p_\theta(X)$ denote the jth component of the score vector. Because $E_\theta[\hat{\ell}_\theta] = 0$, we have the covariance equality

$$\text{Cov}(T - \phi(\theta), \hat{\ell}_{\theta,j}) = E[(T - \phi(\theta))\hat{\ell}_{\theta,j}] = E[T\hat{\ell}_{\theta,j}] = \int T(x) \frac{\partial}{\partial \theta_j} p_\theta(x) p_\theta(x) dx$$

$$= \frac{\partial}{\partial \theta_j} \int T(x) p_\theta(x) dx = \frac{\partial}{\partial \theta_j} \phi(\theta),$$

311
where in the final step we used that T is unbiased for $\phi(\theta)$. Using the preceding equality,

$$\Var(T - \langle \lambda, \hat{\ell}_\theta \rangle) = \Var(T) + \lambda^T I_\theta \lambda - 2 \mathbb{E}[(T - \phi(\theta))(\lambda, \hat{\ell}_\theta)] = \Var(T) + \lambda^T I_\theta \lambda - 2 \langle \lambda, \nabla \phi(\theta) \rangle.$$

Taking $\lambda = I_\theta^{-1} \nabla \phi(\theta)$ gives $0 \leq \Var(T - \langle \lambda, \hat{\ell}_\theta \rangle) = \Var(T) - \nabla \phi(\theta)^T I_\theta^{-1} \nabla \phi(\theta)$, and rearranging gives the result.

\[\square\]

20.3 Connections between Fisher information and divergence measures

By making connections between Fisher information and certain divergence measures, such as KL-divergence and mutual (Shannon) information, we gain additional insights into the structure of distributions, as well as optimal estimation and encoding procedures. As a consequence of the asymptotic expansions we make here, we see that estimation of 1-dimensional parameters is governed (essentially) by moduli of continuity of the loss function with respect to the metric induced by Fisher information; in short, Fisher information is an unavoidable quantity in estimation. We motivate our subsequent development with the following example.

Example 20.5 (Divergences in exponential families): Consider the exponential family density $p_\theta(x) = h(x) \exp(\langle \theta, \phi(x) \rangle - A(\theta))$. Then a straightforward calculation implies that for any θ_1 and θ_2, the KL-divergence between distributions P_{θ_1} and P_{θ_2} is

$$D_{\text{kl}}(P_{\theta_1} \| P_{\theta_2}) = A(\theta_2) - A(\theta_1) - \langle \nabla A(\theta_1), \theta_2 - \theta_1 \rangle.$$

That is, the divergence is simply the difference between $A(\theta_2)$ and its first order expansion around θ_1. This suggests that we may approximate the KL-divergence via the quadratic remainder in the first order expansion. Indeed, as A is infinitely differentiable (it is an exponential family model), the Taylor expansion becomes

$$D_{\text{kl}}(P_{\theta_1} \| P_{\theta_2}) = \frac{1}{2} \langle \theta_1 - \theta_2, \nabla^2 A(\theta_1)(\theta_1 - \theta_2) \rangle + O(\|\theta_1 - \theta_2\|^3)$$

$$= \frac{1}{2} \langle \theta_1 - \theta_2, I_{\theta_1}(\theta_1 - \theta_2) \rangle + O(\|\theta_1 - \theta_2\|^3).$$

\[\diamondsuit\]

In particular, KL-divergence is roughly quadratic for exponential family models, where the quadratic form is given by the Fisher information matrix. We also remark in passing that for a convex function f, the Bregman divergence (associated with f) between points x and y is given by $D_f(x, y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle$; such divergences are common in convex analysis, optimization, and differential geometry. Making such connections deeper and more rigorous is the goal of the field of information geometry (see the book of Amari and Nagaoka [5] for more).

We can generalize this example substantially under appropriate smoothness conditions. Indeed, we have

Proposition 20.6. For appropriately smooth families of distributions $\{P_\theta\}_{\theta \in \Theta}$,

$$D_{\text{kl}}(P_{\theta_1} \| P_{\theta_2}) = \frac{1}{2} \langle \theta_1 - \theta_2, I_{\theta_1}(\theta_1 - \theta_2) \rangle + o(\|\theta_1 - \theta_2\|^2).$$

(20.3.1)
We only sketch the proof, as making it fully rigorous requires measure-theoretic arguments and Lebesgue’s dominated convergence theorem.

Sketch of Proof By a Taylor expansion of the log density \(\log p_{\theta_2}(x) \) about \(\theta_1 \), we have

\[
\log p_{\theta_2}(x) = \log p_{\theta_1}(x) + \langle \nabla \log p_{\theta_1}(x), \theta_1 - \theta_2 \rangle \\
+ \frac{1}{2} (\theta_1 - \theta_2)^\top \nabla^2 \log p_{\theta_1}(x) (\theta_1 - \theta_2) + R(\theta_1, \theta_2, x),
\]

where \(R(\theta_1, \theta_2, x) = O_x(\|\theta_1 - \theta_2\|^3) \) is the remainder term, where \(O_x \) denotes a hidden dependence on \(x \). Taking expectations and assuming that we can interchange differentiation and expectation appropriately, we have

\[
\mathbb{E}_{\theta_1} [\log p_{\theta_2}(X)] = \mathbb{E}_{\theta_1} [\log p_{\theta_1}(X)] + \langle \mathbb{E}_{\theta_1}[\ell_{\theta_1}], \theta_1 - \theta_2 \rangle \\
+ \frac{1}{2} (\theta_1 - \theta_2)^\top \mathbb{E}_{\theta_1} [\nabla^2 \log p_{\theta_1}(X)] (\theta_1 - \theta_2) + \mathbb{E}_{\theta_1} [R(\theta_1, \theta_2, X)]
\]

\[
= \mathbb{E}_{\theta_1} [\log p_{\theta_1}(X)] - \frac{1}{2} (\theta_1 - \theta_2)^\top I_{\theta_1} (\theta_1 - \theta_2) + o(\|\theta_1 - \theta_2\|^2),
\]

where we have assumed that the \(O(\|\theta_1 - \theta_2\|^3) \) remainder is uniform enough in \(X \) that \(\mathbb{E}[R] = o(\|\theta_1 - \theta_2\|^3) \) and used that the score function \(\ell_{\theta} \) is mean zero under \(P_\theta \). \(\square \)

We may use Proposition 20.6 to give a somewhat more general version of the Cramér-Rao bound (Proposition 20.3) that applies to more general (sufficiently smooth) estimation problems. Indeed, we will show that Le Cam’s method (recall Chapter 8.3) is (roughly) performing a type of discrete second-order approximation to the KL-divergence, then using this to provide lower bounds. More concretely, suppose we are attempting to estimate a parameter \(\theta \) parameterizing the family \(\mathcal{P} = \{P_\theta\}_{\theta \in \Theta} \), and assume that \(\Theta \subset \mathbb{R}^d \) and \(\theta_0 \in \text{int} \Theta \). Consider the minimax rate of estimation of \(\theta_0 \) in a neighborhood around \(\theta_0 \); that is, consider

\[
\inf_{\theta} \sup_{\theta \in \{\theta_0, \theta + \delta v\}} \mathbb{E}_{\theta} [\|\hat{\theta}(X^n_1) - \theta\|^2],
\]

where the observations \(X_i \) are drawn i.i.d. \(P_\theta \). Fixing \(v \in \mathbb{R}^d \) and setting \(\theta = \theta_0 + \delta v \) for some \(\delta > 0 \), Le Cam’s method (8.3.3) then implies that

\[
\inf_{\delta} \max_{\theta \in \{\theta_0, \theta + \delta v\}} \mathbb{E}_{\theta} [\|\hat{\theta}(X^n_1) - \theta\|^2] \geq \delta^2 \|v\|^2 \frac{8}{3} [1 - \|P_{\theta_0} - P_{\theta_0 + \delta v}\|_{TV}].
\]

Using Pinsker’s inequality that \(2\|P - Q\|^2_{TV} \leq D_{kl}(P|Q) \) and the asymptotic quadratic approximation (20.3.1), we have

\[
\|P_{\theta_0} - P_{\theta_0 + \delta v}\|_{TV} \leq \sqrt{\frac{n}{2} D_{kl}(P_{\theta_0}||P_{\theta_0 + \delta v})} = \frac{\|v\|^2}{\sqrt{n}} \left(\frac{\delta^2 v^\top I_{\theta_0} v + o(\delta^2 \|v\|^2)}{2} \right)^{1/2}.
\]

By taking \(\delta^2 = (nv^\top I_{\theta_0} v)^{-1} \), for large enough \(v \) and \(n \) we know that \(\theta_0 + \delta v \in \text{int} \Theta \) (so that the distribution \(P_{\theta_0 + \delta v} \) exists), and for large \(n \), the remainder term \(o(\delta^2 \|v\|^2) \) becomes negligible. Thus we obtain

\[
\inf_{\delta} \max_{\theta \in \{\theta_0, \theta + \delta v\}} \mathbb{E}_{\theta} [\|\hat{\theta}(X^n_1) - \theta\|^2] \gtrsim \frac{\delta^2 \|v\|^2}{16} = \frac{\|v\|^2}{16 \sqrt{nv^\top I_{\theta_0} v}}.
\]

(20.3.2)

In particular, in one-dimension, inequality (20.3.2) implies a result generalizing the Cramér-Rao bound. We have the following asymptotic local minimax result:
Corollary 20.7. Let $\mathcal{P} = \{P_\theta\}_{\theta \in \Theta}$, where $\Theta \subset \mathbb{R}$, be a family of distributions satisfying the quadratic approximation condition of Proposition 20.6. Then there exists a constant $c > 0$ such that

$$\lim_{v \to \infty} \lim_{n \to \infty} \inf_{b_\theta} \sup_{\theta : |\theta - \theta_0| \leq v/\sqrt{n}} \mathbb{E}_\theta \left[(\hat{\theta}_n(X_1^n) - \theta)^2 \right] \geq c \frac{1}{n} I_{\theta_0}^{-1}.$$

Written differently (and with minor extension), Corollary 20.7 gives a lower bound based on a local modulus of continuity of the loss function with respect to the metric induced by the Fisher information. Indeed, suppose we wish to estimate a parameter θ in the neighborhood of θ_0 (where the neighborhood size decreases as $1/\sqrt{n}$) according to some loss function $\ell : \Theta \times \Theta \to \mathbb{R}$. Then if we define the modulus of continuity of ℓ with respect to the Fisher information metric as

$$\omega_\ell(\delta, \theta_0) := \sup_{v : \|v\| \leq 1} \ell(\theta_0, \theta_0 + \delta v) \text{ } \frac{\delta^2 v \top I_{\theta_0} v}{\delta^2 v \top I_{\theta_0} v},$$

the combination of Corollary 20.7 and inequality (20.3.2) shows that the local minimax rate of estimating $\mathbb{E}_\theta[\ell(\hat{\theta}_n, \theta)]$ for θ near θ_0 must be at least $\omega_\ell(n^{-1/2}, \theta_0)$. For more on connections between moduli of continuity and estimation, see, for example, Donoho and Liu [58].

Remark 20.1: In order to make all of our exchanges of differentiation and expectation rigorous, we must have some conditions on the densities we consider. One simple condition sufficient to make this work is via Lebesgue’s dominated convergence theorem. Let $f : \mathcal{X} \times \Theta \to \mathbb{R}$ be a differentiable function. For a fixed base measure μ assume there exists a function g such that $g(x) \geq \|\nabla_\theta f(x, \theta)\|$ for all θ, where

$$\int_{\mathcal{X}} g(x) d\mu(x) < \infty.$$

Then in this case, we have $\nabla_\theta \int f(x, \theta) d\mu(x) = \int \nabla_\theta f(x, \theta) d\mu(x)$ by the mean-value theorem and definition of a derivative. (Note that for all θ_0 we have $\sup_{v : \|v\| \leq \delta} \|\nabla_\theta f(x, \theta)\|_2 \Big|_{\theta = \theta_0 + v} \leq g(x)$.) More generally, this type of argument can handle absolutely continuous functions, which are differentiable almost everywhere. ◇
Part IV

Online game playing and compression
Chapter 21

Universal prediction and coding

In this chapter, we explore sequential game playing and online probabilistic prediction schemes. These have applications in coding when the true distribution of the data is unknown, biological algorithms (encoding genomic data, for example), control, and a variety of other areas. The field of universal prediction is broad; in addition to this chapter touching briefly on a few of the techniques therein and their relationships with statistical modeling and inference procedures, relevant reading includes the survey by Merhav and Feder [119], the more recent book of Grünwald [80], and Tsachy Weissman’s EE376c course at Stanford.

21.1 Universal and sequential prediction

We begin by defining the universal prediction (and universal coding) problems. In this setting, we assume we are playing a game in which given a sequence X^n_1 of data, we would like to predict the data (which, as we saw in Example 18.5, is the same as encoding the data) as if we knew the true distribution of the data. Or, in more general settings, we would like to predict the data as well as all predictive distributions P from some family of distributions \mathcal{P}, even if a priori we know little about the coming sequence of data.

We consider two versions of this game: the probabilistic version and the adversarial version. We shall see that they have similarities, but there are also a few important distinctions between the two. For both of the following definitions of sequential prediction games, we assume that p and q are densities or probability mass functions in the case that \mathcal{X} is continuous or discrete (this is no real loss of generality) for distributions P and Q.

We begin with the adversarial case. Given a sequence $x^n_1 \in \mathcal{X}^n$, the regret of the distribution Q for the sequence x^n_1 with respect to the distribution P is

$$\text{Reg}(Q, P, x^n_1) := \log \frac{1}{q(x^n_1)} - \log \frac{1}{p(x^n_1)} = \sum_{i=!}^{n} \log \frac{1}{q(x_i | x^{i-1}_1)} - \log \frac{1}{p(x_i | x^{i-1}_1)}, \quad (21.1.1)$$

where we have written it as the sum over $q(x_i | x^{i-1}_1)$ to emphasize the sequential nature of the game. Associated with the regret of the sequence x^n_1 is the adversarial regret (usually simply called the regret) of Q with respect to the family \mathcal{P} of distributions, which is

$$\mathcal{R}^X_n(Q, \mathcal{P}) := \sup_{P \in \mathcal{P}, x^n_1 \in \mathcal{X}^n} \text{Reg}(Q, P, x^n_1). \quad (21.1.2)$$
In more generality, we may which to use a loss function ℓ different than the log loss; that is, we might wish to measure a loss-based version the regret as

$$\sum_{i=1}^{n} \ell(x_i, Q(\cdot | x_{i-1}^i)) - \ell(x_i, P(\cdot | x_{i-1}^i)),$$

where $\ell(x_i, P)$ indicates the loss suffered on the point x_i when the distribution P over X_i is played, and $P(\cdot | x_{i-1}^i)$ denotes the conditional distribution of X_i given x_{i-1}^i according to P. We defer discussion of such extensions later, focusing on the log loss for now because of its natural connections with maximum likelihood and coding.

A less adversarial problem is to minimize the redundancy, which is the expected regret under a distribution P. In this case, we define the redundancy of Q with respect to P as the expected regret of Q with respect to P under the distribution P, that is,

$$\text{Red}_n(Q, P) := \mathbb{E}_P \left[\log \frac{1}{q(X_1^n)} - \log \frac{1}{p(X_1^n)} \right] = D_{KL}(P || Q),$$

(21.1.3)

where the dependence on n is implicit in the KL-divergence. The worst-case redundancy with respect to a class \mathcal{P} is then

$$\mathcal{R}_n(Q, \mathcal{P}) := \sup_{P \in \mathcal{P}} \text{Red}_n(Q, P).$$

(21.1.4)

We now give two examples to illustrate the redundancy.

Example 21.1 (Example 18.5 on coding, continued): We noted in Example 18.5 that for any p.m.f.s p and q on the set \mathcal{X}, it is possible to define coding schemes C_p and C_q with code lengths

$$\ell_{C_p}(x) = \left\lceil \log \frac{1}{p(x)} \right\rceil \quad \text{and} \quad \ell_{C_q}(x) = \left\lceil \log \frac{1}{q(x)} \right\rceil .$$

Conversely, given (uniquely decodable) encoding schemes C_p and $C_q : \mathcal{X} \to \{0,1\}^*$, the functions $p_{C_p}(x) = 2^{-\ell_{C_p}(x)}$ and $q_{C_q}(x) = 2^{-\ell_{C_q}(x)}$ satisfy $\sum_x p_{C_p}(x) \leq 1$ and $\sum_x q_{C_q}(x) \leq 1$. Thus, the redundancy of Q with respect to P is the additional number of bits required to encode variables distributed according to P when we assume they have distribution Q:

$$\text{Red}_n(Q, P) = \sum_{i=1}^{n} \mathbb{E}_P \left[\log \frac{1}{q(X_i | X_{i-1}^{i-1})} - \log \frac{1}{p(X_i | X_{i-1}^{i-1})} \right]$$

$$= \sum_{i=1}^{n} \mathbb{E}_P[\ell_{C_q}(X_i)] - \mathbb{E}_P[\ell_{C_p}(X_i)],$$

where $\ell_C(x)$ denotes the number of bits C uses to encode x. Note that, as in Chapter ??, the code $\lceil - \log p(x) \rceil$ is (essentially) optimal. ♦

As another example, we may consider a filtering or prediction problem for a linear system.

Example 21.2 (Prediction in a linear system): Suppose we believe that a sequence of random variables $X_i \in \mathbb{R}^d$ are Markovian, where X_i given X_{i-1} is normally distributed with mean $AX_{i-1} + g$, where A is an unknown matrix and $g \in \mathbb{R}^d$ is a constant drift term. Concretely, we assume $X_i \sim \text{N}(AX_{i-1} + g, \sigma^2 I_d \otimes d)$, where we assume σ^2 is fixed and known. For our class of
predicting distributions Q, we may look at those that at iteration i predict $X_i \sim N(\mu_i, \sigma^2 I)$. In this case, the regret is given by

$$\text{Reg}(Q, P, x^n) = \sum_{i=1}^{n} \frac{1}{2\sigma^2} \|\mu_i - x_i\|_2^2 - \frac{1}{2\sigma^2} \|Ax_{i-1} + g - x_i\|_2^2,$$

while the redundancy is

$$\text{Red}_n(Q, P) = \frac{1}{2\sigma^2} \sum_{i=1}^{n} \mathbb{E}[\|Ax_{i-1} + g - \mu_i(X_{i-1})\|_2^2],$$

assuming that P is the linear Gaussian Markov chain specified. ♦

21.2 Minimax strategies for regret

Our definitions in place, we now turn to strategies for attaining the optimal regret in the adversarial setting. We discuss this only briefly, as optimal strategies are somewhat difficult to implement, and the redundancy setting allows (for us) easier exploration.

We begin by describing a notion of complexity that captures the best possible regret in the adversarial setting. In particular, assume without loss of generality that we have a set of distributions $P = \{P_\theta\}_{\theta \in \Theta}$ parameterized by $\theta \in \Theta$, where the distributions are supported on X^n. We define the complexity of the set P (viz. the complexity of Θ) as

$$\text{Comp}_n(\Theta) := \log \int_{X^n} \sup_{\theta \in \Theta} p_\theta(x^n) dx^n_n \quad \text{or generally} \quad \text{Comp}_n(\Theta) := \log \int_{\mathcal{X}^n} \sup_{\theta \in \Theta} p_\theta(x^n_1) d\mu(x^n),$$

(21.2.1)

where μ is some base measure on X^n. Note that we may have $\text{Comp}_n(\Theta) = +\infty$, especially when Θ is non-compact. This is not particularly uncommon, for example, consider the case of a normal location family model over $X = \mathbb{R}$ with $\Theta = \mathbb{R}$.

It turns out that the complexity is precisely the minimax regret in the adversarial setting.

Proposition 21.3. The minimax regret

$$\inf_Q \text{R}_Q(X, P) = \text{Comp}_n(\Theta).$$

Moreover, if $\text{Comp}_n(\Theta) < +\infty$, then the normalized maximum likelihood distribution (also known as the Shtarkov distribution) \overline{Q}, defined with density

$$\overline{q}(x^n_1) = \frac{\sup_{\theta \in \Theta} p_\theta(x^n_1)}{\int \sup_{\theta \in \Theta} p_\theta(x^n_1) dx^n},$$

is uniquely minimax optimal.

The proposition completely characterizes the minimax regret in the adversarial setting, and it gives the unique distribution achieving the regret. Unfortunately, in most cases it is challenging to compute the minimax optimal distribution \overline{Q}, so we must make approximations of some type. One approach is to make Bayesian approximations to \overline{Q}, as we do in the sequel when we consider redundancy rather than adversarial regret. See also the book of Grünwald [80] for more discussion of this and other issues.
Proof. We begin by proving the result in the case that $\text{Comp}_n < +\infty$. First, note that the normalized maximum likelihood distribution \overline{Q} has constant regret:

$$
\mathcal{R}_n^X(\overline{Q}, \mathcal{P}) = \sup_{x^n_i \in \mathcal{X}^n} \left[\log \frac{1}{q(x^n_1)} - \log \frac{1}{\sup_{\theta} p_\theta(x^n_1)} \right]
= \sup_{x^n_i} \left[\log \frac{\int \sup_{\theta} p_\theta(x^n_i) dx^n_i}{\sup_{\theta} p_\theta(x^n_1)} - \log \frac{1}{\sup_{\theta} p_\theta(x^n_1)} \right] = \text{Comp}_n(\mathcal{P}).
$$

Moreover, for any distribution Q on \mathcal{X}^n we have

$$
\mathcal{R}_n^X(Q, \mathcal{P}) \geq \int \left[\log \frac{1}{q(x^n_1)} - \log \frac{1}{\sup_{\theta} p_\theta(x^n_1)} \right] \overline{Q}(x^n_1) dx^n_1
= \int \left[\log \frac{\overline{Q}(x^n_1) + \text{Comp}_n(\theta)}{q(x^n_1)} \right] \overline{Q}(x^n_1) dx^n_1
= D_{\text{kl}}(\overline{Q} \| Q) + \text{Comp}_n(\theta),
$$

so that \overline{Q} is uniquely minimax optimal, as $D_{\text{kl}}(\overline{Q} \| Q) > 0$ unless $\overline{Q} = Q$.

Now we show how to extend the lower bound (21.2.2) to the case when $\text{Comp}_n(\theta) = +\infty$. Let us assume without loss of generality that \mathcal{X} is countable and consists of points x_1, x_2, \ldots (we can discretize \mathcal{X} otherwise) and assume we have $n = 1$. Fix any $\epsilon \in (0, 1)$ and construct the sequence $\theta_1, \theta_2, \ldots$ so that $p_\theta(x_j) \geq (1 - \epsilon) \sup_{\theta \in \Theta} p_\theta(x)$, and define the sets $\Theta_j = \{\theta_1, \ldots, \theta_j\}$. Clearly we have $\text{Comp}(\Theta_j) \leq \log j$, and if we define $\overline{q}_j(x) = \max_{\theta \in \Theta_j} p_\theta(x) / \sum_{x' \in \mathcal{X}} \max_{\theta \in \Theta_j} p_\theta(x')$, we may extend the reasoning yielding inequality (21.2.2) to obtain

$$
\mathcal{R}_n^X(Q, \mathcal{P}) \geq \sup_{x \in \mathcal{X}} \left[\log \frac{1}{q(x)} - \log \frac{1}{\sup_{\theta \in \Theta} p_\theta(x)} \right]
\geq \sum_x \overline{q}_j(x) \left[\log \frac{1}{q(x)} - \log \frac{1}{\max_{\theta \in \Theta_j} p_\theta(x)} \right]
= \sum_x \overline{q}_j(x) \left[\log \frac{\overline{q}_j(x)}{q(x)} + \log \sum_{x' \in \Theta_j} \max_{\theta \in \Theta_j} p_\theta(x') \right] = D_{\text{kl}}(\overline{Q} \| Q) + \text{Comp}(\Theta_j).
$$

But of course, by noting that

$$
\text{Comp}(\Theta_j) \geq (1 - \epsilon) \sum_{i=1}^j \sup_\theta p_\theta(x_i) + \sum_{i>j} \max_{\theta \in \Theta_j} p_\theta(x_i) \to +\infty
$$

as $j \to \infty$, we obtain the result when $\text{Comp}_n(\theta) = +\infty$. \square

We now give an example where (up to constant factor terms) we can explicitly calculate the minimax regret in the adversarial setting. In this case, we compete with the family of i.i.d. Bernoulli distributions.

Example 21.4 (Complexity of the Bernoulli distribution): In this example, we consider competing against the family of Bernoulli distributions $\{P_\theta\}_{\theta \in [0, 1]}$, where for a point $x \in \{0, 1\}$,
we have \(P_\theta(x) = \theta^x (1 - \theta)^{1-x} \). For a sequence \(x^n_1 \in \{0, 1\}^n \) with \(m \) non-zeros, we thus have for \(\hat{\theta} = m/n \) that

\[
\sup_{\theta \in [0,1]} P_\theta(x^n_1) = P_\theta^m(1 - \hat{\theta})^{n-m} = \exp(-nh_2(\hat{\theta})),
\]

where \(h_2(p) = -p \log p - (1 - p) \log (1 - p) \) is the binary entropy. Using this representation, we find that the complexity of the Bernoulli family is

\[
\text{Comp}_n([0,1]) = \log \sum_{m=0}^{n} \binom{n}{m} e^{-nh_2\left(\frac{m}{n}\right)}.
\]

Rather than explicitly compute with this, we now use Stirling's approximation (cf. Cover and Thomas [49, Chapter 17]): for any \(p \in (0,1) \) with \(np \in \mathbb{N} \), we have

\[
\binom{n}{np} \in \frac{1}{\sqrt{n}} \left[\frac{1}{\sqrt{8p(1-p)}}, \frac{1}{\sqrt{\pi p(1-p)}} \right] \exp(nh_2(p)).
\]

Thus, by dealing with the boundary cases \(m = n \) and \(m = 0 \) explicitly, we obtain

\[
\sum_{m=0}^{n} \binom{n}{m} \exp(-nh_2\left(\frac{m}{n}\right)) = 2 + \sum_{m=1}^{n-1} \binom{n}{m} \exp(-nh_2\left(\frac{m}{n}\right))
\]

\[
\leq 2 + \left[\frac{1}{\sqrt{8}} \frac{1}{\sqrt{\pi}} \right] \frac{1}{\sqrt{n}} \sum_{m=1}^{n-1} \frac{1}{\sqrt{n}} \frac{m}{n} \left(1 - \frac{m}{n}\right)
\]

\[
\rightarrow \int_0^1 (\theta(1-\theta))^{-\frac{1}{2}} d\theta
\]

the noted asymptote occurring as \(n \to \infty \) by the fact that this sum is a Riemann sum for the integral \(\int_0^1 \theta^{-1/2}(1 - \theta)^{-1/2} d\theta \). In particular, we have that as \(n \to \infty \),

\[
\inf_{Q} \mathcal{R}_n^X (Q, P) = \text{Comp}_n([0,1]) = \log \left(2 + [8^{-1/2}, \pi^{-1/2}] n^{1/2} \int_0^1 \frac{1}{\sqrt{\theta(1-\theta)}} d\theta \right) + o(1)
\]

\[
= \frac{1}{2} \log n + \log \int_0^1 \frac{1}{\sqrt{\theta(1-\theta)}} d\theta + O(1).
\]

We remark in passing that this is equal to \(\frac{1}{2} \log n + \log \int_0^1 \sqrt{T_0 d\theta} \), where \(I_0 \) denotes the Fisher information of the Bernoulli family (recall Example 20.2). We will see that this holds in more generality, at least for redundancy, in the sequel.

21.3 Mixture (Bayesian) strategies and redundancy

We now turn to a slightly less adversarial setting, where we assume that we compete against a random sequence \(X^n \) of data, drawn from some fixed distribution \(P \), rather than an adversarially chosen sequence \(x^n \). Thinking of this problem as a game, we choose a distribution \(Q \) according to which we make predictions (based on previous data), and nature chooses a distribution \(P_\theta \in \mathcal{M}_n \)
In the simplest case—upon which we focus—the data \(X^n \) are then generated i.i.d. according to \(P_\theta \), and we suffer expected regret (or redundancy)

\[
\text{Red}_n(Q, P_\theta) = \mathbb{E}_\theta \left[\log \frac{1}{q(X^n_1)} \right] - \mathbb{E}_\theta \left[\log \frac{1}{p_\theta(X^n_1)} \right] = D_{\text{kl}}(P_\theta^n \| Q_n),
\]

(21.3.1)

where we use \(Q_n \) to denote that \(Q \) is applied on all \(n \) data points (in a sequential fashion, as \(Q(\cdot | X^{i-1}_1) \)). In this expression, \(q \) and \(p \) denote the densities of \(Q \) and \(P \), respectively. In a slightly more general setting, we may consider the expected regret of \(Q \) with respect to a distribution \(P_\theta \) even under model mis-specification, meaning that the data is generated according to an alternate distribution \(P \). In this case, the (more general) redundancy becomes

\[
\mathbb{E}_P \left[\log \frac{1}{q(X^n_1)} - \log \frac{1}{p_\theta(X^n_1)} \right].
\]

(21.3.2)

In both cases (21.3.1) and (21.3.2), we would like to be able to guarantee that the redundancy grows more slowly than \(n \) as \(n \to \infty \). That is, we would like to find distributions \(Q \) such that, for any \(\theta_0 \in \Theta \), we have \(\frac{1}{n} D_{\text{kl}}(P^n_{\theta_0} \| Q_n) \to 0 \) as \(n \to \infty \). Assuming we could actually obtain such a distribution in general, this is interesting because (even in the i.i.d. case) for any fixed distribution \(P_\theta \neq P_{\theta_0} \), we must have \(D_{\text{kl}}(P^n_{\theta_0} \| P^n_\theta) = n D_{\text{kl}}(P_{\theta_0} \| P_\theta) = \Omega(n) \). A standard approach to attaining such guarantees is the mixture approach, which is based on choosing \(Q \) as a convex combination (mixture) of all the possible source distributions \(P_\theta \) for \(\theta \in \Theta \).

In particular, given a prior distribution \(\pi \) (weighting function integrating to 1) over \(\Theta \), we define the mixture distribution

\[
Q_n^\pi(A) = \int_\Theta \pi(\theta) P_\theta(A) d\theta \quad \text{for} \quad A \subset X^n.
\]

(21.3.3)

Rewriting this in terms of densities \(p_\theta \), we have

\[
q_n^\pi(x^n_1) = \int_\Theta \pi(\theta)p_\theta(x^n_1) d\theta.
\]

Conceptually, this gives a simple prediction scheme, where at iteration \(i \) we play the density

\[
q^\pi(x_i \mid x^{i-1}_1) = \frac{q^\pi(x_i)}{q^\pi(x^{i-1}_1)},
\]

which is equivalent to playing

\[
q^\pi(x_i \mid x^{i-1}_1) = \int_\Theta q(x_i, \theta \mid x^{i-1}_1) d\theta = \int_\Theta p_\theta(x_i) \pi(\theta \mid x^{i-1}_1) d\theta,
\]

by construction of the distributions \(Q^\pi \) as mixtures of i.i.d. \(P_\theta \). Here the posterior distribution \(\pi(\theta \mid x^{i-1}_1) \) is given by

\[
\pi(\theta \mid x^{i-1}_1) = \frac{\pi(\theta)p_\theta(x^{i-1}_1)}{\int_\Theta \pi(\theta)p_\theta(x^{i-1}_1) d\theta} = \frac{\pi(\theta) \exp \left(-\log \frac{1}{p_\theta(x^{i-1}_1)} \right)}{\int_\Theta \pi(\theta)p_\theta(x^{i-1}_1) d\theta},
\]

(21.3.4)

where we have emphasized that this strategy exhibits an exponential weighting approach, where distribution weights are scaled exponentially by their previous loss performance of \(\log 1/p_\theta(x^{i-1}_1) \).
This mixture construction (21.3.3), with the weighting scheme (21.3.4), enjoys very good performance. In fact, we say that so long as the prior \(\pi \) puts non-zero mass over all of \(\Theta \), under some appropriate smoothness conditions, the scheme \(Q^n \) is universal, meaning that \(D_{\text{kl}} (P_{\theta_0}^n \| Q^n) = o(n) \).

We have the following theorem illustrating this effect. In the theorem, we let \(\pi \) be a density on \(\Theta \), and we assume the Fisher information \(I_\theta \) for the family \(P = \{P_\theta \}_{\theta \in \Theta} \) exists in a neighborhood of \(\theta_0 \in \text{int} \Theta \), and that the distributions \(P_\theta \) are sufficiently regular that differentiation and integration can be interchanged. (See Clarke and Barron [45] for precise conditions.) We have

Theorem 21.5 (Clarke and Barron [45]). *Under the above conditions, if \(Q^n = \int P_\theta^n \pi(\theta)d\theta \) is the mixture (21.3.3), then*

\[
D_{\text{kl}} (P_{\theta_0}^n \| Q^n) - \frac{d}{2} \log \frac{n}{2\pi e} \rightarrow \log \frac{1}{\pi(\theta_0)} + \frac{1}{2} \log \det(I_{\theta_0}) \quad \text{as} \quad n \rightarrow \infty.
\]

(21.3.5)

While we do not rigorously prove the theorem, we give a sketch showing the main components of the result based on asymptotic normality arguments for the maximum likelihood estimator in Section 21.4. See Clarke and Barron [45] for a full proof.

Example 21.6 (Bernoulli distributions with a Beta prior): Consider the class of binary (i.i.d. or memoryless) Bernoulli sources, that is, the \(X_i \) are i.i.d Bernoulli(\(\theta \)), where \(\theta = P_\theta(X = 1) \in [0, 1] \). The Beta\((\alpha, \beta)\)-distribution prior on \(\theta \) is the mixture \(\pi \) with density

\[
\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}
\]

on \([0, 1]\), where \(\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t}dt \) denotes the gamma function. We remark that that under the Beta\((\alpha, \beta)\) distribution, we have \(\mathbb{E}_{\pi}[\theta] = \frac{\alpha}{\alpha+\beta} \). (See any undergraduate probability text for such results.)

If we play via a mixture of Bernoulli distributions under such a Beta-prior for \(\theta \), by Theorem 21.5 we have a universal prediction scheme. We may also explicitly calculate the predictive distribution \(Q \). To do so, we first compute the posterior \(\pi(\theta \mid X_1^i) \) as in expression (21.3.4). Let \(S_i = \sum_{j=1}^i X_j \) be partial sum of the \(X \)s up to iteration \(i \). Then

\[
\pi(\theta \mid x_1^i) = \frac{p_\theta(x_1^i)\pi(\theta)}{q(x_1^i)} \propto \theta^{S_i}(1-\theta)^{i-S_i}\theta^{\alpha-1}(1-\theta)^{\beta-1} = \theta^{\alpha+S_i-1}(1-\theta)^{\beta+i-S_i-1},
\]

where we have ignored the denominator as we must simply normalize the above quantity in \(\theta \). But by inspection, the posterior density of \(\theta \mid X_1^i \) is a Beta\((\alpha + S_i, \beta + i - S_i)\) distribution. Thus to compute the predictive distribution, we note that \(\mathbb{E}_{\theta}[X_i] = \theta \), so we have

\[
Q(X_1 = 1 \mid X_1^i) = \mathbb{E}_{\pi}[\theta \mid X_1^i] = \frac{S_i + \alpha}{i + \alpha + \beta}.
\]

Moreover, Theorem 21.5 shows that when we play the prediction game with a Beta\((\alpha, \beta)\)-prior, we have redundancy scaling as

\[
D_{\text{kl}} (P_{\theta_0}^n \| Q^n) = \frac{1}{2} \log \frac{n}{2\pi e} + \log \left[\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} \frac{1}{\theta_0^{\alpha-1}(1-\theta_0)^{\beta-1}} \right] + \frac{1}{2} \log \frac{1}{\theta_0(1-\theta_0)} + o(1)
\]

for \(\theta_0 \in (0, 1) \). ◊
As one additional interesting result, we show that mixture models are actually quite robust, even under model mis-specification, that is, when the true distribution generating the data does not belong to the class $\mathcal{P} = \{ P_\theta \}_{\theta \in \Theta}$. That is, mixtures can give good performance for the generalized redundancy quantity (21.3.2). For this next result, we as usual define the mixture distribution Q^π over the set \mathcal{X} via $Q^\pi(A) = \int_\Theta P_\theta(A)d\pi(\theta)$. We may also restrict this mixture distribution to a subset $\Theta_0 \subset \Theta$ by defining

$$Q^\pi_{\Theta_0}(A) = \frac{1}{\pi(\Theta_0)} \int_{\Theta_0} P_\theta(A)d\pi(\theta).$$

Then we obtain the following robustness result.

Proposition 21.7. Assume that P_θ have densities p_θ over \mathcal{X}, let P be any distribution having density p over \mathcal{X}, and let q^π be the density associated with Q^π. Then for any $\Theta_0 \subset \Theta$,

$$\mathbb{E}_P \left[\log \frac{1}{q^\pi(X)} - \log \frac{1}{p_\theta(X)} \right] \leq \log \frac{1}{\pi(\Theta_0)} + D_{\text{kl}}(P||Q^\pi_{\Theta_0}) - D_{\text{kl}}(P||P_\theta).$$

In particular, Proposition 21.7 shows that so long as the mixture distributions $Q^\pi_{\Theta_0}$ can closely approximate P_θ, then we attain a convergence guarantee nearly as good as any in the family $\mathcal{P} = \{ P_\theta \}_{\theta \in \Theta}$. (This result is similar in flavor to the mutual information bound (11.1.3), Corollary 11.2, and the index of resolvability quantity.)

Proof Fix any $\Theta_0 \subset \Theta$. Then we have $q^\pi(x) = \int_\Theta p_\theta(x)d\pi(\theta) \geq \int_{\Theta_0} p_\theta(x)d\pi(\theta)$. Thus we have

$$\mathbb{E}_P \left[\log \frac{p(X)}{q^\pi(X)} \right] \leq \mathbb{E}_P \left[\inf_{\Theta_0 \subset \Theta} \log \frac{p(X)}{\int_{\Theta_0} p_\theta(x)d\pi(\theta)} \right] = \mathbb{E}_P \left[\inf_{\Theta_0} \log \frac{p(X)}{\pi(\Theta_0)\int_{\Theta_0} p_\theta(x)d\pi(\theta)} \right] = \mathbb{E}_P \left[\inf_{\Theta_0} \frac{p(X)}{\pi(\Theta_0)q^\pi_{\Theta_0}(X)} \right].$$

This is certainly smaller than the same quantity with the infimum outside the expectation, and noting that

$$\mathbb{E}_P \left[\log \frac{1}{q^\pi(X)} - \log \frac{1}{p_\theta(X)} \right] = \mathbb{E}_P \left[\log \frac{p(X)}{q^\pi(X)} \right] - \mathbb{E}_P \left[\log \frac{p(X)}{p_\theta(X)} \right]$$

gives the result. \qed

21.3.1 Bayesian redundancy and objective, reference, and Jeffreys priors

We can also imagine a slight variant of the redundancy game we have described to this point. Instead of choosing a distribution Q and allowing nature to choose a distribution P_θ, we could switch the order of the game. In particular, we could assume that nature first chooses prior distribution π on θ, and without seeing θ (but with knowledge of the distribution π) we choose the predictive distribution Q. This leads to the *Bayesian redundancy*, which is simply the expected redundancy we suffer:

$$\int_{\Theta} \pi(\theta)D_{\text{kl}}(P_\theta||Q_n)\,d\theta.$$

However, recalling our calculations with mutual information (equations (8.4.4), (11.1.1), and (11.1.4)), we know that the Bayes-optimal prediction distribution is Q^π_n. In particular, if we let T denote
a random variable distributed according to \(\pi \), and conditional on \(T = \theta \) assume that the \(X_i \) are drawn according to \(P_\theta \), we have that the mutual information between \(T \) and \(X_1^n \) is

\[
I_\pi(T; X_1^n) = \int \pi(\theta) D_{\text{KL}}(P_\theta^n \| Q^n) \ d\theta = \inf_Q \int \pi(\theta) D_{\text{KL}}(P_\theta^n \| Q) \ d\theta. \tag{21.3.6}
\]

With Theorem 21.5 in hand, we can give a somewhat more nuanced picture of this mutual information quantity. As a first consequence of Theorem 21.5, we have that

\[
I_\pi(T; X_1^n) = \frac{d}{2} \log \frac{n}{2\pi e} + \int \log \sqrt{\det I_{\theta}} \pi(\theta) d\theta + o(1), \tag{21.3.7}
\]

where \(I_\theta \) denotes the Fisher information matrix for the family \(\{P_\theta\}_{\theta \in \Theta} \). One strand of Bayesian statistics—we will not delve too deeply into this now, instead referring to the survey by Bernardo [26]—known as reference analysis, advocates that in performing a Bayesian analysis, we should choose the prior \(\pi \) that maximizes the mutual information between the parameters \(\theta \) about which we wish to make inferences and any observations \(X_1^n \) available. Moreover, in this set of strategies, one allows \(n \) to tend to \(\infty \), as we wish to take advantage of any data we might actually see. The asymptotic formula (21.3.7) allows us to choose such a prior.

