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1 Introduction

We consider a typical supervised learning scenario, where we have data in pairs (x, y), a
parameter θ ∈ Rp of interest, and a loss

`(θ, x, y)

measuring the performance of the parameter on example (x, y), where `(θ, x, y) is convex in
θ. Typical cases include regression with the squared error, where x ∈ Rp, y ∈ R, and

`(θ, x, y) =
1

2
(xT θ − y)2,

(robust) regression with a Huber-type loss so that for some u > 0, we take

`(θ, x, y) = hu(xT θ − y) for hu(t) =

{
1
2u t

2 if |t| ≤ u
1
2 |t| −

u
2 if |t| > u,

or binary logistic regression, where x ∈ Rp and y ∈ {0, 1}, and for the probability model

pθ(y | x) = eyx
T θ/(1 + ex

T θ) we have

`(θ, x, y) = − log pθ(y | x) = log(1 + ex
T θ)− yxT θ.

We can abstractly let Z be any random variable or vector, and consider losses `(θ, z).
Given such a loss and a sample {Zi}ni=1 of size n, we can define the population and empirical
losses

L(θ) := E[`(θ, Z)] and Ln(θ) :=
1

n

n∑
i=1

`(θ, Zi).

Our main goal will be to perform inference on the parameter

θ? := argmin
θ

L(θ)

minimizing this population loss. That is, for a given level α ∈ (0, 1), we would like to develop
sample-based confidence sets Ĉn such that

P(θ? ∈ Ĉn)→ 1− α (1)

whenever the data Zi are indeed drawn from the population defining the population loss L.
To develop such a result, we will require two main results:
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i. Consistency of the estimated parameter

θ̂n = argmin
θ

Ln(θ)

minimizing the empirical loss Ln, meaning that

θ̂n → θ? with probability 1. (2)

ii. Given consistency, the asymptotic normality result that

√
n(θ̂n − θ?)

dist→ N(0,Σ) (3)

for a particular covariance matrix Σ we shall derive, meaning that as n→∞, if we were
to draw a new sample Z1, . . . , Zn of n and refit θ̂n, then the distribution of the errors
θ̂n− θ? would be approximately Gaussian with mean zero and covariance 1

nΣ.1 We write
this as

θ̂n − θ?
�∼ N

(
0, n−1Σ

)
,

by which we mean that for any (reasonable) set B ⊂ Rp,

P
(
θ̂n − θ? ∈ B

)
→ P

(
N(0, n−1Σ) ∈ B

)
as n grows.

1.1 From convergence to inference

To move from the convergence guarantee (3) to the construction of a confidence set requires a
few standard—at least to working statisticians—manipulations relating to the duality between
testing and confidence sets. Recall the desidaratum (1), and let α ∈ (0, 1) be the desired
level. We work in stages: first, assuming we know Σ, and then assuming we have an accurate
approximation Σn.

Beginning with the former, suppose W ∼ N(0,Σ). Then we can choose a set C such that
P(W ∈ C) = 1− α. The distributional convergence (3) then guarantees

P
(√

n(θ̂n − θ?) ∈ C
)
→ P(W ∈ C) = 1− α,

and so as
√
n(θ̂n − θ?) ∈ C if and only if

θ? ∈ Ĉn := θ̂n −
1√
n
C =

{
θ̂n −

1√
n
w | w ∈ C

}
,

we obtain
P(θ? ∈ Ĉn)→ 1− α.

1Distributional convergence
dist→ has many equivalent definitions. In our case, the variant we use is the

following: we say that random variables Xn converge in distribution to W ∼ N(0,Σ) if

P(Xn ∈ B)− P(W ∈ B)→ 0

uniformly over all boxes B ⊂ Rp. In one dimension, this means that the CDFs Fn(t) := P(Xn ≤ t) converge
to the CDF F (t) = P(W ≤ t) of W ∼ N(0, σ2).
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Example 1 (Confidence ellipses): As know that Σ−1/2W ∼ N(0, Ip), and so if χ2
p,1−α denotes

the 1−α quantile of a χ2 random variable with p degrees of freedom (recall this is the random
variable ‖Z‖22, where Z is standard normal Z ∼ N(0, Ip)), the ellipse

