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1 Introduction

We consider a typical supervised learning scenario, where we have data in pairs (z,y), a
parameter 6 € RP of interest, and a loss

00, z,y)

measuring the performance of the parameter on example (z,y), where £(0,x,y) is convex in
0. Typical cases include regression with the squared error, where x € R?, y € R, and

1
g(gvxvy) = i(ng - y)27
(robust) regression with a Huber-type loss so that for some u > 0, we take

=12 if [t| < w

00, 2,y) = hy(z70 —y) for hy(t) =
(0,z,y) ( Y) (t) {;m—; i 1] >

or binary logistic regression, where z € RP and y € {0,1}, and for the probability model
po(y | ) = 6ygcTe/(l + exTe) we have
£0,z,y) = —logpe(y | x) = log(1 + exTﬁ) —yzT6.

We can abstractly let Z be any random variable or vector, and consider losses ¢(0, z).
Given such a loss and a sample {Z;}"_; of size n, we can define the population and empirical
losses

L(0) = E[(0, Z)] and Ln(6) = :LGy(e, 7).
=1

Our main goal will be to perform inference on the parameter

0* = argmin L(0)
0

minimizing this population loss. That is, for a given level a € (0, 1), we would like to develop
sample-based confidence sets C,, such that

P(0* € Cp) > 1—a (1)

whenever the data Z; are indeed drawn from the population defining the population loss L.
To develop such a result, we will require two main results:



ii.

Consistency of the estimated parameter

~

0, = argmin L, (0)
0

minimizing the empirical loss L,,, meaning that

6, — 6* with probability 1. (2)

Given consistency, the asymptotic normality result that

~

V0, — 6*) B N(0, %) (3)

for a particular covariance matrix > we shall derive, meaning that as n — oo, if we were
to draw a new sample Z1,...,7Z, of n and refit 5n, then the distribution of the errors
gn — 0* would be approximately Gaussian with mean zero and covariance %E.l We write
this as R

0, — 0" ~N(0,n'Y),

by which we mean that for any (reasonable) set B C RP,
P (0, 6" € B) > P(NO,n"'%) € B)

as n grows.

1.1 From convergence to inference

To move from the convergence guarantee (3) to the construction of a confidence set requires a
few standard—at least to working statisticians—manipulations relating to the duality between
testing and confidence sets. Recall the desidaratum (1), and let a € (0,1) be the desired
level. We work in stages: first, assuming we know X, and then assuming we have an accurate

approximation X,,.

Beginning with the former, suppose W ~ N(0,X). Then we can choose a set C' such that

P(W € C) =1 — a. The distributional convergence (3) then guarantees

]P(\/ﬁ(@n—e*)e(})—>P(W€C):1—a,

and so as v/n(6, — 6*) € C if and only if

~ ~ 1 ~ 1

we obtain

P(0* € Cp) = 1 —a.

. . . dist . s . .
Distributional convergence — has many equivalent definitions. In our case, the variant we use is the

following: we say that random variables X, converge in distribution to W ~ N(0, X) if

P(X, € B)—P(W e B)—=0

uniformly over all boxes B C RP. In one dimension, this means that the CDFs F,(t) := P(X,, < t) converge
to the CDF F(t) = P(W < t) of W ~ N(0,0?).



Example 1 (Confidence ellipses): As know that X ~1/2W ~ N(0, I,,), and so if X;lfa denotes
the 1 — o quantile of a x? random variable with p degrees of freedom (recall this is the random
variable || Z||3, where Z is standard normal Z ~ N(0, I,,)), the ellipse

Co={wer |52l <2y ) = {we B [uTs <, ,)

satisfies P(W € C') = 1 — a. For this particular elliptical set, we have

2
) Xp71a} )

that is, the set of parameters 6 close to Agn in the metric defined by the covariance . As
X;Q:,lfa ~ p for large p, the confidence set C,, corresponds to a Euclidean ball of radius roughly

/p/n around 6,,. ©

Of course, we do not typically have access to the “true” asymptotic covariance matrix X
and must estimate it from data. In this case, we will typically have some ,, such that