In a different vein, Jeffreys [98] proposed that if the square root of the determinant of the Fisher information was integrable, then one should take \(\pi \) as

\[
\pi_{\text{jeffreys}}(\theta) = \frac{\sqrt{\det I_\theta}}{\int_{\Theta} \sqrt{\det I_\theta} d\theta}
\]

known as the Jeffreys prior. Jeffreys originally proposed this for invariance reasons, as the inferences made on the parameter \(\theta \) under the prior \(\pi_{\text{jeffreys}} \) are identical to those made on a transformed parameter \(\phi(\theta) \) under the appropriately transformed Jeffreys prior. The asymptotic expression (21.3.7), however, shows that the Jeffreys prior is the asymptotic reference prior. Indeed, computing the integral in (21.3.7), we have

\[
\int_{\Theta} \pi(\theta) \log \frac{\sqrt{\det I_\theta}}{\pi(\theta)} d\theta = \int_{\Theta} \pi(\theta) \log \frac{\pi_{\text{jeffreys}}(\theta)}{\pi(\theta)} d\theta + \log \int \sqrt{\det I_\theta} d\theta = -D_{\text{KL}}(\pi \| \pi_{\text{jeffreys}}) + \log \int \sqrt{\det I_\theta} d\theta,
\]

whenever the Jeffreys prior exists. Moreover, we see that in an asymptotic sense, the worst-case prior distribution \(\pi \) for nature to play is given by the Jeffreys prior, as otherwise the \(-D_{\text{KL}}(\pi \| \pi_{\text{jeffreys}})\) term in the expected (Bayesian) redundancy is negative.

Example 21.8 (Jeffreys priors and the exponential distribution): Let us now assume that our source distributions \(P_\theta \) are exponential distributions, meaning that \(\theta \in (0, \infty) \) and we have density \(p_\theta(x) = \exp(-\theta x - \log \frac{1}{\theta}) \) for \(x \in [0, \infty) \). This is clearly an exponential family model, and the Fisher information is easy to compute as \(I_\theta = \frac{\theta^2}{\theta^2} \log \frac{1}{\theta} = 1/\theta^2 \) (cf. Example 20.1).

In this case, the Jeffreys prior is \(\pi_{\text{jeffreys}}(\theta) \propto \sqrt{I} = 1/\theta \), but this “density” does not integrate over \([0, \infty)\). One approach to this difficulty, advocated by Bernardo [26, Definition 3] (among others) is to just proceed formally and notice that after observing a single datapoint, the
"posterior" distribution $\pi(\theta \mid X)$ is well-defined. Following this idea, note that after seeing some data X_1, \ldots, X_i, with $S_i = \sum_{j=1}^{i} X_j$ as the partial sum, we have

$$
\pi(\theta \mid x_1^i) \propto p_{\theta}(x_1^i) \pi_{\text{jeffreys}}(\theta) = \theta^{i-1} \exp(-\theta S_i).
$$

Integrating, we have for $s_i = \sum_{j=1}^{i} x_j$

$$
q(x \mid x_1^i) = \int_{0}^{\infty} p_{\theta}(x) \pi(\theta \mid x_1^i) d\theta \propto \int_{0}^{\infty} \theta e^{-\theta s_i} e^{-\theta x_i^i} d\theta = \frac{1}{(s_i + x_i^i + 1)} \int_{0}^{\infty} u e^{-u} du,
$$

where we made the change of variables $u = \theta(s_i + x)$. This is at least a distribution that normalizes, so often one simply assumes the existence of a piece of fake data. For example, by saying we “observe" $x_0 = 1$, we have prior proportional to $\pi(\theta) = e^{-\theta}$, which yields redundancy

$$
D_{\text{kl}}(P_{\theta_0}^n \| Q_{\pi}^n) = \frac{1}{2} \log \frac{n}{2\pi e} + \theta_0 + \log \frac{1}{\theta_0} + o(1).
$$

The difference is that, in this case, the redundancy bound is no longer uniform in θ_0, as it would be for the true reference (or Jeffreys, if it exists) prior.

21.3.2 Redundancy capacity duality

Let us discuss Bayesian redundancy versus worst-case redundancy in somewhat more depth. If we play a game where nature chooses T according to the known prior π, and draws data $X_1^n \sim P_{\theta}$ conditional on $T = \theta$, then we know that as in expression (21.3.7), we have

$$
\inf_{Q} \mathbb{E}_{\pi}[D_{\text{kl}}(P_{T}^n \| Q)] = \int D_{\text{kl}}(P_{\theta}^n \| Q_{\pi}^n) \pi(\theta) d\theta = I_{\pi}(T; X_1^n).
$$

A natural question that arises from this expression is the following: if nature chooses a worst-case prior, can we swap the order of maximization and minimization? That is, do we ever have the equality

$$
\sup_{\pi} I_{\pi}(T; X_1^n) = \inf_{Q} \sup_{\theta} D_{\text{kl}}(P_{\theta}^n \| Q),
$$

so that the worst-case Bayesian redundancy is actually the minimax redundancy? It is clear that if nature can choose the worst case P_{θ} after we choose Q, the redundancy must be at least as bad as the Bayesian redundancy, so

$$
\sup_{\pi} I_{\pi}(T; X_1^n) \leq \inf_{Q} \sup_{\theta} D_{\text{kl}}(P_{\theta}^n \| Q) = \inf_{Q} \mathcal{R}_{n}(Q, P).
$$

Indeed, if this inequality were an equality, then for the worst-case prior π^*, the mixture $Q_{\pi^*}^n$ would be minimax optimal.

In fact, the redundancy-capacity theorem, first proved by Gallager [74], and extended by Haussler [86] (among others) allows us to do just that. That is, if we must choose a distribution Q and then nature chooses P_{θ} adversarially, we can guarantee to worse redundancy than in the (worst-case) Bayesian setting. We state a simpler version of the result that holds when the random variables X take values in finite spaces; Haussler's more general version shows that the next theorem holds whenever $X \in \mathcal{X}$ and \mathcal{X} is a complete separable metric space.
Theorem 21.9 (Gallager [74]). Let X be a random variable taking on a finite number of values and Θ be a measurable space. Then
\[
\sup_{\pi} \inf_{Q} \int D_{\text{KL}}(P_{\theta} \| Q) \, d\pi(\theta) = \sup_{T} I_{\pi}(T; X) = \inf_{Q} D_{\text{KL}}(P_{\theta} \| Q) \cdot \inf_{\theta \in \Theta} D_{\text{KL}}(P_{\theta} \| Q).
\]
Moreover, the infimum on the right is uniquely attained by some distribution Q^{*}, and if π^{*} attains the supremum on the left, then $Q^{*} = \int P_{\theta} d\pi^{*}(\theta)$.

See Section 21.5 for a proof of Theorem 21.9.

This theorem is known as the redundancy-capacity theorem in the literature, because in classical information theory, the capacity of a noisy channel $T \rightarrow X_{1}^{n}$ is the maximal mutual information
\[
\sup_{\pi} I_{\pi}(T; X_{1}^{n})
\]
In the exercises, you explore some robustness properties of the optimal distribution Q^{*} in relation to this theorem. In short, though, we see that if there is a capacity achieving prior, then the associated mixture distribution Q^{*} is minimax optimal and attains the minimax redundancy for the game.

21.4 Asymptotic normality and Theorem 21.5

In this section, we very briefly (and very hand-wavily) justify the asymptotic expression (21.3.5). To do this, we argue that (roughly) the posterior distribution $\pi(\theta \mid X_{1}^{n})$ should be roughly normally distributed with appropriate variance measure, which gives the result. We now give the intuition for this statement, first by heuristically deriving the asymptotics of a maximum likelihood estimator, then by looking at the Bayesian case. (Clarke and Barron [45] provide a fully rigorous proof.)

21.4.1 Heuristic justification of asymptotic normality

First, we sketch the asymptotic normality of the maximum likelihood estimator $\hat{\theta}$, that is, $\hat{\theta}$ is chosen to maximize $\log p_{\theta}(X_{1}^{n})$. (See, for example, Lehmann and Casella [109] for more rigorous arguments.) Assume that the data are generated i.i.d. according to $P_{\theta_{0}}$. Then by assumption that $\hat{\theta}$ maximizes the log-likelihood, we have the stationary condition $0 = \nabla \log p_{\hat{\theta}}(X_{1}^{n})$. Performing a Taylor expansion of this quantity about θ_{0}, we have
\[
0 = \nabla \log p_{\hat{\theta}}(X_{1}^{n}) = \nabla \log p_{\theta_{0}}(X_{1}^{n}) + \nabla^{2} \log p_{\theta_{0}}(X_{1}^{n})(\hat{\theta} - \theta_{0}) + R
\]
where R is a remainder term. Assuming that $\hat{\theta} \rightarrow \theta_{0}$ at any reasonable rate (this can be made rigorous), this remainder is negligible asymptotically.

Rearranging this equality, we obtain
\[
\hat{\theta} - \theta_{0} \approx (-\nabla^{2} \log p_{\theta_{0}}(X_{1}^{n}))^{-1} \nabla \log p_{\theta_{0}}(X_{1}^{n})(\hat{\theta} - \theta_{0}) \approx I_{\theta_{0}}^{-1} \sum_{i=1}^{n} \nabla \log p_{\theta_{0}}(X_{i})
\]

where $I_{\theta_{0}}$ is the Fisher information.
where we have used that the Fisher information $I_\theta = -\mathbb{E}_\theta[\nabla^2 \log p_\theta(X)]$ and the law of large numbers. By the (multivariate) central limit theorem, we then obtain the asymptotic normality result
\[\sqrt{n}(\hat{\theta} - \theta_0) \approx \frac{1}{\sqrt{n}} I_\theta^{-1} \sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \xrightarrow{d} N(0, I_\theta^{-1}), \]
where \xrightarrow{d} denotes convergence in distribution, with asymptotic variance
\[I_\theta^{-1}\mathbb{E}_\theta[\nabla \log p_{\theta_0}(X) \nabla \log p_{\theta_0}(X)^\top] I_\theta^{-1} = I_\theta^{-1} I_\theta I_\theta^{-1} = I_\theta^{-1}. \]

Completely heuristically, we also write
\[\hat{\theta} \sim N(\theta_0, (nI_\theta)^{-1}). \] (21.4.1)

21.4.2 Heuristic calculations of posterior distributions and redundancy

With the asymptotic distributional heuristic (21.4.1), we now look at the redundancy and posterior distribution of θ conditioned on the data X^n when the data are drawn i.i.d. P_{θ_0}. When Q_n^π is the mixture distribution associated with π, the posterior density of $\theta \mid X^n$ is
\[\pi(\theta \mid X^n) = \frac{p_\theta(X^n)\pi(\theta)}{q_n(X^n)}. \]

By our heuristic calculation of the MLE, this density (assuming the data overwhelms the prior) is approximately a normal density with mean θ_0 and variance $(nI_\theta)^{-1}$, where we have used expression (21.4.1). Expanding the redundancy, we obtain
\[\mathbb{E}_{\theta_0} \left[\log \frac{p_\theta(X^n)}{q_n(X^n)} \right] = \mathbb{E}_{\theta_0} \left[\log \frac{p_\theta(X^n)\pi(\theta)}{q_n(X^n)} \right] + \mathbb{E}_{\theta_0} \left[\log \frac{1}{\pi(\theta)} \right] + \mathbb{E}_{\theta_0} \left[\log \frac{p_{\theta_0}(X^n)}{p_\theta(X^n)} \right]. \] (21.4.2)

Now we use our heuristic. We have that
\[\mathbb{E}_{\theta_0} \left[\log \frac{p_\theta(X^n)\pi(\theta)}{q_n(X^n)} \right] \approx \log \frac{1}{(2\pi)^{d/2} \det(nI_\theta)^{-1/2}} + \mathbb{E}_{\theta_0} \left[-\frac{1}{2} (\hat{\theta} - \theta_0)^\top (nI_\theta)^{-1}(\hat{\theta} - \theta_0) \right], \]
by the asymptotic normality result, $\pi(\hat{\theta}) = \pi(\theta_0) + O(1/\sqrt{n})$ again by the asymptotic normality result, and
\[\log p_\theta(X^n) \approx \log p_{\theta_0}(X^n) + \left(\sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \right)^\top (\hat{\theta} - \theta_0) \approx \log p_{\theta_0}(X^n) + \left(\sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \right)^\top I_\theta^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \right). \]

Substituting these three into the redundancy expression (21.4.2), we obtain
\[\mathbb{E}_{\theta_0} \left[\log \frac{p_{\theta_0}(X^n)}{q_n(X^n)} \right] \approx \log \frac{1}{(2\pi)^{d/2} \det(nI_\theta)^{-1/2}} + \mathbb{E}_{\theta_0} \left[-\frac{1}{2} (\hat{\theta} - \theta_0)^\top (nI_\theta)^{-1}(\hat{\theta} - \theta_0) \right] + \log \frac{1}{\pi(\theta_0)} - \mathbb{E}_{\theta_0} \left[\left(\sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \right)^\top I_\theta^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla \log p_{\theta_0}(X_i) \right) \right] = \frac{d}{2} \log \frac{n}{2\pi} + \frac{1}{2} \log \det(I_{\theta_0}) + \log \frac{1}{\pi(\theta_0)} - d + R, \]
where R is a remainder term. This gives the major terms in the asymptotic result in Theorem 21.5.
21.5 Proof of Theorem 21.9

In this section, we prove one version of the strong saddle point results associated with the universal prediction game as given by Theorem 21.9 (in the case that X belongs to a finite set). For shorthand, we recall the definition of the redundancy

$$\text{Red}(Q, \theta) := \mathbb{E}_{P_{\theta}} [-\log Q(X) + \log P_{\theta}(X)] = D_{\text{KL}}(P_{\theta} || Q),$$

where we have assumed that X belongs to a finite set, so that $Q(X)$ is simply the probability of X. For a given prior distribution π on θ, we define the expected redundancy as

$$\text{Red}(Q, \pi) = \int D_{\text{KL}}(P_{\theta} || Q) d\pi(\theta).$$

Our goal is to show that the max-min value of the prediction game is the same as the min-max value of the game, that is,

$$\sup_{\pi} I_{\pi}(T; X) = \sup_{\pi} \inf_{Q} \text{Red}(Q, \pi) = \inf_{Q} \sup_{\theta \in \Theta} \text{Red}(Q, \theta).$$

Proof We know that the max-min risk (worst-case Bayes risk) of the game is $\sup_{\pi} I_{\pi}(T; X)$; it remains to show that this is the min-max risk. To that end, define the capacity of the family $\{P_{\theta}\}_{\theta \in \Theta}$ as

$$C := \sup_{\pi} I_{\pi}(T; X).$$

(21.5.1)

Notably, this constant is finite (because $I_{\pi}(T; X) \leq \log |\mathcal{X}|$), and there exists a sequence π_n of prior probabilities such that $I_{\pi_n}(T; X) \to C$. Now, let Q be any cluster point of the sequence of mixtures $Q_{\pi_n} = \int P_{\theta} d\pi_n(\theta)$; such a point exists because the space of probability distributions on the finite set \mathcal{X} is compact. We will show that

$$\sum_x P_{\theta}(x) \log \frac{P_{\theta}(x)}{Q(x)} \leq C \quad \text{for all } \theta \in \Theta,$$

(21.5.2)

and we claim this is sufficient for the theorem. Indeed, suppose that inequality (21.5.2) holds. Then in this case, we have

$$\inf_{Q} \sup_{\theta \in \Theta} \text{Red}(Q, \theta) \leq \sup_{\theta \in \Theta} D_{\text{KL}}(P_{\theta} || Q) \leq C,$$

which implies the theorem, because it is always the case that

$$\sup_{\pi} \inf_{Q} \text{Red}(Q, \theta) = \inf_{Q} \sup_{\pi} \text{Red}(Q, \pi) = \inf_{Q} \sup_{\theta \in \Theta} \text{Red}(Q, \theta).$$

For the sake of contradiction, let us assume that there exists some $\theta \in \Theta$ such that inequality (21.5.2) fails, call it θ^*. We will then show that suitable mixtures $(1 - \lambda)\pi + \lambda\delta_{\theta^*}$, where δ_{θ^*} is the point mass on θ^*, could increase the capacity (21.5.1). To that end, for shorthand define the mixtures

$$\pi_{n, \lambda} = (1 - \lambda)\pi_n + \lambda\delta_{\theta^*} \quad \text{and} \quad Q_{\pi_{n, \lambda}} = (1 - \lambda)Q_{\pi_n} + \lambda P_{\theta^*}$$

for $\lambda \in [0, 1]$. Let us also use the notation $H_{w}(X \mid T)$ to denote the conditional entropy of the random variable X on T (when T is distributed as w), and we abuse notation by writing $H(X) = H(P)$ when X is distributed as P. In this case, it is clear that we have

$$H_{\pi_{n, \lambda}}(X \mid T) = (1 - \lambda)H_{\pi_n}(X \mid T) + \lambda H(X \mid T = \theta^*),$$

328
and by definition of the mutual information we have

\[I_{\pi_n,\lambda}(T; X) = H_{\pi_n,\lambda}(X) - H_{\pi_n,\lambda}(X \mid T) \]

\[= H((1 - \lambda)Q^{\pi_n} + \lambda P_{\theta^*}) - (1 - \lambda)H_{\pi_n}(X \mid T) - \lambda H(X \mid T = \theta^*). \]

To demonstrate our contradiction, we will show two things: first, that at \(\lambda = 0 \) the limits of both sides of the preceding display are equal to the capacity \(C \), and second, that the derivative of the right hand side is positive. This will contradict the definition (21.5.1) of the capacity.

To that end, note that

\[\lim_n H_{\pi_n}(X \mid T) = \lim_n H_{\pi_n}(X) - I_{\pi_n}(T; X) = H(\bar{Q}) - C, \]

by the continuity of the entropy function. Thus, we have

\[\lim_n I_{\pi_n,\lambda}(T; X) = H((1 - \lambda)\bar{Q} + \lambda P_{\theta^*}) - (1 - \lambda)(H(\bar{Q}) - C) - \lambda H(P_{\theta}). \] (21.5.3)

It is clear that at \(\lambda = 0 \), both sides are equal to the capacity \(C \), while taking derivatives with respect to \(\lambda \) we have

\[\frac{\partial}{\partial \lambda} H((1 - \lambda)\bar{Q} + \lambda P_{\theta^*}) = -\sum_x (P_{\theta^*}(x) - \bar{Q}(x)) \log ((1 - \lambda)\bar{Q}(x) + \lambda P_{\theta^*}(x)) \].

Evaluating this derivative at \(\lambda = 0 \), we find

\[\frac{\partial}{\partial \lambda} \lim_n I_{\pi_n,\lambda}(T; X) \bigg|_{\lambda=0} = -\sum_x P_{\theta^*}(x) \log \bar{Q}(x) + \sum_x \bar{Q}(x) \log \bar{Q}(x) + H(\bar{Q}) - C + \sum_x P_{\theta^*}(x) \log P_{\theta^*}(x) \]

\[= \sum_x P_{\theta^*}(x) \log \frac{P_{\theta^*}(x)}{\bar{Q}(x)} - C. \]

In particular, if inequality (21.5.2) fails to hold, then \(\frac{\partial}{\partial \lambda} \lim_n I_{\pi_n,\lambda}(T; X) \big|_{\lambda=0} > 0 \), contradicting the definition (21.5.1) of the channel capacity.

The uniqueness of the result follows from the strict convexity of the mutual information \(I \) in the mixture channel \(\bar{Q} \).

\[\square \]

21.6 Exercises

Question 21.1 (Minimax redundancy and different loss functions): In this question, we consider expected losses under the Bernoulli distribution. Assume that \(X_i \overset{iid}{\sim} \text{Bernoulli}(p) \), meaning that \(X_i = 1 \) with probability \(p \) and \(X_i = 0 \) with probability \(1 - p \). We consider four different loss functions, and their associated expected regret, for measuring the accuracy of our predictions of such \(X_i \). For each of the four choices below, we prove expected regret bounds on

\[\text{Red}_n(\bar{\theta}, P, \ell) := \sum_{i=1}^n \mathbb{E}_P[\ell(\bar{\theta}(X_{i-1}^{-1}), X_i)] - \inf_{\theta} \sum_{i=1}^n \mathbb{E}_P[\ell(\theta, X_i)], \] (21.6.1)
where \(\hat{\theta} \) is a predictor based on \(X_1, \ldots, X_{i-1} \) at time \(i \). Define \(S_i = \sum_{j=1}^{i} X_j \) to be the partial sum up to time \(i \). For each of parts (a)–(c), at time \(i \) use the predictor

\[
\hat{\theta}_i = \hat{\theta}(X_1^{i-1}) = \frac{S_{i-1} + \frac{1}{2}}{i}.
\]

(a) Loss function: \(\ell(\theta, x) = \frac{1}{2}(x - \theta)^2 \). Show that \(\text{Red}_n(\hat{\theta}, P, \ell, \theta, x) \leq C \cdot \log n \) where \(C \) is a constant.

(b) Loss function: \(\ell(\theta, x) = x \log \frac{1}{\theta} (1 - x) \log \frac{1}{1 - \theta} \), the usual log loss for predicting probabilities. Show that \(\text{Red}_n(\hat{\theta}, P, \ell, \theta, x) \leq C \cdot \log n \) whenever the true probability \(p \in (0, 1) \), where \(C \) is a constant. Hint: Note that there exists a prior \(\pi \) for which \(\hat{\theta} \) is a Bayes strategy. What is this prior?

(c) Loss function: \(\ell(\theta, x) = |x - \theta| \). Show that \(\text{Red}_n(\hat{\theta}, P, \ell, \theta, x) \geq c \cdot n \), where \(c > 0 \) is a constant, whenever the true probability \(p \notin \{0, \frac{1}{2}, 1\} \).

(d) **Extra credit:** Show that there is a numerical constant \(c > 0 \) such that for any procedure \(\hat{\theta} \), the worst-case redundancy \(\sup_{p \in [0,1]} \text{Red}_n(\hat{\theta}, \text{Bernoulli}(p), \ell) \geq c\sqrt{n} \) for the absolute loss \(\ell \) in part (c). Give a strategy attaining this redundancy.

Question 21.2 (Strong versions of redundancy): Assume that for a given \(\theta \in \Theta \) we draw \(X_1^n \sim P_{\theta} \). We define the Bayes redundancy for a family of distributions \(\mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta} \) as

\[
C_n^\pi := \inf_Q \int D_{\text{kl}}(P_{\theta}||Q) \, d\pi(\theta) = I_{\pi}(T; X_1^n),
\]

where \(\pi \) is a probability measure on \(\Theta \), \(T \) is distributed according to \(\pi \), and conditional on \(T = \theta \), we draw \(X_1^n \sim P_{\theta} \), and \(I_{\pi} \) denotes the mutual information when \(T \) is drawn according to \(\pi \). Define the maximin redundancy \(C_n^\ast := \sup_{\pi} C_n^\pi \) as the worst-case Bayes redundancy. We show that for “most” points \(\theta \) under the prior \(\pi \), if \(\overline{Q} = \int P_{\theta} d\pi(\theta) \) is the mixture of all the \(P_{\theta} \) under the prior \(\pi \), then no distribution \(Q \) can have substantially better redundancy than \(\overline{Q} \).

Consider any distribution \(Q \) on the set \(\mathcal{X} \) and let \(\epsilon \in [0,1] \), and define the set of points \(\theta \) where \(Q \) is \(\epsilon \)-better than the worst case redundancy as

\[
B_\epsilon := \{ \theta \in \Theta : D_{\text{kl}}(P_{\theta}||Q) \leq (1 - \epsilon)C_n^\ast \}.
\]

(a) Show that for any prior \(\pi \), we have

\[
\pi(B_\epsilon) \leq \frac{\log 2 + C_n^\ast - I_{\pi}(T; X_1^n)}{\epsilon C_n^\ast}.
\]

As an aside, note this implies that if \(\pi_i \) is a sequence of priors tending to \(\sup_{\pi} I_{\pi}(T; X_1^n) \) and the redundancy \(C_n^\ast \to \infty \), then so long as \(C_n^\ast - I_{\pi_i}(T; X_1^n) \ll \epsilon C_n^\ast \), we have \(\pi_i(B_\epsilon) \approx 0 \).

(b) Assume that \(\pi \) attains the supremum in the definition of \(C_n^\ast \). Show that

\[
\pi(B_\epsilon) \leq O(1) \cdot \exp(-\epsilon C_n^\ast).
\]

Hint: Introduce the random variable \(Z \) to be 1 if the random variable \(T \in B_\epsilon \) and 0 otherwise, then use that \(Z \to T \to X_1^n \) forms a Markov chain, and expand the mutual information. For part (b), the inequality \(\frac{1-x}{x} \log \frac{1}{1-x} \leq 1 \) for all \(x \in [0,1] \) may be useful.
Question 21.3 (Mixtures are as good as point distributions): Let P be a \textit{Laplace(λ)} distribution on \mathbb{R}, meaning that $X \sim P$ has density
$$p(x) = \frac{\lambda}{2} \exp(-\lambda|x|).$$
Assume that $X_1, \ldots, X_n \overset{iid}{\sim} P$, and let P^n denote the n-fold product of P. In this problem, we compare the predictive performance of distributions from the normal location family $\mathcal{P} = \{N(\theta, \sigma^2) : \theta \in \mathbb{R}\}$ with the mixture distribution Q^π over \mathcal{P} defined by the normal prior distribution $N(\mu, \tau^2)$, that is, $\pi(\theta) = (2\pi\tau^2)^{-1/2} \exp\left(-\frac{(\theta - \mu)^2}{2\tau^2}\right)$.

(a) Let $P_{\theta, \Sigma}$ be the multivariate normal distribution with mean $\theta \in \mathbb{R}^n$ and covariance $\Sigma \in \mathbb{R}^{n \times n}$. What is $D_{\text{kl}}(P^n \mid \mid P_{\theta, \Sigma})$?

(b) Show that $\inf_{\theta \in \mathbb{R}^n} D_{\text{kl}}(P^n \mid \mid P_{\theta, \Sigma}) = D_{\text{kl}}(P^n \mid \mid P_{0, \Sigma})$, that is, the mean-zero normal distribution has the smallest KL-divergence from the Laplace distribution.

(c) Let Q^π_n be the mixture of the n-fold products in \mathcal{P}, that is, Q^π_n has density
$$q^\pi_n(x^n_1) = \int_{-\infty}^{\infty} \pi(\theta) p_{\theta}(x_1) \cdots p_{\theta}(x_n) d\theta,$$
where π is $N(0, \tau^2)$. What is $D_{\text{kl}}(P^n \mid \mid Q^\pi_n)$?

(d) Show that the redundancy of Q^π_n under the distribution P is asymptotically nearly as good as the redundancy of any $P_{\theta} \in \mathcal{P}$, the normal location family (so P_{θ} has density $p_{\theta}(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(x - \theta)^2}{2\sigma^2}\right)$). That is, show that
$$\sup_{\theta \in \mathbb{R}} \mathbb{E}_P \left[\log \frac{1}{q^\pi_n(X^n_1)} - \log \frac{1}{p_{\theta}(X^n_1)} \right] = O(\log n)$$
for any prior variance $\tau^2 > 0$ and any prior mean $\mu \in \mathbb{R}$, where the big-Oh hides terms dependent on τ^2, σ^2, μ^2.

(e) \textbf{Extra credit:} Can you give an interesting condition under which such redundancy guarantees hold more generally? That is, using Proposition 21.7 in the notes, give a general condition under which
$$\mathbb{E}_P \left[\log \frac{1}{q^\pi_n(X^n_1)} - \log \frac{1}{p_{\theta}(X^n_1)} \right] = o(n)$$
as $n \to \infty$, for all $\theta \in \Theta$. 331
Chapter 22

Universal prediction with other losses

Thus far, in our discussion of universal prediction and related ideas, we have focused (essentially) exclusively on making predictions with the logarithmic loss, so that we play a full distribution over the set \mathcal{X} as our prediction at each time step in the procedure. This is natural in settings, such as coding (recall examples 18.5 and 21.1), in which the log loss corresponds to a quantity we directly care about, or when we do not necessarily know much about the task at hand but rather wish to simply model a process. (We will see this more shortly.) In many cases, however, we have a natural task-specific loss. The natural question that follows, then, is to what extent it is possible to extend the results of Chapter 21 to different settings in which we do not necessarily care about prediction of an entire distribution. (Relevant references include the paper of Cesa-Bianchi and Lugosi [42], which shows how complexity measures known as Rademacher complexity govern the regret in online prediction games; the book by the same authors [43], which gives results covering a wide variety of online learning, prediction, and other games; the survey by Merhav and Feder [119]; and the study of consequences of the choice of loss for universal prediction problems by Haussler et al. [87].)

22.1 Redudancy and expected regret

We begin by considering a generalization of the redundancy (21.1.3) to the case in which we do not use the log loss. In particular, we have as usual a space \mathcal{X} and a loss function $\ell : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, where $\ell(\hat{x}, x)$ is the penalty we suffer for playing \hat{x} when the instantaneous data is x. (In somewhat more generality, we may allow the loss to act on $\hat{\mathcal{X}} \times \mathcal{X}$, where the prediction space $\hat{\mathcal{X}}$ may be different from \mathcal{X}.) As a simple example, consider a weather prediction problem, where $X_i \in \{0, 1\}$ indicates whether it rained on day i and \hat{X}_i denotes our prediction of whether it will rain. Then a natural loss includes $\ell(\hat{x}, x) = 1 \{\hat{x} \cdot x \leq 0\}$, which simply counts the number of mistaken predictions.

Given the loss ℓ, our goal is to minimize the expected cumulative loss

$$\sum_{i=1}^{n} \mathbb{E}_P[\ell(\hat{X}_i, X_i)],$$

where \hat{X}_i are the predictions of the procedure we use and P is the distribution generating the data X_1^n. In this case, if the distribution P is known, it is clear that the optimal strategy is to play the Bayes-optimal prediction

$$X_i^* \in \arg\min_{x \in \hat{\mathcal{X}}} \mathbb{E}_P[\ell(x, X_i) \mid X_1^{i-1}] = \arg\min_{x \in \hat{\mathcal{X}}} \int_{\mathcal{X}} \ell(x, x_i) dP(x_i \mid X_1^{i-1}).$$

(22.1.1)
In many cases, however, we do not know the distribution P, and so our goal (as in the previous chapter) is to simultaneously minimize the cumulative loss simultaneously for all source distributions in a family \mathcal{P}.

22.1.1 Universal prediction via the log loss

As our first idea, we adapt the same strategies as those in the previous section, using a distribution Q that has redundancy growing only sub-linearly against the class P, and making Bayes optimal predictions with Q. That is, at iteration i, we assume that $X_i \sim Q(\cdot \mid X_{i-1}^i)$ and play

$$b_{X_i} \in \text{argmin}_{X \in bX} E_{Q}[\ell(x, X_i) \mid X_{i-1}^i].$$

(22.1.2)

Given such a distribution Q, we measure its loss-based redundancy against P via

$$\text{Red}_n(Q, P, \ell) := E_P \left[\sum_{i=1}^{n} \ell(X_i, X_i) - \sum_{i=1}^{n} \ell(X_i^*, X_i) \right],$$

(22.1.3)

where X_i chosen according to $Q(\cdot \mid X_{i-1}^i)$ as in expression (22.1.2). The natural question now, of course, is whether the strategy (22.1.2) has redundancy growing more slowly than n.

It turns out that in some situations, this is the case: we have the following theorem [119, Section III.A.2], which only requires that the usual redundancy (21.1.3) (with log loss) is sub-linear and the loss is suitably bounded. In the theorem, we assume that the class of distributions $\mathcal{P} = \{P_\theta\}_{\theta \in \Theta}$ is indexed by $\theta \in \Theta$.

Theorem 22.1. Assume that the redundancy $\text{Red}_n(Q, P_\theta, \ell) \leq R_n(\theta)$ and that $|\ell(\widehat{x}, x) - \ell(x^*, x)| \leq L$ for all x and predictions \widehat{x}, x^*. Then we have

$$\frac{1}{n} \text{Red}_n(Q, P_\theta, \ell) \leq L \sqrt{\frac{2}{n} R_n(\theta)}.$$

To attain vanishing expected regret under the loss ℓ, then, Theorem 22.1 requires only that we play a Bayes’ strategy (22.1.2) with a distribution Q for which the average (over n) of the usual redundancy (21.1.3) tends to zero, so long as the loss is (roughly) bounded. We give two examples of bounded losses. First, we might consider the 0-1 loss, which clearly satisfies $|\ell(\widehat{x}, x) - \ell(x^*, x)| \leq 1$. Second, the absolute value loss (which is used for robust estimation of location parameters [123, 92]), given by $\ell(\widehat{x}, x) = |x - \widehat{x}|$, satisfies $|\ell(\widehat{x}, x) - \ell(x^*, x)| \leq |\widehat{x} - x^*|$. If the distribution P_θ has median θ and Θ is compact, then $E[|\widehat{x} - X|]$ is minimized by its median, and $|\widehat{x} - x^*|$ is bounded by the diameter of Θ.

Proof The theorem is essentially a consequence of Pinsker’s inequality (Proposition 2.11). By
expanding the loss-based redundancy, we have the following chain of equalities:

\[
\text{Red}_n(Q, P_\theta, \ell) = \sum_{i=1}^{n} \mathbb{E}_{\theta}[\ell(\hat{X}_i, X_i)] - \mathbb{E}_{\theta}[\ell(X_i^*, X_i)]
\]

\[
= \sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) \int_{X} p_\theta(x_i | x_{i-1}^i) \left[\ell(\hat{X}_i, x_i) - \ell(X_i^*, x_i) \right] dx_i dx_{i-1}^i
\]

\[
= \sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) \int_{X} (p_\theta(x_i | x_{i-1}^i) - q(x_i | x_{i-1}^i)) \left[\ell(\hat{X}_i, x_i) - \ell(X_i^*, x_i) \right] dx_i dx_{i-1}^i
\]

\[
+ \sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) \mathbb{E}_Q[\ell(\hat{X}_i, X_i) - \ell(X_i^*, X_i) | x_{i-1}^i] dx_{i-1}^i, \tag{22.1.4}
\]

where for the inequality we used that the play \(\hat{X}_i\) minimizes

\[
\mathbb{E}_Q[\ell(\hat{X}_i, X_i) - \ell(X_i^*, X_i) | x_{i-1}^i]
\]

by the construction (22.1.2).

Now, using Hölder’s inequality on the innermost integral in the first sum of expression (22.1.4), we have

\[
\int_{X} (p_\theta(x_i | x_{i-1}^i) - q(x_i | x_{i-1}^i)) \left[\ell(\hat{X}_i, x_i) - \ell(X_i^*, x_i) \right] dx_i
\]

\[
\leq 2 \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV} \sup_{x \in X} |\ell(\hat{X}_i, x) - \ell(X_i^*, x)|
\]

\[
\leq 2L \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV},
\]

where we have used the definition of total variation distance. Combining this inequality with (22.1.4), we obtain

\[
\text{Red}_n(Q, P_\theta, \ell) \leq 2L \sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV} dx_{i-1}^i
\]

\[
\leq 2L \sum_{i=1}^{n} \left(\int_{X_{i-1}} p_\theta(x_{i-1}^i) dx_{i-1}^i \right)^{\frac{1}{2}} \left(\int_{X_{i-1}} p_\theta(x_{i-1}^i) \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV}^2 \right)^{\frac{1}{2}}
\]

\[
= 2L \sum_{i=1}^{n} \left(\int_{X_{i-1}} p_\theta(x_{i-1}^i) \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV}^2 \right)^{\frac{1}{2}},
\]

where the inequality (*) follows by the Cauchy-Schwarz inequality applied to the integrands \(\sqrt{p_\theta}\) and \(\sqrt{p_\theta} \| P - Q \|_{TV}\). Applying the Cauchy-Schwarz inequality to the final sum, we have

\[
\text{Red}_n(Q, P_\theta, \ell) \leq 2L \sqrt{n} \left(\sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) \| P_\theta(\cdot | x_{i-1}^i) - Q(\cdot | x_{i-1}^i) \|_{TV}^2 \right)^{\frac{1}{2}}
\]

\[
\leq 2L \sqrt{n} \left(\frac{1}{2} \sum_{i=1}^{n} \int_{X_{i-1}} p_\theta(x_{i-1}^i) D_{KL}(P_\theta(\cdot | x_{i-1}^i) | Q(\cdot | x_{i-1}^i)) dx_{i-1}^i \right)^{\frac{1}{2}}
\]

\[
= L \sqrt{2n} \sqrt{D_{KL}(P_\theta^* \| Q)},
\]

334
where inequality (**) is an application of Pinsker’s inequality. But of course, we know by that $\text{Red}_n(Q, P_\theta) = D_{\text{kl}}(P_\theta^0 \| Q)$ by definition (21.1.3) of the redundancy.

Before proceeding to examples, we note that in a variety of cases the bounds of Theorem 22.1 are loose. For example, under mean-squared error, universal linear predictors [54, 127] have redundancy $\mathcal{O}(\log n)$, while Theorem 22.1 gives at best a bound of $\mathcal{O}(\sqrt{n})$.

TODO: Add material on redundancy/capacity (Theorem 21.9) analogue in general loss case, which allows playing mixture distributions based on mixture of $\{P_\theta\}_{\theta \in \Theta}$.

