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1

Introduction

1.1 An Initial Example

Suppose that you are given a conceptual task which, among other things, in-
volves reading. To understand how your brain performs this task, it is scanned.
Figure 1.1.1 shows the results of one of the first such brain mapping experi-
ments Reference needed using PET Positron Emisson Tomography).

Fig. 1.1.1. A stimulated brain.

What this scan shows is your brain, its two connected lateral ventricles
in the center, filled with cerebrospinal fluid, and four regions of high brain
activity. These regions are defined by the fact that within them the blood
flow, or, equivalently, the brain activity, is particularly high. The large region
on the bottom right is the visual cortex, related to the fact that part of the
task involved sight. The meaning of the three smaller regions is less clear, but
since they are possibly related to language processing it is these which we
would like to investigate.

Basic statistical theory, not to mention basic common sense, tells us that
before we begin to offer learned explanations as to what is happening within
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the three smaller regions, we should check as to whether or not they are consis-
tent with random error, where the error may come from sampling mechanisms,
instrument inaccuracies, or any other source.

The way to approach this is to assume a model. Indeed, denoting the
brain by T , we could define some random function, f say, over T , and ask if
these three regions could also be generated, with a reasonable probability, by
asking about the subsets of T over which f takes high values. In other words,
we would ask if we could replace the physically meaningful brain activity
level measurements by something completely random. If the answer to this
question turned out to be positive, then clearly there is no information in the
measurements and the three smaller regions may be considered as random
sets of some kind. Thinking of them this way implies that in order to conduct
the hypothesis test implicit in the above description, we shall need to know
something about the behavior of random sets.

Actually, we now have enough motivation to introduce some notation,
which will remain with us throughout this book. Parameter spaces, such as
the brain, will generally be denoted by T , and a typical point in T by t. The
use of T comes from the simplest of all cases, when the parameter space is an
interval on the real line R, and so t stands for ‘time’1. Almost always, T will
be a subset of some N -dimensional Euclidean space RN , N ≥ 1.

We shall denote functions on T by f , and when these are random, we
shall call them random fields. This terminology comes from the pre-history
of the subject, which dealt with yields of agricultural produce, so that the
measurement of the density of yield gave a random (agricultural) field. Some-
times, usually when we are treating theory rather than practice, we shall talk
about stochastic processes rather than random fields, but the two terms are
completely synonymous. We shall also not distinguish between f(t) and ft as
the value of f at t ∈ T .

The last component that we need is a formulation of the high activity
regions of the brain, and for these we define the excursion sets2 of f over T
and above the level u by

Au ≡ Au(f, T )
∆
= {t ∈ T : f(t) ≥ u}. (1.1.1)

Excursion sets will play a major role in this book, whose central theme
will be their study and use. In particular, we shall want to quantify various
qualitative properties of these sets and understand these quantifiers, as well as
possible, as random variables. We have already done this in quite some detail
and at a rather abstract level in RFG3. Now, however, we want do it again,

1 Later on, when we move to manifolds as parameter spaces, we shall emphasise
this by replacing T by M . Nevertheless, points in M will still be denoted by t.

2 In much of the mathematical literature, and in most of physics, excursion sets
are known as nodal domains.

3 One last reminder, in case you have not read the Preface, that RFG refers to the
book Random Fields and Geometry [5], recently published by two of us.
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with the accent on application and readability, rather than theory and rigor.
However, this book is anything but a poor man’s version of the earlier one.
It will contain many results and topics that are not there at all, along with a
wealth of additional material that will help you apply random field theory in
a wide range of settings.

Perhaps the best way to convince you of this is via examples, and we
shall choose one from astrophysics and one from brain mapping, the second
enlarging on our opening example above. However, before we turn to these,
we have to say just a little more about random fields and about geometry.
The former is important so that we can agree on what is meant by the term
‘random’ and the latter is important since we shall be using it to study the
behavior of excursion sets.

1.2 Gaussian and Related Random Fields

We shall define random fields in general and Gaussian ones in particular more
carefully and in considerably more detail in Chapter 2, but since we need
them to discuss the two examples below something needs to be said about
them now.

In fact, Gaussian random fields are very easy to define. Given a parameter
space T , a function f : T → R which has the property that the collection

f(t1), . . . , f(tk), (1.2.1)

of random variables has a multivariate Gaussian distribution for all finite
k ≥ 1 and all collections t1, . . . , tk ∈ T is a Gaussian random field.

There is no reason not to extend this construction to random fields taking
values in Rd for any d ≥ 1, and in this case, and if T has dimension N , we call
f an (N, d) random field. Doing so allows us to define many different kinds
of random fields which significantly enlarge the class of models which can be
covered by a common theory. For example, if f = (f1, . . . , fd) is collection of
d, independent, mean zero, unit variance Gaussian fields, then defining a new
random field χ2 by setting

χ2(t) =

d∑
j=1

f2
j (t)

gives a random field whose distribution is chi-squared at each point of the
parameter space T . Random fields which we obtain this way – i.e. as functions
of Gaussian fields – are what we call Gaussian related.

For the remainder of this chapter we shall work only with real valued
Gaussian fields, and shall make a few simplifying assumptions. The first will
be that f has sample paths that are smooth, where we shall have more to say
about what ‘smooth’ means in Section 2.5.
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The next assumption, which is relatively harmless, is that f have zero
expectation at all points in T . A little more severe is the assumption that there
be a common variance σ2. Finally, we shall assume that f is both stationary
and isotropic, terms that will be defined carefully in Section 2.4. What these
last two assumptions require is that f behave the same, stochastically, in all
regions and in all directions.

As a consequence, there is one more parameter that we can define, and
this is the so-called second spectral moment, λ, which is simply the variance
of any directional derivative of f .

Thus, in total, we really have only two free parameters defined by our
Gaussian random field. The first, σ, determines the order of magnitude of
the values that f takes. The second, λ, describes how rapidly f changes as t
changes, with the order of magnitude of these changes being given by λ1/2.
For the moment, these two parameters, among the many that could be used
to describe the dependence structure of f at different points in T , will suffice.

1.3 Shape and the Euler Characteristic

Returning to our example of brain activity in Section 1.1, we see that we are
half way to setting up a statistical test, since we now know how to model
randomness. Indeed, we can now consider a null hypothesis that the three
small regions of high brain activity in Figure 1.1.1 are no more than the
excursion sets of a Gaussian random field defined on the brain.

The next step is to determine which geometric aspects of these excursion
sets can be measured, at least in a way that will be amenable to statistical
analysis. Somewhat surprisingly, the solution comes from eighteenth century
mathematics.