Cp = {9 | (60— 0,)TS710 - 6,,) <

S|

¥, — X with probability 1

as n grows. Then the asymptotic normality guarantee (3) implies that

_ -~ * _ -~ * dist
\/ﬁznl/Q(Qn —0*) = v/nX 1/2(9n — 60%) + error — N(0, 1),

—0

where we have elided a detail or two but used that if W ~ N(0,X), then AW ~ N(0, AL AT)
for any matrix A, choosing A = ¥~Y/2. We typically refer to such results as pivotal, meaning
that the asymptotic distribution is independent of the particulars of the sampling scheme: no
matter what the data process is, the final distribution is standard normal.

Writing this differently and following the “is approximately distributed as” notational
convention we introduce above, we have the following key (approximate) normality result.

Theorem 1. Assume the classical asymptotic normality result (3) and that ¥,, — X in
probability. Then

0, —0* N (0,n71%,). (4)
Written differently, an equivalent statement to the result (4) is that
B, ~ N (6%,n71%,).

Returning to Example 1, we can give an elaborated variant.
Example 2 (Confidence ellipses continued): Letting the result (4) of Theorem 1 hold, we
have the pivotal result

120, — 6%) ~ N(0,n ' L,).

Then the analogue of the confidence set from Example 1 becomes

~

G, = {9 ERP | (0—0,)7S,1(0 - 0,) < n’lxzilfa} )

an ellipse based on 3, centered at é\n We have

PH* € Cp) > 1—a



as desired. &

The key result that we demonstrate in this document is that for empirical risk minimization
problems, where 6,, = argming L,, (), the so-called “sandwich covariance,” which (probably)
White [1] most saliently explores, is that

5= (V2Ln(§n)>_l (iiw@n,zi)w@,zﬂ) (V2Ln(§n))
=1

is a consistent estimator of the true asymptotic covariance of é\n — 6*, which is
¥ = V2L(0*) " Cov(VL(0*, Z))VAL(6*) L.

In the context of Theorem 1, this then gives that

~

On ~ N (0*,n7'5,). (5)

Thus, any set (A}'n containing for a draw from N(é\n,nfliln) with probability 1 — « is an
(asymptotic) 1—a confidence set for 8*. We give a formal version of this result in Corollary 2.1
to follow.

1.2 Classical maximum likelihood versus general results

The result (5) holds in fairly large generality: essentially, so long as the losses have second
derivatives, it holds. Classical statistical theory (which many students encounter before these
results) is frequently peppered with statements such as “the maximum likelihood estimator is
asymptotically normal.” Here, we contrast such results a bit with the more general result (5).

In classical theory, we assume that the data Z; come from a statistical model Py with
density pg indexed by 6, and that 8* uniquely maximizes

E[log pe(Z)]

when Z ~ Py«. Then with a bit of handwaving, if one lets lg(z) = logpy(z) be the log-
likelihood, one defines the Fisher Information

Iy = E[Vig(Z2)Vig(2)T].

After exchanging differentiation and integration a few times we have

o:w:v/mww:/Vmwwz/Zﬁ?mwwzmvmmw»

and similarly, because V2 log py(z) = Vpe(2) _ 1 Vpy(2)Vpy(2)T,

po(2) po(z)?
2
0= [mo(a)az = [ V(s = [ T2y
po(2)

_ / [V2log po(2) + Vig(2)Vig(2)"] po(2)dz.



That is, Iy = —E[V?ly(Z)]. Notably, under the extraordinary assumption that the data
honestly follow the probabilistic model Z ~ Py«, the classical asymptotic normality of the
maximum likelihood estimator that

Jn (én _ 9*) BN (0, 1,1
is simply a special case of the result (5): when £(0, z) = —log py(2), then we have
V2L(0*) = Ig» and Cov(VL(0*,Z)) = Iy
and so the sandwich covariance reduces to
V2L(0*) ' Cov(VL(0*, Z))VAL(0*) ! = I,*.