22.1.2 Examples

We now give an example application of Theorem 22.1 with an application to a classification problem with side information. In particular, let us consider the 0-1 loss $\ell_{0-1}(\hat{y}, y) = 1\{\hat{y} \cdot y \leq 0\}$, and assume that we wish to predict y based on a vector $x \in \mathbb{R}^d$ of regressors that are fixed ahead of time. In addition, we assume that the “true” distribution (or competitor) P_θ is that given x and θ, Y has normal distribution with mean $\langle \theta, x \rangle$ and variance σ^2, that is,

$$Y_i = \langle \theta, x_i \rangle + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2).$$

Now, we consider playing according to a mixture distribution (21.3.3), and for our prior π we choose $\theta \sim \mathcal{N}(0, \tau^2 I_{d \times d})$, where $\tau > 0$ is some parameter we choose.

Let us first consider the case in which we observe Y_1, \ldots, Y_n (directly (rather than simply whether we classify correctly)) and consider the prediction scheme this generates. First, we recall as in the posterior calculation (21.3.4) that we must calculate the posterior on θ given Y_1, \ldots, Y_i at step $i + 1$. Assuming we have computed this posterior, we play

$$\hat{Y}_i := \arg \min_{y \in \mathbb{R}} \mathbb{E}_{Q_\pi}[\ell_{0-1}(y, Y_i) \mid Y_1^{i-1}] = \arg \min_{y \in \mathbb{R}} Q_\pi(\text{sign}(Y_i) \neq \text{sign}(y) \mid Y_1^{i-1})
= \arg \min_{y \in \mathbb{R}} \int_{-\infty}^{\infty} P_\theta(\text{sign}(Y_i) \neq \text{sign}(y))\pi(\theta \mid Y_1^{i-1})d\theta. \quad (22.1.5)$$

With this in mind, we begin by computing the posterior distribution on θ:

Lemma 22.2. Assume that θ has prior $\mathcal{N}(0, \tau^2 I_{d \times d})$. Then conditional on $Y_1^i = y_1^i$ and the first i vectors $x_1^i = (x_1, \ldots, x_i) \subset \mathbb{R}^d$, we have

$$\theta \mid y_1^i, x_1^i \sim \mathcal{N} \left(K_i^{-1} \sum_{j=1}^{i} x_j y_j, K_i^{-1}\right), \quad \text{where} \quad K_i = \frac{1}{\tau^2} I_{d \times d} + \frac{1}{\sigma^2} \sum_{j=1}^{i} x_j x_j^\top.$$

Deferring the proof of Lemma 22.2 temporarily, we note that under the distribution Q_π, as by assumption we have $Y_i = \langle \theta, x_i \rangle + \varepsilon_i$, the posterior distribution (under the prior π for θ) on Y_{i+1} conditional on $Y_1^i = y_1^i$ and x_1, \ldots, x_{i+1} is

$$Y_{i+1} = \langle \theta, x_{i+1} \rangle + \varepsilon_{i+1} \mid y_1^i, x_1^i \sim \mathcal{N} \left(\left(x_{i+1}, K_i^{-1} \sum_{j=1}^{i} x_j y_j\right), x_{i+1} K_{i+1}^{-1} x_{i+1} + \sigma^2\right).$$

335
Consequently, if we let $\hat{\theta}_{i+1}$ be the posterior mean of $\theta \mid y_{1:i}^1 x_i^1$ (as given by Lemma 22.2), the optimal prediction (22.1.5) is to choose any \hat{Y}_{i+1} satisfying $\text{sign}(\hat{Y}_{i+1}) = \text{sign}((x_{i+1}, \hat{\theta}_{i+1}))$. Another option is to simply play

$$
\hat{Y}_{i+1} = x_{i+1} K_i^{-1} \left(\sum_{j=1}^{i} y_j x_j \right),
$$

(22.1.6)

which is $\mathbb{E}[\hat{Y}_{i+1} \mid Y_1^i, X_{1:i}^i] = \mathbb{E}[\theta, X_1 \mid Y_1^i, X_{1:i}^i]$, because this \hat{Y}_{i+1} has sign that is most probable for Y_{i+1} (under the mixture Q^σ).

Let us now evaluate the 0-1 redundancy of the prediction scheme (22.1.6). We first compute the Fisher information for the distribution $Y_i \sim \text{N}(\langle \theta, x_i \rangle, \sigma^2)$. By a straightforward calculation, we have $I_\theta = \frac{1}{\sigma^2} X^\top X$, where the matrix $X \in \mathbb{R}^{n \times d}$ is the data matrix $X = [x_1 \cdots x_n]^\top$. Then for any $\theta_0 \in \mathbb{R}^d$, Theorem 21.5 implies that for the prior $\pi(\theta) = \frac{1}{(2\pi \sigma^2)^{d/2}} \exp(-\frac{1}{2\sigma^2} \|\theta\|_2^2)$, we have (up to constant factors) the redundancy bound

$$
\text{Red}_n(Q^\sigma, P_{\theta_0}) \lesssim d \log n + d \log \tau + \frac{1}{\tau^2} \|\theta_0\|_2^2 + \log \det(\sigma^{-2} X^\top X).
$$

Thus the expected regret under the 0-1 loss ℓ_{0-1} is

$$
\text{Red}_n(Q^\sigma, P_{\theta_0}, \ell_{0-1}) \lesssim \sqrt{n} \left(d \log n + d \log(\sigma \tau) + \frac{1}{\tau^2} \|\theta_0\|_2^2 + \log \det(\sigma^{-2} X^\top X) \right)
$$

(22.1.7)

by Theorem 22.1. We can provide some intuition for this expected regret bound. First, for any θ_0, we can asymptotically attain vanishing expected regret, though larger θ_0 require more information to identify. In addition, the less informative the prior is (by taking $\tau \uparrow +\infty$), the less we suffer by being universal to all θ_0, but there is logarithmic penalty in τ. We also note that the bound (22.1.7) is not strongly universal, because by taking $\|\theta_0\| \to \infty$ we can make the bound vacuous.

We remark in passing that we can play a similar game when all we observe are truncated (signed) normal random variables, that is, we see only $\text{sign}(Y_i)$ rather than Y_i. Unfortunately, in this case, there is no closed form for the posterior updates as in Lemma 22.2. That said, it is possible to play the game using sampling (Monte Carlo) or other strategies.

Finally, we prove Lemma 22.2:

Proof. We use Bayes rule, ignoring normalizing constants that do not depend on θ. In this case, we have the posterior distribution proportional to the prior times the likelihood, so

$$
\pi(\theta \mid y_1^i, x_1^i) \propto \pi(\theta) \prod_{i=1}^{n} p_\theta(y_i \mid x_i) \propto \exp \left(-\frac{1}{2\sigma^2} \|\theta\|_2^2 - \frac{1}{2\sigma^2} \sum_{j=1}^{i} (y_j - \langle x_j, \theta \rangle)^2 \right).
$$

Now, we complete the square in the exponent above, which yields

$$
\frac{1}{2\sigma^2} \|\theta\|_2^2 + \frac{1}{2\sigma^2} \sum_{j=1}^{i} (y_j - \langle x_j, \theta \rangle)^2 = \frac{1}{2} \theta^\top \left(\frac{1}{\tau^2} I_{d \times d} + \frac{1}{\sigma^2} \sum_{j=1}^{i} x_j x_j^\top \right) \theta - \theta^\top \sum_{j=1}^{i} y_j x_j + C
$$

$$
= \frac{1}{2} \left(\theta - K_i^{-1} \sum_{j=1}^{i} y_j x_j \right) K_i \left(\theta - K_i^{-1} \sum_{j=1}^{i} y_j x_j \right) + C',
$$

where C, C' are constants depending only on the y_1^i and not x_1^i or θ, and we have recalled the definition of $K_i = \tau^{-2} I_{d \times d} + \sigma^{-2} \sum_{j=1}^{i} x_j x_j^\top$. By inspection, this implies our desired result. \qed
22.2 Individual sequence prediction and regret

Having discussed (in some minor detail) prediction games under more general losses in an expected sense, we now consider the more adversarial sense of Section 21.2, where we wish to compete against a family of prediction strategies and the data sequence observed is chosen adversarially. In this section, we look into the case in which the comparison class—set of strategies against which we wish to compete—is finite.

As a first observation, in the redundancy setting, we see that when the class \(\mathcal{P} = \{P_\theta\}_{\theta \in \Theta} \) has \(|\Theta| < \infty \), then the redundancy capacity theorem (Theorem 21.9) implies that

\[
\inf_{Q} \sup_{\theta \in \Theta} \text{Red}_n(Q, P_\theta) = \inf_{Q} \sup_{\theta \in \Theta} D_{\text{KL}}(P_\theta^n \| Q) = \sup_{\pi} I_\pi(T; X^n_1) \leq \log |\Theta|,
\]

where \(T \sim \pi \) and conditioned on \(T = \theta \) we draw \(X^n_1 \sim P_\theta \). (Here we have used that \(I(T; X^n_1) = H(T) - H(T \mid X^n_1) \leq H(T) \leq \log |\Theta| \), by definition (2.1.3) of the mutual information.) In particular, the redundancy is constant for any \(n \).

Now we come to our question: is this possible in a purely sequential case? More precisely, suppose we wish to predict a sequence of variables \(y_i \in \{-1, 1\} \), we have access to a finite collection of strategies, and we would like to guarantee that we perform as well in prediction as any single member of this class. Then, while it is not possible to achieve constant regret, it is possible to have regret that grows only logarithmically in the number of comparison strategies. To establish the setting, let us denote our collection of strategies, henceforth called “experts”, by \(\{x_{i,j}\}_{j=1}^d \), where \(i \) ranges in \(1, \ldots, n \). Then at iteration \(i \) of the prediction game, we measure the loss of expert \(j \) by \(\ell(x_{i,j}, y) \).

We begin by considering a mixture strategy that would be natural under the logarithmic loss, we assume the experts play points \(x_{i,j} \in [0, 1] \), where \(x_{i,j} = P(Y_i = 1) \) according to expert \(j \). (We remark in passing that while the notation is perhaps not completely explicit about this, the experts may adapt to the sequence \(Y^n_1 \).) In this case, the loss we suffer is the usual log loss, \(\ell(x_{i,j}, y) = y \log \frac{1}{x_{i,j}} + (1 - y) \log \frac{1}{1 - x_{i,j}} \). Now, if we assume we begin with the uniform prior distribution \(\pi(j) = 1/d \) for all \(j \), then the posterior distribution, denoted by \(\pi^i_j = \pi(j \mid Y_1^{i-1}) \), is

\[
\pi^i_j \propto \pi(j) \prod_{l=1}^i x_{i,j}^{y_l} (1 - x_{i,j})^{1-y_l} = \pi(j) \exp \left(-\sum_{l=1}^i \left[y_l \log \frac{1}{x_{i,j}} + (1 - y_l) \log \frac{1}{1 - x_{i,j}} \right] \right) = \pi(j) \exp \left(-\sum_{l=1}^i \ell(x_{i,j}, y_l) \right).
\]

This strategy suggests what is known variously as the multiplicative weights strategy [8], exponentiated gradient descent method [100], or (after some massaging) a method known since the late 1970s as the mirror descent or non-Euclidean gradient descent method (entropic gradient descent) [120, 24].

In particular, we consider an algorithm for general losses where fix a stepsize \(\eta > 0 \) (as we cannot be as aggressive as in the probabilistic setting), and we then weight each of the experts \(j \) by exponentially decaying the weight assigned to the expert for the losses it has suffered. For the algorithm to work, unfortunately, we need a technical condition on the loss function and experts \(x_{i,j} \). This loss function is analogous to a weakened version of exp-concavity, which is a common assumption in online game playing scenarios (see the logarithmic regret algorithms developed by Hazan et al. [88], as well as earlier work, for example, that by Kivinen and Warmuth [101] studying regression
problems for which the loss is strongly convex in one variable but not simultaneously in all). In particular, exp-concavity is the assumption that
\[x \mapsto \exp(-\ell(x, y)) \]
is a concave function. Because the exponent of the logarithm is linear, the log loss is obviously exp-concave, but for alternate losses, we make a slightly weaker assumption. In particular, we assume there are constants \(c, \eta \) such that for any vector \(\pi \) in the \(d \)-simplex (i.e. \(\pi \in \mathbb{R}^d_+ \) satisfies \(\sum_{j=1}^d \pi_j = 1 \)) there is some way to choose \(\hat{y} \) so that for any \(y \) (that can be played in the game)
\[
\exp \left(-\frac{1}{c} \ell(\hat{y}, y) \right) \geq \sum_{j=1}^d \pi_j \exp(-\eta \ell(x_{i,j}, y)) \quad \text{or} \quad \ell(\hat{y}, y) \leq -c \log \left(\sum_{j=1}^d \pi_j \exp(-\eta \ell(x_{i,j}, y)) \right).
\]
By inspection, inequality (22.2.1) holds for the log loss with \(c = \eta = 1 \) and the choice \(\hat{y} = \sum_{j=1}^d \pi_j x_{i,j} \), because of the exp-concavity condition; any exp-concave loss also satisfies inequality (22.2.1) with \(c = \eta = 1 \) and the choice of the posterior mean \(\hat{y} = \sum_{j=1}^d \pi_j x_{i,j} \). The idea in this case is that losses satisfying inequality (22.2.1) behave enough like the logarithmic loss that a Bayesian updating of the experts works. (Condition (22.2.1) originates with the work of Haussler et al. [87], where they name such losses \((c, \eta)\)-realizable.)

Example 22.3 (Squared error and exp-concavity): Consider the squared error loss \(\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 \), where \(\hat{y}, y \in \mathbb{R} \). We claim that if \(x_j \in [0, 1] \) for each \(j \), \(\pi \) is in the simplex, meaning \(\sum_j \pi_j = 1 \) and \(\pi_j \geq 0 \), and \(y \in [0, 1] \), then the squared error \(\pi \mapsto \ell(\langle \pi, x \rangle, y) \) is exp-concave, that is, inequality (22.2.1) holds with \(c = \eta = 1 \) and \(\hat{y} = \langle \pi, x \rangle \). Indeed, computing the Hessian of the exponent, we have
\[
\nabla^2_{\pi} \exp \left(-\frac{1}{2} (\langle \pi, x \rangle - y)^2 \right) = \nabla_{\pi} \left[-\exp \left(-\frac{1}{2} (\langle \pi, x \rangle - y)^2 \right) (\langle \pi, x \rangle - y) x \right]
= \exp \left(-\frac{1}{2} (\langle \pi, x \rangle - y)^2 \right) \left((\langle \pi, x \rangle - y)^2 - 1 \right) xx^\top.
\]
Noting that \(|\langle \pi, x \rangle - y| \leq 1 \) yields that \((\langle \pi, x \rangle - y)^2 - 1 \leq 0 \), so we have
\[
\nabla^2_{\pi} \exp \left(-\frac{1}{2} (\langle \pi, x \rangle - y)^2 \right) \preceq 0_{d \times d}
\]
under the setting of the example. We thus have exp-concavity as desired. \(\diamond \)

We can also show that the 0-1 loss satisfies the weakened version of exp-concavity in inequality (22.2.1), but we have to take the constant \(c \) to be larger (or \(\eta \) to be smaller).

Example 22.4 (Zero-one loss and weak exp-concavity): Now suppose that we use the 0-1 loss, that is, \(\ell_{0\text{-}1}(\hat{y}, y) = 1 \{ y \cdot \hat{y} \leq 0 \} \). We claim that if we take a weighted majority vote under the distribution \(\pi \), meaning that we set \(\hat{y} = \sum_{j=1}^d \pi_j \text{sign}(x_j) \) for a vector \(x \in \mathbb{R}^d \), then inequality (22.2.1) holds with any \(c \) large enough that
\[
c^{-1} \leq \log \frac{2}{1 + e^{-\eta}}.
\]

(22.2.2)
Demonstrating inequality (22.2.2) is, by inspection, equivalent to showing that
\[
\ell_{0-1}(\hat{y}, y) \leq -c \log \left(\sum_{j=1}^{d} \pi_j e^{-\eta \ell_{0-1}(x_{i,j})} \right).
\]
If \(\hat{y}\) has the correct sign, meaning that \(\text{sign}(\hat{y}) = \text{sign}(y)\), the result is trivial. If \(\text{sign}(\hat{y})\) is not equal to \(\text{sign}(y)\), then we know at least (by the weights \(\pi_j\)) half of the values \(x_{i,j}\) have incorrect sign. Thus
\[
\sum_{j=1}^{d} \pi_j e^{-\eta \ell_{0-1}(x_{i,j})} = \sum_{j:x_j,y \leq 0} \pi_j e^{-\eta} + \sum_{j:x_j,y > 0} \pi_j \leq \frac{1}{2} e^{-\eta} + \frac{1}{2}.
\]
Thus, to attain
\[
\ell_{0-1}(\hat{y}, y) = 1 \leq -c \log \left(\sum_{j=1}^{d} \pi_j e^{-\eta \ell_{0-1}(x_{i,j})} \right)
\]
it is sufficient that
\[
1 \leq -c \log \left(\frac{1 + e^{-\eta}}{2} \right) \leq -c \log \left(\sum_{j=1}^{d} \pi_j e^{-\eta \ell_{0-1}(x_{i,j})} \right), \quad \text{or} \quad c^{-1} \leq \log \left(\frac{2}{1 + e^{-\eta}} \right).
\]

This is our desired claim (22.2.2).

Having given general conditions and our motivation of exponential weighting scheme in the case of the logarithmic loss, we arrive at our algorithm. We simply weight the experts by exponentially decaying the losses they suffer. We begin the procedure by initializing a weight vector \(w \in \mathbb{R}^d\) with \(w_j = 1\) for \(j = 1, \ldots, d\). After this, we repeat the following four steps at each time \(i\), beginning with \(i = 1:\)

1. Set \(w_i^j = \exp \left(-\eta \sum_{l=1}^{i-1} \ell(x_{l,j}, y_l)\right)\)
2. Set \(W^i = \sum_{j=1}^{d} w_j^i\) and \(\pi_j^i = w_j^i / W^i\) for each \(j \in \{1, \ldots, d\}\)
3. Choose \(\hat{y}_i\) satisfying (22.2.1) for the weighting \(\pi = \pi^i\) and expert values \(\{x_{i,j}\}_{j=1}^{d}\)
4. Observe \(y_i\) and suffer loss \(\ell(\hat{y}_i, y_i)\)

With the scheme above, we have the following regret bound.

Theorem 22.5 (Haussler et al. [87]). Assume condition (22.2.1) holds and that \(\hat{y}_i\) is chosen by the above scheme. Then for any \(j \in \{1, \ldots, d\}\) and any sequence \(y_i^n \in \mathbb{R}^n\),
\[
\sum_{i=1}^{n} \ell(\hat{y}_i, y_i) \leq c \log d + c\eta \sum_{i=1}^{n} \ell(x_{i,j}, y_i).
\]

Proof This is an argument based on potentials. At each iteration, any loss we suffer implies that the potential \(W^i\) must decrease, but it cannot decrease too quickly (as otherwise the individual predictors \(x_{i,j}\) would suffer too much loss). Beginning with condition (22.2.1), we observe that
\[
\ell(\hat{y}_i, y_i) \leq -c \log \left(\sum_{j=1}^{d} \pi_j^i \exp(-\eta \ell(x_{i,j}, y_i)) \right) = -c \log \left(\frac{W^{i+1}}{W^i} \right).
\]
Summing this inequality from \(i = 1 \) to \(n \) and using that \(W^1 = d \), we have

\[
\sum_{i=1}^{n} \ell(\hat{y}_i, y_i) \leq -c \log \left(\frac{W^{n+1}}{W^1} \right) = c \log d - c \log \left(\sum_{j=1}^{d} \exp \left(-\eta \sum_{i=1}^{n} \ell(x_{i,j}, y_i) \right) \right)
\]

\[
\leq c \log d - c \log \exp \left(-\eta \sum_{i=1}^{n} \ell(x_{i,j}, y_i) \right),
\]

where the inequality uses that \(\exp(\cdot) \) is increasing. As \(\log \exp(a) = a \), this is the desired result. \(\square \)

We illustrate the theorem by continuing Example 22.4, showing how Theorem 22.5 gives a regret guarantee of at most \(\sqrt{n \log d} \) for any set of at most \(d \) experts and any sequence \(y^n_1 \in \mathbb{R}^n \) under the zero-one loss.

Example (Example 22.4 continued): By substituting the choice \(c^{-1} = \log \frac{2}{1 + e^{-\eta}} \) into the regret guarantee of Theorem 22.5 (which satisfies inequality (22.2.1) by our guarantee (22.2.2) from Example 22.4), we obtain

\[
\sum_{i=1}^{n} \eta_{0-1}(\hat{y}_i, y_i) - \eta_{0-1}(x_{i,j}, y_i) \leq \frac{\log d}{\log \frac{2}{1 + e^{-\eta}}} + \frac{\left(\eta - \log \frac{2}{1 + e^{-\eta}} \right) \sum_{i=1}^{n} \eta_{0-1}(x_{i,j}, y_i)}{\log \frac{2}{1 + e^{-\eta}}}.
\]

Now, we make an asymptotic expansion to give the basic flavor of the result (this can be made rigorous, but it is sufficient). First, we note that

\[
\log \frac{2}{1 + e^{-\eta}} \approx \frac{\eta}{2} - \frac{\eta^2}{8},
\]

and substituting this into the previous display, we have regret guarantee

\[
\sum_{i=1}^{n} \eta_{0-1}(\hat{y}_i, y_i) - \eta_{0-1}(x_{i,j}, y_i) \lesssim \frac{\log d}{\eta} + \eta \sum_{i=1}^{n} \eta_{0-1}(x_{i,j}, y_i). \tag{22.2.3}
\]

By making the choice \(\eta \approx \sqrt{\log d/n} \) and noting that \(\eta_{0-1} \leq 1 \), we obtain

\[
\sum_{i=1}^{n} \eta_{0-1}(\hat{y}_i, y_i) - \eta_{0-1}(x_{i,j}, y_i) \lesssim \sqrt{n \log d}
\]

for any collection of experts and any sequence \(y^n_1 \). \(\diamond \)

We make a few remarks on the preceding example to close the chapter. First, ideally we would like to attain adaptive regret guarantees, meaning that the regret scales with the performance of the best predictor in inequality (22.2.3). In particular, we might expect that a good expert would satisfy \(\sum_{i=1}^{n} \eta_{0-1}(x_{i,j}, y_i) \ll n \), which—if we could choose

\[
\eta \approx \left(\frac{\log d}{\sum_{i=1}^{n} \eta_{0-1}(x_{i,j}, y_i)} \right)^{\frac{1}{2}}
\]
where \(j^* = \arg\min_j \sum_{i=1}^n \ell_{0-1}(x_{i,j}, y_i) \)—then we would attain regret bound
\[
\sqrt{\log d \cdot \sum_{i=1}^n \ell_{0-1}(x_{i,j^*}, y_i)} \ll \sqrt{n \log d}.
\]

For results of this form, see, for example, Cesa-Bianchi et al. [44] or the more recent work on mirror descent of Steinhardt and Liang [136].

Secondly, we note that it is actually possible to give a regret bound of the form (22.2.3) without relying on the near exp-concavity condition (22.2.1). In particular, performing mirror descent on the convex losses defined by
\[
\pi \mapsto \left| \sum_{j=1}^d \text{sign}(x_{i,j}) \pi_j - \text{sign}(y_i) \right|,
\]
which is convex, will give a regret bound of \(\sqrt{n \log d} \) for the zero-one loss as well. We leave this exploration to the interested reader.
Chapter 23

Online convex optimization

A related notion to the universal prediction problem with alternate losses is that of online learning and online convex optimization, where we modify the requirements of Chapter 22 further. In the current setting, we essentially do away with distributional assumptions at all, including prediction with a distribution, and we consider the following two player sequential game: we have a space W in which we—the learner or first player—can play points w_1, w_2, \ldots, while nature plays a sequence of loss functions $\ell_t : W \to \mathbb{R}$. The goal is to guarantee that the regret

$$\sum_{t=1}^{n} \left[\ell_t(w_t) - \ell_t(w^*) \right]$$

(23.0.1)

grows at most sub-linearly with n, for any $w^* \in W$ (often, we desire this guarantee to be uniform). As stated, this goal is too broad, so in this chapter we focus on a few natural restrictions, namely, that the sequence of losses ℓ_t are convex, and W is a convex subset of \mathbb{R}^d. In this setting, the problem (23.0.1) is known as online convex programming.

23.1 The problem of online convex optimization

Before proceeding, we provide a few relevant definitions to make our discussion easier; we refer to Appendix A for an overview of convexity and proofs of a variety of useful properties of convex sets and functions. First, we recall that a set W is convex if for all $\lambda \in [0, 1]$ and $w, w' \in W$, we have

$$\lambda w + (1 - \lambda)w' \in W.$$

Similarly, a function f is convex if

$$f(\lambda w + (1 - \lambda)w') \leq \lambda f(w) + (1 - \lambda)f(w')$$

for all $\lambda \in [0, 1]$ and w, w'. The subgradient set, or subdifferential, of a convex function f at the point w is defined to be

$$\partial f(w) := \{g \in \mathbb{R}^d : f(v) \geq f(w) + \langle g, v - w \rangle \text{ for all } v\},$$

and we say that any vector $g \in \mathbb{R}^d$ satisfying $f(v) \geq f(w) + \langle g, v - w \rangle$ for all v is a subgradient. For convex functions, the subdifferential set $\partial f(w)$ is essentially always non-empty for any $w \in \text{dom } f$.\footnote{Rigorously, we are guaranteed that $\partial f(w) \neq \emptyset$ at all points w in the relative interior of the domain of f.}
We now give several examples of convex functions, losses, and corresponding subgradients. The first two examples are for classification problems, in which we receive data points $x \in \mathbb{R}^d$ and wish to predict associated labels $y \in \{-1, 1\}$.

Example 23.1 (Support vector machines): In the support vector machine problem, we receive data in pairs $(x_t, y_t) \in \mathbb{R}^d \times \{-1, 1\}$, and the loss function

$$
\ell_t(w) = [1 - y_t \langle w, x_t \rangle]_+ = \max\{1 - y_t \langle w, x_t \rangle, 0\},
$$

which is convex because it is the maximum of two linear functions. Moreover, the subgradient set is

$$
\partial \ell_t(w) = \begin{cases}
-y_t x_t & \text{if } y_t \langle w, x_t \rangle < 1 \\
-\lambda \cdot y_t x_t & \text{for } \lambda \in [0, 1] \text{ if } y_t \langle w, x_t \rangle = 1 \\
0 & \text{otherwise}
\end{cases}
$$

Example 23.2 (Logistic regression): As in the support vector machine, we receive data in pairs $(x_t, y_t) \in \mathbb{R}^d \times \{-1, 1\}$, and the loss function is

$$
\ell_t(w) = \log(1 + \exp(-y_t \langle x_t, w \rangle)).
$$

To see that this loss is convex, note that if $h(t) = \log(1 + e^t)$, then $h'(t) = \frac{1}{1+e^{-t}}$ and $h''(t) = \frac{e^{-t}}{(1+e^{-t})^2} \geq 0$, and ℓ_t is the composition of a linear transformation with h. In this case,

$$
\partial \ell_t(w) = \nabla \ell_t(w) = -\frac{1}{1 + e^{y_t \langle x_t, w \rangle}} y_t x_t.
$$

Example 23.3 (Expert prediction and zero-one error): By randomization, it is possible to cast certain non-convex optimization problems as convex. Indeed, let us assume that there are d experts, each of which makes a prediction $x_{t,j}$ (for $j = 1, \ldots, d$) at time t, represented by the vector $x_t \in \mathbb{R}^d$, of a label $y_t \in \{-1, 1\}$. Each also suffers the (non-convex) loss

$$
\ell_{0-1}(x_{t,j}, y_t) = 1 \{x_{t,j} y_t \leq 0\}.
$$

By assigning a weight w_j to each expert $x_{t,j}$ subject to the constraint that $w \succeq 0$ and $\langle w, 1 \rangle = 1$, then if we were to randomly choose to predict using expert j with probability w_j, we would suffer expected loss at time t of

$$
\ell_t(w) = \sum_{j=1}^d w_j \ell_{0-1}(x_{t,j}, y_t) = \langle g_t, w \rangle,
$$

where we have defined the vector $g_t = [\ell_{0-1}(x_{t,j}, y_t)]_{j=1}^d \in \{0, 1\}^d$. Notably, the expected zero-one loss is convex (even linear), so that its online minimization falls into the online convex programming framework.

As we see in the sequel, online convex programming approaches are often quite simple, and, in fact, are often provably optimal in a variety of scenarios outside of online convex optimization. This motivates our study, and we will see that online convex programming approaches have a number of similarities to our regret minimization approaches in previous chapters on universal coding, regret, and redundancy.
23.2 Online gradient and non-Euclidean gradient (mirror) descent

We now turn to an investigation of the single approach we will use to solve online convex optimization problems, which is known as mirror descent. Before describing the algorithm in its full generality, however, we first demonstrate a special case (though our analysis will be for the general algorithm).

Roughly, the intuition for our procedures is as follows: after observing a loss ℓ_t, we make a small update to move our estimate w_t in a direction to improve the value of the losses we have seen. However, so that we do not make progress too quickly—or too aggressively follow spurious information—we attempt to keep new iterates close to previous iterates. With that in mind, we present (projected) online gradient descent, which requires only that we specify a sequence η_t of non-increasing stepsizes.

Input: Parameter space \mathcal{W}, stepsize sequence η_t.

Repeat: for each iteration t, predict $w_t \in \mathcal{W}$, receive function ℓ_t and suffer loss $\ell_t(w_t)$.

Compute any $g_t \in \partial \ell_t(w_t)$, and perform subgradient update

$$w_{t+1} = w_t - \eta_t g_t, \quad w_{t+1} = \text{Proj}_\mathcal{W}(w_{t+1}),$$

where $\text{Proj}_\mathcal{W}$ denotes (Euclidean) projection onto \mathcal{W}.

Figure 23.1: Online projected gradient descent.

An equivalent formulation of the update (23.2.1) is to write it as the single step

$$w_{t+1} = \arg\min_{w \in \mathcal{W}} \left\{ \langle g_t, w \rangle + \frac{1}{2\eta_t} \|w - w_t\|_2^2 \right\},$$

(23.2.2)

which makes clear that we trade between improving performance on ℓ_t via the linear approximation of $\ell_t(w) \approx \ell_t(w_t) + g_t^\top (w - w_t)$ and remaining close to w_t according to the Euclidean distance $\|\cdot\|_2$.

In a variety of scenarios, however, it is quite advantageous to measure distances in a way more amenable to the problem structure, for example, if \mathcal{W} is a probability simplex or we have prior information about the loss functions ℓ_t that nature may choose. With this in mind, we present a slightly more general algorithm, which requires us to give a few more definitions.

Given a convex differentiable function $\psi : \mathbb{R}^d \to \mathbb{R}$, we define the Bregman divergence associated with ψ by

$$D_\psi(w, v) = \psi(w) - \psi(v) - (\nabla \psi(v), w - v).$$

(23.2.3)

The Bregman divergence is always non-negative, as $D_\psi(w, v)$ is the gap between the true function value $\psi(w)$ and its linear approximation at the point v (see Figure 23.2). A few examples illustrate its properties.

Example 23.4 (Euclidean distance as Bregman divergence): Take $\psi(w) = \frac{1}{2} \|w\|_2^2$ to obtain $D(w, v) = \frac{1}{2} \|w - v\|_2^2$. More generally, if for a matrix A we define $\|w\|_A^2 = w^\top A w$, then taking $\psi(w) = \frac{1}{2} w^\top A w$, we have

$$D_\psi(w, v) = \frac{1}{2} (w - v)^\top A (w - v) = \frac{1}{2} \|w - v\|_A^2.$$

So Bregman divergences generalize (squared) Euclidean distance. \(\diamondsuit\)

2The reasons for this name are somewhat convoluted, and we do not dwell on them.
Example 23.5 (KL divergence as a Bregman divergence): Take $\psi(w) = \sum_{j=1}^{d} w_j \log w_j$. Then ψ is convex over the positive orthant \mathbb{R}^d_{++} (the second derivative of $w \log w$ is $1/w$), and for $w, v \in \Delta_d = \{ u \in \mathbb{R}^d_{++} : \langle 1, u \rangle = 1 \}$, we have

$$D_\psi(w, v) = \sum_j w_j \log w_j - \sum_j v_j \log v_j - \sum_j (1 + \log v_j)(w_j - v_j) = \sum_j w_j \log \frac{w_j}{v_j} = D_{\text{kl}}(w||v),$$

where in the final equality we treat w and v as probability distributions on $\{1, \ldots, d\}$.

With these examples in mind, we now present the mirror descent algorithm, which is the natural generalization of online gradient descent.

Input: proximal function ψ, parameter space W, and non-increasing stepsize sequence η_1, η_2, \ldots

Repeat: for each iteration t, predict $w_t \in W$, receive function ℓ_t and suffer loss $\ell_t(w_t)$. Compute any $g_t \in \partial \ell_t(w_t)$, and perform non-Euclidean subgradient update

$$w_{t+1} = \arg\min_{w \in W} \left\{ \langle g_t, w \rangle + \frac{1}{\eta_t} D_\psi(w, w_t) \right\}. \tag{23.2.4}$$

Figure 23.3: The online mirror descent algorithm.

Before providing the analysis of Algorithm 23.3, we give a few examples of its implementation. First, by taking $W = \mathbb{R}^d$ and $\psi(w) = \frac{1}{2} \|w\|^2_2$, we note that the mirror descent procedure simply corresponds to the gradient update $w_{t+1} = w_t - \eta_t g_t$. We can also recover the exponentiated gradient algorithm, also known as entropic mirror descent.

Example 23.6 (Exponentiated gradient algorithm): Suppose that we have $W = \Delta_d = \{ w \in \mathbb{R}^d_{++} : \langle 1, w \rangle = 1 \}$. Then $\psi(w) = \frac{1}{2} \sum_{j=1}^{d} w_j^2$. We can then use the exponentiated gradient algorithm, which simply corresponds to the update rule $w_{t+1} = \exp(\eta_t g_t)$, where $\exp(w) = \sum_{j=1}^{d} e^{w_j}$. This algorithm is known as the online mirror descent algorithm with the logarithmic barrier function as the proximal function.
\(\mathbb{R}_+^d : \{ \mathbf{1}, w = 1 \} \), the probability simplex in \(\mathbb{R}^d \). Then a natural choice for \(\psi \) is the negative entropy, \(\psi(w) = \sum_j w_j \log w_j \), which (as noted previously) gives \(D_\psi(w, v) = \sum_j w_j \log \frac{w_j}{v_j} \). We now consider the update step (23.2.4). In this case, fixing \(v = w_t \) for notational simplicity, we must solve

\[
\minimize \langle g, w \rangle + \frac{1}{\eta} \sum_j w_j \log \frac{w_j}{v_j} \text{ subject to } w \in \Delta_d.
\]

in \(w \). Writing the Lagrangian for this problem after introducing multipliers \(\tau \in \mathbb{R} \) for the constraint that \(\langle \mathbf{1}, w \rangle = 1 \) and \(\lambda \in \mathbb{R}_+^d \) for \(w \succeq 0 \), we have

\[
L(w, \lambda, \tau) = \langle g, w \rangle + \frac{1}{\eta} \sum_{j=1}^{d} w_j \log \frac{w_j}{v_j} - \langle \lambda, w \rangle + \tau(\langle \mathbf{1}, w \rangle - 1),
\]

which is minimized by taking

\[
w_j = v_j \exp(-\eta g_j + \lambda_j \eta - \tau \eta - 1),
\]

and as \(w_j > 0 \) certainly, the constraint \(w \succeq 0 \) is inactive and \(\lambda_j = 0 \). Thus, choosing \(\tau \) to normalize the \(w_j \), we obtain the exponentiated gradient update

\[
w_{t+1,i} = \frac{w_{t,i} e^{-\eta g_{t,i}}}{\sum_j w_{t,j} e^{-\eta g_{t,j}}} \text{ for } i = 1, \ldots, d,
\]
as the explicit calculation of the mirror descent update (23.2.4).

We now turn to an analysis of the mirror descent algorithm. Before presenting the analysis, we require two more definitions that allow us to relate Bregman divergences to various norms.

Definition 23.1. Let \(\|\cdot\| \) be a norm. The dual norm \(\|\cdot\|_* \) associated with \(\|\cdot\| \) is

\[
\| y \|_* := \sup_{x : \| x \| \leq 1} x^\top y.
\]

For example, a straightforward calculation shows that the dual to the \(\ell_\infty \)-norm is the \(\ell_1 \)-norm, and the Euclidean norm \(\|\cdot\|_2 \) is self-dual (by the Cauchy-Schwarz inequality). Lastly, we require a definition of functions of suitable curvature for use in mirror descent methods.

Definition 23.2. A convex function \(f : \mathbb{R}^d \to \mathbb{R} \) is strongly convex with respect to the norm \(\|\cdot\| \) over the set \(W \) if for all \(w, v \in W \) and \(g \in \partial f(w) \) we have

\[
f(v) \geq f(w) + \langle g, v - w \rangle + \frac{1}{2} \| w - v \|^2.
\]

That is, the function \(f \) is strongly convex if it grows at least quadratically fast at every point in its domain. It is immediate from the definition of the Bregman divergence that \(\psi \) is strongly convex if and only if

\[
D_\psi(w, v) \geq \frac{1}{2} \| w - v \|^2.
\]

As two examples, we consider Euclidean distance and entropy. For the Euclidean distance, which uses \(\psi(w) = \frac{1}{2} \| w \|^2_2 \), we have \(\nabla \psi(w) = w \), and

\[
\frac{1}{2} \| v \|^2_2 - \frac{1}{2} \| w + v - w \|^2_2 = \frac{1}{2} \| w \|^2_2 + \langle w, v - w \rangle - \frac{1}{2} \| w - v \|^2_2
\]

by a calculation, so that \(\psi \) is strongly convex with respect to the Euclidean norm. We also have the following observation.
Observation 23.7. Let $\psi(w) = \sum_j w_j \log w_j$ be the negative entropy. Then ψ is strongly convex with respect to the ℓ_1-norm, that is,

$$D_\psi(w, v) = D_{\text{KL}}(w||v) \geq \frac{1}{2} \|w - v\|_1^2.$$

Proof. The result is an immediate consequence of Pinsker’s inequality, Proposition 2.11.

With these examples in place, we present the main theorem of this section.

Theorem 23.8 (Regret of mirror descent). Let ℓ_t be an arbitrary sequence of convex functions, and let w_t be generated according to the mirror descent algorithm 23.3. Assume that the proximal function ψ is strongly convex with respect to the norm $\|\cdot\|$, which has dual norm $\|\cdot\|_*$. Then

(a) If $\eta_t = \eta$ for all t, then for any $w^* \in W$,

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{1}{\eta} D_\psi(w^*, w_1) + \frac{\eta}{2} \sum_{t=1}^n \|g_t\|_*^2.$$

(b) If W is compact and $D_\psi(w^*, w) \leq R^2$ for any $w \in W$, then

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{1}{2\eta} R^2 + \sum_{t=1}^n \frac{\eta_t}{2} \|g_t\|_*^2.$$

Before proving the theorem, we provide a few comments to exhibit its power. First, we consider the Euclidean case, where $\psi(w) = \frac{1}{2} \|w\|_2^2$, and we assume that the loss functions ℓ_t are all L-Lipschitz, meaning that $|\ell_t(w) - \ell_t(v)| \leq L \|w - v\|_2$, which is equivalent to $\|g_t\|_2 \leq L$ for all $g_t \in \partial \ell_t(w)$. In this case, the two regret bounds above become

$$\frac{1}{2\eta} \|w^* - w_1\|_2^2 + \frac{\eta}{2} nL^2 \quad \text{and} \quad \frac{1}{2\eta} R^2 + \sum_{t=1}^n \frac{\eta_t}{2} L^2,$$

respectively, where in the second case we assumed that $\|w^* - w_t\|_2 \leq R$ for all t. In the former case, we take $\eta = \frac{R}{L\sqrt{n}}$, while in the second, we take $\eta_t = \frac{R}{L\sqrt{t}}$, which does not require knowledge of n ahead of time. Focusing on the latter case, we have the following corollary.