Among many other contributions to science, Leonhard Euler (1707–1783),
arguably the most prolific mathematician of his century, discovered a very
interesting and basic fact about convex polyhedra. Recall that a polyhedron
is a solid object bounded by plane faces, such as a cube, pyramid, etc. Euler
realized that if you count the numbers of faces (F ), edges (E), and vertices
(points, P ) of a polyhedron, then

P − E + F = 2. (1.3.1)

A cube, for example, has F = 6 faces, E = 12 edges and P = 8 vertices (see
Figure 1.3.1(a)) so that 8−12+6 = 2. For a solid that consists of Q polyhedra,
glued together on at least one common face, thereby creating a structure that
is no longer necessarily convex, a more general version of (1.3.1) holds, and is
given by

P − E + F −Q = 1. (1.3.2)

See, for example, the L-shaped object in Figure 1.3.1(b).
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Fig. 1.3.1. The Euler characteristic of a solid is the number of vertices (points) −
edges + faces − polyhedra. For a single polyhedron (a) or several joined together
(b), the Euler characteristic is 1. If there is a hole in the solid (c) then the Euler
characteristic is 0, and it decreases by 1 for each extra hole (d, e). In (f) the central
cube is missing so the solid is hollow, which leads to an Euler characteristic of 2.

A little experimentation should convince you that this new formula works
for all solids built from polyhedra, although it requires adjustment if the solid
has a hole going through it, as in Figures 1.3.1(c)–(e). The adjustment is that
we now have

P − E + F −Q = 1−H,

where H is the number of holes.
One more possibility that needs to be covered is that the set may have

hollows, as in a tennis ball (which has only one). If the number of hollows is
H∗, then, in fact

P − E + F −Q = 1−H +H∗, (1.3.3)

where H∗ is the number of hollows.
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We have not quite covered all possibilities, for the solid may have a number
of disjoint components. For example, consider all six structures in Figure 1.3.1
as if they were the six disjoint parts of one disconnected set. Let all the
variables we have looked at so far now relate to the numbers in the entire
structure, and let C denote the number of disjoint connected components of
the structure. (In Figure 1.3.1 C = 6.) Then (1.3.3) immediately gives us that

P − E + F −Q = C −H +H∗. (1.3.4)

It turns out that the sum P −E + F −Q is a topological invariant of the
solid, and does not depend on the way it is subdivided into polyhedra. In fact,
it has a name, and is known as the Euler characteristic. If A is the solid, then
we denote its Euler characteristic by ϕ(A), so that

ϕ(A)
∆
= P − E + F −Q, (1.3.5)

for any subdivision of the solid into polyhedra. Avoiding the specific compo-
nent polyhedra, by (1.3.4) we could also have adopted the definition

ϕ(A)
∆
= C −H +H∗, (1.3.6)

a more global, and usually preferable, definition.
A little thought shows that the the equivalence of the two definitions in-

dicates an amazing balance between local and global phenomena. Each of the
numbers P, E, F and Q are local, in the sense that if we change the way
that A is built up from polyhedra, then each of these numbers may change.
However, since C, H and H∗ (and ϕ(A)) are global, the four local parameters
can only change in ways that keep their alternating sum constant.

Actually, (1.3.6) is but the tip of an iceberg, for the definition of the
Euler characteristic works in all dimensions and not just in dimension three,
as we have described it. Furthermore, it is well defined for sets that are far
more general than those constructed from polyhedra. For example, suppose
A is a set in three dimensions with a smooth boundary. In this case we can
cover R3 with many small cubes sitting on a cubical lattice. (Any collection
of small, convex sets on a corresponding lattice would work, but cubes are
simple and, at least for the moment, will suffice.) If the lattice is fine enough
and the boundary of A is smooth enough, then it can be shown that the Euler
characteristic of the largest cube-based structure contained inside A equals
ϕ(A) itself and the formula

ϕ(A) = C −H +H∗

still holds.
Digging deeper into the iceberg, we shall see, in Chapter 3, that the Euler

characteristic is but one of a number of topological characteristics of sets, and
that, in general, N + 1 natural quantifiers of geometry for sets of dimension
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N . Some of these will tell us about volume, others about surface areas, and
yet others about properties of cross-sections. However, it turns out that the
Euler characteristic is the most basic, from which all others can be computed
in ways which we shall describe in Chapter 3.

For now, however, it will suffice to work with the Euler characteristic.
Some informative examples appear in Figure 1.4.2 which, while it deals with
astrophysics, you can look at now. If our set is composed of many discon-
nected components, each containing relatively few holes or hollows (called a
meatball topology in astrophysics) then the Euler characteristic is large and
positive (Figure 1.4.2(a)). If the components are connected together by a net-
work of ‘bridges’ or ‘handles’ to form many holes, then the Euler characteristic
is negative. This is called a sponge topology (Figure 1.4.2(b)). If the network
dominates to such an extent that the set consists of many surfaces surround-
ing isolated voids (rather like Swiss cheese), called a bubble topology (Figure
1.4.2(c)), then the hollows dominate and the Euler characteristic is once again
positive.

With the tip of an iceberg firmly in view, we now actually have enough to
look at the two promised applications.

1.4 The Large-Scale Structure of the Universe

One of the central problems of modern astrophysics is understanding the
large-scale structure of the universe. Ever since the discovery of galaxies, it
has been known that they are grouped together to form clusters, and these
group together to form superclusters. With more accurate observations and
larger galaxy surveys, it became evident that these structures themselves were
not scattered throughout the universe in a uniform fashion, but rather in a
fashion that varied considerably from region to region.

In fact, there are large voids throughout the universe, completely free of
visible matter, surrounded by strings and even sheets of galaxies, one of which,
relatively close to us, has been named the Great Wall by astrophysicists. It
is one of the central challenges of modern cosmology to build models of the
formation of the universe that explain this non-homogeneous structure, and
to compare the results of these models to the structure we observe today.

There are many ways to make such comparisons, but most involve ge-
ometry and many involve the Euler characteristic and its relatives to which
we just referred. In fact, in a series of articles in the Astrophysical Journal,
starting in the mid-1980s, Richard Gott and his colleagues at Princeton used
the Euler characteristic as a tool for describing the topology of the large scale
structure of the universe.