C :=
{
w ∈ Rp |

∥∥Σ−1/2w
∥∥2
2
≤ χ2

p,1−α

}
=
{
w ∈ Rp | wTΣ−1w ≤ χ2

p,1−α
}

satisfies P(W ∈ C) = 1− α. For this particular elliptical set, we have

Ĉn =

{
θ | (θ − θ̂n)TΣ−1(θ − θ̂n) ≤ 1

n
· χ2

p,1−α

}
,

that is, the set of parameters θ close to θ̂n in the metric defined by the covariance Σ. As
χ2
p,1−α ≈ p for large p, the confidence set Ĉn corresponds to a Euclidean ball of radius roughly√
p/n around θ̂n. 3

Of course, we do not typically have access to the “true” asymptotic covariance matrix Σ
and must estimate it from data. In this case, we will typically have some Σn such that

Σn → Σ with probability 1

as n grows. Then the asymptotic normality guarantee (3) implies that

√
nΣ−1/2n (θ̂n − θ?) =

√
nΣ−1/2(θ̂n − θ?) + error︸ ︷︷ ︸

→0

dist→ N(0, Ip),

where we have elided a detail or two but used that if W ∼ N(0,Σ), then AW ∼ N(0, AΣAT )
for any matrix A, choosing A = Σ−1/2. We typically refer to such results as pivotal, meaning
that the asymptotic distribution is independent of the particulars of the sampling scheme: no
matter what the data process is, the final distribution is standard normal.

Writing this differently and following the “is approximately distributed as” notational
convention we introduce above, we have the following key (approximate) normality result.

Theorem 1. Assume the classical asymptotic normality result (3) and that Σn → Σ in
probability. Then

θ̂n − θ?
�∼ N

(
0, n−1Σn

)
. (4)

Written differently, an equivalent statement to the result (4) is that

θ̂n
�∼ N

(
θ?, n−1Σn

)
.

Returning to Example 1, we can give an elaborated variant.
Example 2 (Confidence ellipses continued): Letting the result (4) of Theorem 1 hold, we
have the pivotal result

Σ−1/2n (θ̂n − θ?)
�∼ N(0, n−1Ip).

Then the analogue of the confidence set from Example 1 becomes

Ĉn :=
{
θ ∈ Rp | (θ − θ̂n)TΣ−1n (θ − θ̂n) ≤ n−1χ2

p,1−α

}
,

an ellipse based on Σn centered at θ̂n. We have

P(θ? ∈ Ĉn)→ 1− α
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as desired. 3

The key result that we demonstrate in this document is that for empirical risk minimization
problems, where θ̂n = argminθ Ln(θ), the so-called “sandwich covariance,” which (probably)
White [1] most saliently explores, is that

Σn :=
(
∇2Ln(θ̂n)

)−1( 1

n

n∑
i=1

∇`(θ̂n, Zi)∇`(θ̂n, Zi)T
)(
∇2Ln(θ̂n)

)−1
is a consistent estimator of the true asymptotic covariance of θ̂n − θ?, which is

Σ := ∇2L(θ?)−1Cov(∇`(θ?, Z))∇2L(θ?)−1.

In the context of Theorem 1, this then gives that

θ̂n
�∼ N

(
θ?, n−1Σn

)
. (5)

Thus, any set Ĉn containing for a draw from N(θ̂n, n
−1Σn) with probability 1 − α is an

(asymptotic) 1−α confidence set for θ?. We give a formal version of this result in Corollary 2.1
to follow.

1.2 Classical maximum likelihood versus general results

The result (5) holds in fairly large generality: essentially, so long as the losses have second
derivatives, it holds. Classical statistical theory (which many students encounter before these
results) is frequently peppered with statements such as “the maximum likelihood estimator is
asymptotically normal.” Here, we contrast such results a bit with the more general result (5).

In classical theory, we assume that the data Zi come from a statistical model Pθ with
density pθ indexed by θ, and that θ? uniquely maximizes

E[log pθ(Z)]

when Z ∼ Pθ? . Then with a bit of handwaving, if one lets lθ(z) = log pθ(z) be the log-
likelihood, one defines the Fisher Information

Iθ := E[∇lθ(Z)∇lθ(Z)T ].

After exchanging differentiation and integration a few times we have

0 = ∇1 = ∇
∫
pθ(z)dz =

∫
∇pθ(z)dz =

∫
∇pθ(z)
pθ(z)

pθ(z)dz = E[∇ log pθ(Z)],

and similarly, because ∇2 log pθ(z) = ∇2pθ(z)
pθ(z)

− 1
pθ(z)2

∇pθ(z)∇pθ(z)T ,

0 = ∇2

∫
pθ(z)dz =

∫
∇2pθ(z)dz =

∫
∇2pθ(z)

pθ(z)
pθ(z)dz

=

∫ [
∇2 log pθ(z) +∇lθ(z)∇lθ(z)T

]
pθ(z)dz.
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That is, Iθ = −E[∇2lθ(Z)]. Notably, under the extraordinary assumption that the data
honestly follow the probabilistic model Z ∼ Pθ? , the classical asymptotic normality of the
maximum likelihood estimator that

√
n
(
θ̂n − θ?