Corollary 23.9. Assume that $W \subset \{w \in \mathbb{R}^d : \|w\|_2 \leq R\}$ and that the loss functions ℓ_t are L-Lipschitz with respect to the Euclidean norm. Take $\eta_t = \frac{R}{L\sqrt{t}}$. Then for all $w^* \in W$,

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq 3RL\sqrt{n}.$$

Proof. For any $w, w^* \in W$, we have $\|w - w^*\|_2 \leq 2R$, so that $D_\psi(w^*, w) \leq 4R^2$. Using that

$$\sum_{t=1}^n t^{-\frac{1}{2}} \leq \int_0^n t^{-\frac{1}{2}} dt = 2\sqrt{n}$$

gives the result.
Now that we have presented the Euclidean variant of online convex optimization, we turn to an example that achieves better performance in high dimensional settings, as long as the domain is the probability simplex. (Recall Example 23.3 for motivation.) In this case, we have the following corollary to Theorem 23.8.

Corollary 23.10. Assume that \(W = \Delta_d = \{w \in \mathbb{R}^d_+ : \langle 1, w \rangle = 1 \} \) and take the proximal function \(\psi(w) = \sum_j w_j \log w_j \) to be the negative entropy in the mirror descent procedure 23.3. Then with the fixed stepsize \(\eta \) and initial point as the uniform distribution \(w_1 = 1/d \), we have for any sequence of convex losses \(\ell_t \)

\[
\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{\log d}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \|g_t\|_\infty^2.
\]

Proof Using Pinsker’s inequality in the form of Observation 23.7, we have that \(\psi \) is strongly convex with respect to \(\|\cdot\|_1 \). Consequently, taking the dual norm to be the \(\ell_\infty \)-norm, part (a) of Theorem 23.8 shows that

\[
\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{1}{\eta} \sum_{j=1}^d w_j^* \log \frac{w_j^*}{w_{1,j}} + \frac{\eta}{2} \sum_{t=1}^n \|g_t\|_\infty^2.
\]

Noting that with \(w_1 = 1/d \), we have \(D_\psi(w^*, w_1) \leq \log d \) for any \(w^* \in W \) gives the result. \(\square \)

Corollary 23.10 yields somewhat sharper results than Corollary 23.9, though in the restricted setting that \(W \) is the probability simplex in \(\mathbb{R}^d \). Indeed, let us assume that the subgradients \(g_t \in [-1, 1]^d \), the hypercube in \(\mathbb{R}^d \). In this case, the tightest possible bound on their \(\ell_2 \)-norm is \(\|g_t\|_2 \leq \sqrt{d} \), while \(\|g_t\|_\infty \leq 1 \) always. Similarly, if \(W = \Delta_d \), then while we are only guaranteed that \(\|w^* - w_1\|_2 \leq 1 \). Thus, the best regret guaranteed by the Euclidean case (Corollary 23.9) is

\[
\frac{1}{2\eta} \|w^* - w_1\|_2^2 + \frac{\eta}{2} nd \leq \sqrt{nd} \text{ with the choice } \eta = \frac{1}{\sqrt{nd}},
\]

while the entropic mirror descent procedure (Alg. 23.3 with \(\psi(w) = \sum_j w_j \log w_j \)) guarantees

\[
\frac{\log d}{\eta} + \frac{\eta}{2n} \leq \sqrt{2n \log d} \text{ with the choice } \eta = \frac{\sqrt{2 \log d}}{2 \sqrt{n}}.
\]

The latter guarantee is exponentially better in the dimension. Moreover, the key insight is that we essentially maintain a “prior,” and then perform “Bayesian”-like updating of the posterior distribution \(w_t \) at each time step, exactly as in the setting of redundancy minimization.

23.2.1 Proof of Theorem 23.8

The proof of the theorem proceeds in three lemmas, which are essentially inductive applications of optimality conditions for convex optimization problems. The first is the explicit characterization of optimality for a convex optimization problem. (For a proof of this lemma, see, for example, the books of Hiriart-Urruty and Lemaréchal [89, 90], or Section 2.5 of Boyd et al. [34].)

Lemma 23.11. Let \(h : \mathbb{R}^d \to \mathbb{R} \) be a convex function and \(W \) be a convex set. Then \(w^* \) minimizes \(h(w) \) over \(W \) if and only if there exists \(g \in \partial h(w^*) \) such that

\[
\langle g, w - w^* \rangle \geq 0 \text{ for all } w \in W.
\]
Lemma 23.12. Let $\ell_t : W \to \mathbb{R}$ be any sequence of convex loss functions and η_t be a non-increasing sequence, where $\eta_0 = \infty$. Then with the mirror descent strategy (23.2.4), for any $w^* \in W$ we have

$$\sum_{t=1}^{n} \ell_t(w_t) - \ell_t(w^*) \leq \sum_{t=1}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} \right) D_\psi(w^*, w_t) + \sum_{t=1}^{n} \left[-\frac{1}{\eta_t} D_\psi(w_{t+1}, w_t) + \langle g_t, w_t - w_{t+1} \rangle \right].$$

Proof. Our proof follows by the application of a few key identities. First, we note that by convexity, we have for any $g_t \in \partial \ell_t(w_t)$ that

$$\ell_t(w_t) - \ell_t(w^*) \leq \langle g_t, w_t - w^* \rangle.$$ \hfill (23.2.6)

Secondly, we have that because w_{t+1} minimizes

$$\langle g_t, w \rangle + \frac{1}{\eta_t} D_\psi(w, w_t)$$

over $w \in W$, then Lemma 23.11 implies

$$\langle \eta_t g_t + \nabla \psi(w_{t+1}) - \nabla \psi(w_t), w - w_{t+1} \rangle \geq 0 \text{ for all } w \in W.$$ \hfill (23.2.7)

Taking $w = w^*$ in inequality (23.2.7) and making a substitution in inequality (23.2.6), we have

$$\ell_t(w_t) - \ell_t(w^*) \leq \langle g_t, w_t - w^* \rangle = \langle g_t, w_{t+1} - w^* \rangle + \langle g_t, w_t - w_{t+1} \rangle \leq \frac{1}{\eta_t} \langle \nabla \psi(w_{t+1}) - \nabla \psi(w_t), w^* - w_{t+1} \rangle + \langle g_t, w_t - w_{t+1} \rangle = \frac{1}{\eta_t} [D_\psi(w^*, w_{t+1}) - D_\psi(w^*, w_{t+1}) - D_\psi(w_{t+1}, w_t)] + \langle g_t, w_t - w_{t+1} \rangle \hfill (23.2.8)$$

where the final equality (23.2.8) follows from algebraic manipulations of $D_\psi(w, w')$. Summing inequality (23.2.8) gives

$$\sum_{t=1}^{n} \ell_t(w_t) - \ell_t(w^*) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} [D_\psi(w^*, w_t) - D_\psi(w^*, w_{t+1}) - D_\psi(w_{t+1}, w_t)] + \sum_{t=1}^{n} \langle g_t, w_t - w_{t+1} \rangle \leq \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} \right) D_\psi(w^*, w_t) + \frac{1}{\eta_1} D_\psi(w^*, w_1) - \frac{1}{\eta_t} D_\psi(w^*, w_{t+1})$$

$$+ \sum_{t=1}^{n} \left[-\frac{1}{\eta_t} D_\psi(w_{t+1}, w_t) + \langle g_t, w_t - w_{t+1} \rangle \right]$$

as desired.

It remains to use the negative terms $-D_\psi(w_t, w_{t+1})$ to cancel the gradient terms $\langle g_t, w_t - w_{t+1} \rangle$. To that end, we recall Definition 23.1 of the dual norm $\|\cdot\|_*$ and the strong convexity assumption on ψ. Using the Fenchel-Young inequality, we have

$$\langle g_t, w_t - w_{t+1} \rangle \leq \|g_t\|_* \|w_t - w_{t+1}\| \leq \frac{\eta_t}{2} \|g_t\|_*^2 + \frac{1}{2\eta_t} \|w_t - w_{t+1}\|^2.$$

Now, we use the strong convexity condition, which gives

$$-\frac{1}{\eta_t} D_\psi(w_{t+1}, w_t) \leq -\frac{1}{2\eta_t} \|w_t - w_{t+1}\|^2.$$

Combining the preceding two displays in Lemma 23.12 gives the result of Theorem 23.8.
23.3 Online to batch conversions

Martingales!

23.4 More refined convergence guarantees

It is sometimes possible to give more refined bounds than those we have so far provided. As motivation, let us revisit Example 23.3, but suppose that one of the experts has no loss—that is, it makes perfect predictions. We might expect—accurately!—that we should attain better convergence guarantees using exponentiated weights, as the points w_t be maintain should quickly eliminate non-optimal experts.

To that end, we present a refined regret bound for the mirror descent algorithm 23.3 with the entropic regularization $\psi(w) = \sum_j w_j \log w_j$.

Proposition 23.13. Let $\psi(w) = \sum_j w_j \log w_j$, and assume that the losses ℓ_t are such that their subgradients have all non-negative entries, that is, $g_t \in \partial \ell_t(w)$ implies $g_t \succeq 0$. For any such sequence of loss functions ℓ_t and any $w^* \in \mathcal{W} = \Delta_d$,

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{\log d}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \sum_{j=1}^d w_{t,j} g_{t,j}^2.$$

While as stated, the bound of the proposition does not look substantially more powerful than Corollary 23.10, but a few remarks will exhibit its consequences. We prove the proposition in Section 23.4.1 to come.

First, we note that because $w_t \in \Delta_d$, we will always have $\sum_j w_{t,j} g_{t,j}^2 \leq \|g_t\|_\infty^2$. So certainly the bound of Proposition 23.13 is never worse than that of Corollary 23.10. Sometimes this can be made tighter, however, as exhibited by the next corollary, which applies (for example) to the experts setting of Example 23.3. More specifically, we have d experts, each suffering losses in $[0, 1]$, and we seek to predict with the best of the d experts.

Corollary 23.14. Consider the linear online convex optimization setting, that is, where $\ell_t(w_t) = \langle g_t, w_t \rangle$ for vectors g_t, and assume that $g_t \in \mathbb{R}_+^d$ with $\|g_t\|_\infty \leq 1$. In addition, assume that we know an upper bound L_n^* on $\sum_{t=1}^n \ell_t(w^*)$. Then taking the stepsize $\eta = \min\{1, \sqrt{\log d} / \sqrt{L_n^*}\}$, we have

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq 3 \max\left\{\log d, \sqrt{\log d} \sqrt{L_n^*} \log d\right\}.$$

Note that when $\ell_t(w^*) = 0$ for all w^*, which corresponds to a perfect expert in Example 23.3, the upper bound becomes constant in n, yielding $3\log d$ as a bound on the regret. Unfortunately, in our bound of Corollary 23.14, we had to assume that we knew ahead of time a bound on the loss of the best predictor w^*, which is unrealistic in practice. There are a number of techniques for dealing with such issues, including a standard one in the online learning literature known as the doubling trick. We explore some in the exercises.

Proof First, we note that $\sum_j w_j g_{t,j}^2 \leq \langle w, g_t \rangle$ for any nonnegative vector w, as $g_{t,j} \in [0, 1]$. Thus, Proposition 23.13 gives

$$\sum_{t=1}^n [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{\log d}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \langle w_t, g_t \rangle = \frac{\log d}{\eta} + \frac{\eta}{2} \sum_{t=1}^n \ell_t(w_t).$$
Rearranging via an algebraic manipulation, this is equivalent to

\[
\left(1 - \frac{\eta}{2}\right) \sum_{t=1}^{n} [\ell_t(w_t) - \ell_t(w^*)] \leq \frac{\log d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \ell_t(w^*).
\]

Take \(\eta = \min\{1, \sqrt{\log d/L^*_n}\} \). Then if \(\sqrt{\log d/L^*_n} \leq 1 \), we have that the right hand side of the above inequality becomes \(\sqrt{L^*_n} \log d + \frac{1}{2} \sqrt{L^*_n} \log d \). On the other hand, if \(L^*_n < \log d \), then the right hand side of the inequality becomes \(\log d + \frac{1}{2} L^*_n \leq \frac{3}{2} \log d \). In either case, we obtain the desired result by noting that \(1 - \frac{\eta}{2} \geq \frac{1}{2} \).

23.4.1 Proof of Proposition 23.13

Our proof relies on a technical lemma, after which the derivation is a straightforward consequence of Lemma 23.12. We first state the technical lemma, which applies to the update that the exponentiated gradient procedure makes.

Lemma 23.15. Let \(\psi(x) = \sum_j x_j \log x_j \), and let \(x, y \in \Delta_d \) be defined by

\[
y_i = \frac{x_i \exp(-\eta g_i)}{\sum_j x_j \exp(-\eta g_j)},
\]

where \(g \in \mathbb{R}^d_+ \) is non-negative. Then

\[
-\frac{1}{\eta} D_\psi(y, x) + \langle g, x - y \rangle \leq \frac{\eta}{2} \sum_{i=1}^{d} g^2_{t,i} x_i.
\]

Deferring the proof of the lemma, we note that it precisely applies to the setting of Lemma 23.12. Indeed, with a fixed stepsize \(\eta \), we have

\[
\sum_{t=1}^{n} \ell_t(w_t) - \ell_t(w^*) \leq \frac{1}{\eta} D_\psi(w^*, w_1) + \sum_{t=1}^{n} \left[-\frac{1}{\eta} D_\psi(w_{t+1}, w_t) + \langle g_t, w_t - w_{t+1} \rangle \right].
\]

Earlier, we used the strong convexity of \(\psi \) to eliminate the gradient terms \(\langle g_t, w_t - w_{t+1} \rangle \) using the bregman divergence \(D_\psi \). This time, we use Lemma 23.12: setting \(y = w_{t+1} \) and \(x = w_t \) yields the bound

\[
\sum_{t=1}^{n} \ell_t(w_t) - \ell_t(w^*) \leq \frac{1}{\eta} D_\psi(w^*, w_1) + \sum_{t=1}^{n} \frac{\eta}{2} \sum_{i=1}^{d} g^2_{t,i} w_{t,i}
\]
as desired.

Proof of Lemma 23.15 We begin by noting that a direct calculation yields \(D_\psi(y, x) = D_{\text{kl}}(y|x) = \sum_i y_i \log \frac{y_i}{x_i} \). Substituting the values for \(x \) and \(y \) into this expression, we have

\[
\sum_i y_i \log \frac{y_i}{x_i} = \sum_i y_i \log \left(\frac{x_i \exp(-\eta g_i)}{x_i(\sum_j \exp(-\eta g_j) x_j)} \right) = -\eta \langle g, y \rangle - \sum_i y_i \log \left(\sum_j x_j e^{-\eta g_j} \right).
\]
Now we use a Taylor expansion of the function \(g \mapsto \log(\sum_j x_je^{-\eta g_j}) \) around the point 0. If we define the vector \(p(g) \) by \(p_i(g) = x_i e^{-\eta g_i} / (\sum_j x_je^{-\eta g_j}) \), then

\[
\log \left(\sum_j x_je^{-\eta g_j} \right) = \log(\langle 1, x \rangle) - \eta p(0) \cdot g + \frac{\eta^2}{2} g^\top (\text{diag}(p(\bar{g})) - p(\bar{g})p(\bar{g})^\top) g,
\]

where \(\bar{g} = \lambda g \) for some \(\lambda \in [0, 1] \). Noting that \(p(0) = x \) and \(\langle 1, x \rangle = \langle 1, y \rangle = 1 \), we obtain

\[
D_\psi(y, x) = -\eta \langle g, y \rangle + \log(1) + \eta \langle g, x \rangle - \frac{\eta^2}{2} g^\top (\text{diag}(p(e\bar{g})) - p(\bar{g})p(\bar{g})^\top) g,
\]

whence

\[
-\frac{1}{\eta} D_\psi(y, x) + \langle g, x - y \rangle \leq \frac{\eta}{2} \sum_{i=1}^d g_i^2 p_i(\bar{g}). \tag{23.4.1}
\]

Lastly, we claim that the function

\[
s(\lambda) = \sum_{i=1}^d g_i^2 \frac{x_i e^{-\lambda g_i}}{\sum_j x_je^{-\lambda g_j}}
\]

is non-increasing on \(\lambda \in [0, 1] \). Indeed, we have

\[
s'(\lambda) = \frac{\left(\sum_i g_i x_i e^{-\lambda g_i} \right) \left(\sum_i g_i^2 x_i e^{-\lambda g_i} \right)}{\left(\sum_j x_je^{-\lambda g_j} \right)^2} - \frac{\sum_i g_i^3 x_i e^{-\lambda g_i}}{\sum_j x_je^{-\lambda g_j}} = \sum_{ij} g_i g_j^2 x_i x_j e^{-\lambda g_i - \lambda g_j} - \sum_{ij} g_i^3 g_j x_i x_j e^{-\lambda g_i - \lambda g_j}
\]

Using the Fenchel-Young inequality, we have \(ab \leq \frac{1}{3} |a|^3 + \frac{2}{3} |b|^3/2 \) for any \(a, b \), so \(g_i g_j^2 \leq \frac{1}{3} g_i^3 + \frac{2}{3} g_j^3 \). This implies that the numerator in our expression for \(s'(\lambda) \) is non-positive. Thus we have \(s(\lambda) \leq s(0) = \sum_{i=1}^d g_i^2 x_i \), which gives the result when combined with inequality (23.4.1). \(\square \)
Chapter 24

Exploration, exploitation, and bandit problems

Consider the following problem: we have a possible treatment for a population with a disease, but we do not know whether the treatment will have a positive effect or not. We wish to evaluate the treatment to decide whether it is better to apply it or not, and we wish to optimally allocate our resources to attain the best outcome possible. There are challenges here, however, because for each patient, we may only observe the patient’s behavior and disease status in one of two possible states—under treatment or under control—and we wish to allocate as few patients to the group with worse outcomes (be they control or treatment) as possible. This balancing act between exploration—observing the effects of treatment or non-treatment—and exploitation—giving treatment or not as we decide which has better palliative outcomes—underpins and is the paradigmatic aspect of the multi-armed bandit problem.\(^1\)

Our main focus in this chapter is a fairly simple variant of the K-armed bandit problem, though we note that there is a substantial literature in statistics, operations research, economics, game theory, and computer science on variants of the problems we consider. In particular, we consider the following sequential decision making scenario. We assume that there are K distributions P_1, \ldots, P_K on \mathbb{R}, which we identify (with no loss of generality) with K random variables Y_1, \ldots, Y_K. Each random variable Y_i has mean μ_i and is σ^2-sub-Gaussian, meaning that

$$
E[\exp(\lambda(Y_i - \mu_i))] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right),
$$

(24.0.1)

The goal is to find the index i with the maximal mean μ_i without evaluating sub-optimal “arms” (or random variables Y_i) too often. At each iteration t of the process, the player takes an action $A_t \in \{1, \ldots, K\}$, then, conditional on $i = A_t$, observes a reward $Y_i(t)$ drawn independently from the distribution P_i. Then the goal is to minimize the the regret after n steps, which is

$$
\text{Reg}_n := \sum_{t=1}^{n} \mu_i - \mu_{A_t},
$$

(24.0.2)

\(^1\)The problem is called the bandit problem in the literature because we imagine a player in a casino, choosing between K different slot machines (hence a K-armed bandit, as this is a casino and the player will surely lose eventually), each with a different unknown reward distribution. The player wishes to put as much of his money as possible into the machine with the greatest expected reward.
where \(i^* \in \arg\max_i \mu_i \) so \(\mu_{i^*} = \max_i \mu_i \). The regret \(\text{Reg}_n \) as defined is a random quantity, so we generally seek to give bounds on its expectation or high-probability guarantees on its value. In this chapter, we generally focus for simplicity on the expected regret,

\[
\text{Reg}_n := \mathbb{E} \left[\sum_{t=1}^n \mu_{i^*} - \mu_{A_t} \right],
\]

where the expectation is taken over any randomness in the player’s actions \(A_t \) and in the repeated observations of the random variables \(Y_1, \ldots, Y_K \).

24.1 Confidence-based algorithms

A natural first strategy to consider is one based on confidence intervals with slight optimism. Roughly, if we believe the true mean \(\mu_i \) for an arm \(i \) lies within \([\hat{\mu}_i - c_i, \hat{\mu}_i + c_i] \), where \(c_i \) is some interval (whose length decreases with time \(t \)), then we optimistically “believe” that the value of arm \(i \) is \(\hat{\mu}_i + c_i \); then at iteration \(t \), as our action \(A_t \) we choose the arm whose optimistic mean is the highest, thus hoping to maximize our received reward.

This strategy lies at the heart of the Upper Confidence Bound (UCB) family of algorithms, due to [12], a simple variant of which we describe here. Before continuing, we recall the standard result on sub-Gaussian random variables of Corollary 4.10 in our context, though we require a somewhat more careful calculation because of the sequential nature of our process. Let \(T_i(t) = \text{card}\{\tau \leq t : A_\tau = i\} \) denote the number of times that arm \(i \) has been pulled by time \(t \) of the bandit process. Then if we define

\[
\hat{\mu}_i(t) := \frac{1}{T_i(t)} \sum_{\tau \leq t, A_\tau = i} Y_i(\tau),
\]

to be the running average of the rewards of arm \(i \) at time \(t \) (computed only on those instances in which arm \(i \) was selected), we claim that for all \(i \) and all \(t \),

\[
\mathbb{P} \left(\hat{\mu}_i(t) \geq \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}} \right) \vee \mathbb{P} \left(\hat{\mu}_i(t) \leq \mu_i - \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}} \right) \leq \delta. \tag{24.1.1}
\]

That is, so long as we pull the arms sufficiently many times, we are unlikely to pull the wrong arm. We prove the claim (24.1.1) in the appendix to this chapter.

Here then is the UCB procedure:

Input: Sub-gaussian parameter \(\sigma^2 \) and sequence of deviation probabilities \(\delta_1, \delta_2, \ldots \).

Initialization: Play each arm \(i = 1, \ldots, K \) once.

Repeat: for each iteration \(t \), play the arm maximizing

\[
\hat{\mu}_i(t) + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta_t}}{T_i(t)}}.
\]

Figure 24.1: The Upper Confidence Bound (UCB) Algorithm

If we define

\[
\Delta_i := \mu_{i^*} - \mu_i
\]

354
to be the gap in means between the optimal arm and any sub-optimal arm, we then obtain the following guarantee on the expected number of pulls of any sub-optimal arm \(i \) after \(n \) steps.

Proposition 24.1. Assume that each of the \(K \) arms is \(\sigma^2 \)-sub-Gaussian and let the sequence \(\delta_1 \geq \delta_2 \geq \cdots \) be non-increasing and positive. Then for any \(n \) and any arm \(i \neq i^* \),

\[
\mathbb{E}[T_i(n)] \leq \left[\frac{4\sigma^2 \log \frac{1}{\delta_n}}{\Delta_i^2} \right] + 2 \sum_{i=2}^{n} \delta_i.
\]

Proof Without loss of generality, we assume arm 1 satisfies \(\mu_1 = \max_i \mu_i \), and let arm \(i \) be any sub-optimal arm. The key insight is to carefully consider what occurs if we play arm \(i \) in the UCB procedure of Figure 24.1. In particular, if we play arm \(i \) at time \(t \), then we certainly have

\[
\hat{\mu}_i(t) + \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} \geq \hat{\mu}_1(t) + \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_1}}{T_1(t)}}.
\]

For this to occur, at least one of the following three events must occur (we suppress the dependence on \(i \) for each of them):

\[
\mathcal{E}_1(t) := \left\{ \hat{\mu}_i(t) \geq \mu_i + \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} \right\}, \quad \mathcal{E}_2(t) := \left\{ \hat{\mu}_1(t) \leq \mu_1 - \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_1}}{T_1(t)}} \right\},
\]

\[
\mathcal{E}_3(t) := \left\{ \Delta_i \leq 2\sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} \right\}.
\]

Indeed, suppose that none of the events \(\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3 \) occur at time \(t \). Then we have

\[
\hat{\mu}_i(t) + \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} < \mu_i + 2\sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} < \mu_i + \Delta_i = \mu_1 \leq \hat{\mu}_1(t) + \sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_1}}{T_1(t)}},
\]

the inequalities following by \(\mathcal{E}_1, \mathcal{E}_3, \) and \(\mathcal{E}_2 \), respectively.

Now, for any \(l \in \{1, \ldots, n\} \), we see that

\[
\mathbb{E}[T_i(n)] = \sum_{t=1}^{n} \mathbb{E}[1 \{ A_t = i \}] = \sum_{t=1}^{n} \mathbb{E}[1 \{ A_t = i, T_i(t) > l \} + 1 \{ A_t = i, T_i(t) \leq l \}]
\]

\[
\leq l + \sum_{t=l+1}^{n} \mathbb{P}(A_t = i, T_i(t) > l).
\]

Now, we use that \(\delta_i \) is non-increasing, and see that if we set

\[
l^* = \left\lfloor \frac{4\sigma^2 \log \frac{1}{\delta_n}}{\Delta_i^2} \right\rfloor,
\]

then to have \(T_i(t) > l^* \) it must be the case that \(\mathcal{E}_3(t) \) cannot occur—that is, we would have

\[
2\sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{T_i(t)}} > 2\sqrt{\frac{2\sigma^2 \log \frac{1}{\delta_i}}{l}} \geq \Delta_i.
\]

Thus we have

\[
\mathbb{E}[T_i(n)] = \sum_{t=1}^{n} \mathbb{E}[1 \{ A_t = i \}] \leq l^* + \sum_{t=l^*+1}^{n} \mathbb{P}(A_t = i, \mathcal{E}_3(t) \text{ fails})
\]

\[
\leq l^* + \sum_{t=l^*+1}^{n} \mathbb{P}(\mathcal{E}_1(t) \text{ or } \mathcal{E}_2(t)) \leq l^* + \sum_{t=l^*+1}^{n} 2\delta_i.
\]

355
This implies the desired result.

Naturally, the number of times arm i is selected in the sequential game is related to the regret of a procedure; indeed, we have

$$\text{Reg}_n = \sum_{t=1}^{n} (\mu_i - \mu_{A_t}) = \sum_{i=1}^{K} (\mu_i - \mu_i) T_i(n) = \sum_{i=1}^{K} \Delta_i T_i(n).$$

Using this identity, we immediately obtain two theorems on the (expected) regret of the UCB algorithm.

Theorem 24.2. Let $\delta_t = \delta / t^2$ for all t. Then for any $n \in \mathbb{N}$ the UCB algorithm attains

$$\operatorname{Reg}_n \leq \sum_{i \neq i^*} 4\sigma^2 \left[2 \log n - \log \frac{1}{\delta} \right] + \frac{\pi^2}{3} \left(\sum_{i=1}^{K} \Delta_i \right) \delta + \sum_{i=1}^{K} \Delta_i.$$

Proof First, we note that

$$\mathbb{E}[\Delta_i T_i(n)] \leq \Delta_i \left[4\sigma^2 \log \frac{1}{\delta_n} / \Delta_i^2 \right] + 2\Delta_i \sum_{t=2}^{n} \frac{\delta}{t^2} \leq \frac{4\sigma^2 \log 1}{\Delta_i} + \Delta_i + 2\Delta_i \sum_{t=2}^{n} \frac{\delta}{t^2}$$

by Proposition 24.1. Summing over $i \neq i^*$ and noting that $\sum_{t=2}^{\infty} t^{-2} = \pi^2 / 6 - 1$ gives the result.

Let us unpack the bound of Theorem 24.2 slightly. First, we make the simplifying assumption that $\delta_t = 1 / t^2$ for all t, and let $\Delta = \min_{i \neq i^*} \Delta_i$. In this case, we have expected regret bounded by

$$\operatorname{Reg}_n \leq 8 \frac{K \sigma^2 \log n}{\Delta} + \frac{\pi^2 + 1}{3} \sum_{i=1}^{K} \Delta_i.$$

So we see that the asymptotic regret with this choice of δ scales as $(K \sigma^2 / \Delta) \log n$, roughly linear in the classes, logarithmic in n, and inversely proportional to the gap in means. As a concrete example, if we know that the rewards for each arm Y_i belong to the interval $[0, 1]$, then Hoeffding’s lemma (recall Example 4.6) states that we may take $\sigma^2 = 1/4$. Thus the mean regret becomes at most $\sum_{i: \Delta_i > 0} 2 \log n / \Delta_i^2 (1 + o(1))$, where the $o(1)$ term tends to zero as $n \to \infty$.

If we knew a bit more about our problem, then by optimizing over δ and choosing $\delta = \sigma^2 / \Delta$, we obtain the upper bound

$$\operatorname{Reg}_n \leq O(1) \left[\frac{K \sigma^2}{\Delta} \log \frac{n \Delta}{\sigma^2} + K \max_{i: \Delta_i} \frac{\Delta_i}{\min_{i: \Delta_i}} \right],$$

that is, the expected regret scales asymptotically as $(K \sigma^2 / \Delta) \log(\frac{n \Delta}{\sigma^2})$—linearly in the number of classes, logarithmically in n, and inversely proportional to the gap between the largest and other means.

If any of the gaps $\Delta_i \to 0$ in the bound of Theorem 24.2, the bound becomes vacuous—it simply says that the regret is upper bounded by infinity. Intuitively, however, pulling a slightly sub-optimal arm should be insignificant for the regret. With that in mind, we present a slight variant of the above bounds, which has a worse scaling with n—the bound scales as \sqrt{n} rather than $\log n$—but is independent of the gaps Δ_i.

356
Theorem 24.3. If UCB is run with parameter $\delta_t = 1/t^2$, then

$$\operatorname{Reg}_n \leq \sqrt{8K\sigma^2n\log n} + 4 \sum_{i=1}^{K} \Delta_i.$$

Proof Fix any $\gamma > 0$. Then we may write the regret with the standard identity

$$\operatorname{Reg}_n = \sum_{i \neq i^*} \Delta_i T_i(n) = \sum_{i: \Delta_i \geq \gamma} \Delta_i T_i(n) + \sum_{i: \Delta_i < \gamma} \Delta_i T_i(n) \leq \sum_{i: \Delta_i \geq \gamma} \Delta_i T_i(n) + n\gamma,$$

where the final inequality uses that certainly $\sum_{i=1}^{K} T_i(n) \leq n$. Taking expectations with our UCB procedure and $\delta = 1$, we have by Theorem 24.2 that

$$\operatorname{Reg}_n \leq \sum_{i: \Delta_i \geq \gamma} \Delta_i \frac{8\sigma^2 \log n}{\Delta_i^2} + \frac{\pi^2 + 1}{3} \sum_{i=1}^{K} \Delta_i + n\gamma \leq K \frac{8\sigma^2 \log n}{\gamma} + n\gamma + \frac{\pi^2 + 1}{3} \sum_{i=1}^{K} \Delta_i,$$

Optimizing over γ by taking $\gamma = \sqrt{\frac{8K\sigma^2 \log n}{\pi^2}}$ gives the result.

Combining the above two theorems, we see that the UCB algorithm with parameters $\delta_t = 1/t^2$ automatically achieves the expected regret guarantee

$$\operatorname{Reg}_n \leq C \cdot \min \left\{ \sum_{i: \Delta_i > 0} \frac{\sigma^2 \log n}{\Delta_i}, \sqrt{K\sigma^2 n \log n} \right\}. \quad (24.1.3)$$

That is, UCB enjoys some adaptive behavior. It is not, however, optimal; there are algorithms, including Audibert and Bubeck’s MOSS (Minimax Optimal in the Stochastic Case) bandit procedure [11], which achieve regret

$$\operatorname{Reg}_n \leq C \cdot \min \left\{ \sqrt{Kn} \frac{K}{\Delta} \log \frac{n\Delta^2}{K} \right\},$$

which is essentially the bound specified by inequality (24.1.2) (which required knowledge of the Δ_is) and an improvement by $\log n$ over the analysis of Theorem 24.3. It is also possible to prove a high-probability guarantee for the UCB algorithms, which follows essentially immediately from the proof techniques of Proposition 24.1, but we leave this to the interested reader.

24.2 Bayesian approaches to bandits

The upper confidence bound procedure, while elegant and straightforward, has a variety of competitors, including online gradient descent approaches and a variety of Bayesian strategies. Bayesian strategies—because they (can) incorporate prior knowledge—have the advantage that they suggest policies for exploration and trading between regret and information; that is, they allow us to quantify a value for information. They often yield very simple procedures, allowing simpler implementations.

In this section, we thus consider the following specialized setting; there is substantially more possible here. We assume that there is a finite set of actions (arms) \mathcal{A} as before, and we have a
collection of distributions $\mathcal{P} = \{P_\theta\}_{\theta \in \Theta}$ parameterized by a set Θ (often, this is some subset of \mathbb{R}^K when we look at K-armed bandit problems with $\text{card}(\mathcal{A}) = K$, but we stay in this abstract setting temporarily). We also have a loss function $\ell : \mathcal{A} \times \Theta \to \mathbb{R}$ that measure the quality of an action $a \in \mathcal{A}$ for the parameter θ.

Example 24.4 (Classical Bernoulli bandit problem): The classical bandit problem, as in the UCB case of the previous section, has actions (arms) $\mathcal{A} = \{1, \ldots, K\}$, and the parameter space $\Theta = [0, 1]^K$, and we have that P_θ is a distribution on $Y \in \{0, 1\}^K$, where Y has independent coordinates $1, \ldots, K$ with $P(Y_j = 1) = \theta_j$, that is, $Y_j \sim \text{Bernoulli}(\theta_j)$. The goal is to find the arm with highest mean reward, that is, $\text{argmax}_j \theta_j$, and thus possible loss functions include $\ell(a, \theta) = -\theta_a$ or, if we wish the loss to be positive, $\ell(a, \theta) = 1 - \theta_a \in [0, 1]$. \hfill \Diamond

Lastly, in this Bayesian setting, we require a prior distribution π on the space Θ, where $\pi(\Theta) = 1$. We then define the Bayesian regret as

$$\text{Reg}_n(\mathcal{A}, \ell, \pi) = \mathbb{E}_\pi \left[\sum_{t=1}^n \ell(A_t, \theta) - \ell(A^*, \theta) \right],$$

where $A^* \in \text{argmin}_{a \in \mathcal{A}} \ell(a, \theta)$ is the minimizer of the loss, and $A_t \in \mathcal{A}$ is the action the player takes at time t of the process. The expectation (24.2.1) is taken both over the randomness in θ according to the prior π and any randomness in the player’s strategy for choosing the actions A_t at each time.

Our approaches in this section build off of those in Chapter 21, except that we no longer fully observe the desired observations Y—we may only observe $Y_{A_t}(t)$ at time t, which may provide less information. The broad algorithmic framework for this section is as follows. We now give several concrete instantiations of this broad procedure, as well as tools (both information-theoretic and otherwise) for its analysis.

24.2.1 Posterior (Thompson) sampling

The first strategy we consider is perhaps the simplest; in Algorithm 24.2, it corresponds to using π_t to be the posterior distribution on θ conditional on the history $Y_{A_1}(1), \ldots, Y_{A_{t-1}}(t-1)$. That is, we let $H_t := \{A_1, Y_{A_1}(1), A_2, Y_{A_2}(2), \ldots, A_t, Y_{A_t}(t)\}$ denote the history (or the σ-field thereof) of the procedure and rewards up to time t. Then at iteration t, we use the posterior

$$\pi_t(\theta) = \pi(\theta \mid H_{t-1}),$$

Input: Prior distribution π on space Θ, family of distributions $\mathcal{P} = \{P_\theta\}_{\theta \in \Theta}$

Repeat: for each iteration t, choose distribution π_t on space Θ (based on history $Y_{A_1}(1), \ldots, Y_{A_{t-1}}(t-1)$). Draw

$$\theta_t \sim \pi_t.$$

Play action $A_t \in \mathcal{A}$ minimizing

$$\ell(a, \theta_t)$$

over $a \in \mathcal{A}$, observe $Y_{A_t}(t)$.

Figure 24.2: The generic Bayesian algorithm
the distribution on \(\theta \) conditional on \(H_{t-1} \). This procedure was originally proposed by Thompson [138] in 1933 in the first paper on bandit problems. There are several analyses of Thompson (and related Bayesian) procedures possible; our first analysis proceeds by using confidence bounds, while our later analyses give a more information theoretic analysis.

First, we provide a more concrete specification of Algorithm 24.2 for Thompson (posterior) sampling in the case of Bernoulli rewards.

Example 24.5 (Thompson sampling with Bernoulli penalties): Let us suppose that the vector \(\theta \in [0,1]^K \), and we draw \(\theta_i \sim \text{Beta}(1,1) \), which corresponds to the uniform distribution on \([0,1]^d\). The actions available are simply to select one of the coordinates, \(a \in \mathcal{A} = \{1, \ldots, K\} \), and we observe \(Y_a \sim \text{Bernoulli}(\theta_a) \), that is, \(\mathbb{P}(Y_a = 1 \mid \theta) = \theta_a \). That is, \(\ell(a, \theta) = \theta_a \). Let \(T_a^0(t) = \text{card}\{\tau \leq t : A_t = a, Y_a(\tau) = 1\} \) be the number of times arm \(a \) is pulled and results in a loss of 1 by time \(t \), and similarly let \(T_a^1(t) = \text{card}\{\tau \leq t : A_t = a, Y_a(\tau) = 0\} \). Then, recalling Example 21.6 on Beta-Bernoulli distributions, Thompson sampling proceeds as follows:

1. For each arm \(a \in \mathcal{A} = \{1, \ldots, K\} \), draw \(\theta_a(t) \) from \(\text{Beta}(1 + T_a^1(t), 1 + T_a^0(t)) \).
2. Play the action \(A_t = \arg\min_a \theta_a(t) \).
3. Observe the loss \(Y_{A_t}(t) \in \{0,1\} \), and increment the appropriate count.

Thompson sampling is simple in this case, and it is implementable with just a few counters.

We may extend Example 24.5 to the case in which the losses come from any distribution with mean \(\theta_i \), so long as the distribution is supported on \([0,1]\). In particular, we have the following example.

Example 24.6 (Thompson sampling with bounded random losses): Let us again consider the setting of Example 24.5, except that the observed losses \(Y_a(t) \in [0,1] \) with \(\mathbb{E}[Y_a \mid \theta] = \theta_a \). The following modification allows us to perform Thompson sampling in this case, even without knowing the distribution of \(Y_a(\tau) \); instead of observing a loss \(Y_a \in \{0,1\} \), we construct a random observation \(\widetilde{Y}_a \in \{0,1\} \) with the property that \(\mathbb{P}(\widetilde{Y}_a = 1 \mid Y_a) = Y_a \). Then the losses \(\ell(a, \theta) = \theta_a \) are identical, and the posterior distribution over \(\theta \) is still a \(\text{Beta} \) distribution. We simply redefine

\[
T_a^0(t) := \text{card}\{\tau \leq t : A_t = a, \widetilde{Y}_a(\tau) = 0\} \quad \text{and} \quad T_a^1(t) := \text{card}\{\tau \leq t : A_t = a, \widetilde{Y}_a(\tau) = 0\}.
\]

The Thompson sampling procedure is otherwise identical.