1.4.1 Survey Data

The galaxy data studied by astronomers for understanding large scale struc-
ture are actually sets Au(f, T ), as in (1.1.1). The parameter space T is the
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observable universe, and the function f measures the ‘density’ of galaxies at
a given point. To generate ‘density’ data, the atrophysicists first determine
points t1, ...., tn in R3 of galaxy centres, and place a ‘mass’ wi at each ti.
The masses are taken to be inversely proportional to the expected number
of galaxies at distance |ti| from the Earth, which, at least on galactic scales,
is the point from which measurements are taken. (This compensates for the
fact that more distant galaxies appear fainter and are harder to detect, and
so the survey data thins out at large distances.) These point masses are then
smoothed with a Gaussian kernel, to give (up to a compensation for edge
effects) the density field

f(t) =

n∑
i=1

wi
e−α|t−ti|

2

σ
,

where α and σ are scaling constants.
Varying the level u for the excursion sets of f shows regions of the universe

with different galaxy densities, and so u is actually no more than a thresholding
parameter for determining the excursion sets.

Figure 1.4.2 shows high density regions from the Center for Astrophysics
(CfA) survey containing n = 10, 506 galaxies4. The density field f has been
‘Gaussianised’, in the sense that the (univariate) marginal distribution of f
has been fixed to be standard normal, a procedure which we shall explain
soon. For each of these regions the Euler characteristic was computed as the
number of connected components minus the number of handles or holes plus
the number of hollows, as in (1.3.6). The results give, as expected, high posi-
tive Euler characteristics for values of u leading to regions where the topology
of the excursion set is of ‘meatball’ or ‘bubble’ type, and low negative val-
ues when the topology is ‘sponge’-like. In Figure 1.4.3 these observed Euler
characteristics are shown (dashed line) for a full range of levels u.

1.4.2 Designing and Testing a Model

So far, all we have done with the galaxy data is to collect it, ‘Gaussianise’
it, and measure the Euler characteristics of excursion sets. All of these steps
are simple, modulo, perhaps, the so-called Gaussianisation, which we now
describe.

The first step is to compute the empirical distribution function, F̂n, of the
density f at the basic grid of galaxy centers, viz. {f(t1), . . . , f(tn)}. Letting Φ
denote the distribution function of a standard normal random variable, define
the ‘Gaussianised’, or sometimes just ‘standardised’, data to be

f̃(tj)
∆
= Φ−1

(
F̂n(f(tj))

)
, j = 1, . . . , n. (1.4.7)

4 Completed in the mid-1990’s, the CfA study was the first large-scale survey of the
universe. Later on, in Chapter 10, we shall look at the most recent Sloan Digital
Sky Survey (SDSS) which contains 141,300 galaxies.
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(a)

(b)

(c)

Fig. 1.4.2. Different topologies and examples of their Euler characteristics for the
regions of high galaxy density from the CfA survey thresholded at the level u on a
Gaussian scale. There are 10,506 galaxies in the cone-shaped survey region, which
extends out to 135 megaparsecs in the northern hemisphere, with the earth at the
apex of the cone.
(a) At u = 1 there is a meatball topology of many disconnected components, each
containing relatively few holes or hollows, giving an Euler characteristic of 23. The
Great Wall is visible across the center of the cone.
(b) At u = 0 a sponge topology arises, in which the components are connected
together by a network of ‘bridges’ or ‘handles’, to yield an Euler characteristic of
−4.
(c) At u = −1.3 we find a bubble topology of surfaces surrounding isolated voids,
giving an Euler characteristic of 8.
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This standardised data is what appears in Figures 1.4.2 and 1.4.3.
We now turn to designing a stochastic model that might be able to explain

the non-homogeneous nature of the CfA data, a model that we can then
test. The basic model replaces the galaxy centers by the points of a uniform
Poisson process in R3, following which the same construction of weighting and
smoothing is adopted, the final stage being the Gaussianisation. The ensuing
density field is now random, and it is easy to check that it is also stationary
and isotropic.

We now have an extremely important observation to make, albeit a trivial
one. This is that non-Gaussian random fields cannot generally be transformed
to Gaussian by pointwise transformations. More specifically, if f is a random
field with distribution function Ft at the point t, and Φ is the standard Gaus-
sian distribution function as above, then the transformation

f(t)→ f̃(t)
∆
= Φ−1 (F (f(t)) (1.4.8)

does not generally imply that f̃ is a Gaussian random field.
It does, of course, imply that the one-dimensional marginal distributions

of f̃ are standard Gaussian, but, as we saw at (1.2.1), for a random field to
be Gaussian all of its finite dimensional distributions must be multi-variate
normal, something which (1.4.8) cannot guarantee. This fact is so often over-
looked in the applied literature that we shall devote the one and only displayed
box of this book to emphasize that, with the exception of some rather trivial
cases,

Non-Gaussian fields cannot generally be transformed
to Gaussian by localised transformations.

A fortiori, a data driven transformation such as (1.4.7), while it does have
the advantage of standardising the values of the the galaxy density data, does
not make the data that of a Gaussian random field. Consequently, even after
the transformation, the assumption of Gaussianity of the field for the stan-
dardised data is a very real assumption that needs to be tested statistically.

It turns out that a very effective way to test Gaussianity is via the Euler
characteristic of the excursion sets of the galaxy density function. Since the
density is random, so are the excursion sets, and therefore so are the Euler
characteristics. However, it is possible to compute the expectations of these
random variables, and a special case of far more general formulas that we shall
meet time and again in this book gives that under stationarity and isotropy,

(1.4.9)

E {ϕ (Au)} =

[
L3λ

3/2(u2 − 1)

(2π)2
+
L2λu

(2π)3/2
+
L1λ

1/2

2π

]
e−u

2/2 + L0(1− Φ(u)).
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The constants

Lj = Lj(A)

should be thought of as measures of the ‘j-dimensional size’ of the parameter
space (that part of the universe scanned in the CfA survey) so that

L3 is the three dimensional volume of the surveyed space.
L2 is half the surface area of the surveyed space.
L1 is twice the caliper diameter of the surveyed space, where the caliper diam-

eter of a convex solid is defined by placing the solid between two parallel
planes (or calipers), measuring the distance between the planes, and aver-
aging over all rotations of the solid i

L0 is the Euler characteristic of the parameter space, so that L0(A) ≡ ϕ(A).

Thus, for example, for a rectangular box of size a×b×c, we have L3 = abc,
L2 = ab+bc+ac, L1 = a+b+c (half the ‘volume’ used by airlines to measure
the size of luggage) and L0 = 1.

The remaining parameter λ is the second spectral moment, or measure of
rate of change, that we met back in Section 1.2, and this needs to be estimated
from that data before we can use (1.4.9). We shall discuss a number of ways
to do this in later chapters, and in the present case a good estimate turns out
to be λ = 0.00661.