)
dist→ N

(
0, I−1θ?

)
is simply a special case of the result (5): when `(θ, z) = − log pθ(z), then we have

∇2L(θ?) = Iθ? and Cov(∇`(θ?, Z)) = Iθ?

and so the sandwich covariance reduces to

∇2L(θ?)−1Cov(∇`(θ?, Z))∇2L(θ?)−1 = I−1θ? .

But of course, the general covariance holds generally, without making the (frankly, bonkers)
assumptions of correct model specification.
Example 3 (Linear regression): In linear regression, the “true” model assumption that
yi = xTi θ

? + εi yields a classical Fisher information (conditional on X)

Iθ =
1

σ2
1

n

n∑
i=1

xix
T
i

when εi
iid∼ N(0, σ2). When the variance σ2 must be estimated, the typical choice is

σ̂2 =
1

n− p

n∑
i=1

(yi − xTi θ̂n)2,

where θ̂n is the ordinary least-squares estimator. This gives the (approximate) Fisher infor-
mation Î = σ̂−2 · 1n

∑n
i=1 xix

T
i and if the linear model is true, then

θ̂n − θ?
�∼ N

(
0, n−1Î−1

)
.

In contrast, the squared error `(θ, x, y) = 1
2(xT θ− y)2 has ∇`(θ, x, y) = (xT θ− y)x and

∇2`(θ, x, y) = xxT . For the least-squares estimate θ̂n, this gives the sandwich covariance

Σn =

(
1

n

n∑
i=1

xix
T
i

)−1( n∑
i=1

(yi − xTi θ̂n)2xix
T
i

)(
1

n

n∑
i=1

xix
T
i

)−1
.

Then if θ? = argminθ E[(Y −XT θ)2] is the population minimizer, we have

(θ̂n − θ?)
�∼ N

(
0, n−1Σn

)
regardless of whether the standard linear model holds. 3

5



1.3 Inference of individual parameters

Frequently, we wish to infer individual parameters of a larger parameter vector. For example,
as in Question ?? from the homework, we can consider a causal estimation problem, where
in the potential outcomes framework,

τ? = E[Y (1)− Y (0)]

denotes the (average) treatment effect of a treatment W on the response Y , and the vector
θ = (α, τ, β) minimizes

E[(Y − α−XTβ − τW )2].

Then we wish to infer eT2 θ
? = θ?2 = τ?, the second coordinate of the vector θ?. Recognizing

that for a vector v ∈ Rp and Z ∼ N(0,Σ), we have

vTZ ∼ N(0, vTΣv),

we can fairly immediately develop confidence sets for linear functions of θ?.

Corollary 1.1. Assume the conditions of Theorem 1. Then for any vector v ∈ Rp,

vT θ̂n
�∼ N

(
vT θ?, n−1vTΣnv

)
.

Leveraging Corollary 1.1, we define σ2n = 1
nv

TΣnv and

vT (θ̂n − θ?)
�∼ N(0, σ2n) i.e.

1

σn
vT (θ̂n − θ?)

�∼ N(0, 1).

Let zα be the α-quantile of a standard normal (i.e., a z-score), so that P(Z ≤ zα) = α for
Z ∼ N(0, 1). Then we see that a classical normal confidence set

Ĉn := [vT θ̂n − z1−α/2σn, vT θ̂n + z1−α/2σn]

for vT θ? satisfies

P
(
vT θ? ∈ Ĉn

)
→ P

(
−z1−α/2 ≤ N(0, 1) ≤ z1−α/2

)
= 1− α.

Example 4 (Inferring a coordinate): Because we have

Σ =


Σ11 Σ12 · · · Σ1p

Σ21 Σ22 · · · Σ2p

. . .

Σp1 Σp2 · · · Σpp

 ,
if we are curious about a single coordinate j, we have

[θ̂n − θ?]j
�∼ N

(
0, n−1Σjj

)
,

which yields the confidence set

θ?j ∈ Ĉn :=

[
(θ̂n)j −

√
Σjj/nz1−α/2, (θ̂n)j +

√
Σjj/nz1−α/2

]
.