Our first analysis shows that Thompson sampling can guarantee performance similar to (or in some cases, better than) confidence-based procedures, which we do by using a sequence of (potential) lower and upper bounds on the losses of actions. (Recall we wish to minimize our losses, so that we would optimistically play those arms with the lowest estimated loss.) This analysis is based on that of Russo and Van Roy [130]. Let \(L_t : \mathcal{A} \to \mathbb{R} \) and \(U_t : \mathcal{A} \to \mathbb{R} \) be an arbitrary sequence of (random) functions that are measurable with respect to \(H_{t-1} \), that is, they are constructed based only on \(\{A_1, Y_{A_1}(1), \ldots, A_{t-1}, Y_{A_{t-1}}(t-1)\} \). Then we can decompose the
Bayesian regret (24.2.1) as
\[
\text{Reg}_n(A, \ell, \pi) = \mathbb{E}_\pi \left[\sum_{t=1}^n \ell(A_t, \theta) - \ell(A^*, \theta) \right]
\]
with equality (24.2.2)
\[
\sum_{t=1}^n \mathbb{E}_\pi [U_t(A_t) - L_t(A_t)] + \sum_{t=1}^n \mathbb{E}_\pi [\ell(A_t, \theta) - U_t(A_t)] + \sum_{t=1}^n \mathbb{E}_\pi [L_t(A_t) - \ell(A^*, \theta)]
\]
where in equality (i) we used that conditional on \(H_{t-1}, A_t\) and \(A^*_t = A^*\) have the same distribution, as we sample from the posterior \(\pi(\theta | H_{t-1})\), and \(L_t\) is a function of \(H_{t-1}\). With the decomposition (24.2.2) at hand, we may now provide an expected regret bound for Thompson (or posterior) sampling. We remark that the behavior of Thompson sampling is independent of these upper and lower bounds \(U_t, L_t\) we have chosen—they are simply an artifact to make analysis easier.

Theorem 24.7. Suppose that conditional on the choice of action \(A_t = a\), the received loss \(Y_a(t)\) is \(\sigma^2\)-sub-Gaussian with mean \(\ell(a, \theta)\), that is,
\[
\mathbb{E} \left[\exp \left(\lambda(Y_a(t) - \ell(a, \theta)) \right) \right] \leq \exp \left(\frac{\lambda^2 \sigma^2}{2} \right) \quad \text{for all } a \in A.
\]
Then for all \(\delta \geq 0\) we have
\[
\text{Reg}_n(A, \ell, \pi) \leq 4 \sqrt{2 \sigma^2 \log \frac{1}{\delta} \sqrt{|A|n + 3n \delta \sigma |A|}}.
\]
In particular, choosing \(\delta = \frac{1}{n}\) gives
\[
\text{Reg}_n(A, \ell, \pi) \leq 6 \sigma \sqrt{|A|n \log n + 3 \sigma |A|}.
\]

Proof We choose the upper and lower bound functions somewhat carefully so as to get a fairly sharp regret guarantee. In particular, we (as in our analysis of the UCB algorithm) let \(\delta \in (0, 1)\) and define \(T_a(t) := \text{card}\{\tau \leq t : A_\tau = a\}\) to be the number of times that action \(a\) has been chosen by iteration \(t\). Then we define the mean loss for action \(a\) at time \(t\) by
\[
\hat{\ell}_a(t) := \frac{1}{T_a(t)} \sum_{\tau \leq t, A_\tau = a} Y_a(\tau)
\]
and our bounds for the analysis by
\[
U_t(a) := \hat{\ell}_a(t) + \sqrt{\frac{2 \sigma^2 \log \frac{1}{\delta}}{T_a(t)}} \quad \text{and} \quad L_t(a) := \hat{\ell}_a(t) - \sqrt{\frac{2 \sigma^2 \log \frac{1}{\delta}}{T_a(t)}}.
\]
With these choices, we see that by the extension of the sub-Gaussian concentration bound (24.5.1) showing that the sum \(\sum_{\tau \leq t, A_\tau = a} Y_a(\tau)\) is equal in distribution to the sum \(\sum_{\tau \leq t, A_\tau = a} Y'_a(\tau)\), where \(Y'_a(\tau)\) are independent and identically distributed copies of \(Y_a(\tau)\), we have for any \(\epsilon \geq 0\) that
\[
\mathbb{P}(U_t(a) \leq \ell(a, \theta) - \epsilon | T_a(t)) \leq \exp \left(-\frac{T_a(t)}{2 \sigma^2} \left(\sqrt{\frac{2 \sigma^2 \log \frac{1}{\delta}}{T_a(t)}} + \epsilon \right)^2 \right) \leq \exp \left(-\frac{\log \frac{1}{\delta} - T_a(t) \epsilon^2}{2 \sigma^2} \right),
\]
(24.2.3)
where the final inequality uses that \((a + b)^2 \geq a^2 + b^2\) for \(ab \geq 0\). We have an identical bound for
\(\mathbb{P}(L_t(a) \geq \ell(a, \theta) + \epsilon \mid T_a(t))\).

We may now bound the final two sums in the regret expansion (24.2.2) using inequality (24.2.3).
First, however, we make the observation that for any nonnegative random variable \(Z\), we have
\(\mathbb{E}[Z] = \int_0^\infty \mathbb{P}(Z \geq \epsilon) d\epsilon\). Using this, we have
\[
\sum_{t=1}^n \mathbb{E}_\pi [\ell(A_t, \theta) - U_t(A_t)] \leq \sum_{t=1}^n \sum_{a \in A} \mathbb{E}_\pi [\ell(a, \theta) - U_t(a)] + \sum_{t=1}^n \delta \sum_{a \in A} \mathbb{E}_\pi \left[\frac{2\pi \sigma^2}{T_a(t)}\right].
\]
where inequality (i) uses the bound (24.2.3) and equality (ii) uses that this is the integral of half
of a normal density. Substituting this bound, as well as the identical one for the terms involving
\(L_t(A_t)\), into the decomposition (24.2.2) yields
\[
\text{Reg}_n(A, \ell, \pi) \leq \sum_{t=1}^n \mathbb{E}_\pi [U_t(A_t) - L_t(A_t)] + \sum_{t=1}^n \delta \sum_{a \in A} \mathbb{E}_\pi \left[\frac{2\pi \sigma^2}{T_a(t)}\right].
\]
Using that \(T_a(t) \geq 1\) for each action \(a\), we have \(\sum_{a \in A} \mathbb{E}_\pi [\sqrt{2\pi \sigma^2 / T_a(t)}] < 3\sigma |A|\). Lastly, we use that
\[
U_t(A_t) - L_t(A_t) = 2\sqrt{\frac{2\sigma^2 \log \frac{1}{\delta}}{T_A(t)}}.
\]
Thus we have
\[
\sum_{t=1}^n \mathbb{E}_\pi [U_t(A_t) - L_t(A_t)] = 2\sqrt{2\sigma^2 \log \frac{1}{\delta}} \sum_{a \in A} \mathbb{E}_\pi \left[\frac{1}{T_a(t)}\right].
\]
Once we see that \(\sum_{t=1}^T t^{-\frac{1}{2}} = \int_0^T t^{-\frac{1}{2}} dt = 2\sqrt{T}\), we have the upper bound
\[
\text{Reg}_n(A, \ell, \pi) \leq 4\sqrt{2\sigma^2 \log \frac{1}{\delta}} \sum_{a \in A} \mathbb{E}_\pi [\sqrt{T_a(n)}] + 3\delta \sigma |A|.
\]
As \(\sum_{a \in A} T_a(n) = n\), the Cauchy-Schwarz inequality implies \(\sum_{a \in A} \sqrt{T_a(n)} \leq \sqrt{|A|n}\), which gives
the result. \(\square\)

An immediate Corollary of Theorem 24.7 is the following result, which applies in the case
of bounded losses \(Y_a\) as in Examples 24.5 and 24.6.

Corollary 24.8. Let the losses \(Y_a \in [0, 1]\) with \(\mathbb{E}[Y_a \mid \theta] = \theta_a\), where \(\theta_i \overset{iid}{\sim} \text{Beta}(1, 1)\) for \(i = 1, \ldots, K\). Then Thompson sampling satisfies
\[
\text{Reg}_n(A, \ell, \pi) \leq 3\sqrt{Kn \log n} + \frac{3}{2} K.
\]
24.2.2 An information-theoretic analysis

24.2.3 Information and exploration

24.3 Online gradient descent approaches

It is also possible to use online gradient descent approaches to minimize regret in the more standard multi-armed bandit setting. In this scenario, our goal is to minimize a sequentially (partially) observed loss, as in the previous section. In this case, as usual we have K arms with non-negative means μ_1, \ldots, μ_K, and we wish to find the arm with lowest mean loss. We build off of the online convex optimization procedures of Chapter 23 to achieve good regret guarantees. In particular, at each step of the bandit procedure, we play a distribution $w_t \in \Delta_K$ on the arms, and then we select one arm j at random, each with probability $w_{t,j}$. The expected loss we suffer is then $\ell_t(w_t) = \langle w_t, \mu \rangle$, though we observe only a random realization of the loss for the arm a that we play.

Because of its natural connections with estimation of probability distributions, we would like to use the exponentiated gradient algorithm, Example 23.6, to play this game. We face one main difficulty: we must estimate the gradient of the losses, $\nabla \ell_t(w_t) = \mu$, even though we only observe a random variable $Y_a(t) \in \mathbb{R}_+$, conditional on selecting action $A_t = a$ at time t, with the property that $\mathbb{E}[Y_a(t)] = \mu_a$. Happily, we can construct such an estimate without too much additional variance.

Lemma 24.9. Let $Y \in \mathbb{R}^K$ be a random variable with $\mathbb{E}[Y] = \mu$ and $w \in \Delta_K$ be a probability vector. Choose a coordinate a with probability w_a and define the random vector

$$Y_{\tilde{j}} = \begin{cases} Y_j / w_j & \text{if } j = a \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathbb{E}[Y_{\tilde{j}} \mid Y] = Y$.

Proof The proof is immediate: for each coordinate j of \tilde{Y}, we have $\mathbb{E}[Y_{\tilde{j}} \mid Y] = w_j Y_j / w_j = Y_j$.

Lemma 24.9 suggests the following procedure, which gives rise to (a variant of) Auer et al.’s EXP3 (Exponentiated gradient for Exploration and Exploitation) algorithm [13]. We can prove the following bound on the expected regret of the EXP3 Algorithm 24.3 by leveraging our refined analysis of exponentiated gradients in Proposition 23.13.

Input: stepsize parameter η, initial vector $w_1 = [\frac{1}{\mathcal{K}} \ldots \frac{1}{\mathcal{K}}]^\top$

Repeat: for each iteration t, choose random action $A_t = a$ with probability $w_{t,a}$

Receive non-negative loss $Y_a(t)$, and define

$$g_{t,j} = \begin{cases} Y_j(t) / w_j & \text{if } A_t = j \\ 0 & \text{otherwise.} \end{cases}$$

Update for each $i = 1, \ldots, K$

$$w_{t+1,i} = \frac{w_{t,i} \exp(-\eta g_{t,i})}{\sum_j w_{t,j} \exp(-\eta g_{t,j})}.$$
Proposition 24.10. Assume that for each j, we have $E[Y_{j}^2] \leq \sigma^2$ and the observed loss $Y_j \geq 0$. Then Alg. 24.3 attains expected regret (we are minimizing)

$$\text{Reg}_n = \sum_{t=1}^{n} E[\mu_{A_t} - \mu_{i^*}] \leq \frac{\log K}{\eta} + \frac{\eta}{2} \sigma^2 Kn.$$

In particular, choosing $\eta = \sqrt{\log K/(K\sigma^2 n)}$ gives

$$\text{Reg}_n = \sum_{t=1}^{n} E[\mu_{A_t} - \mu_{i^*}] \leq \frac{3}{2} \sigma \sqrt{Kn \log K}.$$

Proof With Lemma 24.9 in place, we recall the refined regret bound of Proposition 23.13. We have that for $w^* \in \Delta_K$ and any sequence of vectors g_1, g_2, \ldots with $g_t \in \mathbb{R}_+^K$, then exponentiated gradient descent achieves

$$\sum_{t=1}^{n} (g_t, w_t - w^*) \leq \frac{\log K}{\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \sum_{j=1}^{k} w_{t,j} g_{t,j}^2.$$

To transform this into a useful bound, we take expectations. Indeed, we have

$$E[g_t | w_t] = E[Y] = \mu$$

by construction, and we also have

$$E\left[\sum_{j=1}^{k} w_{t,j} g_{t,j}^2 | w_t \right] = \sum_{j=1}^{K} w_{t,j}^2 E[Y_j(t)/w_{t,j}^2 | w_t] = \sum_{j=1}^{K} E[Y_j^2] = E[\|Y\|_2].$$

This careful normalizing, allowed by Proposition 23.13, is essential to our analysis (and fails for more naive applications of online convex optimization bounds). In particular, we have

$$\text{Reg}_n = \sum_{t=1}^{n} E[(\mu, w_t - w^*)] = \sum_{t=1}^{n} E[(g_t, w_t - w^*)] \leq \frac{\log K}{\eta} + \frac{\eta}{2} nE[\|Y\|_2^2].$$

Taking expectations gives the result. \hfill \square

When the random observed losses $Y_a(t)$ are bounded in $[0,1]$, then we have the mean regret bound $\frac{3}{2} \sqrt{Kn \log K}$, which is as sharp as any of our other bounds.

24.4 Further notes and references

An extraordinarily abbreviated bibliography follows.

The golden oldies: Thompson [138], Robbins [128], and Lai and Robbins [105].

More recent work in machine learning (there are far too many references to list): the books Cesa-Bianchi and Lugosi [43] and Bubeck and Cesa-Bianchi [37] are good references. The papers of Auer et al. [13] and Auer et al. [12] introduced UCB and EXP3.

Our approach to Bayesian bandits follows Russo and Van Roy [130, 131, 132]. More advanced techniques allow Thompson sampling to apply even when the prior is unknown (e.g. Agrawal and Goyal [2]).
24.5 Technical proofs

24.5.1 Proof of Claim (24.1.1)

We let $Y_i'(\tau)$, for $\tau = 1, 2, \ldots$, be independent and identically distributed copies of the random variables $Y_i(\tau)$, so that $Y_i'(\tau)$ is also independent of $T_i(t)$ for all t and τ. We claim that the pairs

$$\left(\hat{\mu}_i(t), T_i(t) \right) \overset{\text{dist}}{=} \left(\hat{\mu}_i(t), T_i(t) \right),$$

(24.5.1)

where $\hat{\mu}_i'(t) = \frac{1}{T_i(t)} \sum_{\tau:A_\tau = i} Y_i'(\tau)$ is the empirical mean of the copies $Y_i'(\tau)$ for those steps when arm i is selected. To see this, we use the standard fact that the characteristic function of a random variable completely characterizes the random variable. Let $\varphi_{Y_i}(\lambda) = \mathbb{E}[e^{i\lambda Y_i}]$, where $i = \sqrt{-1}$ is the imaginary unit, denote the characteristic function of Y_i, noting that by construction we have $\varphi_{Y_i} = \varphi_{Y_i'}$. Then writing the joint characteristic function of $T_i(t)\hat{\mu}_i(t)$ and $T_i(t)$, we obtain

$$\mathbb{E} \left[\exp \left(i \lambda_1 \sum_{\tau=1}^t [A_\tau = i] Y_i(\tau) + i \lambda_2 T_i(t) \right) \right]$$

$$\overset{(i)}{=} \mathbb{E} \left[\prod_{\tau=1}^t \mathbb{E} \left[\exp \left(i \lambda_1 [A_\tau = i] Y_i(\tau) + i \lambda_2 [A_\tau = i] \right) \mid \mathcal{H}_{\tau-1} \right] \right]$$

$$\overset{(ii)}{=} \mathbb{E} \left[\prod_{\tau=1}^t \left([A_\tau = i] e^{i \lambda_2} \mathbb{E} \left[\exp \left(i \lambda_1 Y_i(\tau) \right) \mid \mathcal{H}_{\tau-1} \right] + [A_\tau \neq i] \right) \right]$$

$$\overset{(iii)}{=} \mathbb{E} \left[\prod_{\tau=1}^t \left([A_\tau = i] e^{i \lambda_2} \varphi_{Y_i}(\lambda_1) + [A_\tau \neq i] \right) \right]$$

$$\overset{(iv)}{=} \mathbb{E} \left[\prod_{\tau=1}^t \left([A_\tau = i] e^{i \lambda_2} \varphi_{Y_i'}(\lambda_1) + [A_\tau \neq i] \right) \right]$$

$$= \mathbb{E} \left[\exp \left(i \lambda_1 \sum_{\tau=1}^t [A_\tau = i] Y_i'(\tau) + i \lambda_2 T_i(t) \right) \right],$$

where equality (i) is the usual tower property of conditional expectations, where $\mathcal{H}_{\tau-1}$ denotes the history to time $\tau - 1$, equality (ii) because $A_\tau \in \mathcal{H}_{\tau-1}$ (that is, it is a function of the history), equality (iii) follows because $Y_i(\tau)$ is independent of $\mathcal{H}_{\tau-1}$, and equality (iv) follows because Y_i' and Y_i have identical distributions. The final step is simply reversing the steps.

With the distributional equality (24.5.1) in place, we see that for any $\delta \in [0, 1]$, we have

$$\mathbb{P} \left(\hat{\mu}_i(t) \geq \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}} \right) = \mathbb{P} \left(\hat{\mu}_i'(t) \geq \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}} \right) = \mathbb{P} \left(\hat{\mu}_i'(t) \geq \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{T_i(t)}} \right)$$

$$= \sum_{s=1}^t \mathbb{P} \left(\hat{\mu}_i'(t) \geq \mu_i + \sqrt{\frac{\sigma^2 \log \frac{1}{\delta}}{s}} \mid T_i(t) = s \right) \mathbb{P}(T_i(t) = s)$$

$$\leq \sum_{s=1}^t \delta \mathbb{P}(T_i(t) = s) = \delta.$$

The proof for the lower tail is similar.
Part V

Appendices
Appendix A

Convex Analysis

In this appendix, we review several results in convex analysis that are useful for our purposes. We give only a cursory study here, identifying the basic results and those that will be of most use to us; the field of convex analysis as a whole is vast. The study of convex analysis and optimization has become very important practically in the last forty to fifty years for a few reasons, the most important of which is probably that convex optimization problems—those optimization problems in which the objective and constraints are convex—are tractable, while many others are not. We do not focus on optimization ideas here, however, building only some analytic tools that we will find useful. We borrow most of our results from Hiriart-Urruty and Lemaréchal [89], focusing mostly on the finite-dimensional case (though we present results that apply in infinite dimensional cases with proofs that extend straightforwardly, and we do not specify the domains of our functions unless necessary), as we require no results from infinite-dimensional analysis.

In addition, we abuse notation and assume that the range of any function is the extended real line, meaning that if $f : C \to \mathbb{R}$ we mean that $f(x) \in \mathbb{R} \cup \{-\infty, +\infty\}$, where $-\infty$ and $+\infty$ are infinite and satisfy $a + \infty = +\infty$ and $a - \infty = -\infty$ for any $a \in \mathbb{R}$. However, we assume throughout and without further mention that our functions are proper, meaning that $f(x) > -\infty$ for all x, as this allows us to avoid annoying pathologies.

A.1 Convex sets

We begin with the simplest and most important object in convex analysis, a convex set.

Definition A.1. A set C is convex if for all $\lambda \in [0, 1]$ and all $x, y \in C$, we have

$$\lambda x + (1 - \lambda)y \in C.$$

An important restriction of convex sets is to closed convex sets, those convex sets that are, well, closed.

JCD Comment: Picture

We now consider two operations that extend sets, convexifying them in nice ways.

Definition A.2. The affine hull of a set C is the smallest affine set containing C. That is,

$$\text{aff}(C) := \left\{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, x_i \in C, \lambda \in \mathbb{R}^k, \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$
Associated with any set is also its convex hull:

Definition A.3. The convex hull of a set $C \subset \mathbb{R}^d$, denoted $\text{Conv}(C)$, is the intersection of all convex sets containing C.

JCD Comment: picture

An almost immediate associated result is that the convex hull of a set is equal to the set of all convex combinations of points in the set.

Proposition A.1. Let C be an arbitrary set. Then

$$\text{Conv}(C) = \left\{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, x_i \in C, \lambda \in \mathbb{R}^k_+, \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

Proof Call T the set on the right-hand side of the equality in the proposition. Then $T \supset C$ is clear, as we may simply take $\lambda_1 = 1$ and vary $x \in C$. Moreover, the set $T \subset \text{Conv}(C)$, as any convex set containing C must contain all convex combinations of its elements; similarly, any convex set $S \supset C$ must have $S \supset T$.

Thus if we show that T is convex, then we are done. Take any two points $x, y \in T$. Then $x = \sum_{i=1}^{k} \alpha_i x_i$ and $y = \sum_{i=1}^{l} \beta_i y_i$ for $x_i, y_i \in C$. Fix $\lambda \in [0, 1]$. Then $(1 - \lambda)\beta_i \geq 0$ and $\lambda \alpha_i \geq 0$ for all i,

$$\lambda \sum_{i=1}^{k} \alpha_i + (1 - \lambda) \sum_{i=1}^{l} \beta_i = \lambda + (1 - \lambda) = 1,$$

and $\lambda x + (1 - \lambda)y$ is a convex combination of the points x_i and y_i weighted by $\lambda \alpha_i$ and $(1 - \lambda)\beta_i$, respectively. So $\lambda x + (1 - \lambda)y \in T$ and T is convex.

We also give one more definition, which is useful for dealing with some pathological cases in convex analysis, as it allows us to assume many sets are full-dimensional.

Definition A.4. The relative interior of a set C is the interior of C relative to its affine hull, that is,

$$\text{relint}(C) := \left\{ x \in C : B(x, \epsilon) \cap \text{aff}(C) \subset C \text{ for some } \epsilon > 0 \right\},$$

where $B(x, \epsilon) := \{ y : \| y - x \| < \epsilon \}$ denotes the open ball of radius ϵ centered at x.

An example may make Definition A.4 clearer.

Example A.2 (Relative interior of a disc): Consider the (convex) set

$$C = \left\{ x \in \mathbb{R}^d : x_1^2 + x_2^2 \leq 1, \ x_j = 0 \text{ for } j \in \{3, \ldots, d\} \right\}.$$

The affine hull $\text{aff}(C) = \mathbb{R}^2 \times \{0\} = \{(x_1, x_2, 0, \ldots, 0) : x_1, x_2 \in \mathbb{R}\}$ is simply the (x_1, x_2)-plane in \mathbb{R}^d, while the relative interior $\text{relint}(C) = \{ x \in \mathbb{R}^d : x_1^2 + x_2^2 < 1 \} \cap \text{aff}(C)$ is the “interior” of the 2-dimensional disc in \mathbb{R}^d. \diamond

In finite dimensions, we may actually restrict the definition of the convex hull of a set C to convex combinations of a bounded number (the dimension plus one) of the points in C, rather than arbitrary convex combinations as required by Proposition A.1. This result is known as *Carathéodory’s theorem*.

367
Theorem A.3. Let $C \subseteq \mathbb{R}^d$. Then $x \in \text{Conv}(C)$ if and only if there exist points $x_1, \ldots, x_{d+1} \in C$ and $\lambda \in \mathbb{R}^{d+1}_+$ with $\sum_{i=1}^{d+1} \lambda_i = 1$ such that

$$x = \sum_{i=1}^{d+1} \lambda_i x_i.$$

Proof. It is clear that if x can be represented as such a sum, then $x \in \text{Conv}(C)$. Conversely, Proposition A.1 implies that for any $x \in \text{Conv}(C)$ we have

$$x = \sum_{i=1}^{k} \lambda_i x_i, \quad \lambda_i \geq 0, \quad \sum_{i=1}^{k} \lambda_i = 1, \quad x_i \in C$$

for some λ_i, x_i. Assume that $k > d+1$ and $\lambda_i > 0$ for each i, as otherwise, there is nothing to prove. Then we know that the points $x_i - x_1$ are certainly linearly dependent (as there are $k - 1 > d$ of them), and we can find (not identically zero) values $\alpha_2, \ldots, \alpha_k$ such that $\sum_{i=2}^{k} \alpha_i (x_i - x_1) = 0$. Let $\alpha_1 = -\sum_{i=2}^{k} \alpha_i$ to obtain that we have both

$$\sum_{i=1}^{k} \alpha_i x_i = 0 \quad \text{and} \quad \sum_{i=1}^{k} \alpha_i = 0. \quad (A.1.1)$$

Notably, the equalities (A.1.1) imply that at least one $\alpha_i > 0$, and if we define $\lambda^* = \min_{\alpha_i > 0} \frac{\lambda_i}{\alpha_i} > 0$, then setting $\lambda'_i = \lambda_i - \lambda^* \alpha_i$ we have

$$\lambda'_i \geq 0 \quad \text{for all} \quad i, \quad \sum_{i=1}^{k} \lambda'_i = \sum_{i=1}^{k} \lambda_i - \lambda^* \sum_{i=1}^{k} \alpha_i = 1, \quad \text{and} \quad \sum_{i=1}^{k} \lambda'_i x_i = \sum_{i=1}^{k} \lambda_i x_i - \lambda^* \sum_{i=1}^{k} \alpha_i x_i = x.$$

But we know that at least one of the $\lambda'_i = 0$, so that we could write x as a convex combination of $k - 1$ elements. Repeating this strategy until $k = d + 1$ gives the theorem.

A.1.1 Operations preserving convexity

We now touch on a few simple results about operations that preserve convexity of convex sets. First, we make the following simple observation.

Observation A.4. Let C be a convex set. Then $C = \text{Conv}(C)$.

Observation A.4 is clear, as we have $C \subseteq \text{Conv}(C)$, while any other convex $S \supseteq C$ clearly satisfies $S \supseteq \text{Conv}(C)$. Secondly, we note that intersections preserve convexity.

Observation A.5. Let $\{C_\alpha\}_{\alpha \in A}$ be an arbitrary collection of convex sets. Then

$$C = \bigcap_{\alpha \in A} C_\alpha$$

is convex. Moreover, if C_α is closed for each α, then C is closed as well.
The convexity property follows because if \(x_1 \in C \) and \(x_2 \in C \), then clearly \(x_1, x_2 \in C_\alpha \) for all \(\alpha \in \mathcal{A} \), and moreover \(\lambda x_1 + (1 - \lambda)x_2 \in C_\alpha \) for all \(\alpha \) and any \(\lambda \in [0, 1] \). The closure property is standard. In addition, we note that closing a convex set maintains convexity.

Observation A.6. Let \(C \) be convex. Then \(\text{cl}(C) \) is convex.

To see this, we note that if \(x, y \in \text{cl}(C) \) and \(x_n \to x \) and \(y_n \to y \) (where \(x_n, y_n \in C \)), then for any \(\lambda \in [0, 1] \), we have \(\lambda x_n + (1 - \lambda)y_n \in C \) and \(\lambda x_n + (1 - \lambda)y_n \to \lambda x + (1 - \lambda)y \). Thus we have \(\lambda x + (1 - \lambda)y \in \text{cl}(C) \) as desired.

Observation A.6 also implies the following result.

Observation A.7. Let \(D \) be an arbitrary set. Then

\[
\bigcap \{ C : C \supset D, \text{ } C \text{ is convex} \} = \text{cl Conv}(D).
\]

Proof Let \(T \) denote the leftmost set. It is clear that \(T \subset \text{cl Conv}(D) \) as \(\text{cl Conv}(D) \) is a closed convex set (by Observation A.6) containing \(D \). On the other hand, if \(C \supset D \) is a closed convex set, then \(C \supset \text{Conv}(D) \), while the closedness of \(C \) implies it also contains the closure of \(\text{Conv}(D) \). Thus \(T \supset \text{cl Conv}(D) \) as well.

JCD Comment: Picture

As our last consideration of operations that preserve convexity, we consider what is known as the perspective of a set. To define this set, we need to define the perspective function, which, given a point \((x, t) \in \mathbb{R}^d \times \mathbb{R}^{++}\) (here \(\mathbb{R}^{++} = \{ t : t > 0 \} \) denotes strictly positive points), is defined as

\[
\text{pers}(x, t) = \frac{x}{t}.
\]

We have the following definition.

Definition A.5. Let \(C \subset \mathbb{R}^d \times \mathbb{R}^{++} \) be a set. The **perspective transform** of \(C \), denoted by \(\text{pers}(C) \), is

\[
\text{pers}(C) := \left\{ \frac{x}{t} : (x, t) \in C \text{ and } t > 0 \right\}.
\]

This corresponds to taking all the points \(z \in C \), normalizing them so their last coordinate is 1, and then removing the last coordinate. (For more on perspective functions, see Boyd and Vandenberghe [33, Chapter 2.3.3].)

It is interesting to note that the perspective of a convex set is convex. First, we note the following.

Lemma A.8. Let \(C \subset \mathbb{R}^{d+1} \) be a compact line segment, meaning that \(C = \{ \lambda x + (1 - \lambda)y : \lambda \in [0, 1] \} \), where \(x_{d+1} > 0 \) and \(y_{d+1} > 0 \). Then \(\text{pers}(C) = \{ \lambda \text{pers}(x) + (1 - \lambda)\text{pers}(y) : \lambda \in [0, 1] \} \).

Proof Let \(\lambda \in [0, 1] \). Then

\[
\text{pers}(\lambda x + (1 - \lambda)y) = \frac{\lambda x_{1:d} + (1 - \lambda)y_{1:d}}{\lambda x_{d+1} + (1 - \lambda)y_{d+1}}
\]

\[
= \frac{\lambda x_{d+1}}{\lambda x_{d+1} + (1 - \lambda)y_{d+1}} \frac{x_{1:d}}{x_{d+1}} + \frac{(1 - \lambda)y_{d+1}}{\lambda x_{d+1} + (1 - \lambda)y_{d+1}} \frac{y_{1:d}}{y_{d+1}}
\]

\[
= \theta \text{pers}(x) + (1 - \theta)\text{pers}(y),
\]

369
where \(x_{1:d} \) and \(y_{1:d} \) denote the vectors of the first \(d \) components of \(x \) and \(y \), respectively, and
\[
\theta = \frac{\lambda x_{d+1}}{\lambda x_{d+1} + (1 - \lambda) y_{d+1}} \in [0, 1].
\]
Sweeping \(\lambda \) from 0 to 1 sweeps \(\theta \in [0, 1] \), giving the result.

Based on Lemma A.8, we immediately obtain the following proposition.

Proposition A.9. Let \(C \subseteq \mathbb{R}^d \times \mathbb{R}_+ \) be a convex set. Then \(\text{pers}(C) \) is convex.

Proof Let \(x, y \in C \) and define \(L = \{ \lambda x + (1 - \lambda) y : \lambda \in [0, 1] \} \) to be the line segment between them. By Lemma A.8, \(\text{pers}(L) = \{ \lambda \text{pers}(x) + (1 - \lambda) \text{pers}(y) : \lambda \in [0, 1] \} \) is also a (convex) line segment, and we have \(\text{pers}(L) \subseteq \text{pers}(C) \) as necessary.

A.1.2 Representation and separation of convex sets

JCD Comment: Put normal and tangent cones here

We now consider some properties of convex sets, showing that (1) they have nice separation properties—we can put hyperplanes between them—and (2) this allows several interesting representations of convex sets. We begin with the separation properties, developing them via the existence of projections. Interestingly, this existence of projections does not rely on any finite-dimensional structure, and can even be shown to hold in arbitrary Banach spaces (assuming the axiom of choice) [112]. We provide the results in a Hilbert space, meaning a complete vector space for which there exists an inner product \(\langle \cdot, \cdot \rangle \) and associated norm \(\| \cdot \| \) given by \(\| x \|^2 = \langle x, x \rangle \). We first note that projections exist.

Theorem A.10 (Projections). Let \(C \) be a closed convex set. Then for any \(x \), there exists a unique point \(\pi_C(x) \) minimizing \(\| y - x \| \) over \(y \in C \). Moreover, this point is characterized by the inequality
\[
\langle \pi_C(x) - x, y - \pi_C(x) \rangle \geq 0 \quad \text{for all } y \in C. \tag{A.1.2}
\]

Proof The existence and uniqueness of the projection follows from the parallelogram identity, that is, that for any \(x, y \) we have \(\| x - y \|^2 + \| x + y \|^2 = 2(\| x \|^2 + \| y \|^2) \), which follows by noting that \(\| x + y \|^2 = \| x \|^2 + \| y \|^2 + 2\langle x, y \rangle \). Indeed, let \(\{ y_n \} \subseteq C \) be a sequence such that
\[
\| y_n - x \| \rightarrow \inf_{y \in C} \| y - x \| =: p_*
\]
as \(n \to \infty \), where \(p_* \) is the infimal value. We show that \(y_n \) is Cauchy, so that there exists a (unique) limit point of the sequence. Fix \(\epsilon > 0 \) and let \(N \) be such that \(n \geq N \) implies \(\| y_n - x \|^2 \leq p_*^2 + \epsilon^2 \). Let \(m, n \geq N \). Then by the parallelogram identity,
\[
\| y_n - y_m \|^2 = \| (x - y_n) - (x - y_m) \|^2 = 2 \left[\| x - y_n \|^2 + \| x - y_m \|^2 \right] - \| (x - y_n) + (x - y_m) \|^2.
\]
Noting that
\[
(x - y_n) + (x - y_m) = 2 \left[x - \frac{y_n + y_m}{2} \right] \quad \text{and} \quad \frac{y_n + y_m}{2} \in C \quad \text{(by convexity of } C),
\]

[370]
we have
\[\|x - y_n\|^2 \leq p_*^2 + \epsilon^2, \quad \|x - y_m\|^2 \leq p_*^2 + \epsilon^2, \quad \text{and} \quad \|(x - y_n) + (x - y_m)\|^2 = 4 \left\| x - \frac{y_n + y_m}{2} \right\|^2 \geq 4p_*^2. \]

In particular, we have
\[\|y_n - y_m\|^2 \leq 2 \left[p_*^2 + \epsilon^2 + p_*^2 + \epsilon^2 \right] - 4p_*^2 = 4\epsilon^2. \]

As \(\epsilon > 0 \) was arbitrary, this completes the proof of the first statement of the theorem.

To see the second result, assume that \(z \) is a point satisfying inequality (A.1.2), that is, such that
\[\langle z - x, y - z \rangle \geq 0 \quad \text{for all} \quad y \in C. \]

Then we have
\[\|z - x\|^2 = \langle z - x, z - x \rangle = \langle z - x, z - y \rangle + \langle z - x, y - x \rangle \leq \|z - x\| \|y - x\| \leq 0 \]

by the Cauchy-Schwarz inequality. Dividing both sides by \(\|z - x\| \) yields \(\|z - x\| \leq \|y - x\| \) for any \(y \in C \), giving the result. Conversely, let \(t \in [0, 1] \). Then for any \(y \in C \),
\[\|\pi_C(x) - x\|^2 \leq \|(1 - t)\pi_C(x) + ty - x\|^2 = \|\pi_C(x) - x + t(y - \pi_C(x))\|^2 \]
\[= \|\pi_C(x) - x\|^2 + 2t \langle \pi_C(x) - x, y - \pi_C(x) \rangle + t^2 \|y - \pi_C(x)\|^2. \]

Subtracting the projection value \(\|\pi_C(x) - x\|^2 \) from both sides and dividing by \(t > 0 \), we have
\[0 \leq 2\langle \pi_C(x) - x, y - \pi_C(x) \rangle + t \|y - \pi_C(x)\|^2. \]

Taking \(t \to 0 \) gives inequality (A.1.2).

As an immediate consequence of Theorem A.10, we obtain several separation properties of convex sets, as well as a theorem stating that a closed convex set (not equal to the entire space in which it lies) can be represented as the intersection of all the half-spaces containing it.

Corollary A.11. Let \(C \) be closed convex and \(x \notin C \). Then there is a vector \(v \) strictly separating \(x \) from \(C \), that is,
\[\langle v, x \rangle > \sup_{y \in C} \langle v, y \rangle. \]

Moreover, we can take \(v = x - \pi_C(x) \).

Proof By Theorem A.10, we know that taking \(v = x - \pi_C(x) \) we have
\[0 \leq \langle y - \pi_C(x), \pi_C(x) - x \rangle = \langle y - \pi_C(x), -v \rangle = \langle y - x + v, -v \rangle = -\langle y, v \rangle + \langle x, v \rangle - \|v\|^2. \]

That is, we have \(\langle v, y \rangle \leq \langle v, x \rangle - \|v\|^2 \) for all \(y \in C \) and \(v \neq 0 \).
Theorem A.12. Let \(C \) be a convex set and \(x \in \text{bd}(C) \), where \(\text{bd}(C) = \text{cl}(C) \setminus \text{int} C \). Then there exists a non-zero vector \(v \) such that \(\langle v, x \rangle \geq \sup_{y \in C} \langle v, y \rangle \).

Proof Let \(D = \text{cl}(C) \) be the closure of \(C \) and let \(x_n \notin D \) be a sequence of points such that \(x_n \to x \). Let us define the sequence of separating vectors \(s_n = x_n - \pi_D(x_n) \) and the normalized version \(v_n = s_n/\|s_n\| \). Notably, we have \(\langle v_n, x_n \rangle > \sup_{y \in C} \langle v_n, y \rangle \) for all \(n \). Now, the sequence \(\{v_n\} \subset \{v : \|v\| = 1\} \) belongs to a compact set.\(^1\) Passing to a subsequence if necessary, let us assume w.l.o.g. that \(v_n \to v \) with \(\|v\| = 1 \). Then by a standard limiting argument for the \(x_n \to x \), we have
\[
\langle v, x \rangle \geq \langle v, y \rangle \quad \text{for all} \quad y \in C,
\]
which was our desired result.

\(\square \)

JCD Comment: Picture of supporting hyperplanes and representations

Theorem A.12 gives us an important result. In particular, let \(D \) be an arbitrary set, and let \(C = \text{cl Conv}(D) \) be the closure of the convex hull of \(D \), which is the smallest closed convex set containing \(D \). Then we can write \(C \) as the intersection of all the closed half-spaces containing \(D \); this is, in some sense, the most useful “convexification” of \(D \). Recall that a closed half-space \(H \) is defined with respect to a vector \(v \) and real \(a \in \mathbb{R} \) as
\[
H := \{x : \langle v, x \rangle \leq r\}.
\]
Before stating the theorem, we remark that by Observation A.6, the intersection of all the closed convex sets containing a set \(D \) is equal to the closure of the convex hull of \(D \).

Theorem A.13. Let \(D \) be an arbitrary set. If \(C = \text{cl Conv}(D) \), then
\[
C = \bigcap_{H \supseteq D} H,
\]
where \(H \) denotes a closed half-space containing \(D \). Moreover, for any closed convex set \(C \),
\[
C = \bigcap_{x \in \text{bd}(C)} H_x,
\]
where \(H_x \) denotes the intersection of halfspaces supporting \(C \) at \(x \).