But of course, the general covariance holds generally, without making the (frankly, bonkers)
assumptions of correct model specification.
Example 3 (Linear regression): In linear regression, the “true” model assumption that

y; = x] 0* + ¢; yields a classical Fisher information (conditional on X)

11
Ip = —— g zix]
o2 n 4 v

=1

2

when ¢; i N(0,0?). When the variance o2 must be estimated, the typical choice is

n

R 1 >
0% = —— (i~ )",

n=ri3

where §n is the ordinary least-squares estimator. This gives the (approximate) Fisher infor-
mation [ =672 - %2?21 a:za?zT and if the linear model is true, then

6, — 0" ~ N (0, n—lf—l) .

In contrast, the squared error £(6,z,y) = (270 —y)? has V{(0,z,y) = (270 — y)z and
V20(0,x,y) = zaT. For the least-squares estimate 6,,, this gives the sandwich covariance

n -1 n n -1
1 ~ 1
o= |- ol _2To V22T ) [ = 2T
n (n Z Tix; ) <Z:(yZ x; Op) xix; - Z 7T,
=1 =1 i=1
Then if 6* = argming E[(Y — X7)?] is the population minimizer, we have
(6, —0%) ~ N (0,n71%,)

regardless of whether the standard linear model holds. <



1.3 Inference of individual parameters

Frequently, we wish to infer individual parameters of a larger parameter vector. For example,
as in Question ?? from the homework, we can consider a causal estimation problem, where
in the potential outcomes framework,

denotes the (average) treatment effect of a treatment W on the response Y, and the vector
0 = (o, 7, f) minimizes

E[(Y —a—XT8 —7W)2.

Then we wish to infer e 6* = 05 = 7*, the second coordinate of the vector §*. Recognizing
that for a vector v € RP and Z ~ N(0, X)), we have

v Z ~ N(0,vT 2v),
we can fairly immediately develop confidence sets for linear functions of 6*.
Corollary 1.1. Assume the conditions of Theorem 1. Then for any vector v € RP,
079, ~ N (UTH*, n_lvTEnv) .

Leveraging Corollary 1.1, we define 02 = %UTEnU and

o (B — 0%) 2 N(0,02) ie. ——oT(B, — 6%) & N(0,1).

On

Let z, be the a-quantile of a standard normal (i.e., a z-score), so that P(Z < z,) = « for
Z ~ N(0,1). Then we see that a classical normal confidence set

Cn = [UTen — Z1-a/20n; "6, + Zl—a/Qa"]
for vT0* satisfies

P (’UTH* € an> — P (_Zl—a/Q S N(O, 1) S Zl_a/g) =1-oa.

Example 4 (Inferring a coordinate): Because we have

Y11 X2 o0 Mip
o1 oo - Mo

Z = . b
Xp1 Yp2 2pp

if we are curious about a single coordinate j, we have
~ . _1
[0 — 0715 ~ N (0,n77%55) ,

which yields the confidence set

9; S én = [(‘/g\n)] — \/ij/nzl_a/g, (é\n)J + 1/Ejj/nz1_a/2] .

We have P(07 € Co) > 1—a. ¢



2 The convergence results

The main convergence results we develop reflect the two steps we outline above: consistency
and then the actual asymptotic normality result. We will be a bit fast and loose developing
each of the results, though we will give the appropriate sufficient conditions and a few refer-
ences for ways to make these rigorous. A key will be that have convex losses £, meaning that
for each z, the function ¢(0, z) is convex in €. As our losses will be twice continuously differ-
entiable, this will be equivalent to the condition that the Hessians are positive semidefinite,

V200, z2) = 0,

for each z and each 6. Note, of course, that many losses are convex and even infinitely
differentiable:

1. The squared error £(0, x,y) = %(9T$ —y)? satisfies V£(0, z,y) = (072 —y)x, V2(0,2,y) =
zaxl >0, and V*¢ =0 for all k& > 2.