We have P(θ?j ∈ Ĉn)→ 1− α. 3
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2 The convergence results

The main convergence results we develop reflect the two steps we outline above: consistency
and then the actual asymptotic normality result. We will be a bit fast and loose developing
each of the results, though we will give the appropriate sufficient conditions and a few refer-
ences for ways to make these rigorous. A key will be that have convex losses `, meaning that
for each z, the function `(θ, z) is convex in θ. As our losses will be twice continuously differ-
entiable, this will be equivalent to the condition that the Hessians are positive semidefinite,

∇2`(θ, z) � 0,

for each z and each θ. Note, of course, that many losses are convex and even infinitely
differentiable:

1. The squared error `(θ, x, y) = 1
2(θTx− y)2 satisfies ∇`(θ, x, y) = (θTx− y)x, ∇2`(θ, x, y) =

xxT � 0, and ∇k` = 0 for all k > 2.

2. The logistic loss for y ∈ {−1, 1}, `(θ, x, y) = log(1 + exp(−yxT θ)), satisfies

∇`(θ, x, y) =
−yx

1 + eyxT θ
and ∇2`(θ, x, y) =

1

1 + eyxT θ
1

1 + e−yxT θ
xxT � 0,

and is infinitely differentiable.

3. The robust regression type loss, which approximates the Huber loss or the absolute error,

`(θ, x, y) = log(1 + exp(θTx− y)) + log(1 + exp(y − xT θ))

that is, `(θ, x, y) = h(y − θTx) for h(t) = log(1 + et) + log(1 + e−t), satisfies

∇`(θ, x, y) = h′(y − θTx)x and ∇2`(θ, x, y) = h′′(y − θTx)xxT � 0,

where h′(t) = et

1+et −
1

1+et = et−1
et+1 and h′′(t) = et

1+et −
e2t−1
(et+1)2

= 1
et+1 > 0.

As sums and expectations of convex functions are convex, we certainly have the convexity
of L and Ln. To state the results, we will make a few standard (classical) assumptions:

Assumption A1. The losses `(θ, z) satisfy the following.

i. They are convex in θ, and for θ? = argminθ L(θ), the Hessian ∇2L(θ?) � 0 is positive
definite.

ii. They are twice continuously differentiable in θ, and there exists a Lipschitz constant M(z)
such that for all θ, θ′ near θ?,∥∥∇`(θ, z)−∇2`(θ′, z)

∥∥
2
≤M(z)

∥∥θ − θ′∥∥
2

and∣∣∣∣∣∣∇2`(θ, z)−∇2`(θ′, z)
∣∣∣∣∣∣
op
≤M(z)

∥∥θ − θ′∥∥
2

for which E[M(Z)] <∞.

iii. The expected squared norms E[‖∇`(θ?, Z)‖2] and E[
∣∣∣∣∣∣∇2`(θ?, Z)

∣∣∣∣∣∣2
op

] are finite.
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2.1 Consistency

The key to the consistency result that

θ̂n → θ? with probability 1

is that the losses are convex and have continuous second derivatives. This means that Ln
has (with high probability) some positive curvature around θ?, and this growth dominates
fluctuations in the gradients ∇Ln(θ).

JCD Comment: TODO: Draw a picture of the proof style here, with tilts of
gradients. (As in lecture)

Proposition 1. Let Assumption A1 hold. Then

θ̂n → θ? with probability 1.

Even more,

lim sup
n

√
n

log logn
‖θ̂n − θ?‖ <∞ with probability 1,

and for any ε > 0, there exists K = K(ε) such that lim supn P(
√
n‖θ̂n − θ?‖2 ≥ K) ≤ ε.

We give a heuristic argument here, as it is the intuition that is important for the re-
sult; Appendix A.1 provides a rigorous proof. The key idea is that because ∇2L(θ?) � 0 is
strictly positive definite, the empirical loss Ln must have positive (upward) curvature in some
neighborhood of θ? as well. Then, because

∇Ln(θ?) =
1

n

n∑
i=1

∇`(θ?, Zi)

is mean-zero and has variance

Var(∇Ln(θ?)) := E
[
‖∇Ln(θ?)‖22

]
=

1

n
E[‖∇`(θ?, Z)‖22] = O(1/n),

the upward curvature of Ln near θ? will dominate the first-order terms.
Said differently, let us assume (for the sake of contradiction) that the minimizer θ̂n lies

outside of some ball B of radius ε > 0 around θ?. For θ in this ball,

Ln(θ) = Ln(θ?) +∇Ln(θ?)T (θ − θ?) +
1

2
(θ − θ?)T∇2Ln(θ̃)(θ − θ?),

where θ̃ ∈ [θ, θ?] lies between θ and θ?. Now, we know that E[‖∇Ln(θ?)‖22] = O(1/n), and so
by the Cauchy-Schwarz inequality, we have

Ln(θ) ≥ Ln(θ?)− ‖∇Ln(θ?)‖2 ‖θ − θ
?‖2 +

1

2
(θ − θ?)T∇2Ln(θ̃)(θ − θ?)