Proof We begin with the proof of the second result (A.1.4). Indeed, by Theorem A.12, we know that at each point \(x \) on the boundary of \(C \), there exists a non-zero supporting hyperplane \(v \), so that the half-space
\[
H_{x,v} := \{y : \langle v, y \rangle \leq \langle v, x \rangle\} \supseteq C
\]
is closed, convex, and contains \(C \). We clearly have the containment \(C \subseteq \bigcap_{x \in \text{bd}(C)} H_x \). Now let \(x_0 \notin C \); we show that \(x_0 \notin \bigcap_{x \in \text{bd}(C)} H_x \). As \(x_0 \notin C \), the projection \(\pi_C(x_0) \) of \(x_0 \) onto \(C \) satisfies \(\langle x_0 - \pi_C(x_0), x_0 \rangle > \sup_{y \in C} \langle x_0 - \pi_C(x_0), y \rangle \) by Corollary A.11. Moreover, letting \(v = x_0 - \pi_C(x_0) \), the hyperplane
\[
h_{x_0,v} := \{y : \langle y, v \rangle = \langle \pi_C(x_0), v \rangle\}
\]
In infinite dimensions, this may not be the case. But we can apply the Banach-Alaoglu theorem, which states that, as \(v_n \) are linear operators, the sequence is weak-* compact, so that there is a vector \(v \) with \(\|v\| \leq 1 \) and a subsequence \(m(n) \subset \mathbb{N} \) such that \(\langle v_{m(n)}, x \rangle \to \langle v, x \rangle \) for all \(x \).
is clearly supporting to C at the point $\pi_C(x_0)$. The half-space $\{ y : \langle y, v \rangle \leq \langle \pi_C(x_0), v \rangle \}$ thus contains C and does not contain x_0, implying that $x_0 \not\in \cap_{x \in \text{bd}(C)} H_x$.

Now we show the first result (A.1.3). Let C be the closed convex hull of D and $T = \cap_{H \supseteq D} H$. By a trivial extension of the representation (A.1.4), we have that $C = \cap_{H \supseteq C} H$, where H denotes any halfspace containing C. As $C \supseteq D$, we have that $H \supseteq D$ implies $H \supseteq C$, so that

$$T = \bigcap_{H \supseteq D} H \subset \bigcap_{H \supseteq C} H = C.$$

On the other hand, as $C = \text{cl Conv}(D)$, Observation A.7 implies that any closed set containing D contains C. As a closed halfspace is convex and closed, we have that $H \supseteq D$ implies $H \supseteq C$, and thus $T = C$ as desired.

A.2 Sublinear and support functions

A special case of convex functions will be sublinear functions, which form the basis of the transition between convex sets and convex functions. Accordingly, we give a special treatment here. Recall that f is convex if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ for all x, y.

Definition A.6. A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is sublinear if it is convex and positively homogeneous, meaning

$$f(tx) = tf(x) \text{ for all } x \in \mathbb{R}^d \text{ and } t > 0.$$

Such functions are important in that they give some of the first dualities between convex sets and convex functions. As we see in the section to come, they also allow us to describe various first-order smoothness properties of convex functions.

The main result we shall need on sublinear functions is that they can be defined by a dual construction.

Proposition A.14. Let f be a closed sublinear function and define $S := \{ s | \langle s, x \rangle \leq f(x) \text{ for all } x \}$. Then

$$f(x) = \sup_{s \in S} \langle s, x \rangle.$$

Proof As f is closed convex, there exist affine functions minorizing f at each point in its domain (Theorem A.23). That is, for some pair $(s, t) \in \mathbb{R}^d \times \mathbb{R}$, we have $\langle s, x \rangle - t \leq f(x)$ for all $x \in \mathbb{R}^d$. Because necessarily $f(0) = 0$ by sublinearity, we have $t \geq 0$, and by positive homogeneity, we have $\langle s, \alpha x \rangle - t \leq f(\alpha x)$ for all $\alpha > 0$, that is, $\langle s, x \rangle - t/\alpha \leq f(x)$ for all x. Taking $\alpha \uparrow \infty$ we find that $\langle s, x \rangle \leq f(x)$ for all $x \in \mathbb{R}^d$.

Because any closed convex function is the supremum of all affine functions minorizing it (Theorem A.27), we evidently have $f(x) = \sup_s \{ \langle s, x \rangle | \langle s, \cdot \rangle \text{ minorizes } f \}$.

To any set S we can associate a particular sublinear function, the support function of S, defining

$$\sigma_S(x) := \sup_{s \in S} \langle s, x \rangle.$$

(A.2.1)

This function is evidently a closed convex function—it is the supremum of linear functions—and is positively homogeneous, so that it is sublinear. We thus immediately have the duality
Corollary A.15. Let \(f \) be a sublinear function. Then it is the support function of the closed convex set
\[
S_f := \{ s \mid \langle s, x \rangle \leq f(x) \text{ for all } x \in \mathbb{R}^d \},
\]
and hence if \(C \) is closed convex, then
\[
C = \{ x \mid \langle s, x \rangle \leq \sigma_C(s) \text{ for all } s \in \mathbb{R}^d \}.
\]

A few other consequences of the definition are immediate. We see that \(\sigma_S \) has \(\text{dom } \sigma_S = \mathbb{R}^d \) if and only if \(S \) is bounded: whenever \(\|s\| \leq L \) for all \(s \in S \), then \(\sigma_S(x) \leq L \|x\| \). Conversely, if \(\text{dom } \sigma_S = \mathbb{R}^d \) then it is locally Lipschitz (Theorem A.24) and (by positive homogeneity) thus globally Lipschitz, so we have \(\langle s, x \rangle \leq \sigma_S(x) \leq L \|x\| \) for some \(L < \infty \) and taking \(x = s/\|s\| \) gives \(\|s\| \leq L \). As another consequence, we see that support functions of a set \(S \) are the support functions of the closed convex hull of \(S \):

Proposition A.16. Let \(S \subset \mathbb{R}^d \). Then
\[
\sigma_S(x) = \sigma_{\text{cl Conv} \, S}(x).
\]

Proof Let \(C = \text{Conv} \, S \), and let \(s_n \) be any sequence with \(\langle s_n, x \rangle \to \sup_{s \in C} \langle s, x \rangle \). Then there exist \(s_{n,i} \in S, i = 1, \ldots, k(n) \), such that \(s_n = \sum_{i=1}^{k(n)} \lambda_i s_{n,i} \) for some \(\lambda \geq 0, \langle \lambda, 1 \rangle = 1 \), which may change with \(n \). But of course, \(\langle s_n, x \rangle \leq \max_i \langle s_{n,i}, x \rangle \), and thus \(\sigma_S(x) \geq \sigma_C(x) \). To see that \(\sigma_C(x) = \sigma_{\text{cl Conv} \, C}(x) \), note that for each \(\epsilon > 0 \), for each \(s \in \text{cl} \, C \) there is \(s' \in C \) with \(\|s - s'\| < \epsilon \). Then \(\langle s, x \rangle \leq \langle s', x \rangle + \epsilon \|x\| \) and \(\sigma_{\text{cl Conv} \, C}(x) \leq \sigma_C(x) + \epsilon \|x\| \). Take \(\epsilon \downarrow 0 \).

This proposition, coupled with Corollary A.15, shows that if sets \(S_1, S_2 \) have identical support functions, then they have identical closed convex hulls, and if they are closed convex, they are thus identical.

Corollary A.17. Let \(S_1, S_2 \subset \mathbb{R}^d \). If \(\sigma_{S_1} = \sigma_{S_2} \), then \(\text{cl Conv} \, S_1 = \text{cl Conv} \, S_2 \).

Proof By Proposition A.16, we have \(\sigma_{S_i} = \sigma_{\text{cl Conv} \, S_i} \) for each \(i \), and Corollary A.15 shows that if \(\sigma_{C_1} = \sigma_{C_2} \) for closed convex sets \(C_1 \) and \(C_2 \), then \(C_1 = C_2 \).

As another corollary, we have

Corollary A.18. Let \(\sigma_1 \) and \(\sigma_2 \) be the support functions of the nonempty closed convex sets \(S_1 \) and \(S_2 \). Then if \(t_1 > 0 \) and \(t_2 > 0 \),
\[
t_1 \sigma_1 + t_2 \sigma_2 = \sigma_{\text{cl Conv}(t_1 S_1 + t_2 S_2)}.
\]

If either of \(S_1 \) or \(S_2 \) is compact, then \(t_1 \sigma_1 + t_2 \sigma_2 = \sigma_{t_1 S_1 + t_2 S_2} \).

Proof Let \(S = t_1 S_1 + t_2 S_2 \). In first statement, we have
\[
\sigma_{\text{cl Conv}(t_1 S_1 + t_2 S_2)}(x) = \sup \{ \langle t_1 s_1 + t_2 s_2, x \rangle \mid s_1 \in S_1, s_2 \in S_2 \},
\]
equality \((*)\) following from Proposition A.16. As the suprema run independently through their respective sets \(S_1, S_2 \), the latter quantity is evidently
\[
\sigma_S(x) = t_1 \sup_{s_1 \in S_1} \langle s_1, x \rangle + t_2 \sup_{s_2 \in S_2} \langle s_2, x \rangle = t_1 \sigma_{S_1}(x) + t_2 \sigma_{S_2}(x).
\]
The final result is an immediate consequence of the result that if C is a compact convex set and S is closed convex, then $C + S$ is closed convex. That $C + S$ is convex is immediate. To see that it is closed, let $x_n \in C, y_n \in S$ satisfy $x_n + y_n \to z$. Then proceeding to a subsequence, we have $x_{n(m)} \to x_\infty$ for some $x_\infty \in C$, and thus $y_{n(m)} \to z - x_\infty$, which is then necessarily in S. As the subsequence $x_{n(m)} + y_{n(m)} \to x_\infty + (z - x_\infty) \in C + S$ and $x_{n(m)} + y_{n(m)} \to z$ as well, this gives the result.

Linear transformations of support functions are also calculable. In the result, recall that for a matrix A and set S, the set $AS = \{ As \mid s \in S \}$.

Proposition A.19. Let $S \subset \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$. Then $\sigma_{cl,AS}(x) = \sigma_S(A^\top x)$.

Proof We have $\sigma_{AS}(x) = \sup_{s \in S} \langle As, x \rangle = \sup_{s \in S} \langle s, A^T x \rangle$. The closure operation changes nothing (Proposition A.16).

Lastly, we show how to use support functions to characterize whether sets have interiors. Recall that for a set $S \subset \mathbb{R}^d$, the affine hull $aff(S)$ (Definition A.2) is the set of affine combinations of a point in S, and the relative interior of S is its interior relative to its affine hull (Definition A.4).

Proposition A.20. Let $S \subset \mathbb{R}^d$ be non-empty a closed convex set. Then

(i) $s \in \text{int } S$ if and only if $\langle s, x \rangle < \sigma_S(x)$ for all $x \neq 0$.

(ii) $s \in \text{relint } S$ if and only if $\langle s, x \rangle < \sigma_S(x)$ for all x with $\sigma_S(x) + \sigma_S(-x) > 0$.

(iii) $\text{int } S$ is non-empty if and only if $\sigma_S(x) + \sigma_S(-x) > 0$ for all $x \neq 0$.

Proof

(i) Because σ_S is positively homogeneous, an equivalent statement is that $\sigma_S(x) > \langle s, x \rangle$ for all $x \in S = \{ x \in \mathbb{R}^d \mid \| x \|_2 = 1 \}$. If $s \in \text{int } S$, we there exists $\epsilon > 0$ such that $s + \epsilon x \in S$ for all $x \in S$, and so

$$\sigma_S(x) \geq \langle s + \epsilon x, x \rangle = \langle s, x \rangle + \epsilon,$$

so that $\langle s, x \rangle < \sigma_S(x)$.

Conversely, let s be any point satisfying $\sigma_S(x) - \langle s, x \rangle > 0$ for all $x \in S$. Because σ_S is lower semicontinuous, the infimum $\inf_{x \in S} \{ \sigma_S(x) - \langle s, x \rangle \}$ is attained at some $x^* \in S$ (see Proposition B.1). Then there exists some $\epsilon > 0$ such that $\langle s, x \rangle + \epsilon \leq \sigma_S(x)$ for all $x \in S$. Let u be any vector with $\| u \|_2 < \epsilon$. Then $\langle s + u, x \rangle = \langle s, x \rangle + \langle u, x \rangle \leq \langle s, x \rangle + \epsilon \leq \sigma_S(x)$, so Corollary A.15 implies $s + u \in S$ and $s \in \text{int } S$.

(ii) We decompose \mathbb{R}^d into subspaces $V \oplus U$, where $U = V^\perp$ and V is parallel to $aff(S)$. Writing $x = x_U + x_V$, where $x_U \in U$ and $x_V \in V$, the function $\langle s, x_U \rangle$ is constant for $s \in S$. Repeat the argument for part (i) in the subspace V.

(iii) Suppose $\text{int } S$ is non-empty. Then $s \in \text{int } S$ implies $\langle s, x \rangle < \sigma_S(x)$ for all x with $\| x \|_2 = 1$. Then $\sigma_S(x) + \sigma_S(-x) > \langle s, x - x \rangle = 0$. Conversely, if $\text{int } S$ is empty, there exists a hyperplane containing S (by a dimension counting argument and that the relative interior of S is never empty [? , Theorem III.2.1.3]), which we may write as $S \subset \{ s \mid v^T s = b \}$ for some $v \neq 0$. For this $\sigma_S(v) + \sigma_S(-v) = b - b = 0$.

375
A.3 Convex functions

We now build off of the definitions of convex sets to define convex functions. As we will see, convex functions have several nice properties that follow from the geometric (separation) properties of convex sets. First, we have

Definition A.7. A function \(f \) is convex if for all \(\lambda \in [0, 1] \) and \(x, y \in \text{dom } f \),

\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).
\]

We define the domain \(\text{dom } f \) of a convex function to be those points \(x \) such that \(f(x) < +\infty \). Note that Definition A.7 implies that the domain of \(f \) must be convex.

An equivalent definition of convexity follows by considering a natural convex set attached to the function \(f \), known as its epigraph.

Definition A.8. The epigraph \(\text{epi } f \) of a function is the set

\[
\text{epi } f := \{(x, t) : t \in \mathbb{R}, f(x) \leq t\}.
\]

That is, the epigraph of a function \(f \) is the set of points on or above the graph of the function itself, as depicted in Figure A.1. It is immediate from the definition of the epigraph that \(f \) is convex if and only if \(\text{epi } f \) is convex. Thus, we see that any convex set \(C \subset \mathbb{R}^{d+1} \) that is unbounded “above,” meaning that \(C = C + \{0\} \times \mathbb{R}_+ \), defines a convex function, and conversely, any convex function defines such a set \(C \). This duality in the relationship between a convex function and its epigraph is central to many of the properties we exploit.

![Figure A.1: The epigraph of a convex function.](image-url)
A.3.1 Equivalent definitions of convex functions

We begin our discussion of convex functions by enumerating a few standard properties that also characterize convexity. The simplest of these relate to properties of the derivatives and second derivatives of functions. We begin by elucidating one of the most basic properties of convexity: that the slopes of convex functions are increasing. Beginning with functions on \mathbb{R}, suppose that $f : \mathbb{R} \to \mathbb{R}$ is convex, and let $x \in \text{dom} \ f$ and $v \in \mathbb{R}$ be otherwise arbitrary. Then define the quotient function

$$q(t) := \frac{f(x + tv) - f(x)}{t}, \quad t \geq 0,$$

(A.3.2)

which we claim is nondecreasing in $t \geq 0$ if and only if f is convex. Indeed, let $t \geq s > 0$ and define $\lambda = \frac{s}{t} \in [0, 1]$. Then

$$q(t) \geq q(s) \quad \text{if and only if} \quad \lambda[f(x + tv) - f(x)] \geq f(x + tv) - f(x)$$

and

$$\text{if and only if} \quad \lambda f(x + tv) + (1 - \lambda)f(x) \geq f((1 - \lambda)x + \lambda(x + tv)),$$

the latter holding for all λ if and only if f is convex.

JCD Comment: Draw a picture of increasing quotient

Because the quotient function (A.3.2) is nondecreasing, we can relatively straightforwardly give first-order characterizations of convexity as well. Indeed, suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable; then convexity is equivalent to the first-order inequality that for all $x, y \in \mathbb{R}$, we have

$$f(y) \geq f(x) + f'(x)(y - x).$$

(A.3.3)

To see that inequality (A.3.3) implies that f is convex follows from algebraic manipulations: let $\lambda \in [0, 1]$ and $z = \lambda x + (1 - \lambda)y$, so that $y - z = \lambda(y - x)$ and $x - z = (1 - \lambda)(x - y)$. Then

$$f(y) \geq f(z) + \lambda f'(z)(y - x) \quad \text{and} \quad f(x) \geq f(z) + (1 - \lambda)f'(z)(x - y),$$

and multiplying the former by $(1 - \lambda)$ and the latter by λ and adding the two inequalities yields

$$\lambda f(x) + (1 - \lambda)f(y) \geq \lambda f(z) + (1 - \lambda)f(z) + \lambda(1 - \lambda)f'(z)(y - x) + (1 - \lambda)f'(z)(x - y) = f(\lambda x + (1 - \lambda)y),$$

as desired. Conversely, let $v = y - x$ in the quotient (A.3.2), so that $q(t) = \frac{f(x + tv) - f(x)}{t}$, which is non-decreasing. If f is differentiable, we see that $q(0) := \lim_{t \downarrow 0} q(t) = f'(x)(y - x)$, and so

$$q(1) = f(y) - f(x) \geq q(0) = f'(x)(y - x)$$

as desired.

We may also give the standard second order characterization: if $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable and $f''(x) \geq 0$ for all x, then f is convex. To see this, note that

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(tx + (1 - t)y)(x - y)^2$$

for some $t \in [0, 1]$ by Taylor’s theorem, so that $f(y) \geq f(x) + f'(x)(y - x)$ for all x, y because $f''(tx + (1 - t)y) \geq 0$. As a consequence, we obtain inequality (A.3.3), which implies that f is convex.

As convexity is a property that depends only on properties of functions on lines—one dimensional projections—we can straightforwardly extend the preceding results to functions $f : \mathbb{R}^d \to \mathbb{R}$.
Indeed, noting that if \(h(t) = f(x + ty) \) then \(h'(0) = \langle \nabla f(x), y \rangle \) and \(h''(0) = y^\top \nabla^2 f(x)y \), we have that a differentiable function \(f : \mathbb{R}^d \to \mathbb{R} \) is convex if and only if
\[
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle \quad \text{for all } x, y,
\]
while a twice differentiable function \(f : \mathbb{R}^d \to \mathbb{R} \) is convex if and only if
\[
\nabla^2 f(x) \succeq 0 \quad \text{for all } x.
\]

Noting that nothing in the derivation that the quotient \((A.3.2)\) was non-decreasing relied on \(f \) being a function on \(\mathbb{R} \), we can see that a function \(f : \mathbb{R}^d \) is convex if and only if it satisfies the increasing slopes criterion: for all \(x \in \text{dom} f \) and any vector \(v \), the quotient
\[
t \mapsto q(t) := \frac{f(x + tv) - f(x)}{t}
\]
(A.3.4)
is nondecreasing in \(t \geq 0 \) (where we leave \(x, v \) implicit). An alternative version of the criterion \((A.3.4)\) is that if \(x \in \text{dom} f \) and \(v \) is any vector, if we define the one-dimensional convex function \(h(t) = f(x + tv) \) then for any \(s < t \) and \(\Delta > 0 \), we have
\[
\frac{h(t + \Delta) - h(t)}{\Delta} \geq \frac{h(t) - h(s)}{t - s} \geq \frac{h(t) - h(s - \Delta)}{t - (s - \Delta)}.
\]
(A.3.5)
The proof that either of the inequalities \((A.3.5)\) is equivalent to convexity we leave as an exercise (Q. B.1).

JCD Comment: Draw pictures of increasing slopes

We summarize each of these implications in a theorem for reference.

Proposition A.21 (Convexity). The following are all equivalent:

(i) The function \(f \) is convex.

(ii) The function \(f \) satisfies the criterion of increasing slopes \((A.3.4)\).

If \(f \) is differentiable (respectively, twice differentiable), the following are also equivalent:

(iii) The function \(f : \mathbb{R}^d \to \mathbb{R} \) satisfies
\[
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle \quad \text{for all } x, y.
\]

(iv) The function \(f \) has positive semidefinite Hessian: \(\nabla^2 f(x) \succeq 0 \) for all \(x \).

JCD Comment: Draw a picture and of strict convexity

A condition slightly stronger than convexity is *strict convexity*, which makes each of the inequalities in Proposition A.21 strict. We begin with the classical definition: a function \(f \) is strictly convex if it is convex and
\[
f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)
\]
whenever \(\lambda \in (0, 1) \) and \(x \neq y \in \text{dom} f \). These are convex functions, but always have strictly increasing slopes—secants lie strictly above \(f \). By tracing through the arguments leading to Proposition A.21 (replace appropriate non-strict inequalities with strict inequalities), one obtains the following corollary describing strictly convex functions.
Corollary A.22 (Strict convexity). The following are all equivalent:

(i) The function f is strictly convex.

(ii) The function f has strictly increasing slopes (A.3.4).

If f is differentiable (respectively, twice differentiable), the following are also equivalent:

(iii) The function $f : \mathbb{R}^d \to \mathbb{R}$ satisfies

$$f(y) > f(x) + \langle \nabla f(x), y - x \rangle \quad \text{for all } x \neq y.$$

(iv) The function f has positive definite Hessian: $\nabla^2 f(x) \succ 0$ for all x.

A.3.2 Continuity properties of convex functions

We now consider a few continuity properties of convex functions and a few basic relationships of the function f to its epigraph. First, we give a definition of the subgradient of a convex function.

Definition A.9. A vector g is a subgradient of f at a point x_0 if for all x,

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle.$$

(A.3.6)

The subdifferential or subgradient set of f at x_0 is

$$\partial f(x_0) := \{ g \mid f(x) \geq f(x_0) + \langle g, x - x_0 \rangle \text{ for all } x \}.$$

See Figure A.2 for an illustration of the affine minorizing function given by the subgradient of a convex function at a particular point.

![Figure A.2. The tangent (affine) function to the function f generated by a subgradient g at the point x_0.](image-url)

Interestingly, convex functions have subgradients (at least, nearly everywhere). This is perhaps intuitively obvious by viewing a function in conjunction with its epigraph $\text{epi } f$ and noting that $\text{epi } f$ has supporting hyperplanes, but here we state a result that will have further use.
Theorem A.23. Let \(f \) be convex. Then there is an affine function minorizing \(f \). More precisely, for any \(x_0 \in \text{relint dom } f \), there exists a vector \(g \) such that
\[
f(x) \geq f(x_0) + \langle g, x - x_0 \rangle.
\]

Proof If \(\text{relint dom } f = \emptyset \), then it is clear that \(f \) is either identically \(+\infty\) or its domain is a single point \(\{x_0\} \), in which case the constant function \(f(x_0) \) minorizes \(f \). Now, we assume that \(\text{int dom } f \neq \emptyset \), as we can simply always change basis to work in the affine hull of \(\text{dom } f \).

We use Theorem A.12 on the existence of supporting hyperplanes to construct a subgradient. Indeed, we note that \((x_0, f(x_0)) \in \text{bd epi } f\), as for any open set \(O \) we have that \((x_0, f(x_0)) + O\) contains points both inside and outside of \(\text{epi } f \). Thus, Theorem A.12 guarantees the existence of a vector \(v \) and \(a \in \mathbb{R} \), not both simultaneously zero, such that
\[
\langle v, x_0 \rangle + af(x_0) \leq \langle v, x \rangle + at \quad \text{for all } (x, t) \in \text{epi } f. \tag{A.3.7}
\]

Inequality (A.3.7) implies that \(a \geq 0 \), as for any \(x \) we may take \(t \to +\infty \) while satisfying \((x, t) \in \text{epi } f\). Now we argue that \(a > 0 \) strictly. To see this, note that for suitably small \(\delta > 0 \), we have \(x = x_0 - \delta v \in \text{dom } f \). Then we find by inequality (A.3.7) that
\[
\langle v, x_0 \rangle + af(x_0) \leq \langle v, x_0 \rangle - \delta \|v\|^2 + af(x_0 - \delta v), \quad \text{or} \quad a[f(x_0) - f(x_0 - \delta v)] \leq -\delta \|v\|^2.
\]

So if \(v = 0 \), then Theorem A.12 already guarantees \(a \neq 0 \), while if \(v \neq 0 \), then \(\|v\|^2 > 0 \) and we must have \(a \neq 0 \) and \(f(x_0) \neq f(x_0 - \delta v) \). As we showed already that \(a \geq 0 \), we must have \(a > 0 \). Then by setting \(t = f(x_0) \) and dividing both sides of inequality (A.3.7) by \(a \), we obtain
\[
\frac{1}{a} \langle v, x_0 - x \rangle + f(x_0) \leq f(x) \quad \text{for all } x \in \text{dom } f.
\]

Setting \(g = -v/a \) gives the result of the theorem, as we have \(f(x) = +\infty \) for \(x \notin \text{dom } f \). \qed

Convex functions generally have quite nice behavior. Indeed, they enjoy some quite remarkable continuity properties just by virtue of the defining convexity inequality (A.3.1). In particular, the following theorem shows that convex functions are continuous on the relative interiors of their domains. Even more, convex functions are Lipschitz continuous on any compact subsets contained in the (relative) interior of their domains. (See Figure A.3 for an illustration of this fact.)

Theorem A.24. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be convex and \(C \subset \text{relint dom } f \) be compact. Then there exists an \(L = L(C) \geq 0 \) such that
\[
|f(x) - f(x')| \leq L \|x - x'\|.
\]

As an immediate consequence of Theorem A.24, we note that if \(f : \mathbb{R}^d \to \mathbb{R} \) is convex and defined everywhere on \(\mathbb{R}^d \), then it is continuous. Moreover, we also have that \(f : \mathbb{R}^d \to \mathbb{R} \) is continuous everywhere on the (relative) interior of its domain: let any \(x_0 \in \text{relint dom } f \). Then for small enough \(\epsilon > 0 \), the set \(\text{cl}(\{x_0 + \epsilon B\} \cap \text{dom } f) \), where \(B = \{x : \|x\|_2 \leq 1\} \), is a closed and bounded—and hence compact—set contained in the (relative) interior of \(\text{dom } f \). Thus \(f \) is Lipschitz on this set, which is a neighborhood of \(x_0 \). In addition, if \(f : \mathbb{R} \to \mathbb{R} \), then \(f \) is continuous everywhere except (possibly) at the endpoints of its domain.

Proof of Theorem A.24 To prove the theorem, we require a technical lemma.
Lemma A.25. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be convex and suppose that there are \(x_0, \delta > 0, m, \) and \(M \) such that
\[
m \leq f(x) \leq M \quad \text{for} \quad x \in B(x_0, 2\delta) := \{ x : \| x - x_0 \| < 2\delta \}.
\]
Then \(f \) is Lipschitz on \(B(x_0, \delta) \), and moreover,
\[
|f(y) - f(y')| \leq \frac{M - m}{\delta} \| y - y' \| \quad \text{for} \quad y, y' \in B(x_0, \delta).
\]

Proof. Let \(y, y' \in B(x_0, \delta) \), and define \(y'' = y' + \delta(y' - y)/\| y' - y \| \in B(x, 2\delta) \). Then we can write \(y' \) as a convex combination of \(y \) and \(y'' \), specifically,
\[
y' = \frac{\| y' - y \|}{\delta + \| y' - y \|} y'' + \frac{\delta}{\delta + \| y' - y \|} y.
\]

Thus we obtain by convexity
\[
f(y') - f(y) \leq \frac{\| y' - y \|}{\delta + \| y' - y \|} f(y'') + \frac{\delta}{\delta + \| y' - y \|} f(y) - f(y) = \frac{\| y - y' \|}{\delta + \| y - y' \|}[f(y'') - f(y)]
\leq \frac{M - m}{\delta + \| y - y' \|} \| y - y' \|.
\]

Here we have used the bounds on \(f \) assumed in the lemma. Swapping the assignments of \(y \) and \(y' \) gives the same lower bound, thus giving the desired Lipschitz continuity.

With Lemma A.25 in place, we proceed to the proof proper. We assume without loss of generality that \(\text{dom } f \) has an interior; otherwise we prove the theorem restricting ourselves to the affine hull of \(\text{dom } f \). The proof follows a standard compactification argument. Suppose that for each \(x \in C \), we could construct an open ball \(B_x = B(x, \delta_x) \) with \(\delta_x > 0 \) such that
\[
|f(y) - f(y')| \leq L_x \| y - y' \| \quad \text{for} \quad y, y' \in B_x.
\]
As the B_x cover the compact set C, we can extract a finite number of them, call them B_{x_1}, \ldots, B_{x_k}, covering C, and then within each (overlapping) ball f is max$_k L_{x_k}$ Lipschitz. As a consequence, we find that

$$|f(y) - f(y')| \leq \max_k L_{x_k} \|y - y'\|$$

for any $y, y' \in C$.

We thus must derive inequality (A.3.8), for which we use the boundedness Lemma A.25. We must demonstrate that f is bounded in a neighborhood of each $x \in C$. To that end, fix $x \in \text{int dom } f$, and let the points x_0, \ldots, x_d be affinely independent and such that

$$\Delta := \text{Conv}\{x_0, \ldots, x_d\} \subset \text{dom } f$$

and $x \in \text{int } \Delta$; let $\delta > 0$ be such that $B(x, 2\delta) \subset \Delta$. Then by Carathéodory’s theorem (Theorem A.3) we may write any point $y \in B(x, 2\delta)$ as $y = \sum_{i=0}^d \lambda_i x_i$ for $\sum_i \lambda_i = 1$ and $\lambda_i \geq 0$, and thus

$$f(y) \leq \sum_{i=0}^d \lambda_i f(x_i) \leq \max_{i \in \{0, \ldots, d\}} f(x_i) =: M.$$}

Moreover, Theorem A.23 implies that there is some affine h function minorizing f; let $h(x) = a + \langle v, x \rangle$ denote this function. Then

$$m := \inf \left\{ f(x) \geq \inf_{x \in C} h(x) = a + \inf_{x \in C} \langle v, x \rangle > -\infty \right\}$$

exists and is finite, so that in the ball $B(x, 2\delta)$ constructed above, we have $f(y) \in [m, M]$ as required by Lemma A.25. This guarantees the existence of a ball B_x required by inequality (A.3.8). \qed

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{A closed—equivalently, lower semi-continuous—function. On the right is shown the closed epigraph of the function.}
\end{figure}

Our final discussion of continuity properties of convex functions revolves around the most common and analytically convenient type of convex function, the so-called closed-convex functions.

Definition A.10. A function f is closed if its epigraph, $\text{epi } f$, is a closed set.
Equivalently, a function is closed if it is lower semi-continuous, meaning that

$$\liminf_{x \to x_0} f(x) \geq f(x_0) \tag{A.3.9}$$

for all x_0 and any sequence of points tending toward x_0. See Figure A.4 for an example such function and its associated epigraph.

Interestingly, in the one-dimensional case, closed convexity implies continuity. Indeed, we have the following observation (compare Figures A.4 and A.3 previously):

Observation A.26. Let $f : \mathbb{R} \to \mathbb{R}$ be a closed convex function. Then f is continuous on its domain.

Proof By Theorem A.24, we need only consider the endpoints of the domain of f (the result is obvious by Theorem A.24 if $\text{dom } f = \mathbb{R}$); let $x_0 \in \text{bd } \text{dom } f$. Let $y \in \text{dom } f$ be an otherwise arbitrary point, and define $x = \lambda y + (1 - \lambda)x_0$. Then taking $\lambda \to 0$, we have

$$f(x) \leq \lambda f(y) + (1 - \lambda)f(x_0) \to f(x_0),$$

so that $\limsup_{x \to x_0} f(x) \leq f(x_0)$. By the closedness assumption (A.3.9), we have $\liminf_{x \to x_0} f(x) \geq f(x_0)$, and continuity follows. \hfill \square

In the full-dimensional case, we do not have quite the same continuity, though Theorem A.24 guarantees continuity on the (relative) interior of $\text{dom } f$.

An important characterization of convex functions is as the supremum of all affine functionals (linear plus an offset) below them, which is one of the keys to duality relationships about functions to come.

Theorem A.27. Let f be closed convex and let \mathcal{A} be the collection of affine functions h satisfying $f(x) \geq h(x)$ for all x. Then $f(x) = \sup_{h \in \mathcal{A}} h(x)$.

Proof By Theorem A.13 that any closed convex set is the intersection of all the halfspaces containing (even supporting) it, we can write $\text{epi } f = \cap_{H \in \mathcal{H}} H$, where \mathcal{H} is the collection of closed halfspaces $H \supset \text{epi } f$. We may write any such halfspace as

$$H = \{(x, r) \in \mathbb{R}^d \times \mathbb{R} \mid \langle a, x \rangle + br \leq c\}$$

where $(a, b) \in \mathbb{R}^d \times \mathbb{R}$ is non-zero. As $H \supset \text{epi } f$, the particular nature of epigraphs (that is, that if $(x, t) \in \text{epi } f$ then $(x, t + \Delta) \in \text{epi } f$ for all $\Delta > 0$) means that $b \leq 0$, and so for any $b < 0$ we may divide through by b to rewrite H as $H = \{(x, r) \mid \langle a/b, x \rangle + r \geq c/b\}$, while if $b = 0$ then $H = \{(x, r) \mid \langle a, x \rangle \leq c\}$. That is, it is no loss of generality to set

$$\mathcal{H}_1 := \{\text{Halfspaces } \{(x, r) \mid \langle a, x \rangle + r \geq c\} \text{ containing } \text{epi } f\}$$
$$\mathcal{H}_0 := \{\text{Halfspaces } \{(x, r) \mid \langle a, x \rangle \geq c\} \text{ containing } \text{epi } f\},$$

which (respectively) correspond to the non-vertical halfspaces containing $\text{epi } f$ and the halfspaces containing $\text{dom } f \subset \mathbb{R}^d$. We have $\text{epi } f = \bigcap_{H \in \mathcal{H}_1} H \cap \bigcap_{H \in \mathcal{H}_0} H$.

Identify the halfspaces $H \in \mathcal{H}_0$ or \mathcal{H}_1 with the associated triple $(a, 0, c)$ or $(a, 1, c)$ and abuse notation to write $(a, i, c) \in \mathcal{H}_i$ for $i \in \{0, 1\}$. For any $(a, 1, c) \in \mathcal{H}_1$, the linear function

$$l(x) = c - \langle a, x \rangle = \inf\{r \mid \langle a, x \rangle + r \geq c\} \text{ satisfies } \langle a, x \rangle + l(x) \geq c \text{ for all } x,$$
and so necessarily $l(x) \leq f(x)$ for all x, while for the function $h(x) = \sup_{(a,1,c) \in \mathcal{H}_1} \{c - \langle a, x \rangle\}$ we have

$$\text{epi } h = \bigcap_{H \in \mathcal{H}_1} H.$$

Thus, if we can show that

$$\bigcap_{H \in \mathcal{H}_1} H \cap \bigcap_{H \in \mathcal{H}_0} H = \bigcap_{H \in \mathcal{H}_1} H \quad \text{(A.3.10)}$$

the proof will be complete.

To show the equality (A.3.10), take arbitrary vectors $v_0 = (a_0, 0, c_0) \in \mathcal{H}_0$ and $v_1 = (a_1, 1, c_1) \in \mathcal{H}_1$, and let $H_0 = \{(x, r) \mid \langle a_0, x \rangle \geq c_0\}$ and $H_1 = \{(x, r) \mid \langle a_1, x \rangle + r \geq c_1\}$ be the associated halfspaces. Consider the conic-like vector

$$v(t) := (a_1 + ta_0, 1, c_0 + tc_0) \quad \text{for } t \geq 0$$

and associated halfspace $H(t) := \{(x, r) \mid \langle a_1 + ta_0, x \rangle + r \geq c_1 + tc_0\}$. Then as $\langle a_0, x \rangle \geq c_0$ if and only if $t \langle a_0, x \rangle \geq tc_0$ for all $t \geq 0$, any point $(x, r) \in H_0 \cap H_1$ satisfies

$$\langle a_1 + ta_0, x \rangle + r \geq c_1 + tc_0 \quad \text{for } t \geq 0,$$

that is, $H(t) \in \mathcal{H}_1$ and $(x, r) \in \cap_{t \geq 0} H(t)$. Additionally, taking $t = 0$ we see that $H(0) = H_1$ and so $\cap_{t \geq 0} H(t) \subset H_1$, while taking $t \uparrow \infty$ we obtain that each $(x, r) \in \cap_{t \geq 0} H(t)$ satisfies $\langle a_0, x \rangle \geq c_0$. That is, we have

$$\bigcap_{t \geq 0} H(t) = H_0 \cap H_1,$$

while $H(t) \in \mathcal{H}_1$ for all $t \geq 0$. This shows the equality (A.3.10). \qed

JCD Comment: Show a picture of the above argument

A.3.3 Operations preserving convexity

We now turn to a description of a few simple operations on functions that preserve convexity. First, we extend the intersection properties of convex sets to operations on convex functions. (See Figure A.5 for an illustration of the proposition.)

Proposition A.28. Let $\{f_\alpha\}_{\alpha \in \mathcal{A}}$ be an arbitrary collection of convex functions indexed by \mathcal{A}. Then

$$f(x) := \sup_{\alpha \in \mathcal{A}} f_\alpha(x)$$

is convex. Moreover, if for each $\alpha \in \mathcal{A}$, the function f_α is closed convex, f is closed convex.

Proof The proof is immediate once we consider the epigraph $\text{epi } f$. We have that

$$\text{epi } f = \bigcap_{\alpha \in \mathcal{A}} \text{epi } f_\alpha,$$

which is convex whenever $\text{epi } f_\alpha$ is convex for all α and closed whenever $\text{epi } f_\alpha$ is closed for all α (recall Observation A.5). \qed

Another immediate result is that composition of a convex function with an affine transformation preserves convexity:
\[f(x) = \max\{f_1(x), f_2(x)\} \]

Figure A.5. The maximum of two convex functions is convex, as its epigraph is the intersection of the two epigraphs.

Proposition A.29. Let \(A \in \mathbb{R}^{d \times n} \) and \(b \in \mathbb{R}^d \), and let \(f : \mathbb{R}^d \to \mathbb{R} \) be convex. Then the function \(g(y) = f(Ay + b) \) is convex.

Partial minimization of convex functions and some related transformations preserve convexity as well.

Proposition A.30. Let \(A \in \mathbb{R}^{d \times n} \) and \(f : \mathbb{R}^d \to \mathbb{R} \) be convex. Then \(g(x) = \inf\{f(y) \mid Ay = x\} \) is convex.

Proof Let \(x_0, x_1 \in \mathbb{R}^n \). If \(Ay = x_0 \) has no solution in \(y \), then \(g(x_0) = +\infty \), and similarly if \(Ay = x_1 \) has no solutions then \(g(x_1) = +\infty \), and we trivially have \(g(\lambda x_0 + (1 - \lambda)x_1) \leq +\infty \) in either case for all \(\lambda \in (0, 1) \). Assuming that the sets \(\{y \mid Ay = x_0\} \) and \(\{y \mid Ay = x_1\} \) are non-empty, let \(\epsilon > 0 \) be arbitrary and \(y_0, y_1 \) satisfy \(Ay_i = x_i \) and that \(f(y_i) \leq g(x_i) + \epsilon \). Then \(y_\lambda = \lambda y_0 + (1 - \lambda)y_1 \) satisfies \(Ay_\lambda = \lambda x_0 + (1 - \lambda)x_1 \), and so

\[
g(\lambda x_0 + (1 - \lambda)x_1) \leq f(\lambda y_0 + (1 - \lambda)y_1) \leq \lambda f(y_0) + (1 - \lambda)f(y_1) \leq \lambda g(x_0) + (1 - \lambda)g(x_1) + \epsilon
\]

for all \(\lambda \in [0, 1] \). Take \(\epsilon \to 0 \).