Computing the expected Euler characteristic from (1.4.9) and including
the empirically observed Euler characteristics gives us Figure 1.4.3. The re-
sults are in rough agreement in that both yield meatball, sponge, and bubble
topologies for, respectively, high, medium and low values of the thresholding
variable u. However, we shall see later that this behavior is common to vir-
tually all situations. More critical inspection shows that the empirical and
theoretical curves are actually not very close, and that overall the empiri-
cal curve is smaller than expected, indicating (on the basis of (1.3.6)) fewer
individual components in the excursion sets and more clumping of galaxies
into clusters, strings, and walls. In short, the data are inconsistent with the
assumption of Gaussianity. What are the implications of this fact, and what
to do about it, will be discussed in some detail in Chapter 10.

Before leaving this example, it is important to note that while (1.4.9) arose
in an astronomical setting, it is, in fact, a very general result. Indeed, it holds
for all zero mean, stationary, isotropic, Gaussian random fields over three di-
mensional parameter spaces with unit variance. The extension to a general
variance of σ2 is done in the obvious way, by replacing u by u/σ through-
out the formula. There are also versions of this result for all dimensions, for
non-isotropic and (constant variance) non-stationary random fields, and also
for a wide variety of non-Gaussian fields. We shall study these extensions in
considerable detail in Chapter 4.

For the moment, however, we can remain in the simpler setting of (1.4.9)
also while treating our next example.
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Fig. 1.4.3. The observed Euler characteristics of the set of high density regions of
the CfA Galaxy survey plotted against the density threshold. High thresholds pro-
duce a meatball topology (magnification, and Figure 1.4.2(a)). Medium thresholds
produce a sponge topology (Figure 1.4.2(b)), and low thresholds produce a bubble
topology (Figure 1.4.2(c)). Also shown are the expected values of these Euler char-
acteristics for galaxies generated as the excursion sets of Gaussian random fields.

1.5 Brain Imaging

One of the earliest experiments in brain imaging was conducted in 1990 at
Montreal Neurological Institute (cf. [52].) In this experiment, subjects were
injected with a radio isotope emitting positrons, which annihilate with nearby
electrons to release gamma rays that are detected by Positron Emission To-
mography (PET). By careful reconstruction, it was possible to build up an
image of blood flow in the brain, a measure of brain activity. This opened up
the possibility of actually seeing which regions of the brain were activated by
different stimuli, and so to actually see the brain ‘thinking’.

1.5.1 The Data

In 1992, in one of the first experiments of its kind, (cf. [32]) subjects were
told to perform a linguistic task, involving the silent reading of words on a
screen, during the imaging process. By subtracting an image in which each
subject was ‘at rest’ looking at a blank screen, the experimenters were able
to see evidence of increased blood flow in certain brain regions corresponding
to the effort required for the task.

The images were, however, very blurred, and the signal (if any) was very
weak compared to the background noise, so to increase the signal-to-noise
ratio the experiment was repeated on 10 subjects. The brain images were
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aligned in three dimensions, and the blood flow was averaged, as in Figure
1.5.4(a)–(c). These images seem to show increased activation, but this needs
to be tested formally, which takes us, as in the previous example, into the
realm of hypothesis testing.

Although Figure 1.5.4 seems to show a continuous image, the raw data
was actually stored as values at 128 × 128 × 80 voxels. At each such voxel
there were 10 pairs of blood-flow values, one pair for each subject, one taken
while the subject was performing the task, the other at rest. The aim is to
test the null hypothesis of there being no difference between the rest and
activation stages, and so it is elementary statistic methodology to perform
a paired-difference T test. This is calculated by taking the mean difference
(Figure 1.5.4(d)), dividing by the standard deviation (Figure 1.5.4(e)), and
multiplying by the square root of the number of subjects (

√
10). To increase

the accuracy of the standard deviation, it was replaced by the average over
all voxels to obtain a Z statistic with an approximate Gaussian distribution.
Proceeding in this fashion, we can make an image of Z statistics, one for each
voxel (Figure 1.5.4(f)).

1.5.2 Statistical Testing

The above construction of Z statistics yields a simple statistical test for each
voxel. However, all told there are about 300,000 voxels in the brain, and it
makes no sense at all to carry out this number of tests.

For example, if we were to use the common 0.05 critical value of 1.64 for
the standard normal variable, and carry out 300,000 tests, we would expect to
see 15,000 voxels above this level, even if the null hypothesis of no difference
between rest and activation were true. Thus a different threshold needs to be
found5.

Consequently, the procedure adopted is to scan the entire brain looking
for high values of Z, and choose a threshold value u which will be crossed only
with some small, controllable probability. The null hypothesis of no difference
between rest and activation stages is then rejected if this threshold is crossed.
Under this global null hypothesis, the overall probability of error is the prob-
ability that any value of Z will be higher than u and is called the family wise
error rate.

Let us rephrase this in terms of things we already know. The null hypoth-
esis is now that as Z varies over the brain it determines a Gaussian random

5 The classical way of correcting for this would be to divide the 5% level by the
number of tests, the so-called Bonferroni correction, which gives a critical value
of u = 5.10. However, this usually over-corrects. To see why, note that the voxels
are actually rather arbitrary, and if we subdivided each into eight voxels of half
the size in each direction, we would divide now by 2,400,000 rather than 300,000
and obtain an even larger threshold (u = 5.48). Thus the Bonferroni threshold is
not the best path to take.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1.5.4. A PET study showing regions of the brain activated by a reading task.
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FIGURE 1.5.4, continued: The brain (a) has been rendered as a transparent solid
with the rear left side facing the viewer. The ventricles in the center form a single
connected hollow that gives the brain an Euler characteristic of 2, as in Figure
1.3.1(f). One of 80 slices through the brain is color-coded (red = high, purple =
low) to show (b) average blood flow of 10 subjects under the rest condition and (c)
under the task condition. The difference of the averaged blood flows, task – rest, is
shown in (d) and the standard deviation of the 10 differences (9 degrees of freedom)
in (e). The Z statistic for testing for a significant increase in blood flow due to the
task is (f) while (g) gives the excursion set of all Z values greater than a threshold of
u = 3.3, where we expect the Euler characteristic to be 1 if the image is pure noise
(no activation). In fact the Euler characteristic is 4, due to the four components
clearly visible, suggesting some evidence of activation. Changing the threshold to
u = 4.22 (so that the expected Euler characteristic is 0.05 when no activation is
present and all noise is excluded with a probability of 0.95) gives (h). Two regions
remain (the Euler characteristic of the excursion set is 2), one in the left frontal
lobe, near the language area of the brain and a broad region in the left visual cortex
and extrastriate. These are the regions significantly activated by the task.