≥ Ln(θ?)−O(1/
√
n) · ‖θ − θ?‖2 +

1

2
(θ − θ?)T∇2Ln(θ̃)(θ − θ?).

Now we note that for θ̃ near enough θ?, the smoothness of the Hessians ∇2`(θ, z) gives

∇2Ln(θ̃) = ∇2Ln(θ?) +
(
∇2Ln(θ̃)−∇2Ln(θ?)

)
� ∇2Ln(θ?)−

(
1

n

n∑
i=1

M(Zi)ε

)
Ip,
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because ‖θ̃ − θ?‖2 ≤ ε. The first of these terms converges to ∇2L(θ?), and the second to
E[M(Z)] by the strong law of large numbers; as long as ε is small enough that λmin(∇2L(θ?)) >
2ε, we then obtain that for large n

Ln(θ) ≥ Ln(θ?)−O(1/
√
n) ‖θ − θ?‖2 +

1

4
λmin(∇2L(θ?)) ‖θ − θ?‖22 .

Immediately, we see that if ‖θ − θ?‖2 �
1√
n

, the sum of the right two terms is positive, and
so

Ln(θ) > Ln(θ?).

That is, no θ with ‖θ − θ?‖2 � 1/
√
n could minimize Ln.

2.2 Asymptotic Normality

Given consistency in the form of Proposition 1, we can now provide a proof that θ̂n is indeed
asymptotically normal and give a few different constructions of its (asymptotic) covariance
matrix.

Proposition 2. Let Assumption A1 hold. Then there exists a (random) remainder Rn such
that

θ̂n − θ? = −∇2L(θ?)−1∇Ln(θ?) +Rn,

where for any ε > 0, n1−εRn → 0 with probability 1. In particular,

√
n
(
θ̂n − θ?

)
dist→ N

(
0,∇2L(θ?)−1Cov(∇`(θ?, Z))∇2L(θ?)−1

)
.

Before giving a heuristic argument to justify Proposition 2, let us provide alternative
versions of the result (we provide proofs of the proposition and these alternatives in Ap-
pendix A.2). To actually perform inference on θ?, it is essential to estimate the actual
covariance of the data. Given the first statement of the proposition and the central limit

theorem, because ∇Ln(θ?)
�∼ N(0,Cov(∇`(θ?, Z))), it is natural to use a plug-in estimator for

the covariance. Thus, we define

Ĉov(∇`) :=
1

n

n∑
i=1

∇`(θ̂n, Zi)∇`(θ̂n, Zi)T .

Because θ̂n − θ? → 0 with probability 1, this (as we show) satisfies Ĉov → Cov(∇`(θ?, Z)),
and using the empirical estimate ∇2Ln(θ̂n) for ∇2L(θ?) then gives the natural covariance
estimate

Σn := (∇2Ln(θ̂n))−1Ĉov(∇`)(∇2Ln(θ̂n))−1. (6)

Frequently, we call the covariance (6) the sandwich covariance, because the covariance of the
gradients of the losses Cov(∇`) is sandwiched between Hessian estimates. We record the
consequences of using Σn as a corollary.

Corollary 2.1. Let Assumption A1 hold. Then

θ̂n − θ?
�∼ N

(
0, n−1Σn

)
,

that is,
√
nΣ−1/2n

(
θ̂n − θ?