From the proposition we immediately see that if \(f(x, y) \) is jointly convex in \(x \) and \(y \), then the partially minimized function \(\inf_{y \in Y} f(x, y) \) is convex whenever \(Y \) is a convex set.

Lastly, we consider the functional analogue of the perspective transform. Given a function \(f : \mathbb{R}^d \to \mathbb{R} \), the perspective transform of \(f \) is defined as

\[
pers(f)(x, t) := \begin{cases} tf \left(\frac{x}{t} \right) & \text{if } t > 0 \text{ and } \frac{x}{t} \in \text{dom } f \\ +\infty & \text{otherwise.} \end{cases}
\]

(A.3.11)

In analogue with the perspective transform of a convex set, the perspective transform of a function is (jointly) convex.
Proposition A.31. Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex. Then $\text{pers}(f) : \mathbb{R}^{d+1} \to \mathbb{R}$ is convex.

Proof. The result follows if we can show that epi $\text{pers}(f)$ is a convex set. With that in mind, note that $\mathbb{R}^d \times \mathbb{R}^{++} \times \mathbb{R} \ni (x, t, r) \in \text{epi pers}(f)$ if and only if $f(\frac{x}{t}) \leq r/t$.

Rewriting this, we have $\text{epi pers}(f) = \left\{ (x, t, r) \in \mathbb{R}^d \times \mathbb{R}^{++} \times \mathbb{R} : f(\frac{x}{t}) \leq r/t \right\}$
$= \left\{ t(x', 1, r') : x' \in \mathbb{R}^d, t \in \mathbb{R}^{++}, r' \in \mathbb{R}, f(x') \leq r' \right\}$
$= \{ t(x, 1, r) : t > 0, (x, r) \in \text{epi } f \} = \mathbb{R}^{++} \times \{ (x, 1, r) : (x, r) \in \text{epi } f \}$.

This is a convex cone.

A.3.4 Smoothness properties, first-order developments for convex functions, and subdifferentiability

In addition to their continuity properties, convex functions typically enjoy strong differentiability properties. Some of these interact with the duality properties we present in the section B.2 to follow. Our main goal will be to show how there exist (roughly) derivative-like objects for convex functions, so that for some suitably nice object $D_f(x, v)$ we have

$$f(x + tv) = f(x) + D_f(x, v)t + o(t) \quad (A.3.12)$$

for t small and any v. In the case that f is differentiable, of course, this must coincide with the usual derivative, so that $D_f(x, v) = \langle \nabla f(x), v \rangle$. For convex functions, a directional derivative always exists (even if f is non-differentiable), meaning that we can make sense of the first-order development (A.3.12) in some generality.

As one prototypical result, we leverage Rademacher’s theorem on almost everywhere differentiability of Lipschitz functions to show that convex functions are almost everywhere differentiable:

Theorem A.32 (Rademacher). Let $U \subset \mathbb{R}^d$ be open and $f : U \to \mathbb{R}^k$ be Lipschitz continuous. Then f is differentiable almost everywhere on U.

Proofs of this result are standard in measure-theoretic analysis texts; see, e.g., [? , Section 3.5] or [? , Theorem 10.8(ii)]. As any convex function is locally Lipschitz on its domain (recall Theorem A.24), we thus have the following result (where we assume that $\text{dom } f$ has an interior).

Corollary A.33. Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex. Then it is differentiable except on a set of Lebesgue measure zero on its domain.

Other differentiability properties of convex functions are also of interest. We begin by considering directional differentiability properties, after which we expand to consider differentiability and continuous differentiability of (convex) functions. To begin, recall that the directional derivative of a function f in direction v at x is

$$f'(x; v) := \lim_{t \downarrow 0} \frac{f(x + tv) - f(x)}{t} \quad (A.3.13)$$
when this quantity exists. When \(f'(x; v) \) exists for all directions \(v \) and is linear in \(v \), we call the function **Gateaux differentiable**. A (stronger in infinite dimensions) notion of differentiability is **Fréchet differentiability**: \(f \) has Fréchet differential \(g \) at \(x \) if

\[
f(y) = f(x) + \langle g, y - x \rangle + o(\|y - x\|)
\]

as \(y \to x \), which is then uniform in the distance \(\|y - x\| \). It is immediate that if \(f \) is Fréchet differentiable with derivative \(g \) then it is Gateaux differentiable with \(f'(x; v) = \langle g, v \rangle \). Conveniently, in finite dimensions, these notions coincide with the standard gradient, and \(f'(x; v) = \langle \nabla f(x), v \rangle \), whenever \(f \) is locally Lipschitzian.

Proposition A.34. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be Gateaux differentiable at \(x \), that is, its directional derivative \(f'(x; v) \) is linear in \(v \), and locally Lipschitz, so that there exists \(L < \infty \) such that \(|f(x) - f(y)| \leq L \|x - y\| \) for \(y \) near \(x \). Then \(f \) is Fréchet differentiable with Fréchet differential

\[
\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_j} \right]_{j=1}^d,
\]

and \(f'(x; v) = \langle \nabla f(x), v \rangle \) and \(\|\nabla f(x)\| \leq L \).

Proof If \(f \) is Fréchet differentiable at \(x \) with differential \(g \), then we immediately have

\[
\frac{f(x + tv) - f(x)}{t} \to \langle g, v \rangle \quad \text{as } t \to 0,
\]

so that it is Gateaux differentiable.

Conversely, suppose that \(f'(x; v) = \langle g, v \rangle \) for all \(v \in \mathbb{R}^d \) for some \(g \in \mathbb{R}^d \). Assume for the sake of contradiction that \(f \) is not Fréchet differentiable at \(x \), so that

\[
\limsup_{\|\Delta\| \downarrow 0} \frac{f(x + \Delta) - f(x) - \langle g, \Delta \rangle}{\|\Delta\|} = c > 0.
\]

Take any sequence \(\Delta_n \to 0 \) achieving this limit supremum, and let \(\Delta_n = \epsilon_n v_n \) for a sequence \(v_n \) on the sphere, that is, \(\|v_n\| = 1 \), so \(\epsilon_n = \|\Delta_n\| \). Then by passing to a subsequence if necessary, we can assume w.l.o.g. that \(v_n \to v \) with \(\|v\| = 1 \). Then

\[
\begin{align*}
\frac{f(x + \Delta_n) - f(x) - \langle g, \Delta_n \rangle}{\epsilon_n} &= \frac{f(x + \epsilon_n v + \epsilon_n (v_n - v)) - f(x) - \epsilon_n \langle g, v \rangle - \epsilon_n \langle g, v_n - v \rangle}{\epsilon_n} \\
&\leq \frac{|f(x + \epsilon_n v) - f(x) - \epsilon_n \langle g, v \rangle|}{\epsilon_n} + \frac{L\epsilon_n \|v_n - v\| + \epsilon_n \|g\| \|v_n - v\|}{\epsilon_n}.
\end{align*}
\]

Both of these terms tend to zero, a contradiction, and so \(f \) is Fréchet differentiable at \(x \), and its Fréchet derivative is \(g \). That Fréchet differentiability implies differentiability follows by noting that the partial derivatives \(f'(x; e_j) = \frac{\partial f(x)}{\partial x_j} \) for each coordinate \(j \).

Finally, the Lipschitzian bound on \(\|\nabla f(x)\| \) follows by noting that

\[
L \|\Delta\| \geq |f(x + \Delta) - f(x)| = |\langle \nabla f(x), \Delta \rangle| + o(\|\Delta\|).
\]

Taking \(\Delta = tv \) and \(t \downarrow 0 \), this implies that \(L \|v\| \geq \langle \nabla f(x), v \rangle \) for all \(v \), which is equivalent to \(\|\nabla f(x)\| \leq L \).

The main consequence of convexity that is important for us is that a convex function is directionally differentiable at every point in the interior of its domain, though the directional derivative need not be linear.
Proposition A.35. Let f be convex and $x \in \text{int dom } f$. Then $f'(x; v)$ exists and the mapping $v \mapsto f'(x; v)$ is sublinear, convex, and globally Lipschitz.

Proof If $x \in \text{int dom } f$, then the criterion (A.3.4) of increasing slopes guarantees that $f'(x; v) = \lim_{t \downarrow 0} \frac{f(x + tv) - f(x)}{t}$ exists for all $x \in \text{int dom } f$, as the quantity is monotone. To see that $f'(x; v)$ is convex and sublinear in v, note that positive homogeneity is immediate, as we have $\frac{1}{t}(f(x + atv) - f(x)) = \frac{a}{t}f(x + atv) - f(x))$ for all $\alpha > 0$, and $f'(x; 0) = 0$. That it is convex is straightforward as well: for any u, v and take $t \downarrow 0$. For the global Lipschitz claim, note that f is already locally Lipschitz near $x \in \text{int dom } f$ (recall Theorem A.24), so that there exists some $L < \infty$ and $\alpha > 0$ such that for all $\|u\| = 1$ and $0 \leq t \leq \alpha \|f(x + tv) - f(x)\| \leq Lt$, whence $|f'(x; v)| \leq L$ and by homogeneity $|f'(x; v)| \leq L \|v\|$ for all v.

An inspection of the proof shows that the result extends even to all of dom f if we allow $f'(x; v) = +\infty$ whenever $x + tv \not\in \text{dom } f$ for all $t > 0$, though of course we lose that $f'(x; v)$ is finite-valued. Then we have the following corollary, showing that $f'(x; v)$ provides a valid first-order development of f in all directions from x (where we take $\infty \cdot t = \infty$ whenever $t > 0$).

Corollary A.36. Let $x \in \text{dom } f$. Then

$$f(x + tv) = f(x) + f'(x; v)t + o(t)$$

as $t \downarrow 0$ and

$$f(x + tv) \geq f(x) + f'(x; v)t \quad \text{for all } t \geq 0.$$

Proof The first part is immediate by definition of $f'(x; v) = \lim_{t \downarrow 0} \frac{f(x + tv) - f(x)}{t}$. The second is immediate from the criterion (A.3.4) of increasing slopes, as the limit in the directional derivative (A.3.13) becomes an infimum for convex functions: $f'(x; v) = \inf_{t > 0} \frac{f(x + tv) - f(x)}{t}$.

There are strong connections between subdifferentials and directional derivatives, and hence of the local developments (A.3.12). The following result makes this clear.

Proposition A.37. Let f be convex and $x \in \text{relint dom } f$. Then

$$\partial f(x) = \{ s \mid \langle s, v \rangle \leq f'(x; v) \text{ for all } v \} \neq \varnothing.$$

Proof For shorthand let $S = \{ s \mid \langle s, v \rangle \leq f'(x; v) \text{ all } v \}$ be the set on the right. If $s \in S$, then the criterion (A.3.4) of increasing slopes guarantees that

$$\langle s, v \rangle \leq \frac{f(x + tv) - f(x)}{t} \quad \text{for all } v \in \mathbb{R}^d, t > 0.$$

Recognizing that as v is allowed to vary over all of \mathbb{R}^d and $t > 0$, then $x + tv$ similarly describes \mathbb{R}^d, we see that this condition is completely equivalent to the definition (A.3.6) of the subgradient. That $\partial f(x) \neq \varnothing$ is Theorem A.23.
We can also extend this to \(x \in \text{dom } f \)—not necessarily the interior—where we see that there is no loss (even when \(f \) may be \(+\infty\) valued) to defining
\[
\partial f(x) := \{ s \mid \langle s, v \rangle \leq f'(x; v) \text{ for all } v \}.
\]
(A.3.15)
Notably, the directional derivative function \(v \mapsto f'(x; v) \) always exists for \(x \in \text{dom } f \) and is a sublinear convex function, and thus \(\partial f(x) \) above is always a closed convex set whose support function (recall (A.2.1)) is the closure of \(v \mapsto f'(x; v) \). While the subdifferential \(\partial f(x) \) is always a compact convex set when \(x \in \text{int dom } f \), even when it exists it may not be compact if \(x \) is on the boundary of \(\text{dom } f \). To see one important example of this, consider the indicator function \(I_C(x) := +\infty \) if \(x \notin C \)
0 if \(x \in C \)
of a closed convex set \(C \). For simplicity, let \(C = [a, b] \) be an interval. Then we have
\[
\partial I_C(x) = \begin{cases}
[0, \infty] & \text{if } x = b \\
\{0\} & \text{if } a < x < b \\
[-\infty, 0] & \text{if } x = a.
\end{cases}
\]
Whether points \(\pm \infty \) are included is a matter of convenience and whether we work with the extended real line.

These representations points to a certain closure property of subgradients, namely, that the subdifferential is closed under additions of the normal cone to the domain of \(f \):

Lemma A.38. Let \(\mathcal{N}_{\text{dom } f}(x) \) be the normal cone (Definition B.1) to \(\text{dom } f \) at the point \(x \) (where \(\mathcal{N}_{\text{dom } f}(x) = \{0\} \) for \(x \in \text{int dom } f \) and \(\mathcal{N}_{\text{dom } f}(x) = \emptyset \) for \(x \notin \text{dom } f \)). Then
\[
\partial f(x) = \partial f(x) + \mathcal{N}_{\text{dom } f}(x).
\]
In particular, if \(x \) is a boundary point \(x \in \text{bd dom } f \) of the domain of \(f \), then either \(\partial f(x) = \emptyset \) or \(\partial f(x) \) is unbounded.

Proof We only need concern ourselves with points \(x \in \text{bd dom } f \), where the normal cone \(\mathcal{N} = \mathcal{N}_{\text{dom } f}(x) \) is non-trivial. If \(\partial f(x) \) is empty, there is nothing to prove, so assume that \(\partial f(x) \) is non-empty. Then the definition (A.3.15) of the subdifferential as \(\partial f(x) = \{ s \mid \langle s, u \rangle \leq f'(x; u) \} \) allows us to prove the result. First, consider vectors \(u \) for which \(f'(x; u) = +\infty \). Then certainly, for any \(s \in \partial f(x) \), we have \(\langle s + v, u \rangle \leq f'(x; u) \) for all \(v \in \mathcal{N} \). If \(f'(x; u) < \infty \), then for small enough \(t > 0 \) we necessarily have \(x + tu \in \text{dom } f \). In particular, the definition of the normal cone gives that \(v \in \mathcal{N} \) satisfies \(0 \geq \langle v, x + tu - x \rangle = t \langle v, u \rangle \), or that \(\langle v, u \rangle \leq 0 \). Thus \(\langle s + v, u \rangle \leq \langle s, u \rangle \leq f'(x; u) \), and so \(s + v \in \partial f(x) \) once again.

The claim about boundedness is immediate, because \(\mathcal{N}_{\text{dom } f} \) is a cone.

A more compelling case for the importance of the subgradient set with respect to first-order developments and differentiability properties of convex functions is the following:

JCD Comment: Draw a picture of this as well.
Proposition A.39. Let f be convex and $x \in \text{int dom } f$. Then

$$f(y) = f(x) + \sup_{s \in \partial f(x)} \langle s, y - x \rangle + o(\|y - x\|)$$

$$= f(x) + f'(x; y - x) + o(\|y - x\|).$$

Proof. That sup$_{s \in \partial f(x)} \langle s, v \rangle = f'(x; v)$ is immediate by Theorem A.27 and Proposition A.14, because $f'(x; v)$ is sublinear and closed convex in v when $x \in \text{int dom } f$. Certainly the right hand sides are then equal.

We thus prove the equality $f(y) = f(x) + f'(x; y - x) + o(\|y - x\|)$, where the argument is similar to that for Proposition A.34. Let $y_n \to x$ be any sequence and let $\Delta_n = y_n - x$, so that $\|\Delta\| \to 0$; as $x \in \text{int dom } f$, there exists a (local) Lipschitz constant L such that $|f(x + \Delta) - f(x)| \leq L \|\Delta\|$ for all small Δ. Similarly, because $v \mapsto f'(x; v)$ is convex (even positively homogeneous and thus sublinear), it has a Lipschitz constant, and we take this to be L as well. Now, write $\Delta_n = \varepsilon_n v_n$ where $\|v_n\| = 1$ and $\varepsilon_n \to 0$, and moving to a subsequence if necessary let $v_n \to v$. Then we have

$$f(x + \Delta_n) - f(x) - f'(x; \Delta_n) = f(x + \varepsilon_n v + \varepsilon_n (v_n - v)) - f(x) - f'(x; \varepsilon_n v + \varepsilon_n (v_n - v))$$

$$= f(x + \varepsilon_n v) - f(x) - f'(x; \varepsilon_n v) + 2\varepsilon_n \|v_n - v\|$$

$$= o(\varepsilon_n)$$

because $\|v_n - v\| \to 0$ and $f(x + \varepsilon_n v) - f(x) = f'(x; \varepsilon_n) + o(\varepsilon_n)$ by definition of the directional derivative.

Note that convexity only played the role of establishing the local Lipschitz property of f in the proof of Proposition A.39; any locally Lipschitz function with directional derivatives will enjoy a similar first-order expansion.

As our final result on smoothness properties of convex functions, we connect subdifferentials to differentiability properties of convex f. First, we give a lemma showing that the subdifferential set ∂f is outer semicontinuous.

Lemma A.40 (Closure of the graph of the subdifferential). Let $f : \mathbb{R}^d \to \mathbb{R}$ be closed convex. Then the graph $\{(x, s) \mid x \in \mathbb{R}^d, s \in \partial f(x)\}$ of its subdifferential is closed. Equivalently, whenever $x_n \to x$ with $s_n \in \partial f(x_n)$ and $s_n \to s$, f has non-empty subdifferential at x with $s \in \partial f(x)$.

Proof. We prove the second statement, whose equivalence to the first is definitional. Fix any $y \in \mathbb{R}^d$. Then $f(y) \geq f(x_n) + \langle s_n, y - x_n \rangle$, and because f is closed (i.e., lower semicontinuous), we have lim inf $f(x_n) \geq f(x)$. Let $\varepsilon > 0$ be arbitrary. Then for all large enough n, we have $f(x_n) \geq f(x) - \varepsilon$, and similarly, $\|s_n - s\| \leq \varepsilon$, $\|x_n - x\| \leq \varepsilon$, and $\|y - x_n\| \leq \|y - x\| + \varepsilon$. Then

$$f(y) \geq f(x_n) + \langle s_n, y - x_n \rangle \geq f(x) + \langle s, y - x_n \rangle - \|s - s_n\| \|y - x_n\|$$

$$\geq f(x) + \langle s, y - x \rangle - \varepsilon - \varepsilon \|y - x_n\| - \|s\| \|x - x_n\|$$

$$\geq f(x) + \langle s, y - x \rangle - \varepsilon - \varepsilon (1 + \varepsilon) \|y - x\| - \|s\| \varepsilon.$$

As ε was arbitrary we have $f(y) \geq f(x) + \langle s, y - x \rangle$ as desired.

Given the somewhat technical Lemma A.40, we can show that if f is convex and differentiable at a point, it is in fact continuously differentiable at the point.
Proposition A.41. Let f be convex and $x \in \text{int dom } f$. Then $\partial f(x)$ is a singleton if and only if f is differentiable at x. If additionally f is differentiable on an open set U, then f is continuously differentiable on U.

Proof. Because $x \in \text{int dom } f$, there exists $L < \infty$ such that f is L-Lipschitz near x by Theorem A.24. Suppose that $\partial f(x) = \{s\}$. Then the directional derivative $f'(x; v) = \langle s, v \rangle$ for all v, and Proposition A.39 gives
\[
f(y) = f(x) + \langle s, y - x \rangle + o(\|y - x\|)
\]
as $y \to x$, that is, f is differentiable. Conversely, assume that f is differentiable at x. Then taking any vector v, we immediately have $f'(x; v) = \langle \nabla f(x), v \rangle$ and Proposition A.37 gives that $\partial f(x) = \{\nabla f(x)\}$.

To see that f is in fact continuously differentiable on U, let $x \in U$ and f be L-Lipschitz on a compact set $C \subset U$ containing x in its interior. Let $x_k \in C$ satisfy $x_k \to x$ and let $s_k = \nabla f(x_k) \in \partial f(x_k)$. Then $\|s_k\| \leq L$, and each subsequence has a further convergent subsequence. Lemma A.40 implies that any convergent subsequence $s_{k(m)} \to s \in \partial f(x)$. But as $\partial f(x) = \{\nabla f(x)\}$, we have $\nabla f(x_{k(m)}) \to \nabla f(x)$ and so $\nabla f(x)$ is continuous in x. \hfill \Box

A.3.5 Calculus rules of subgradients

We close this section with a few calculus results on subdifferentials of convex functions. These calculus rules show that we may take the subdifferential plays a similar role to the gradient for differentiable functions. Additionally, they allow us to take derivatives of various extremal functions.

Our first result shows that subdifferentials of sums are sums of subdifferentials, which relies on both the representation of sublinear functions as support functions for convex sets and the characterization of the subdifferential in terms of directional derivatives:

Proposition A.42. Let f and g be closed convex functions, and let $x \in \text{int dom } f$ and g be subdifferentiable at x, meaning that $\partial g(x) \neq \emptyset$. Then
\[
\partial(f + g)(x) = \partial f(x) + \partial g(x).
\]

Proof. By Proposition A.37, the set $\partial f(x)$ is a compact convex set, and the general definition (A.3.15) of the subdifferential gives that $\partial g(x)$ is closed convex. Let $S_1 = \partial f(x)$ and $S_2 = \partial g(x)$. Then immediately $S_1 + S_2 \subset \partial(f + g)(x)$, so that
\[
S := \partial(f + g)(x) = \left\{ s \mid \langle s, v \rangle \leq f'(x; v) + g'(x; v) \text{ for all } v \in \mathbb{R}^d \right\}
\]
is non-empty. Because of the support function equality $f'(x; v) = \sigma_{S_1}(v)$ and $g'(x; v) = \sigma_{S_2}(v)$, Corollary A.18 gives
\[
\sigma_S(v) = \sigma_{S_1}(v) + \sigma_{S_2}(v) = \sigma_{S_1 + S_2}(v).
\]
Thus (Corollary A.17) $S_1 + S_2 = S$. \hfill \Box

Other situations that arise frequently are composition with affine mappings and taking maxima or suprema of convex functions, so that finding a calculus for these is also important.
Corollary A.43. Let \(f : \mathbb{R}^m \to \mathbb{R} \) be convex and for \(A \in \mathbb{R}^{m \times d} \) and \(b \in \mathbb{R}^m \), let \(g(x) = f(Ax + b) \). Then
\[
\partial g(x) = A^T \partial f(Ax + b).
\]

Proof. Using the directional derivative, we have \(g'(x; v) = f'(Ax + b; Av) \) for all \(v \in \mathbb{R}^d \), and applying Proposition A.19 gives that the latter is the support function of the convex compact set \(A^T \partial f(Ax + b) \).

It is also useful to be able to compute subdifferentials of maxima and suprema (recall Proposition A.28). Consider a collection \(\{ f_\alpha \}_{\alpha \in A} \) of convex functions, and define
\[
f(x) := \sup_{\alpha \in A} f_\alpha(x). \tag{A.3.16}
\]
The function \(f \) is certainly convex. For a given \(x \) let
\[
A(x) := \{ \alpha \in A \mid f_\alpha(x) = f(x) \}
\]
be the indices attaining the suprema, that is, the active index set (though this may be empty). Then there is an “easy” direction:

Lemma A.44. With the notation above,
\[
\partial f(x) \supset \text{cl Conv} \left(\bigcup_{\alpha \in A(x)} \partial f_\alpha(x) \right) = \text{cl Conv} \left\{ g \mid g \in \partial f_\alpha(x) \text{ for some } \alpha \in A(x) \right\}.
\]

Proof. Let \(\alpha \in A(x) \) and \(g \in \partial f_\alpha(x) \). Then
\[
f(y) \geq f_\alpha(y) \geq f_\alpha(x) + \langle g, y - x \rangle = f(x) + \langle g, y - x \rangle.
\]
Thus \(g \in \partial f(x) \), which as a closed convex set must thus include its closed convex hull.

A much more challenging argument is to show that the active index set \(A(x) \) exactly characterizes the subdifferential of \(f \) at \(x \); we simply state a typical result as a proposition.

Proposition A.45. Let \(A \) be a compact set (for some metric) and assume that for each \(x \), the mapping \(\alpha \mapsto f_\alpha(x) \) is upper semi-continuous. Then
\[
\partial f(x) = \text{Conv} \left(\bigcup_{\alpha \in A(x)} \partial f_\alpha(x) \right) = \text{Conv} \left\{ g \mid g \in \partial f_\alpha(x) \text{ for some } \alpha \in A(x) \right\}.
\]
For a proof, see [? , Theorem 4.4.2].

JCD Comment: Draw a picture of this

Finally, we revisit the partial minimization operation in Proposition A.30. In this case, we require a bit more care when defining subdifferentials and subdifferentiability. For \(A \in \mathbb{R}^{n \times m} \) with \(m \geq n \), where \(A \) has rank \(n \) (so that \(x \mapsto Ax \) is surjective) and \(f : \mathbb{R}^m \to \mathbb{R} \), define the function
\[
f_A(x) = \inf \{ f(y) \mid Ay = x \},
\]
which is convex. Define the set \(Y^*(x) := \{ y \mid Ay = x \text{ and } f_A(x) = f(y) \} \) to be the set of \(y \) attaining the infimum in the definition of \(f_A \), which may be empty. When it is not, however, we can characterize the subdifferential of \(f_A(x) \):
Proposition A.46. Let $x \in \mathbb{R}^n$ be a point for which $Y^*(x)$ is non-empty for the function f_A. Then

$$\partial f_A(x) = \{ s \mid A^T s \in \partial f(y) \}$$

for any $y \in Y^*(x)$, and the set on the right is independent of the choice of y.

Proof. A vector s is a subgradient of f at x if and only if

$$f_A(x') \geq f_A(x) + \langle s, x' - x \rangle \text{ for all } x' \in \mathbb{R}^n,$$

which (as $Ay = x$ for $y \in Y^*(x)$) is equivalent to

$$f_A(x') \geq f(y) + \langle s, x' - Ay \rangle \text{ for all } x' \in \mathbb{R}^n.$$

Because A has full row rank, for any $x' \in \mathbb{R}^n$ there exists y' with $Ay' = x'$; by definition of f_A as the infimum, the preceding display is thus equivalent to

$$f(y') \geq f_A(Ay') \geq f(y) + \langle s, Ay' - Ay \rangle \text{ for all } y' \in \mathbb{R}^m.$$

This holds if and only if $A^T s$ is a subgradient of f at y. \qed
Appendix B

Optimality, stability, and duality

The existence and continuity properties of minimizers of (convex) optimization problems play a central role in much of statistical theory. They are especially essential in our understanding of loss functions and the associated optimality properties. In our context, this is especially central for problems of classification calibration or surrogate risk consistency, as in Chapters 16 and 19. This appendix records several representative results along these lines, and also builds up the duality theory associated with convex conjugates, frequently identified as Fenchel-Young duality.

Broadly, throughout this appendix, we shall consider the generic optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in C
\end{align*}
\]

(B.0.1)

where C is a closed convex set (we have not yet assumed convexity of f). Throughout (as in the previous appendix) we assume that f is proper, so that $f(x) > -\infty$ for each x, and that $f(x) = +\infty$ if $x \notin \text{dom} f$.

The most basic question we might ask is when minimizers even exist in the problem (B.0.1). The standard result in this vein is that if minimizers exist whenever C is compact and f is lower semicontinuous (A.3.9), that is, its epigraph is closed, i.e., $\liminf_{x \to x_0} f(x) \geq f(x_0)$.

Proposition B.1. Let C be compact and $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be lower semi-continuous (A.3.9) over C. Then $\inf_{x \in C} f(x) > -\infty$ and the infimum is attained.

Proof Let $f^* = \inf_{x \in C} f(x)$, where for now we allow the possibility that $f^* = -\infty$. Let $x_n \in C$ be a sequence of points satisfying $f(x_n) \to f^*$. Proceeding to a subsequence if necessary, we can assume that $x_n \to x^* \in C$ by the compactness of C. Then lower semi-continuity guarantees that $f^* = \lim_n f(x_n) \geq f(x^*) \geq f^*$, and so $f(x^*) = f^*$ and so necessarily $f^* > -\infty$. \hfill \square

When the domain C is not compact but only closed, alternative conditions are necessary to guarantee the existence of minimizers. Perhaps the most frequent, and one especially useful with convexity (as we shall see), is that f is coercive, meaning that

\[f(x) \to \infty \quad \text{whenever} \quad ||x|| \to \infty. \]

Proposition B.2. Let C be closed and $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be lower semi-continuous over C and coercive. Then $\inf_{x \in C} f(x) > -\infty$ and the infimum is attained.
Proof Once again, let \(f^* = \inf_{x \in C} f(x) \) and let \(x_n \in C \) satisfy \(f(x_n) \to f^* \). Certainly \(x_n \) must be a bounded sequence because \(f \) is coercive. Thus, it has a subsequent limit, and w.l.o.g. we assume that \(x_n \to x^* \in C \) by closedness. Lower semi-continuity guarantees that \(f^* \geq \liminf_n f(x_n) = f(x^*) \geq f^* \), giving the result.

Finally, we make a small remark norms and dual norms, as these will be important for the more quantitative smoothness guarantees we provide. For a norm \(\| \cdot \| \), the dual norm \(\| \cdot \|_* \) has definition
\[
\| y \|_* := \sup_x \{ \langle x, y \rangle \mid \| x \| \leq 1 \}.
\]
This is a norm as it is positively homogeneous, \(\| y \|_* = 0 \) if and only if \(y = 0 \), and satisfies the triangle inequality. A few brief examples follow, which we leave as exercises to the reader.

(i) The \(\ell_2 \)-norm \(\| x \|_2 = \sqrt{\langle x, x \rangle} \) is self-dual, so that its dual is \(\| \cdot \|_2 \).

(ii) The \(\ell_1 \) and \(\ell_\infty \) norms are dual, that is, \(\| x \|_\infty = \sup_{\| y \|_1 \leq 1} \langle x, y \rangle \) and \(\| y \|_1 = \sup_{\| x \|_\infty \leq 1} \langle x, y \rangle \).

(iii) For all \(p \in [1, \infty] \), the dual to the \(\ell_p \) norm \(\| x \|_p = \left(\sum_{j=1}^{d} |x_j|^p \right)^{1/p} \) is the \(\ell_q \) norm with \(q = \frac{p}{p-1} \), that is, for the \(q \geq 1 \) satisfying \(\frac{1}{p} + \frac{1}{q} = 1 \).

B.1 Optimality conditions and stability properties

With the basic results on existence of minimizers in place, we turn to convex optimization problems, where \(f \) is closed convex and \(C \) is a closed convex set, and we assume essentially without loss of generality that \(\text{dom} f \supset \text{int} C \) (as otherwise, we may replace \(C \) with \(C \cap \text{cl dom} f \)). The benefits of convexity appear immediately: \(f \) has no local but non-global minimizers, and moreover, if \(f \) is strictly convex, then any minimizers (if they exist) are unique.

Proposition B.3. Let \(f \) be convex. Then if \(x \) is a local minimizer of \(f \) over \(C \), it is a global minimizer of \(f \) over \(C \). If \(f \) is strictly convex, then \(x \) is unique.

Proof To say that \(x \) is a local minimizer of \(f \) over \(C \) is to say that \(f(x) \leq f(x') \) for all \(x' \in C \) with \(\| x' - x \| \leq \epsilon \) for some \(\epsilon > 0 \). Now, consider \(y \in C \). By taking \(\lambda > 0 \) small enough, we have both \((1 - \lambda)x + \lambda y \in C \) and \(\| (1 - \lambda)x + \lambda y - x \| \leq \epsilon \), and so
\[
f(x) \leq f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y),
\]
which rearranged yields \(f(y) \geq f(x) \). If \(f \) is additionally strictly convex (recall Corollary A.22), then the preceding inequality is strict whenever \(y \neq x \).

B.1.1 Subgradient characterizations for optimality

First-order stationary conditions are sufficient for global optimality in convex problems. We can say more once we consider subgradients:

Observation B.4. Let \(f \) be convex and subdifferentiable at \(x \). Then \(x \) minimizes \(f \) if and only if \(0 \in \partial f(x) \).
Proof If $0 \in \partial f(x)$, then $f(y) \geq f(x) + \langle 0, y - x \rangle = f(x)$ for all y. Conversely, if x minimizes f, then we have $f(y) \geq f(x)$ for all y, and in particular, $0 \in \partial f(x)$. \hfill \square

Things become a bit more complicated when we consider the constraints in the problem (B.0.1), so that the point x may be restricted. In this case, it is important and useful to consider the normal cone to the set C, which is (essentially) the collection of vectors pointing out of C.

Definition B.1. Let C be a closed convex set. The normal cone to C at the point $x \in C$ is the collection of vectors

$$
N_C(x) := \{ v \mid \langle v, y - x \rangle \leq 0 \text{ for all } y \in C \}.
$$

So $N_C(x)$ is the collection of vectors making an obtuse angle with any direction into the set C from x. \hfill JCD Comment: Draw a picture, and also, put this earlier in the discussion of convex sets.

It is clear that $N_C(x)$ is indeed a cone: if $v \in N_C(x)$, then certainly $tv \in N_C(x)$ for all $t \geq 0$. It is closed convex, being the intersection of halfspaces. Moreover, if $x \in \text{int } C$, then we have $N_C(x) = \{0\}$, and additionally, we can connect the supporting hyperplanes of C to its normal cones: Theorem A.12 gives the following corollary.

Corollary B.5. Let C be closed convex. Then for any $x \in \text{bd}(C)$, the normal cone $N_C(x)$ is non-trivial and consists of the collection of supporting hyperplanes to C at x.

By a bit of subgradient calculus, we can then write optimality conditions involving the normal cones to C. If C is a closed convex set, the convex indicator function $I_C(x)$ has subdifferentials

$$
\partial I_C(x) = \begin{cases}
\{0\} & \text{if } x \in \text{int } C \\
N_C(x) & \text{if } x \in \text{bd}(C) \\
\emptyset & \text{otherwise}.
\end{cases}
$$

The only case requiring justification is the boundary case; for this, we note that $w \in N_C(x)$ if and only if $\langle w, y - x \rangle \leq 0$ for all $y \in C$, which in turn occurs if and only if $I_C(y) \geq I_C(x) + \langle w, y - x \rangle$ for all y.

The subdifferential calculation for $I_C(x)$ yields the following general optimality characterization for problem (B.0.1).

Proposition B.6. In the problem (B.0.1), let $x \in \text{int dom } f$. Then x minimizes f over C if and only if

$$
0 \in \partial f(x) + N_C(x).
$$

Proof The minimization problem (B.0.1) is equivalent to the problem

$$
\min_x f(x) + I_C(x).
$$

As $x \in \text{int dom } f$, f has nonempty compact convex subdifferential $\partial f(x)$, and so $\partial (f + I_C)(x) = \partial f(x) + \partial I_C(x) = \partial f(x) + N_C(x)$ by Proposition A.42. Apply Observation B.4. \hfill \square

Several equivalent versions of Proposition B.6 are possible. The first is that

$$
- \partial f(x) \cap N_C(x) \neq \emptyset,
$$

396
that is, there is a subgradient vector \(g \in \partial f(x) \) such that \(-g \in N_C(x) \), so that \(-g \) points outside the set \(C \). \[\text{JCD Comment: Draw a picture} \]

Another variant, frequently used, is to write Proposition B.6 as that \(x \) solves problem (B.0.1) if and only if there exists \(g \in \partial f(x) \) such that

\[
\langle g, y - x \rangle \geq 0 \quad \text{for all } y \in C. \tag{B.1.2}
\]

Indeed, taking \(g \in \partial f(x) \) to be the element satisfying \(-g \in N_C(x) \), we immediately see that \(\langle -g, y - x \rangle \leq 0 \) for all \(y \in C \) by definition of the normal cone, which is (B.1.2). \[\text{JCD Comment: Use picture above} \]

B.1.2 Stability properties of minimizers

The characterizations (B.1.1) and (B.1.2) of optimality for convex optimization problems allow us to develop some stability properties of the minimizers of convex problems. These, in turn, will relate to smoothness properties of various dual functions (as we explore in the sequel), which again become important in the study of consistent losses. Here, we collect a few of the typical results. Typical results in this vein exhibit a few properties: that solutions are “stable,” meaning that small tilts of the function \(f \) do not change solutions significantly, or that the function \(f \) exhibits various strong growth properties.

For our starting point, we begin by consider strongly convex functions, where a function is \(\lambda \)-strongly convex with respect to the norm \(\| \cdot \| \) if for all \(t \in [0, 1] \) and \(x, y \in \text{dom } f \),

\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) - \frac{\lambda}{2}t(1-t)\|x-y\|^2. \tag{B.1.3}
\]

The definition (B.1.3) makes strict convexity quantitative in a fairly precise way, and has several equivalent characterizations.

Proposition B.7 (Equivalent characterizations of strong convexity). Let \(f \) be a convex function, subdifferentiable on its domain. Then the following are equivalent.

(i) \(f \) is \(\lambda \)-strongly convex (Eq. (B.1.3)).

(ii) For all \(y \in \mathbb{R}^d \) and \(g \in \partial f(x) \),

\[
f(y) \geq f(x) + \langle g, y - x \rangle + \frac{\lambda}{2}\|x-y\|^2.
\]

(iii) For all \(x, y \in \text{dom } f \) and \(g_x \in \partial f(x) \) and \(g_y \in \partial f(y) \),

\[
\langle g_x - g_y, x - y \rangle \geq \lambda\|x-y\|^2.
\]

Proof Let us prove that (ii) if and only if (iii). Let \(g_x \in \partial f(x) \) and \(g_y \in \partial f(y) \) and assume (ii) holds. Then

\[
f(y) \geq f(x) + \langle g_x, y - x \rangle + \frac{\lambda}{2}\|y-x\|^2.
\]

\[
f(x) \geq f(y) + \langle g_y, x - y \rangle + \frac{\lambda}{2}\|x-y\|^2.
\]
and adding the equations we obtain
\[0 \geq \langle g_x - g_y, y - x \rangle + \lambda \|x - y\|^2. \]
Rearranging gives part (iii). Conversely, assume (iii), and for \(t \in [0,1] \) let \(x_t = (1-t)x + ty \) and define \(h(t) = f(x(t)) \). Then \(h \) is convex and hence almost everywhere differentiable (and locally Lipschitz), so that \(h(1) = h(0) + \int_0^1 h'(t)dt \). Noting that
\[h'(t) = \langle g_t, y - x \rangle \quad \text{for some } g_t \in \partial f(x_t) \]
(recall the subgradient characterization of Proposition A.37), we have
\[h'(t) = \langle g_t, y - x \rangle = \langle g_t - g_x, y - x \rangle + \langle g_x, y - x \rangle = \frac{1}{t} (\langle g_t - g_x, (1-t)x + ty - x \rangle + \langle g_x, y - x \rangle) \]
and so as \(h(1) = f(y) \) and \(h(0) = f(x) \),
\[
\begin{align*}
 f(y) &= h(0) + \int_0^1 \frac{\langle g_t - g_x, (1-t)x + ty - x \rangle}{t} \, dt + \langle g_x, y - x \rangle \\
 &\geq f(x) + \int_0^1 \frac{\lambda \| (1-t)x + ty - x \|^2}{t} \, dt + \langle g_x, y - x \rangle \\
 &= f(x) + \lambda \|x - y\|^2 \int_0^1 t \, dt + \langle g_x, y - x \rangle = f(x) + \langle g_x, y - x \rangle + \frac{\lambda}{2} \|y - x\|^2.
\end{align*}
\]
That (ii) implies (i) is relatively straightforward: we have
\[
\begin{align*}
 f(y) &\geq f(tx + (1-t)y) + t \langle g_t, y - x \rangle + \frac{\lambda}{2} t^2 \|x - y\|^2 \\
 f(x) &\geq f(tx + (1-t)y) + (1-t) \langle g_t, x - y \rangle + \frac{\lambda}{2} (1-t)^2 \|x - y\|^2
\end{align*}
\]
for any \(g_t \in \partial f(tx + (1-t)y) \). Multiply the first inequality by \((1-t)\) and the second by \(t\), then add them to obtain
\[
\begin{align*}
 tf(x) + (1-t)f(y) &\geq f(tx + (1-t)y) + \frac{\lambda}{2} \left[(1-t)t^2 + t(1-t)^2 \right] \|x - y\|^2,
\end{align*}
\]
and note that \((1-t)t^2 + t(1-t)^2 = t(1-t)\). Finally, let (i) hold, and which is equivalent to the condition that
\[
\frac{f((1-t)x + ty) - f(x)}{t} + \frac{\lambda}{2} (1-t) \|x - y\|^2 \leq f(y) - f(x)
\]
for \(t \in (0,1) \). Taking \(t \downarrow 0 \) gives \(f'(x; y - x) + \frac{\lambda}{2} \|x - y\|^2 \leq f(y) - f(x) \), and because \(f'(x; y - x) = \sup_{s \in \partial f(x)} \langle s, y - x \rangle \) we obtain (ii).