2. The logistic loss for y € {—1,1}, £(0,z,y) = log(1 + exp(—yx’0)), satisfies

1 1
14w ™01 ¢ eve0 "

VU0, 2, y) = and V2((0,z,y) = Ty g

)

and is infinitely differentiable.
3. The robust regression type loss, which approximates the Huber loss or the absolute error,
0(0,2,y) = log(1 + exp(87z — y)) + log(1 + exp(y — 27 0))
that is, £(0,x,y) = h(y — 07z) for h(t) = log(1 + ') + log(1 + e ), satisfies
VO, x,y) =W (y—0Tx)x and V20(0,z,y) = h'(y — 0T x)zz” = 0,

t t

/ _ e 1 _ et—1 " __ e et—1 _ 1
where h/(t) = Trer — Toer = gy and b (t) = Tref — (etD)2 = o1 > 0.

As sums and expectations of convex functions are convex, we certainly have the convexity
of L and L,. To state the results, we will make a few standard (classical) assumptions:

Assumption Al. The losses {(0, z) satisfy the following.

i. They are convex in 6, and for 0* = argming L(0), the Hessian V2L(0*) = 0 is positive
definite.

it. They are twice continuously differentiable in 0, and there exists a Lipschitz constant M (z)
such that for all 0,0" near 6*,

Ve, 2) = V20, 2)||, < M(2) |0 — ¢||, and
V266, 2) = V240", 2)|, < M) []o 0]
for which E[M(Z)] < cc.

iii. The expected squared norms E[|VL(0%, Z)||*] and E[H‘V%(O*,Z)Mip] are finite.



2.1 Consistency

The key to the consistency result that
0, — 0* with probability 1

is that the losses are convex and have continuous second derivatives. This means that L,,
has (with high probability) some positive curvature around *, and this growth dominates
fluctuations in the gradients VL, (0).

JCD Comment: TODO: Draw a picture of the proof style here, with tilts of
gradients. (As in lecture)

Proposition 1. Let Assumption A1 hold. Then
0, — 0% with probability 1.

FEven more,

n

limsup ,/ ————||Bn, — 6*|| < 0o with probability 1,
n loglogn

and for any € > 0, there exists K = K(€) such that limsup,, P(v/n]|6, — 6*]2 > K) < e.

We give a heuristic argument here, as it is the intuition that is important for the re-
sult; Appendix A.1 provides a rigorous proof. The key idea is that because VZL(6*) = 0 is
strictly positive definite, the empirical loss L,, must have positive (upward) curvature in some
neighborhood of §* as well. Then, because

n

1
VL (0") =~ > Ve, z)
i=1

is mean-zero and has variance
* * 1 *
Var(VLn(6%)) = E [[VLa(6%) 3] = ~E[|[VA©", 2)ll3] = O(1/n),
the upward curvature of L,, near * will dominate the first-order terms. R
Said differently, let us assume (for the sake of contradiction) that the minimizer 6, lies
outside of some ball B of radius € > 0 around 6*. For 6 in this ball,

Ln(0) = L(6%) + VLo (097 (0 — %) + %(9 IV L(B)(0 — 0%),

where 6 € [0,0*] lies between 6 and 6*. Now, we know that E[||VL,(6*)]|3] = O(1/n), and so
by the Cauchy-Schwarz inequality, we have

La(0) > La(0") ~ Va0l 10— 6"y + 50 — )T V2L (B)(0 — 0°)
> Lo(6%) = O(1/v/) -0 = %], + 50— 6T V2L (B)(0 - 7).

Now we note that for f near enough 6*, the smoothness of the Hessians V20(9, z) gives
~ ~ 1 &

V2Lo(8) = V2Ln(60%) + (V2La(8) — V2La(6)) = V2La(67) - (n 3 M(Zi)e> 1,,
i=1

8



because [|§ — 6*|2 < e. The first of these terms converges to V2L(6*), and the second to
E[M (Z)] by the strong law of large numbers; as long as € is small enough that Apin (VZL(6*%)) >
2¢, we then obtain that for large n

La(6) > La(6) = O(L/V/A) 18 6%+ Phmin (VL) 16— 673

Immediately, we see that if ||0 — 6*], > in, the sum of the right two terms is positive, and
S0

L, (0) > L,(0%).
That is, no 6 with |0 — 6*|, > 1//n could minimize L.