)
dist→ N(0, Ip).
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The basic idea is to proceed via a Taylor expansion, then ignore higher-order error terms.
Because θ̂n minimizes Ln, we necessarily have 0 = ∇Ln(θ̂n). Now note that when θ̂n is close
to θ? (as the consistency θ̂n → θ? guarantees), we can Taylor expand ∇Ln around θ? to obtain

0 = ∇Ln(θ̂n) = ∇Ln(θ?) + (∇2Ln(θ?) + En)(θ̂n − θ?),

where En is some error matrix. Under Assumption A1, however, we are guaranteed that En
is small (in fact, even more: we have |||En|||op ≤

1
n

∑n
i=1M(Zi)‖θ̂n − θ?‖2), and so because

∇2Ln(θ?)→ ∇2L(θ?) with probability 1 by the strong law of large numbers, we have

∇2Ln(θ?) + En → ∇2L(θ?)

with probability 1, and ∇2Ln(θ?) +En is positive definite for large n. We can thus rearrange
the Taylor expansion to write

θ̂n − θ? = −
(
∇2Ln(θ?) + En

)−1∇Ln(θ?). (7)

Equality (7) leads to the desired normality results. First, ∇Ln(θ?) = 1
n

∑n
i=1∇`(θ?, Zi) is

an i.i.d. sum of mean-zero vectors, because ∇L(θ?) = 0 = E[∇`(θ?, Z)]. Then by the central
limit theorem, we have

∇Ln(θ?)
�∼ N

(
0, n−1Cov(∇`(θ?, Z))

)
.

Ignoring the higher-order error terms in the expansion (7) (which we can justify), because
∇2Ln(θ?) + En → ∇2L(θ?), we therefore have

√
n
(
θ̂n − θ?

)
= −∇2L(θ?)−1∇Ln(θ?) + negligible error

dist→ N
(
0,∇2L(θ?)−1Cov(∇`(θ?, Z))∇2L(θ?)−1

)
,

because if W ∼ N(0,Σ) then HW ∼ N(0, HΣHT ), and ∇2L(θ?) � 0 is symmetric. This is
Proposition 2.

References

[1] H. White. A heteroskedasticity-consistent covariance matrix estimator and a direct test
for heteroskedasticity. Econometrica, 48(4):817–838, 1980.

A Formal proofs

A.1 Proof of Proposition 1

We show that any point θ that is far from θ? can (eventually) not be a minimizer of Ln. The
key is that because ` is convex in its first argument, Ln is as well, and if we can demonstrate
the existence of any radius ε > 0 for which Ln(θ) > Ln(θ?) for all θ satisfying ‖θ − θ?‖ = ε,
then any θ′ farther from θ? cannot minimize Ln (and even more, is at least linearly larger
than Ln(θ?)). The next lemma makes this formal.
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Lemma A.1. Let f : Rp → R be convex and θ0 ∈ dom f , and let ε > 0. Define ∆(ε) =
inf{f(θ)− f(θ0) | ‖θ − θ0‖ = ε}. Then for any θ such that ‖θ − θ0‖ ≥ ε,

f(θ) ≥ f(θ0) + ∆(ε) ‖θ − θ0‖ .

Proof We first fix two points θ0, θ1 ∈ dom f , and consider the ray of points θt = θ0+t(θ1−θ0)
for t ≥ 0. If t ≥ 1, then θt = θ0 + t(θ1 − θ0) if and only if θ1 = 1

t θt + t−1
t θ0, so that

f(θ1) ≤
1

t
f(θt) +

t− 1

t
f(θ0) or f(θt) ≥ tf(θ1) + (1− t)f(θ0) = f(θ0) + t(f(θ1)− f(θ0)).

Now, assume that for some ε > 0, we have f(θ1) > f(θ0) for all θ1 ∈ θ0+εSn−1. Then any θ for

which ‖θ − θ0‖ > ε satisfies θ = θ0 + t ε
‖θ−θ0‖(θ− θ0) for t = ‖θ−θ0‖

ε , that is, θ = θ0 + t(θ1− θ0)
for θ1 = θ0 + ε

‖θ−θ0‖(θ − θ0), and so

f(θ) ≥ f(θ0) + t(f(θ1)− f(θ0)) ≥ f(θ0) +
‖θ − θ0‖

ε
inf

‖θ1−θ0‖=ε
(f(θ1)− f(θ0)) ,

as desired.

Let λ = λmin(∇2L(θ?)) for shorthand, and let M = E[M(Z)], where recall that M(z) is the
Lipschitz constant for the Hessian ∇2`(θ, z) in θ. With Lemma A.1 in hand, let 0 < ε ≤ λ

4M
.

By a Taylor expansion, we know that for any θ in an ε-ball around θ?, we have

Ln(θ) = Ln(θ?) +∇Ln(θ?)T (θ − θ?) +
1

2
(θ − θ?)T∇2Ln(θ̃)(θ − θ?),

where θ̃ ∈ [θ, θ?]. Using theM(z)-Lipschitz continuity of∇2`(θ, z) in θ, forMn = 1
n

∑n
i=1M(Zi)

we have
∇2Ln(θ̃) � ∇2Ln(θ?)−Mn

∥∥θ̃ − θ?∥∥
2
Ip � ∇2Ln(θ?)−MnεIp.