field6 of zero mean, where we shall now go back to treating the brain as a
continuous object rather than a collection of voxels of essentially arbitrary
size. Thus we are seeking a threshold u0.05 such that

P
{

sup
t∈T

Z(t) ≥ u0.05

}
= 0.05, (1.5.10)

where the parameter set T is the brain. For obvious reasons, we shall call a
probability of this type an exceedence probability . Outside of the setting of
Markov processes, which is definitely not our setting, exceedence probabilities
are notoriously difficult to compute precisely. However, note that, for any u,

P
{

sup
t∈T

Z(t) ≥ u
}
≡ P

{
Au(Z, T ) 6= ∅

}
, (1.5.11)

where Au is the excursion set (1.1.1).
Now for some handwaving: Suppose that u is large, so that the probability

in (1.5.11) is small. Then the excursion set Au is most likely to be of the
meatball type; i.e. made up of a few isolated small regions, with neither holes,
handles nor hollows. In fact, if u is large, it is unlikely that there would be
more than one component to this set. Now recall (1.3.6), which described the
Euler characteristic of a set, to see that, for large u, with high probability,

ϕ(Au(Z, T )) =

{
1 if Au(Z, T ) 6= ∅
0 otherwise.

6 Of course, forming the Z field in the way we have described again only ensures
that the univariate marginals of the field are Gaussian, and does not say any-
thing about general finite-dimensional marginals. Thus we are committing the
unforgivable crime of ignoring the warning that we gave in the box of page 10.
However, we shall test this part of the assumption en passant, in much the same
way as we did for the CfA galaxy data.
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Since the expectation of a 0-1 random variable is the probability that it takes
the value 1, it follows immediately from this and (1.5.11) that

P
{

sup
t∈T

Z(t) ≥ u
}
' E {ϕ(Au(Z, T ))} , (1.5.12)

where by “a(u) ' b(u)” we mean that the a and b are, asymptotically, of the
same order of magnitude as u → ∞ in that their ratio converges to 1. Our
hope is that these asymptotics are good enough to allow for approximations
for ‘reasonable’ values of u as well; i.e. long before we approach infinity. That
this is in fact the case is something that we shall see later in Chapter 4, and
so for the moment it is reasonable to take it as given.

With this approximation in hand, we can easily find u0.05 if we are also
prepared to assume that the Z field is also stationary and isotropic. With these
assumptions we can replace the probability on the left hand side of (1.5.10)
by E{ϕ(Au0.05

)} and exploit the expression we have for this expectation in
(1.4.9). That is, we need to solve for u in the equation

(1.5.13)[
L3λ

3/2(u2 − 1)

(2π)2
+
L2λu

(2π)3/2
+
L1λ

1/2

2π

]
e−u

2/2 + L0(1− Φ(u)) = 0.05.

But this is easy to do. Measuring the brain gives its volume, L3, half its surface
area, L2, twice the caliper diameter, L1 and Euler characteristic, L0 as 1,064
cc, 1,077 cm2, 0.1 cm, and 2, respectively7. All that remains is to estimate the
second spectral moment λ, the details of which we again postpone to later.
The estimate is given by λ = 0.0693. Substituting into (1.5.13) and solving
for u gives u0.05 = 4.22, much higher than the threshold of 1.64 that came
from the most simple minded of tests, but not as high as the Bonferroni value
of 5.10. (See Footnote 5.)

The excursion set above this level is shown in Figure 1.5.4(h), and these
are the regions which show significant activation. One is in the visual cortex
and adjacent left extrastriate, and one is in the left frontal cortex, near the
language area of the brain.

However, we still have some work left to do. Along the way, we assumed
that the Z field was Gaussian (as a field), stationary, and isotropic. To both
test these hypotheses and to obtain more information on the geometry of
activation regions in the brain under the given task, we can use (1.4.9) and
the parameter values given above to look at the entire curve of empirical
and expected Euler characteristics of excursion sets. This is given in Figure
1.5.5, which plots the observed and expected Euler characteristics against the
threshold, as for the galaxy data (Figure 1.4.3). The main feature of interest is
the larger than expected Euler characteristic for the high thresholds (u > 3),
attributable to the two regions of activation we have already discovered.

7 The ventricles form a single large hollow in the center of the brain, visible in
Figure 1.5.4, that increases the surface area, reduces the caliper diameter, and
gives the brain an Euler characteristic of 2, as in Figure 1.3.1(f).
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Fig. 1.5.5. Plot of the observed Euler characteristic of the set of high Z regions
for the PET data and the expected Euler characteristic from (1.4.9) if there is no
activation due to the linguistic task, plotted against the threshold u. The most
interesting part is when u > 3, showing a higher Euler characteristic than expected,
confirming that some components of the excursion set are due to the linguistic task
and not the random noise. In particular, at u = 3.3 we expect an Euler characteristic
of 1, but we observe 4 (visible in Figure 1.5.4(g)). At the 5% critical value of u = 4.22,
we expect 0.05 but we observe 2 components (visible in Figure 1.5.4(h)).

A remaining question is whether or not the empirical and expected curves
in Figure 1.5.5 are sufficiently close to allow us to feel comfortable about the
assumptions of Gaussianity of the field, and its stationarity and isotropy. The
curves are certainly closer8 in this case than they were for the CfA galaxy
data in Figure 1.4.3 but we do not yet have sufficient experience to know if, in
this case, “close enough is good enough”. In fact, there are good physiological
reasons for believing that neither stationarity nor isotropy are valid, and it
will turn out that the graphs in Figure 1.5.5 actually provide evidence that
this is the case. We shall see further details, and much more, in Chapter 9.

1.6 Beyond the Euler Characteristic

Throughout this chapter we have concentrated on two things: excursion sets
and Euler characteristics.

It is clear that excursion sets are natural objects to study and that they
are going to have many applications in a wide variety of scenarios. However,
at least for a non-geometer, it is not as clear why we have chosen the Euler
characteristic as the main quantifier of excursion set geometry.

8 This is particularly true if one smoothes the empirical curve somewhat.
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Two justifications have appeared along the way. The first is equation
(1.4.9), which gave, at least in the stationary, isotropic, three-dimensional
Gaussian scenario a very explicit formula for the expected Euler characteristic
of excursion sets. We have already promised you that this was just a foretaste
of things to come, and that in Chapter 4 we shall extend this formula consid-
erably. The parameter spaces will be very general, the random fields will no
longer necessarily be Gaussian, and neither stationarity nor isotropy will be
assumed. Nevertheless, we shall still be able to give explicit (although some-
what more complicated) expressions for the expected Euler characteristics of
excursion sets.