As a first example application of strong convexity, consider minimizers of the tilted functions
\[f_u(x) := f(x) - \langle u, x \rangle \]
as \(u \) varies. First, note that minimizers necessarily exist: the function \(f_u(x) \to \infty \) whenever \(\|x\| \to \infty \) by condition (ii) in Proposition B.7, and so we can restrict to minimizing \(f_u \) over
Moreover, the minimizers $x_u := \arg\min_x f_u(x)$ are unique, as the functions f_u are strongly (and hence strictly) convex. However, we can say more. Indeed, let C be any closed convex set and let

$$x_u = \arg\min_{x \in C} f_u(x).$$

We claim the following:

Proposition B.8. Let f be λ-strongly convex with respect to the norm $\|\cdot\|$ and subdifferentiable on C. Then the mapping $u \mapsto x_u$ is $\frac{1}{\lambda}$-Lipschitz continuous with respect to the dual norm $\|\cdot\|_*$, that is, $\|x_u - x_v\| \leq \frac{1}{\lambda} \|u - v\|_*$. \hfill \Box

Proof. We use the optimality condition (B.1.2). We have $\partial f_u(x) = \partial f(x) - u$, and thus for any u, v we have both

$$\langle g_u - u, y - x_u \rangle \geq 0 \quad \text{and} \quad \langle g_v - v, y - x_v \rangle \geq 0$$

for some $g_u \in \partial f(x_u)$ and $g_v \in \partial f(x_v)$ for all $y \in C$. Set $y = x_v$ in the first inequality and $y = x_u$ in the second and add them to obtain

$$\langle g_u - g_v + v - u, x_v - x_u \rangle \geq 0 \quad \text{or} \quad \langle v - u, x_v - x_u \rangle \geq \langle g_v - g_u, x_v - x_u \rangle.$$

By strong convexity the last term satisfies $\langle g_v - g_u, x_v - x_u \rangle \geq \lambda \|x_u - x_v\|^2$. By definition of the dual norm, $\|v - u\|_* \|x_v - x_u\| \geq \langle v - u, x_v - x_u \rangle$, so $\|v - u\|_* \|x_v - x_u\| \geq \lambda \|x_u - x_v\|^2$, which is the desired result. \hfill \Box

JCD Comment: Figure for the preceding lemma.

There are alternative versions of strong convexity, typically given the name uniform convexity in the convex analysis literature, which allow generalizations and similar quantitative stability properties. In analogy with the strong convexity condition (B.1.3), we say that f is (λ, κ)-uniformly convex, where $\kappa \geq 2$, over C if it is closed and for all $t \in [0, 1]$ and $x, y \in C$,

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) - \frac{\lambda}{2} t(1-t) \|x - y\|^\kappa \left[(1-t)^{\kappa-1} + t^{\kappa-1}\right].$$

Notably the $\kappa = 2$ case is simply the familiar strong convexity.

JCD Comment: Give lemmas and propositions but leave as exercises, filling this out.

JCD Comment: Add some material on strict convexity implying a bit of growth around a neighborhood, and stability properties of strongly convex functions.

The weakest version of such strong convexity properties is strict convexity, for which a careful reading of the proof of Proposition B.7 (replace all λ with 0 and inequalities with strict inequalities) gives the following characterization of equivalent definitions of strict convexity (recall also Corollary A.22).

Corollary B.9. Let f be a convex function subdifferentiable on C. The following are equivalent.

(i) f is strictly convex on C.

(ii) For all $x \in C$, $y \neq x$, and $g \in \partial f(x)$,

$$f(y) > f(x) + \langle g, y - x \rangle.$$
(iii) For all \(x, y \in C \) and \(g_x \in \partial f(x) \) and \(g_y \in \partial f(y) \),
\[
\langle g_x - g_y, x - y \rangle > 0.
\]

Using Corollary B.9, we can then obtain certain smoothness properties of the tilted minimizers \(x_u \) of the minimization (B.1.4). We begin with a lemma that guarantees growth of convex functions over their first-order approximations.

Lemma B.10. Let \(f \) be convex and subdifferentiable on the closed convex set \(C \), and for any fixed \(g \in \partial f(x_0) \) define the Bregman divergence
\[
D(x, x_0) := f(x) - f(x_0) - \langle g, x - x_0 \rangle.
\]
Then for all \(0 \leq \epsilon \leq \epsilon' \), \(\delta(\epsilon) := \inf\{D(x, x_0) \mid x \in C, \|x - x_0\| \geq \epsilon\} \) is attained, nonnegative, and \(\delta(\epsilon') \geq \frac{\epsilon}{\epsilon'} \delta(\epsilon) \).

Proof Fix \(x \in C \). Letting \(h(t) = D(x_0 + t(x - x_0), x_0), h \) is convex in \(t \geq 0 \), locally Lipschitz, and satisfies \(h(0) = \inf_{t} h(t) = 0 \), so we can write \(h(t) = h(0) + \int_{0}^{t} h'(s; 1) ds \). Additionally, \(s \mapsto h'(s; 1) \geq 0 \) is nondecreasing by the increasing slopes criterion (A.3.4).

For all \(\epsilon > 0 \), then, we may restrict infimum in the definition of \(\delta(\epsilon) \) to those \(x \in C \) satisfying \(\|x - x_0\| = \epsilon \), a compact set, so that the infimum is attained at some \(x_\epsilon \in C \) with \(\|x_\epsilon - x_0\| = \epsilon \).

Now, let \(\epsilon' > \epsilon \), and \(x_{\epsilon'} \) achieve the infimum in \(\delta(\epsilon) \). Then setting \(x' = \frac{\epsilon'}{\epsilon}(x' - x_0) + x_0 \) (implying \(x_{\epsilon'} = \frac{\epsilon'}{\epsilon}(x' - x_0) + x_0 \)), we have \(\|x' - x_0\| = \epsilon \) and so \(D(x', x_0) \geq D(x_{\epsilon'}, x_0) = \delta(\epsilon) \). Set \(h(t) = D(x_0 + t(x' - x_0), x_0) \). Rewriting and using the first-order convexity condition,
\[
\delta(\epsilon') = D(x_{\epsilon'}, x_0) = D \left(\frac{\epsilon'}{\epsilon}(x' - x_0) + x_0, x_0 \right) = h \left(\frac{\epsilon'}{\epsilon} \right) \geq h(1) + \left[\frac{\epsilon'}{\epsilon} - 1 \right] h'(1; 1)
\]
\[
= D(x', x_0) + \left[\frac{\epsilon'}{\epsilon} - 1 \right] h'(1; 1).
\]

A minor variant of the criterion of increasing slopes (A.3.4) and that \(h(0) = 0 \) then gives \(h'(1; 1) = \lim_{t \to 0} \frac{h(1+t) - h(1)}{t} = \frac{h(1) - h(0)}{1} = h(1) = D(x', x_0) \), so we have
\[
\delta(\epsilon') = D(x_{\epsilon'}, x_0) \geq D(x', x_0) + \left[\frac{\epsilon'}{\epsilon} - 1 \right] D(x', x_0) = \frac{\epsilon'}{\epsilon} D(x', x_0) \geq \frac{\epsilon'}{\epsilon} \delta(\epsilon)
\]
as desired. \(\Box \)

Whenever \(f \) is strictly convex, because the infimum in \(\delta(\epsilon) \) is attained in Lemma B.10, we have the following guarantee.

Lemma B.11. Let the conditions of Lemma B.10 hold and additionally let \(f \) be strictly convex. Then \(\delta(\epsilon) > 0 \) for all \(\epsilon > 0 \).

Combining these results yields the following non-quantitative version of Proposition B.8:

Proposition B.12. Let \(f \) be strictly convex and subdifferentiable on the closed convex set \(C \), and assume that the minimum \(x_0 = \arg\min_{x \in C} f(x) \) is attained. Then the mapping \(u \mapsto x_u \) is continuous in a neighborhood of \(u = 0 \).
Proof We show first that \(x_u \) is continuous at \(u = 0 \). By Lemmas B.10 and B.11, we see that for \(x \in C \) we have
\[
f(x) \geq f(x_0) + \langle g, x - x_0 \rangle + \delta(\|x - x_0\|) \geq f(x_0) + \delta(\|x - x_0\|),
\]
where \(g \in \partial f(x_0) \) satisfies \(\langle g, x - x_0 \rangle \geq 0 \) for all \(x \in C \) by the optimality condition (B.1.2). Now, pick \(\epsilon > 0 \), so that if \(\|x - x_0\| > \epsilon \) we have \(\delta(\|x - x_0\|) \geq \|x - x_0\| \frac{\delta(\epsilon)}{\epsilon} \) by Lemma B.10. Then if \(u \) satisfies \(\|u\| < \frac{\delta(\epsilon)}{\epsilon} \), we have
\[
f(x) - \langle u, x \rangle = f(x) - \langle u, x - x_0 \rangle - \langle u, x_0 \rangle \\
\geq f(x_0) - \langle u, x_0 \rangle + \delta(\|x - x_0\|) - \langle u, x - x_0 \rangle \\
\geq f(x_0) - \langle u, x_0 \rangle + \delta(\|x - x_0\|) - \langle u, x_0 \rangle \\
\geq f(x_0) - \langle u, x_0 \rangle + \delta(\|x - x_0\|) - \|u\| \|x - x_0\| \\
> f(x_0) - \langle u, x_0 \rangle + \frac{\delta(\epsilon)}{\epsilon} \|x - x_0\| - \frac{\delta(\epsilon)}{\epsilon} \|x - x_0\| = f(x_0) - \langle u, x_0 \rangle.
\]
Thus any minimizer \(x_u \) of \(f(x) - \langle u, x \rangle \) over \(x \in C \) must satisfy \(\|x - x_0\| \leq \epsilon \), and strict convexity guarantees its uniqueness.

The argument that \(u \mapsto x_u \) is continuous in a neighborhood of zero is completely similar once we recognize that for the divergence \(D_f(x, x_0) := f(x) - \langle g, x - x_0 \rangle - f(x_0) \) (where \(g \in \partial f(x_0) \) is fixed), we have \(D_f = D_{f_u} \) for \(f_u(x) = f(x) - \langle u, x \rangle \) and \(x_u \) is near \(x_0 \) for \(u \) small. \(\square \)

B.2 Conjugacy and duality properties

Attached to any function is its **convex conjugate**, sometimes called the **Fenchel** or **Fenchel-Legendre** conjugate function, defined by
\[
f^*(s) := \sup_x \{ \langle s, x \rangle - f(x) \}. \tag{B.2.1}
\]
For any \(f \), the conjugate \(f^* \) is a closed convex function, as it is the supremum of linear functions. This function helps to exhibit a duality for convex functions similar to those for convex sets, which we can describe as the intersection of all halfspaces containing them (recall Theorem A.13 and the equalities (A.1.3–(A.1.4)).

JCD Comment: Draw a picture of the conjugate

The conjugate function is the largest gap between the linear functional \(x \mapsto \langle s, x \rangle \) and the function \(f \) itself. The remarkable property of such conjugates is that their biconjugates describe the function \(f \) itself, or at least the largest closed convex function below \(f \). To make this a bit more precise, we state a theorem, and then connect to so-called convex closures of functions.

Theorem B.13. Let \(f \) be closed convex and \(f^* \) be its conjugate (B.2.1). Then
\[
f^{**}(x) = f(x) \quad \text{for all } x.
\]

Proof By definition, we have
\[
f^{**}(x) = \sup_s \{ \langle x, s \rangle - f^*(s) \},
\]

Lecture Notes on Statistics and Information Theory

John Duchi

401
and we always have \(\langle x, s \rangle - f^*(s) \leq f(x) \) by definition of \(f^*(s) = \sup_x \{ \langle s, x \rangle - f(x) \} \). So immediately we see that \(f^{**}(x) \leq f(x) \).

We essentially show that the linear functions \(h_s(x) := \langle x, s \rangle - f^*(s) \) describe (enough) of the global linear underestimators of \(f \) so that \(f(x) = \sup_s h_s(x) \), allowing us to apply Theorem A.27. Indeed, let \(l(x) = \langle s, x \rangle + b \) be any global underestimator of \(f \). Then we must have \(b \leq f(x) - \langle s, x \rangle \) for all \(x \), that is, \(b \leq \inf_x \{ f(x) - \langle s, x \rangle \} = -\sup_x \{ \langle s, x \rangle - f(x) \} = -f^*(s) \), that is, \(l(x) \leq \langle s, x \rangle - f^*(s) = h_s(x) \). Apply Theorem A.27.

We may visualize \(f^{**} \) as pulling a string up below a function \(f \), yielding the largest closed convex underestimator of \(f \). (While this is in fact a rigorous statement, we shall not prove it here.)

B.2.1 Gradient dualities and the Fenchel-Young inequality

It is immediate from the definition that for any pair \(s, x \) we have the Fenchel-Young inequality

\[
\langle s, x \rangle \leq f^*(s) + f(x).
\]

Even more, combining Theorem B.13 with this observation, we can exhibit a duality between subgradients of \(f \) and \(f^* \) with this inequality.

Proposition B.14. Let \(f \) be closed convex. Then

\[
\langle s, x \rangle = f^*(s) + f(x) \quad \text{if and only if} \quad s \in \partial f(x) \quad \text{if and only if} \quad x \in \partial f^*(s).
\]

Proof If \(\langle s, x \rangle = f^*(s) + f(x) \), then \(-f(x) + \langle s, x \rangle = f^*(s) \geq \langle s, y \rangle - f(y) \) for all \(y \), and re-arranging, we have \(f(y) \geq f(x) + \langle s, y - x \rangle \), that is, \(s \in \partial f(x) \). Conversely, if \(s \in \partial f(x) \) then \(0 \in \partial f(x) - s \), so that \(x \) minimizes \(f(x) - \langle s, x \rangle \), or equivalently, \(x \) maximizes \(\langle s, x \rangle - f(x) \) and so \(\langle s, x \rangle - f(x) = \sup_y \{ \langle s, y \rangle - f(y) \} \) as desired. The final statement is immediate from a parallel argument and the duality in Theorem B.13.

Writing Proposition B.14 differently, we see that \(\partial f \) and \(\partial f^* \) are inverses of one another. That is, as set-valued mappings, where

\[
(\partial f)^{-1}(s) := \{ x \mid s \in \partial f(x) \},
\]

we have the following corollary.

Corollary B.15. Let \(f \) and \(f^* \) be subdifferentiable. Then

\[
\partial f^* = (\partial f)^{-1} \quad \text{and} \quad \partial f = (\partial f^*)^{-1}
\]

and

\[
\partial f^*(s) = \text{argmax} \{ \langle s, x \rangle - f(x) \} \quad \text{and} \quad \partial f(x) = \text{argmax} \{ \langle s, x \rangle - f^*(s) \}.
\]

Notably, if \(f \) and \(f^* \) are differentiable, then \(\nabla f = (\nabla f^*)^{-1} \).

Additionally, we see that the domains and images of \(\partial f \) and \(\partial f^* \) are also related, which guarantees convexity properties of their images as well.
Corollary B.16. Let f be closed convex. Then

$$\text{dom } \partial f = \text{Im } \partial f^* \quad \text{and} \quad \text{dom } \partial f^* = \text{Im } \partial f.$$

Proof Let $x \in \text{dom } \partial f$, so that $\partial f(x)$ is non-empty. Then $s \in \partial f(x)$ implies that $\langle s, x \rangle = f(x) + f^*(s)$ and $x \in \partial f^*(s)$ by Proposition B.14. Similarly, if $x \in \text{Im } \partial f^*$, then there is some s for which $x \in \partial f^*(s)$ and so $\langle s, x \rangle = f(x) + f^*(s)$ and $s \in \partial f(x)$.

We can use the identification between the domains of ∂f and the images of ∂f^* to give a few additional characterizations of the domains of convex functions and their conjugates; the domain of f^* is intimately tied with the growth properties of f, and conversely by the relationship $f = f^{**}$ when f is closed convex. As one example of how we can make this identification, note that if f^* is defined everywhere, that is, $\text{dom } f^* = \mathbb{R}^d$, then similarly $\text{dom } \partial f^* = \mathbb{R}^d$, and so in particular the (sub)gradients of f must cover all of \mathbb{R}^d. Even more, as we shall see, this implies certain growth conditions on f.

To make this more rigorous, we require functions capturing the asymptotic growth of f. To that end, we present the following proposition, which has the benefit of defining the *recession function* (essentially, an asymptotic derivative) of f.

Proposition B.17. Let f be a closed convex function and f^* is convex conjugate. Then for any $x \in \text{dom } f$, we may define

$$f'_\infty(v) := \sup_{t > 0} \frac{f(x + tv) - f(x)}{t} = \lim_{t \to \infty} \frac{f(x + tv) - f(x)}{t} \quad (B.2.3)$$

independently of x, and moreover,

$$f'_\infty(v) = \sigma_{\text{dom } f^*}(v)$$

where $\sigma_{\text{dom } f^*}$ is the support function (A.2.1) of $\text{dom } f^*$.

Proof That for any fixed $x \in \text{dom } f$ the limit exists and is equal to the supremum follows because of the criterion of increasing slopes (A.3.4), making the equality with the supremum immediate. That $f'_\infty(v)$ is independent of x will follow once we show the second equality claimed in the proposition, to which we now turn.

Recall that

$$\text{dom } f^* = \left\{ s \mid \sup_x \{ \langle s, x \rangle - f(x) \} < \infty \right\} \quad \text{and} \quad f(x) = \sup_s \{ \langle s, x \rangle - f^*(s) \}$$

by conjugate duality, as f is closed convex (Theorem B.13). Fix $x \in \text{dom } f$. Then for any $s \in \text{dom } f^*$, we evidently have

$$\frac{f(x + tv) - f(x)}{t} \geq \frac{\langle s, x + tv \rangle - f^*(s) - f(x)}{t} \to \langle s, v \rangle$$

as $t \uparrow \infty$. Taking a supremum over $s \in \text{dom } f^*$ gives that $f'_\infty(v) \geq \sigma_{\text{dom } f^*}(v)$. For the opposite direction, note that

$$\frac{f(x + tv) - f(x)}{t} = \frac{1}{t} \left[\sup_{s \in \text{dom } f^*} \{ \langle s, x + tv \rangle - f^*(s) \} - \sup_{s \in \text{dom } f^*} \{ \langle s, x \rangle - f^*(s) \} \right] \leq \frac{1}{t} \sup_{s \in \text{dom } f^*} \{ \langle s, x + tv \rangle - f^*(s) - (\langle s, x \rangle - f^*(s)) \} = \frac{1}{t} \sup_{s \in \text{dom } f^*} t \langle s, v \rangle.$$
Thus \(f'_\infty(v) \leq \sigma_{\text{dom } f^*}(v) \), and we have the result.

It is particularly interesting to understand the conditions under which \(\text{dom } f^* = \mathbb{R}^d \), that is, \(f^* \) is finite everywhere. Recall that \(f : \mathbb{R}^d \to \mathbb{R} \) is coercive if \(f(x) \to \infty \) whenever \(\|x\| \to \infty \); we call it super-coercive if \(f(x)/\|x\| \to \infty \) whenever \(\|x\| \to \infty \), so that \(f \) grows more than linearly. These concepts are central to the existence of minimizers. A priori, any function with compact domain is super-coercive, because \(f(x) = +\infty \) for \(x \not\in \text{dom } f \). For convex functions, we can relate such coercivity ideas to the recession function \(f'_\infty \) associated with \(f \) as expression (B.2.3) defines. Particularly importance are those \(f \) satisfying

\[
f'_\infty(v) = +\infty \quad \text{for all } v \neq 0,
\]

a class Rockafellar [129] calls copositive functions, as these exhibit superlinear growth on all rays toward infinity. We can relate this condition to the domains of \(f^* \) as well: using Proposition A.20, Proposition B.17 gives

Corollary B.18. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be closed convex. Then \(s \in \text{dom } f^* \) if and only if \(\langle s, v \rangle \leq f'_\infty(v) \) for all \(v \neq 0 \), and \(s \in \text{int } \text{dom } f^* \) if and only if \(\langle s, v \rangle < f'_\infty(v) \) for all \(v \neq 0 \). In particular,

\[
\text{dom } f^* = \mathbb{R}^d
\]

if and only if \(f'_\infty(v) = +\infty \) for all \(v \neq 0 \). A sufficient condition for this is that \(f \) be super-coercive.

B.2.2 Smoothness and strict convexity of conjugates

The dualities in derivative mappings extend to various smoothness dualities, which can be quite useful as well. These types of results build from the stability properties of solution mappings, as in those for tilted minimizers (B.1.4) in Propositions B.8 and B.12. They also relate different smoothness properties of \(f \) and \(f^* \), as well as their domains of definition, to the existence and continuity of minimizers of \(f(x) - \langle s, x \rangle \).

When we assume that \(f \) has quantitative strong convexity or smoothness properties, we can give similar quantitative guarantees for the smoothness and strong convexity of \(f^* \):

Proposition B.19. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be \(\lambda \)-strongly convex with respect to the norm \(\| \cdot \| \) (see Eq. (B.1.3)) on its domain. Then \(\text{dom } f^* = \mathbb{R}^d \) and \(\nabla f^* \) is \(\frac{1}{\lambda} \)-Lipschitz continuous with respect to the dual norm \(\| \cdot \|_* \), that is,

\[
\| \nabla f^*(u) - \nabla f^*(v) \| \leq \frac{1}{\lambda} \| u - v \|_*
\]

for all \(u, v \). Conversely, let \(f : \mathbb{R}^d \to \mathbb{R} \) be convex with L-Lipschitz gradient with respect to \(\| \cdot \| \) on \(\mathbb{R}^d \). Then \(f^* \) is \(\frac{1}{L} \)-strongly convex with respect to the dual norm \(\| \cdot \|_* \) on convex subsets \(C \subset \text{dom } \partial f^* \), and in particular,

\[
\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \frac{1}{L} \| \nabla f(x) - \nabla f(y) \|_*^2.
\]

Proof For the first claim, let \(C = \text{dom } f \). Then Proposition B.8 shows that if \(x_1 = \text{argmin}_x \{ f(x) - \langle s_1, x \rangle \} \) and \(x_2 = \text{argmin}_x \{ f(x) - \langle s_2, x \rangle \} \) (which exist and are necessarily unique), we have \(\| x_1 - x_2 \| \leq \frac{1}{\lambda} \| s_1 - s_2 \|_* \). Then Proposition B.14 shows that \(x_i \in \partial f^*(s_i) \) for \(i = 1, 2 \), and hence \(\partial f^*(s_i) \) is necessarily single-valued and \((1/\lambda) \)-Lipschitz continuous.
The converse is a bit trickier. Let \(x \) and \(y \) be arbitrary and \(s_x = \nabla f(x) \) and \(s_y = \nabla f(y) \); we prove inequality (B.2.4), known as co-coercivity. By the \(L \)-Lipschitz continuity of \(\nabla f \), we have

\[
f(y) = f(x) + \int_0^1 \langle \nabla f(x + t(y-x)), y-x \rangle dt
\]

\[
= f(x) + \langle \nabla f(x), y-x \rangle + \int_0^1 \langle \nabla f(x + t(y-x)) - \nabla f(x), y-x \rangle dt
\]

\[
\leq f(x) + \langle s_x, y-x \rangle + \int_0^1 L\|y-x\|^2 dt = f(x) + \langle s_x, y-x \rangle + \frac{L}{2}\|y-x\|^2,
\]

which is valid for any \(x, y \). Note that \(f(x) - \langle s_x, x \rangle = -f^*(s_x) \), so that rearranging we have

\[
f^*(s_x) \leq \langle s_x, y \rangle - f(y) + \frac{L}{2}\|y-x\|^2 = \langle s, y \rangle - f(y) + \langle s_x - s, y \rangle + \frac{L}{2}\|y-x\|^2
\]

\[
\leq f^*(s) + \langle s_x - s, y \rangle + \frac{L}{2}\|y-x\|^2,
\]

valid for any vector \(s \) and any \(y \). We may in particular take an infimum over \(y \) on the right hand side, where

\[
\inf_y \langle s_x - s, y \rangle + \frac{L}{2}\|y-x\|^2 = \inf_y \langle s_x - s, y-x \rangle + \frac{L}{2}\|y-x\|^2 + \langle s_x - s, x \rangle
\]

\[
\overset{(*)}{=} \inf_t \left\{ t\|s_x - s\|_s + \frac{Lt^2}{2} \right\} + \langle s_x - s, x \rangle
\]

\[
= -\frac{1}{2L} \|s_x - s\|^2 + \langle s_x - s, x \rangle,
\]

where equality \((*)\) follows by definition of the dual norm and we identify \(t = \|y-x\| \). Thus

\[
f^*(s_x) + \langle x, s-x \rangle + \frac{1}{2L} \|s-x\|^2 \leq f^*(s)
\]

for all \(s \). As \(x \in \partial f^*(s_x) \), Proposition B.7(ii) gives the strong convexity result. The rest is algebraic manipulations with \(s_y = \nabla f(y) \) and an application of Proposition B.7(iii).

There are more qualitative versions of Proposition B.19 that allow us to give a duality between strict convexity and continuous differentiability of \(f \). Here, we give one typical result.

Proposition B.20. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be strictly convex and closed. Then \(\text{int dom } f^* \neq \emptyset \) and \(f^* \) is continuously differentiable on \(\text{int dom } f^* \). Conversely, let \(f : \mathbb{R}^d \to \mathbb{R} \) be differentiable on \(\Omega := \text{int dom } f \). Then \(f^* \) is strictly convex on each convex \(C \subset \nabla f(\Omega) \).

These results should be roughly expected because of the duality that \(\nabla f = (\nabla f^*)^{-1} \) and that \(\partial f^*(s) = \text{argmin}_x \{ (s,x) - f(x) \} \), because strict convexity guarantees uniqueness of minimizers (Proposition B.3) so that \(\partial f^* \) should be a singleton.

Proof To see that \(\text{int dom } f^* \) is non-empty, we use the identification \(f^*_\infty(v) = \sigma_{\text{dom } f}(v) \) in Proposition B.17 and the interior identification in Proposition A.20. Because \(f \) is strictly convex, for any \(x \in \text{dom } f \) we have

\[
0 < \frac{f(x - tv) - f(x)}{t} + \frac{f(x + td) - f(x)}{t} \text{ for } t > 0,
\]
and taking \(t \to \infty \) gives \(0 < f'_\infty(-v) + f'_\infty(v) \). Proposition A.20 then shows that \(\text{int dom } f^* \neq \emptyset \).

For the claim that \(f^* \) is continuously differentiable, take \(s \in \text{int dom } f^* \), and suppose for the sake of contradiction that \(\partial f^*(s) \) has distinct points \(x_1, x_2 \). Then Corollary B.15 gives that \(x_1 \) and \(x_2 \) both minimize \(f(x) - \langle s, x \rangle \) over \(x \). But Proposition B.3 guarantees \(x_1 = x_2 \), so that \(\partial f^*(s) = \{ \nabla f^*(s) \} \) is a singleton, and hence \(f^* \) is continuous differentiable at \(s \) (Proposition A.41).

For the converse claim, let \(C \) be a convex set as stated. Suppose for the sake of contradiction that \(f^* \) is not strictly convex on \(C \), so that there are distinct points \(s_1, s_2 \in C \) for which \(f^* \) is affine on the line segment \([s_1, s_2] = \{ ts_1 + (1-t)s_2 \mid t \in [0,1] \}\). As \(C \subset \nabla f(\Omega) \) is convex, the midpoint \(s = \frac{1}{2}(s_1 + s_2) \in C \) and there exists \(x \) satisfying \(\nabla f(x) = s \), or \(x \in \partial f^*(s) \). Then because \(f^* \) is assumed affine on \([s_1, s_2] \), we have \(f^*(s) = \frac{1}{2} f^*(s_1) + \frac{1}{2} f^*(s_2) \) and \(\langle s, x \rangle = \frac{1}{2} \langle s_1 + s_2, x \rangle \), so

\[
0 = f(x) + f^*(s) - \langle s, x \rangle = \frac{1}{2} [(f(x) + f^*(s_1) - \langle s_1, x \rangle) + (f(x) + f^*(s_2) - \langle s_2, x \rangle)].
\]

Each of the terms in parenthesis is 0 if and only if \(s_i \in \partial f(x) \), but by assumption \(\partial f(x) = \{ \nabla f(x) \} \) is a singleton, and we must have \(s_1 = s_2 \).

\[\boxed{\text{JCD Comment: Better transition}} \]

We close this section by investigating particularly nice classes of functions \(f \), where \(f \) and its conjugate \(f^* \) are strictly convex and smooth. These results are central to the various conjugate linkage dualities we explore in Chapter 14.3. We therefore make the following definition:

Definition B.2. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be closed convex. Then \(f \) is of Legendre type if

(i) \(\text{int dom } f \neq \emptyset \)

(ii) \(f \) is continuously differentiable on \(\text{int dom } f \)

(iii) \(f \) is strictly convex

(iv) \(f \) satisfies the gradient boundary conditions

\[
||\nabla f(x)|| \to \infty \text{ as } x \to \text{bd dom } f \text{ or } ||x|| \to \infty. \tag{B.2.5}
\]

Thus, at the boundaries of their domains or as their argument tends off to infinity, functions of Legendre type have slopes tending to \(\infty \). This does not guarantee that \(f(x) \to \infty \) as \(x \to \text{bd dom } f \), though it does provide guarantees of regularity that the next theorem highlights.

Theorem B.21. Let \(f \) be a convex function of Legendre type (Def. B.2). Then \(f^* \) is strictly convex, continuously differentiable, and \(\text{dom } f^* = \mathbb{R}^d \).

The theorem implies a number of results on continuity of minimizers and tilted minimizers (B.1.4), clarifying some of our earlier results. For example, we have the following corollary.

Corollary B.22. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be a convex function of Legendre type. Then the tilted minimizer

\[
x_u := \text{argmin} \{ f(x) - \langle u, x \rangle \}
\]

exists for all \(u \), is continuous in \(u \) and unique, and \(x_u \in \text{int dom } f \).
We turn to the proof of the theorem.

Proof of Theorem B.21 We an intermediate lemma, whose proof we defer.

Lemma B.23. Let $f : \mathbb{R}^d \to \mathbb{R}$ be closed convex and satisfy the gradient boundary condition that $\|s_n\| \to \infty$ for any sequence $x_n \to \partial \text{dom } f$ and $s_n \in \partial f(x_n)$. Then

$$f'\infty(v) = \infty \text{ for all } v \neq 0$$

if and only if

$$\|s_n\| \to \infty \text{ whenever } \|x_n\| \to \infty \text{ and } s_n \in \partial f(x_n).$$

The theorem follows straightforwardly from Lemma B.23. By the boundary conditions (B.2.5) associated with f, we have $f'\infty(v) = \infty$ for all $v \neq 0$ (Lemma B.23). Because the support function of $\text{dom } f^*$ satisfies $\sigma_{\text{dom } f^*} = f'\infty$ (Proposition B.17), we see that $\text{dom } f^* = \mathbb{R}^d$ as $\text{dom } f^* = \{ s \mid \langle s, v \rangle \leq \sigma_{\text{dom } f}(v) \text{ for all } v \}$ (e.g., Proposition A.20 or Corollary A.15). With this, f^* is continuously differentiable and strictly convex on its domain (Proposition B.20).

Proof of Lemma B.23 As $\text{dom } f^* = \mathbb{R}^d$ if and only if $f'\infty(v) = \infty$ for all $v \neq 0$ (Corollary B.18), it suffices to show the result that $\text{int } \text{dom } f^* \neq \mathbb{R}^d$ if and only if there exists an unbounded sequence x_n with $s_n \in \partial f(x_n)$ and for which s_n is convergent.

Let us begin with the unbounded sequence x_n for which $s_n \to s \in \mathbb{R}^d$; assume for the sake of contradiction that $s \in \text{int } \text{dom } f^*$. Because $s_n \in \partial f(x_n)$, we have $x_n \in \partial f^*(s_n)$ by Proposition B.14. The assumption that $s \in \text{int } \text{dom } f^*$ means that there exists an $\epsilon > 0$ such that $s + \epsilon B \subset \text{int } \text{dom } f^*$ and f^* is Lipschitz on $s + \epsilon B$ (Theorem A.24). But then $\partial f^*(s + \epsilon B)$ is bounded, and $x_n \in \partial f^*(s_n) \subset \partial f^*(s + \epsilon B)$ for large enough n, contradicting that $\|x_n\| \to \infty$, and so $s \notin \text{int } \text{dom } f^*$ and $\text{int } \text{dom } f^* \neq \mathbb{R}^d$.

Now let us assume that $\text{int } \text{dom } f^* \neq \mathbb{R}^d$. Let $s \in \text{bd } \text{dom } f^*$. Then either $\partial f^*(s) = \emptyset$ or $\partial f^*(s)$ is unbounded (Lemma A.38). If $\partial f^*(s) = \emptyset$, take $s_n \to s$ with $s_n \in \text{relint } \text{dom } f^*$, and let $x_n \in \partial f^*(s_n)$. We show that x_n must be unbounded. If x_n is bounded, then by passing to a subsequence if necessary we may assume $x_n \to x$, and the outer semicontinuity of the subdifferential (Lemma A.40) gives $x \in \partial f^*(s)$, contradicting that $\partial f^*(s) = \emptyset$. Thus we must have x_n unbounded, which is thus the desired unbounded sequence. On the other hand, if $\partial f^*(s)$ is unbounded, we can simply take $x_n \in \partial f^*(s)$ with $s \in \partial f(x_n)$ for each n, which is the desired convergent sequence.

As a last application of these ideas, in some cases we wish to allow constraints on the functions f to be minimized, returning to the original convex optimization problem (B.0.1) with f a function of Legendre type and C a closed convex set. We then have the following corollary.

Corollary B.24. Let f be of Legendre type (Definition B.2) and $C \subset \mathbb{R}^d$ a closed convex set with $\text{int } f \cap C \neq \emptyset$. Define $f_C(x) = f(x) + \mathbf{1}_C(x)$. Then

(i) f_C^* is continuously differentiable,

(ii) $\text{dom } f_C^* = \mathbb{R}^d$, and

(iii) the constrained tilted minimizers

$$x_u = \arg\min_{x \in C} \{ \langle u, x \rangle - f(x) \}$$
are unique, continuous in u, belong to $\text{int dom } f$, and satisfy

$$x_u = \nabla f^*(u - v) \quad \text{and} \quad \nabla f(x_u) = -v$$

for some vector $v \in \mathcal{N}_C(x_u)$.

Proof The function $f_C := f + I_C$ is closed convex. To show that $\text{dom } f^*_C = \mathbb{R}^d$, we can equivalently show that $(f_C)'(v) = \infty$ for all non-zero v. Because f is Legendre-type, Lemma B.23 guarantees that if $x \in \text{dom } f \cap C$, then

$$(f_C)'(v) = \lim_{t \uparrow \infty} \frac{f(x + tv) + I_C(x + tv) - f(x)}{t} \geq \lim_{t \uparrow \infty} \frac{f(x + tv) - f(x)}{t} = f'(v) = \infty.$$

So $\text{dom } f^*_C = \mathbb{R}^d$, and thus $x_u \in \text{argmin}_{x \in C} \{f(x) - \langle u, x \rangle\} = \nabla f^*_C(u)$ exists and is unique and continuous, as f is strictly convex.

By the standard subgradient conditions for optimality, the vector x_u is characterized by

$$0 \in \nabla f(x_u) - u + \mathcal{N}_C(x_u),$$

and so $x_u \in \text{int dom } f$ (as otherwise $\|\nabla f(x_u)\| = +\infty$ by Definition B.2) and

$$x_u = \nabla f^*(u - v)$$

for some vector $v \in \mathcal{N}_C(x_u)$. \qed

JCD Comment: Now do the particular case that we define $f_C := f + I_C$ where C is an affine space. Then we should still have $\text{dom } f^*_C = \mathbb{R}^d$, and ∇f^*_C exists, and should get some good dualities. Work it out!

JCD Comment: More smoothness dualities, and write an exercise? Perhaps uniform convexity versions and strict convexity versions.

a. Closed convex function as a supremum of affine functions minorizing it

b. Fenchel Conjugate functions f^*

c. Fenchel biconjugate

Further reading

There are a variety of references on the topic, beginning with the foundational book by Rockafellar [129], which initiated the study of convex functions and optimization in earnest. Since then, a variety of authors have written (perhaps more easily approachable) books on convex functions, optimization, and their related calculus. Hiriart-Urruty and Lemaréchal [89] have written two volumes explaining in great detail finite-dimensional convex analysis, and provide a treatment of some first-order algorithms for solving convex problems. Borwein and Lewis [31] and Luenberger [112] give general treatments that include infinite-dimensional convex analysis, and Bertsekas [27] gives a variety of theoretical results on duality and optimization theory.

There are, of course, books that combine theoretical treatment with questions of convex modeling and procedures for solving convex optimization problems (problems for which the objective function is convex)
and constraint sets are all convex). Boyd and Vandenberghe [33] gives a very readable treatment for those who wish to use convex optimization techniques and modeling, as well as the basic results in convex analytic background and duality theory. Ben-Tal and Nemirovski [25], as well as Nemirovski’s various lecture notes, give a theory of the tractability of computing solutions to convex optimization problems as well as methods for solving them.

\section*{B.3 Exercises}

\textbf{Question B.1:} Show that the alternative increasing slopes condition (A.3.5) is equivalent to convexity of f.

\textbf{Question B.2:} Do the uniform convexity version of Proposition B.7.

\textbf{Question B.3:} Do the uniform convexity version of Proposition B.8.
Bibliography

[77] A. Gelman and E. Loken. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Technical report, Columbia University, 2013.