By the strong law of large numbers, we have Mn
a.s.→ E[M(Z)] and so eventually (with proba-

bility 1, for all large enough n) Mn ≤ 2M and εMn ≤ λ
2 . In particular, there exists a (random

but finite) sample size N such that for n ≥ N , all θ satisfying ‖θ − θ?‖2 ≤ ε have

∇2Ln(θ) � λ

2
Ip.

Returning to the Taylor expansion, we obtain that there exists a random N < ∞ such
that n ≥ N implies

Ln(θ) = Ln(θ?) +∇Ln(θ?)T (θ − θ?) +
λ

4
‖θ − θ?‖22

for all ‖θ − θ?‖2 ≤ ε. Now we apply the strong law of large numbers again. We have

∇Ln(θ?)
a.s.→ 0, and so for any δ > 0, there exists (a random) N ′ <∞ such that ‖Ln(θ?)‖2 ≤ δ

for n ≥ N ′. Applying Cauchy-Schwarz, we have

Ln(θ) ≥ Ln(θ?)− ‖∇Ln(θ?)‖2 ‖θ − θ
?‖2 +

λ

4
‖θ − θ?‖22

≥ Ln(θ?)− δ ‖θ − θ?‖2 +
λ

4
‖θ − θ?‖22
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whenever ‖θ − θ?‖2 ≤ ε. But of course λ
4 t

2 − δt > 0 whenever t > 4δ
λ ; if we take δ such that

4δ
λ < ε then for the shell S = {θ | 4δλ < ‖θ − θ?‖2 ≤ ε}, we have Ln(θ) > Ln(θ?) for all θ ∈ S.
Apply Lemma A.1 to see that we must therefore have

‖θ̂n − θ?‖2 ≤
4δ

λ
.

This is the first part of Proposition 1, as δ > 0 was arbitrary.
To obtain the sharper convergence result, we must take δ = δn converging to 0. In this

case, the central limit theorem implies that
√
nLn(θ?) converges in distribution to a Gaussian.

Even more the law of the iterated logarithm gives that

lim sup
n

√
n

log logn
‖∇Ln(θ?)‖ <∞

for any norm ‖·‖ with probability 1. Taking δn = ‖∇Ln(θ?)‖2, we obtain that there exists
a constant C < ∞ such that eventually δn ≤ C

√
log log n/n. Repeating the same argument

above, mutatis mutandis, we have

Ln(θ) ≥ Ln(θ?)− δn ‖θ − θ?‖2 +
λ

4
‖θ − θ?‖22

for all ‖θ − θ?‖2 ≤ ε. Solving gives we must have ‖θ̂n − θ?‖2 ≤ 4δn
λ eventually.

A.2 Proof of Proposition 2

By Proposition 1, we have nγ(θ̂n − θ?)
a.s.→ 0 for all γ < 1

2 . Thus we eventually have

0 = ∇Ln(θ̂n) = ∇Ln(θ?) + (∇2Ln(θ?) + En)(θ̂n − θ?),

where |||En|||op ≤
1
n

∑n
i=1M(Zi)‖θ̂n − θ?‖2. Then because of the consistency guarantee and

that 1
n

∑n
i=1M(Zi)

a.s.→ E[M(Z)], we have En
a.s.→ 0, ∇2Ln(θ?)

a.s.→∇2L(θ?), and so ∇2Ln(θ?) +
En is invertible eventually and

θ̂n − θ? = (∇2Ln(θ?) + En)−1∇Ln(θ?),

that is, expansion (7) holds.
In a standard proof of asymptotic normality, one would now invoke the central limit

theorem and Slutsky’s convergence theorems. We can avoid these by giving a more direct proof
as well. To that end, we apply an expansion of A 7→ A−1. If A � 0 and |||E|||op < λmin(A),
then

(A+ E)−1 = A−1 +A−1
∞∑
i=1

(−1)i(EA−1)i,

or (A + E)−1 = A−1 − A−1EA−1 + O(‖E‖2), and because
∑∞

i=2 δ
i = δ2/(1 − δ) for |δ| < 1,

we have

∣∣∣∣∣∣(A+ E)−1 −A−1 +A−1EA−1
∣∣∣∣∣∣
op
≤
∣∣∣∣∣∣A−1∣∣∣∣∣∣

op

∞∑
i=2

∣∣∣∣∣∣EA−1∣∣∣∣∣∣i
op
≤

∣∣∣∣∣∣A−1∣∣∣∣∣∣3
op
|||E|||2op

1− |||A−1|||op |||E|||op
.