This is no mean feat in the theory and application of smooth random
fields, where explicit formulae are few and far between. Thus this fact in itself
justifies studying Euler characteristics .

The second reason lies in the approximation (1.5.12) between exceedence
probabilities and expected Euler characteristics. It turns out that this also
is true in wide generality, although this is much harder to prove out of the
Gaussian scenario. Since exceedence probabilities are of central importance in
a wide variety of applications, and essentially impossible to calculate directly,
the ability to approximate them via expected Euler characteristics is another
good reason to study them.

However, there are more quantifiers of geometry than just the Euler char-
acteristic, and we have already met three of them in (1.4.9), which related to
three-dimensional objects. We could rewrite (1.4.9) in the more generic form

E {L0 (Au)} = e−u
2/2

N∑
i=0

Cj(λ)Lj(A)ρj(u), (1.6.14)

with N = 3, noting that ϕ(A) ≡ L0(A), and the rest of the notation being
obvious.

Although we have only defined the Lj for j ≤ 3, for a wide class of N -
dimensional sets A there are N +1 such quantifiers, LN (A), . . . ,L0(A). It will
always be true that LN (A) is the N -dimensional Lebesgue measure (volume)
of A, LN−1(A) half the surface area of A, LN−2(A), . . . ,L1(A) will measure
the sizes of certain averaged measures of the sizes of cross-sections of various
dimensions, and that L0(A) will be the Euler characteristic. These quan-
tifiers appear under a variety of other names, such as Quermassintegrales,
Minkowski, Dehn and Steiner functionals, integral curvatures and intrinsic
volumes, although in many of these cases the ordering and normalisations are
different.

Given the existence of these additional quantifiers, it seems natural to also
apply them to the excursion sets of random fields, and once again to ask for the
expectations. That is, we would like to extend (1.6.14) to obtain E{Lj(Au)}.
Moreso, we would like a result without the restrictions of stationarity and
isotropy, and to go beyond the Gaussian case. That this is in fact possible
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was one of the main results of RFG, and we shall see from where they come
in Chapter 4, and then later how to use them.

Firstly, however, we need to learn a little random field theory and a little
geometry. This will make up the content of the next two chapters.





Part I

The Underlying Theory





2

Random Fields

2.1 Stochastic Processes and Random Fields

As you read in the Preface, for us a random field is simply a stochastic pro-
cess, taking values in a Euclidean space, and defined over a parameter space of
dimensionality at least one. Actually, we shall be rather loose about exchang-
ing the terms ‘random field’ and ‘stochastic process’. In general, we shall use
‘field’ when the geometric structure of the parameter space is important to
us, and shall use ‘process’ otherwise.

We shall usually denote parameter spaces by either T or M , generally
using T when the parameter space is simple Euclidean domain, such as a cube,
and M when refering to manifolds, or surfaces. Elements of both T and M
will be denoted by t, in a notation harking back to the early days of stochastic
processes when the parameter was always one-dimensional ‘time’.

Of course, we have yet to define what a stochastic process is. To do this
properly, we should really talk about notions such as probability spaces, mea-
surability, separability, and so forth, as we did in RFG. However, we shall send
the purist to RFG to read about such things, and here take a simpler route.

Definition 2.1.1. Given a parameter space T , a stochastic process f over T
is a collection of random variables

{f(t) : t ∈ T} .

If T is a set of dimension N , and the random variables f(t) are all vector
valued of dimension d, then we call the vector valued random field f a (N, d)
random field.

Note that while in what follows we shall adopt the standard convention of
denoting random variables by upper case Latin characters, we shall use lower
case to denote random processes. The reasons for this will become clear later,
since we shall need objects such as X(t) to denote geometric objects.
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Examples of random fields abound, and we have already seen a few in
Chapter 1, but perhaps the easiest to visualise is given by the ocean surface.
In fact, this one example yields many, which together give a good introduction
to many of the basic concepts of random field theory.

The height of an ocean surface above some nominal mean plane is, ob-
viously, a function of both time and space, and so we acknowledge this by
representing it as

f(t, x), t ∈ [0,∞) ≡ R+, x ∈ R2.

It is clear that the dependencies of f on the two parameters t and x are quite
different, so, for the moment, let us fix a time t and consider only the ocean
surface at this time, which we denote by f(x).

The behavior of f(x) as a function of x, however, depends very much on
where the ocean is being observed. For example, at a sea shore we see mainly
waves, and so f has the structure of a cosine wave (cf. Figure 2.4.1) with local
amplitudes and wavelengths that have been perturbed in a random fashion.
However, despite additional random perturbations, these waves generally have
a very well defined direction.

The same would not be true if we were to observe an ocean at its center,
on a day with little wind. While we would still see waves, their directions
would not be so well defined, and in fact would change randomly with time.
This lack of preferred direction is called isotropy, a concept that we shall meet
more formally in Section 2.4.7.

While waves at the sea shore do not exhibit this behavior, it is true that if
they are neither very close nor very far from the shoreline, waves at any two
positions behave much the same, in that the random perturbations to local
amplitude and wavelength are stochastically similar, and the same dominant
direction is preserved. This property is known as stationarity, and we shall
look at it in more detail in Section 2.4.

Adding time back into the picture, you may now want to think about
whether or not ocean surfaces are ever going to be stationary or isotropic in a
joint space-time parameter space. (Answers will be given in Section ?????.) It
is clear, however, that the different axes in this three-dimensional parameter
space no longer play interchangeable roles, as, for example, the two compo-
nents of space do for an ocean near its center, for a fixed time on a windless
day.

The ocean surface also provides some very natural examples of vector
valued random fields. Over half a century ago, Michael Longuet-Higgins, in a
series of works that gave birth to the study of the stochastic properties of sea
surfaces (e.g. [59, 60]) studied the (2, 2) gradient random field

∇f (x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)
,

with the aim of understanding the ‘specular points’ of random waves, those
points x at which the two components of ∇f(x) take given values. For exam-
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ple, depending on where one is standing on the sea shore, on where the sun is,
and what the particular values of ∇f are, these might be the points at which
the sea surface reflects the sun into one’s eyes.

We shall meet many additional examples as we progress through this book,
but the sea surface is probably the easiest and canonical example on which to
try out most new ideas.

Before leaving this introductory section, there is one rather important,
theoretical point that needs to be made. While Definition 2.1.1 may effec-
tively define stochastic processes/random fields, it does not really tell us how
to differentiate between them. A celebrated theorem of Kolmogorov, known
as his Consistency or Existence Theorem, says that the distributional proper-
ties of a (N, d) random field over T are determined by its finite-dimensional
distributions1. These are the distributions

P {f(t1) ∈ B1, . . . , f(tn) ∈ Bn} , (2.1.1)

for all n ≥ 1 and all collections {tj}1≤j≤n and Borel {Bj}1≤j≤n with tj ∈ T
and Bj ∈ Rd. If f is a process which possesses joint probability densities, then
the probabilities in (2.1.1) can be expressed, in a self-explanatory notation,
as ∫

B1

. . .