2.2 Asymptotic Normality

Given consistency in the form of Proposition 1, we can now provide a proof that @\n is indeed
asymptotically normal and give a few different constructions of its (asymptotic) covariance
matrix.

Proposition 2. Let Assumption A1 hold. Then there exists a (random) remainder R, such
that R
0, — 0* = —V2L(0*)"'VL,(6%) + R,

where for any € > 0, n'~¢R,, — 0 with probability 1. In particular,
Jn (én - 9*) BN (0, V2L(0%) " Cov(VL(0*, 2))V2L(0) 1) .

Before giving a heuristic argument to justify Proposition 2, let us provide alternative
versions of the result (we provide proofs of the proposition and these alternatives in Ap-
pendix A.2). To actually perform inference on 6*, it is essential to estimate the actual
covariance of the data. Given the first statement of the proposition and the central limit
theorem, because VL, (0*) ~ N(0, Cov(V{(6*, Z))), it is natural to use a plug-in estimator for
the covariance. Thus, we define

_ 1< ~ ~
Cov(Ve) = — > VO, Zi)V (O, Zi)"
=1

Because 6, — 6* — 0 with probability 1, this (as we show) satisfies Cov — Cov(VLU(0%,2)),
and using the empirical estimate V2L, (6,) for V2L(6*) then gives the natural covariance
estimate

S = (V2Ln(0,)) 1 Cov(VE) (V2L (6,)) L. (6)

Frequently, we call the covariance (6) the sandwich covariance, because the covariance of the
gradients of the losses Cov(V/) is sandwiched between Hessian estimates. We record the
consequences of using >, as a corollary.

Corollary 2.1. Let Assumption A1 hold. Then
6, — 0" N (0,n7'%,),
that is,

Ry ? <§n - e*) N0, 7).

9



The basic idea is to proceed via a Taylor expansion, then ignore higher-order error terms.
Because 9 minimizes Ly, we necessarily have 0 = VL, (0 ). Now note that when Qn is close
to 6* (as the consistency 6,, — 6* guarantees), we can Taylor expand V L,, around 6* to obtain

0=VL,(0,) = VL,(6*) + (V2L (0%) + E,) (6, — 6%),

where F, is some error matrix. Under Assumption A1, however, we are guaranteed that F,
is small (in fact, even more: we have [|E,|,, < 5 LS M(Z;)||0, — 6*]2), and so because
V2L, (0*) — V2L(0*) with probability 1 by the strong law of large numbers, we have

V2L, (6%) + E, — V?L(6*)

with probability 1, and V2L, (0*) + E, is positive definite for large n. We can thus rearrange
the Taylor expansion to write

O, — 0% = — (V2Lo(0%) + E,) " VL, (6%). (7)

Equality (7) leads to the desired normality results. First, VL, (0*) = 1 3"  v{(6*, Z;) is
an i.i.d. sum of mean-zero vectors, because VL(6*) = 0 = E[Vﬁ(@* 2)]. Then by the central
limit theorem, we have

VL, (0) ~ N (0,n ' Cov(VL(0*, Z))) .

Ignoring the higher-order error terms in the expansion (7) (which we can justify), because
V2L, (0%) + E, — V2L(6*), we therefore have
vn <§n — 9*) = —V2L(6*) "'V L,(*) + negligible error
dist

=N (0, V2L(6*) ' Cov(VL(6*, Z))VZL(6*) 1),

because if W ~ N(0,X) then HW ~ N(0, HXHT), and V2L(6*) = 0 is symmetric. This is
Proposition 2.

References

[1] H. White. A heteroskedasticity-consistent covariance matrix estimator and a direct test
for heteroskedasticity. Econometrica, 48(4):817-838, 1980.

A Formal proofs

A.1 Proof of Proposition 1

We show that any point 6 that is far from 6* can (eventually) not be a minimizer of L,,. The
key is that because £ is convex in its first argument, L,, is as well, and if we can demonstrate
the existence of any radius € > 0 for which L, (0) > L, (0*) for all 0 satistying |6 — 0*| = ¢,
then any 6’ farther from #* cannot minimize L,, (and even more, is at least linearly larger
than L, (6%)). The next lemma makes this formal.