Returning to the expansion (7), for any γ < 1
2 , that

|||En|||op ≤Mn

∥∥θ̂n − θ?∥∥2
12



implies nγ |||En|||op
a.s.→ 0 by Proposition 1, and similarly, that E[‖∇`(θ?, Z)‖22] <∞ implies that

nγ ‖∇Ln(θ?)‖ a.s.→ 0 by the law of the iterated logarithm. The law of the iterated logarithm
also gives ∇2Ln(θ?) − ∇2L(θ?) = O(1/nγ) for any γ < 1

2 (with probability 1). So defining
H = ∇2L(θ?) and Hn = ∇2Ln(θ?) as shorthand for the Hessians, we have

(Hn + En)−1 = (H + (Hn + En −H))−1

= H−1 −H−1(Hn + En −H)H−1 +O(‖Hn + En −H‖2) = H−1 +O(n−γ)

with probability 1, for any γ < 1
2 . That is,

θ̂n − θ? = ∇2L(θ?)−1∇Ln(θ?) +Rn

where the remainder term Rn ∈ Rp satisfies n2γRn
a.s.→ 0 for any γ < 1

2 . This completes the
proof of Proposition 2.

Proof of Corollary 2.1

To formalize the result in Corollary 2.1, it suffices to show that

Σn − Σ→ 0 with probability 1,

as in this case we have (with probability 1) that

√
nΣ−1/2n

(
θ̂n − θ?

)
=
√
nΣ−1/2

(
θ̂n − θ?

)
+
√
n(Σ−1/2n − Σ−1/2)

(
θ̂n − θ?

)
︸ ︷︷ ︸

=o(1)

.

To that end, let γ < 1
2 be otherwise arbitrary. Note that∣∣∣∣∣∣∣∣∣∇2Ln(θ̂n)−∇2Ln(θ?)

∣∣∣∣∣∣∣∣∣
op
≤Mn

∥∥θ̂n − θ?∥∥2
and nγ‖θ̂n − θ?‖2

a.s.→ 0 by Proposition 2. Similarly, nγ |||∇2Ln(θ?)−∇2L(θ?)|||op
a.s.→ 0 by the

law of the iterated logarithm, and so because Mn
a.s.→ E[M(Z)], we have

nγ
∣∣∣∣∣∣∣∣∣∇2Ln(θ̂n)−∇2L(θ?)

∣∣∣∣∣∣∣∣∣
op

a.s.→ 0.

To control the empirical covariance term, note that

1

n

n∑
i=1

∇`(θ̂n, Zi)∇`(θ̂n, Zi)T =
1

n

n∑
i=1

(∇`(θ?, Zi) + ei)(∇`(θ?, Zi) + ei)
T

=
1

n

n∑
i=1

∇`(θ?, Zi)∇`(θ?, Zi)T +
1

n

n∑
i=1

(∇`(θ?, Zi)eTi + ei∇`(θ?, Zi)T ) +
1

n

n∑
i=1

eie
T
i

where ei = ∇`(θ̂n, Zi)−∇`(θ?, Zi). Using Assumption A1, we have ‖∇`(θ̂n, z)−∇`(θ?, z)‖2 ≤
M(z)‖θ̂n − θ?‖2. Applying Cauchy-Schwarz, we obtain∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

∇`(θ?, Zi)eTi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
op

≤

√√√√ 1

n

n∑
i=1

‖∇`(θ?, Zi)‖22

√√√√ 1

n

n∑
i=1

M(Zi)2
∥∥θ̂n − θ?∥∥2 a.s.→ 0,

13



and a similar calculation shows n−1
∑n

i=1 eie
T
i
a.s.→ 0. Tracking the error rates a bit more

carefully and noting that 1
n

∑n
i=1∇`(θ?, Zi)∇`(θ?, Zi)T

a.s.→ Cov(∇`(θ?, Z)), we have shown
that

nγ
(

Ĉov(∇`)− Cov(∇`(θ?, Z))
)
→ 0 with probability 1.

Because (H,C) 7→ H−1CH−1 is continuous, this shows that

Σn → Σ = ∇2L(θ?)−1Cov(∇`(θ?, Z))∇2L(θ?)−1

with probability 1, as desired.
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