∫
Bn

pt1,...,tn(x1, . . . , xn) dx1 . . . dxn, (2.1.2)

and so Kolmogorov’s theorem reduces to demanding that we know these den-
sities.

2.2 Gaussian and Gaussian Related Random Fields

At the core of this book will be Gaussian and Gaussian-related random fields,
and so it is appropriate that we define them before all others2. At the same
time, we shall take the opportunity to collect a number of basic results about
univariate and multivariate Gaussian random variables. We imagine that most
readers will be familiar with these, and so can skip the next subsection on first
reading, returning to it later for notational conventions.

2.2.1 Gaussian Variables

A real-valued random variable X is said to be Gaussian (or normally dis-
tributed) if it has the density function

1 Of course, Kolmogorov’s theorem only holds under certain regularity conditions.
However, since these can be found in any mathematically rigorous textbook on
stochastic processes, we shall let you search for them there.

2 In fact, we already did this informally in Section 1.2, but now the time has come
to do it properly.
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ϕ(x)
∆
=

1√
2πσ

e−(x−m)2/2σ2

, x ∈ R,

for some m ∈ R and σ > 0. It is elementary calculus that the mean of X is m
and the variance σ2, and that the characteristic function is given by

φ(θ) = E
{
eiθX

}
= eiθm−σ

2θ2/2.

We abbreviate this by writing X ∼ N(m,σ2). The case m = 0, σ2 = 1 is
rather special and in this situation we say that X has a standard normal
distribution. In general, if a random variable or process has zero mean we call
it centered.

Since the indefinite integral of ϕ is not a simple function, we also need
notation (Φ) for the distribution function and (Ψ) for the tail probability
function of a standard normal variable, so that

Φ(x)
∆
= 1− Ψ(x)

∆
=

1√
2π

∫ x

−∞
e−u

2/2 du. (2.2.1)

While Φ and Ψ may not be explicit, there are simple, and rather important,
bounds which hold for every x > 0 and become sharp very quickly as x grows.
In particular, in terms of Ψ , we have(

1

x
− 1

x3

)
ϕ(x) < Ψ(x) <

1

x
ϕ(x). (2.2.2)

(See Exercise 2.8.1.)
An Rd-valued random variable X = (X1, . . . , Xd) is said to be multivariate

Gaussian if, for every α = (α1, . . . , αd) ∈ Rd, the real valued variable 〈α,X〉 =∑d
i=1 αiXi is Gaussian3. In this case there exists a mean vector m ∈ Rd with

mj = E{Xj} and a non-negative definite4 d × d covariance matrix C, with
elements cij = E{(Xi −mi)(Xj −mj)}, such that the probability density of
X is given by

ϕ(x) =
1

(2π)d/2|C|1/2
e−

1
2 (x−m)C−1(x−m)′ , (2.2.3)

where |C| = detC is the determinant5 of C. Consistently with the one-
dimensional case, we write this as X ∼ N(m,C), or X ∼ Nd(m,C) if we
need to emphasise the dimension.

3 An important comment on notation: Throughout the book, vectors are taken to
be row vectors and a prime indicates transposition. The inner product between x
and y in Rd is usually denoted by 〈x, y〉, (x, y) or, occasionally, by x · y and even
xy when there is no chance of confusion.

4 Recall that a d × d matrix C is called non-negative definite, or positive semi-
definite, (positive definite) if xCx′ ≥ 0 (> 0) for all x ∈ Rd. A function C :
T ×T → R is called non-negative (positive) definite if the matrices (C(ti, tj))

n
i,j=1

are non-negative (positive) definite for all 1 ≤ n <∞ and all (t1, . . . , tn) ∈ Tn.
5 Yet another important comment on (this time misleading and inconsistent) no-

tation: At various places we shall use the notation | · | to denote any of ‘absolute
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In view of (2.2.3) we have that Gaussian distributions are completely deter-
mined by their first and second order moments and that uncorrelated Gaussian
variables are independent. Both of these facts will be of crucial importance
later on.

While the definitions are fresh, note for later use that it is relatively
straightforward to check from (2.2.3) that the characteristic function of a
multivariate Gaussian X is given by

φ(θ) = E{ei〈θ,X〉} = ei〈θ,m〉−
1
2 θCθ

′
, (2.2.4)

where θ ∈ Rd.
An immediate consequence of either (2.2.3) or (2.2.4) is that if A is any

d× d matrix and X ∼ Nd(m,C), then

XA ∼ N(mA, A′CA). (2.2.5)

A judicious choice of A (see Exercise 2.8.2) then allows us to compute
conditional distributions as well. If n < d make the partitions

X =
(
X1, X2

)
= ((X1, . . . , Xn), (Xn+1, . . . Xd)) ,

m =
(
m1,m2

)
= ((m1, . . . ,mn), (mn+1, . . .md)),

C =

(
C11 C12

C21 C22

)
,

where C11 is an n×n matrix. Then each Xi is N(mi, Cii) and the conditional
distribution of Xi given Xj is also Gaussian, with mean vector

mi|j = mi + (Xj −mj)C−1
jj Cji (2.2.6)

and covariance matrix

Ci|j = Cii − CijC−1
jj Cji. (2.2.7)

2.2.2 Gaussian Fields

We can now define a real valued Gaussian (random) field or Gaussian (ran-
dom) process to be a random field f on a parameter set T for which the (finite
dimensional) distributions (2.1.1) of (ft1 , . . . , ftn) are multivariate Gaussian
for each 1 ≤ n <∞ and each (t1, . . . , tn) ∈ Tn.

value’, ‘Euclidean norm’, ‘determinant’ or ‘Lebesgue measure’, depending on the
argument, in a natural fashion. The notation ‖ · ‖ is used only for either the norm
of complex numbers or for special norms, when it usually appears with a sub-
script. This is unless it is used, as in Section 2.6 in particular, as ‖f‖ to denote
the supremum of a function f , which is not a norm at all. Despite this multitude
of uses of a simple symbol, its meaning should always be clear from the context.
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Since multivariate Gaussian distributions are determined by means and
covariances, it is immediate that Gaussian random fields are determined6 by
their mean and covariance functions7, defined by

m(t) = E{f(t)} (2.2.8)

and

C(s, t) = E {(f(s)−m(s)) (f(t)−m(t))} . (2.2.9)

In fact, this is one of the main reasons, beyond ubiquitous but not always
justified appeals to the central limit theorem, that Gaussian processes are
such popular and useful choices for models for random processes on general
spaces.