10



Lemma A.1. Let f : RP — R be convex and 6y € dom f, and let ¢ > 0. Define A(e) =
inf{f(0) — f(6o) | |0 — Oo|| = €}. Then for any 0 such that |0 — 0| > €,

f(0) = f(60) + Ae) 16— boll -

Proof We first fix two points 6y, 61 € dom f, and consider the ray of points 6; = 6y+t(01—00)
for t > 0. If t > 1, then 6; = 0y + t(61 — 6p) if and only if ; = %9,5 + %00, so that
1 t—1
FO0) < 700+ 21 00) o £ > H7(00) + (1~ 1)1 (0) = J(0) + 1 (01) — S (60).
Now, assume that for some & > 0, we have f(61) > f(6p) for all ¢; € §p+eS™~ . Then any 6 for
which [|§ — || > € satisfies § = 6 +tH9—6790||(9 —6p) for t = H0—8790H’ that is, 6 = 0y +t(01 — 6p)
for 61 = 0y + HQ—ETOH(G —6p), and so

M inf  (f(01) — f(6o)),

€ [[61—60||=¢

f(0) > f(00) +t(f(61) — f(60)) > f(bo) +
as desired. ]

Let A = Amin(V2L(0%)) for shorthand, and let M = E[M(Z)], where recall that M (z) is the
Lipschitz constant for the Hessian V2£(6, z) in #. With Lemma A.1 in hand, let 0 < ¢ < ﬁ.
By a Taylor expansion, we know that for any 6 in an e-ball around 6*, we have

Ln(0) = L(0%) + VLo (097 (0 — %) + %(9 — 0YTV2L(0)(0 — 0%),

where 6 € [0, 6*]. Using the M (z)-Lipschitz continuity of V2(6, z) in 6, for M,, = LS M(Z;)
we have B B
V2L (0) = V2L (6%) — Myl||0 — 6% ||, I, = V> L (6*) — Myel,.

By the strong law of large numbers, we have M, 2 E[M(Z)] and so eventually (with proba-
bility 1, for all large enough n) M,, < 2M and eM,, < % In particular, there exists a (random
but finite) sample size N such that for n > N, all § satisfying || — 6*||, < € have

V2L, (0) =

Do | >

I,.

Returning to the Taylor expansion, we obtain that there exists a random N < oo such
that n > N implies

A
Ln(0) = Ln(60") + VLn(6%)7(0 = 07) + 7 [0 — 0"3
for all ||§ —60*||, < e. Now we apply the strong law of large numbers again. We have
V L, (6*) “3 0, and so for any § > 0, there exists (a random) N’ < oo such that || L, (6*)[, < &
for n > N’. Applying Cauchy-Schwarz, we have
* * * )\ *
L (0) 2 Ln(07) = IVLa(07) ][ 16 = 6%l + o 6 — 6 [

La(6%) — 6116 — 0*ly + > 0 — 6|2
4

11



Whenever |0 — 6%||, < e. But of course at2 — 5t > 0 whenever ¢t > % 3. if we take § such that
4 < ¢ then for the shell S = {# ] < ||0 — 0*||, < e}, we have L, (0) > L,(0*) for all @ € S.
Apply Lemma A.1 to see that we must therefore have

46
160 — 67112 < 5.

This is the first part of Proposition 1, as § > 0 was arbitrary.

To obtain the sharper convergence result, we must take § = d,, converging to 0. In this
case, the central limit theorem implies that \/nLy(6*) converges in distribution to a Gaussian.
Even more the law of the iterated logarithm gives that

IV La(07)]] < 00

li _
1mnsup lo log n

for any norm ||-|| with probability 1. Taking 6, = ||[VL,(0*)|5, we obtain that there exists
a constant C' < oo such that eventually 4, < C'y/loglogn/n. Repeating the same argument
above, mutatis mutandis, we have

A
Ln(0) 2 Ln(6%) = 6, |10 — 6%+ 7 116 — 6713
for all |0 — 6*||, < e. Solving gives we must have 16, — 6% < % eventually.

A.2 Proof of Proposition 2

By Proposition 1, we have nV(@L —0*) %30 for all y < % Thus we eventually have
0= VLy(0n) = VL (0%) + (V2L (6) + Ep) (0, — 6%),

where [|En||,, < 5 ZZ L\ M(Z |6 — 6%|2. Then because of the consistency guarantee and
that }lzile(ZZ) E[M (Z)], we have E, %% 0, V2L, (0*) %% V2L(6*), and so V2L, (%) +
FE, is invertible eventually and

O, — 0" = (V2Ln(6%) + En) "'V Ln(6%),

that is, expansion (7) holds.

In a standard proof of asymptotic normality, one would now invoke the central limit
theorem and Slutsky’s convergence theorems. We can avoid these by giving a more direct proof
as well. To that end, we apply an expansion of A — A~L If A = 0 and || E|| op < Amin(4),
then

(A+E)'=A"144"" i(—

r (A+E)"' = A" — A7'EA™' + O(|| E||*), and because 2%, 8% = §2/(1 — §) for |6] < 1,

we have

llA=12 1E2,

o0 S T[4 7] [Ellop

A+ E)"" — A7 A7 EAT| < |47 1H|OPZ\HEA 'l

2 o]

Returning to the expansion (7), for any v < %, that

1B, < Mo||6n — 0],

op —

12



implies n” || En |, “% 0 by Proposition 1, and similarly, that E[||V£(6*, Z)||5] < oo implies that
n" |VL,(6%)] “3 0 by the law of the iterated logarithm. The law of the iterated logarithm
also gives V2L, (6*) — V2L(6*) = O(1/n7) for any v < 3 (with probability 1). So defining
H = V2L(6*) and H,, = V2L, (6*) as shorthand for the Hessians, we have

(Hp + Ey) "' = (H + (Hyp + E, — H))™*
=H '~ H '(Hy+ By —H)H '+ O(|Hy + E, — H|*) = H™' + O(n")

with probability 1, for any v < % That is,
0, — 0" = V2L(0*) "'V L,(0%) + R,

where the remainder term R, € RP? satisfies n?7 R, “3 0 for any v < % This completes the
proof of Proposition 2.

Proof of Corollary 2.1

To formalize the result in Corollary 2.1, it suffices to show that
¥n — X — 0 with probability 1

as in this case we have (with probability 1) that

\/52771/2 (gn _ 9*> _ \/52—1/2 ( ) /RS —1/2 —1/2) (gn _ 9*) ‘

=o(1)

To that end, let v < % be otherwise arbitrary. Note that

|70 - Lo, <] -0

op

I

and n7||§n — 60|23 0 by Proposition 2. Similarly, n7||V2L,(0*) — V2L(0*)[lop “3 0 by the
law of the iterated logarithm, and so because M, “3 E[M(Z)], we have

|| V2L @) - vRLE)||

= 0.

op
To control the empirical covariance term, note that

n

iznjva@n,zi)wén,zif U VHE Z) + e (VHO Z0) + o)
i=1 =1

—Zw (0%, Z)VL*, Z;)T +;Z(V€(G* el +e; Ve, Z Zez

=1

where e; = NU(O,, Z;)—VL(6*, Z;). Using Assumption A1, we have |[V£(6,, z) — VL(6*, 2)||2 <
M(2)||8, — 6*||2. Applying Cauchy-Schwarz, we obtain

1 > Vo, Ziel
n =1

IN

1 - o~ a.s.
;ZHW(H* B ZM (2:)2]|6n — %], %% 0,
=1

op
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and a similar calculation shows n~! oy eieiT 22°0. Tracking the error rates a bit more
carefully and noting that 13" Ve(6*,Z;,)Ve(0*, Z;)T 2 Cov(VL(0*,Z)), we have shown
e Y ((TO\V(W) — Cov(VL(6", Z))) 40 with probability 1.
Because (H,C) — H~'CH™! is continuous, this shows that

¥, — ¥ = V2L(0*) "t Cov(VL(0*, Z))VAL(6*) !

with probability 1, as desired.
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