Multivariate Gaussian fields taking values in Rd are fields for which 〈α, ft〉
is a real valued Gaussian field for every α ∈ Rd. In this case, m(t) takes values
in Rd and the covariance function of (2.2.9) is replaced by a function whose
values are non-negative definite, d× d, matrices. In particular,

C(s, t) = E {(f(s)−m(s))′ (f(t)−m(t))} , (2.2.10)

so that the individual elements of C are given by

Cij(s, t) = E {(fi(s)−mi(s)) (fj(t)−mj(t))} .

As in the real valued case, for Gaussian f the vector function m and the
matrix function C determine all of its statistical properties.

2.2.3 Gaussian Related Fields

As convenient as Gaussian random fields may be for the mathematician, in
that the form of the multivariate Gaussian distribution makes many things
computable in the Gaussian case that are uncomputable otherwise, it would
be a poor modeller or statistician who would work in a Gaussian scenario
only.

6 In fact, one can also go in the other direction as well. It is a consequence of this
structure of Gaussian densities and the Kolmogorov consistency theorem that,
given any set T , a function m : T → R, and a non-negative definite function
C : T × T → R (see the following footnote) there exists a Gaussian process on T
with mean function m and covariance function C.

7 Covariance functions are always positive semi-definite; cf. Exercise 2.8.4. In the
vector valued case there are two types of semi-definiteness to worry about. On
the one hand, for each fixed pair s, t, the matrix C(s, t) is positive semi-definite.
On the other hand, for each pair i, j, the function Cij is positive semi-definite, as
a function, on T × T .
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Leaving the Gaussian scenario is, however, not all that easy to do, and so
we shall leave it in a fashion that, while somewhat limited, turns out to be
broad enough to cover many, if not most, statistical applications. To be more
precise, we shall call a random field f : T → Rd a Gaussian related field if we
can find a vector valued Gaussian random field,

g(t) = (g1(t), . . . , gk(t)) : T → Rk,

and a function

F : Rk → Rd,

such that f has the same finite dimensional distributions as F (g). That is,

f(t)
L
= F (g(t)) = F (g1(t), . . . , gk(t)) , (2.2.11)

where
L
= indicates equivalence in distribution.

When k = 1, or, in general k = d and F is invertible, then the correspond-
ing Gaussian related process is not much harder to study than the original
Gaussian one. After all, what happens at the level u for f is precisely what
happens at the uniquely defined level F−1(u) for g. However, in other cases,
f can provide a process that is qualitatively different to g.

For example, suppose that the gj are centred and of unit variance, and
consider the following three choices for F , where in the third we set k = n+m.

k∑
1

x2
i ,

x1

√
k − 1

(
∑k

2 x
2
i )

1/2
,

m
∑n

1 x
2
i

n
∑n+m
n+1 x2

i

. (2.2.12)

The corresponding random fields are known as χ2 fields with k degrees of
freedom, the T field with k − 1 degrees of freedom, and the F field with n
and m degrees of freedom. All of these will appear as important models in the
applications we shall be looking at in Part IV of the book, and so we shall
not attempt to motivate their usefulness now beyond stating that they are as
fundamental to the statistical applications of random field theory as are their
univariate distributions to standard statistical theory.

Before we leave Gaussian related processes, we want to make one comment
about some interesting geometric problems associated with them.

Recall that one of the central themes of this book will be the study and
application of the geometric properties of the excursion sets8 of f over T and
above the level u, viz.

Au(f, T ) = {t ∈ T : f(t) ≥ u}.
8 One final reminder, particularly for the physicists among our readers, that in

much of the mathematical literature, and in most of physics, excursion sets are
known as nodal domains.
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For a Gaussian related field of the form (2.2.11), these can be rewritten as

Au(f, T ) = Au(F (g),M) = {t ∈ T : (F ◦ g)(t) ≥ u} (2.2.13)

= {t ∈ T : g(t) ∈ F−1[u,∞)}
= T ∩ g−1(F−1[u,+∞)).

Thus, the excursion set of a real valued non-Gaussian f = F ◦g above a level u
is equivalent to the excursion set for a vector valued Gaussian g in F−1[u,∞).
This set will generally have an interesting (albeit deterministic) structure of
its own. For example, in the case of a χ2

k field it will be the complement,
in Rk, of a ball of radius

√
u and centered at the origin. Thus, regardless

of the simplicity of the underlying parameter space T , the moment we leave
real valued Gaussian processes and turn to their Gaussian related relatives,
geometry is going to be important to us.

We shall return to this point later in the book, once we know a little more
about random fields and about geometry.

2.3 Examples of Random Fields

Before looking at specific examples, we need to make one small digression, to
introduce the notions of stationarity and isotropy.

2.3.1 Stationary and Isotropic Fields

JT: I think the cosine process should come before stationary. We could revisit
cosine later as well.

To formally define stationarity, which we actually already met in Section
1.2 and will learn a lot more about in Section 2.4 below, recall the definitions
(2.2.8)–(2.2.10) of the mean and covariance functions of a stochastic process.
These lead to two important definitions.

Definition 2.3.1. Suppose that f is an (N, d) random field defined over all of
RN . Suppose furthermore that the mean function m(t) is constant, and that
the covariance function C(s, t) is a function of the difference t− s only. Then
we say that f is homogeneous or stationary.

If it is also true that C(s, t) is a function of the Euclidean distance |t− s|
only, then we say that f is also isotropic9.

Two comments are called for following on from this definition. The first
is that, in fact, we have only really defined what is usually called weak or

9 Isotropy can also be defined in the non-stationary case, the defining property then
being that the distribution of f is invariant under rotation. Under stationarity,
this is equivalent to the current definition. We shall treat isotropy only in the
scenario of stationarity.



2.3 Examples of Random Fields 31

second order stationarity , which depends only on first and second moments.
A stronger form of stationarity is that of the finite dimensional distributions,
that requires that joint distributions of the form

{f (t1 + τ) , . . . , f (tn + τ)} (2.3.1)

be independent of τ , for all n ≥ 1 and all tj ∈ RN . It is obvious that the two
notions coincide when f is Gaussian.

The second is more an issue of notation than a comment. When f is
stationary, we shall generally abuse notation and write

C(s, t) = C(s− t). (2.3.2)

While the first C here is defined on T × T , the second is defined on T only.
In the isotropic case, we shall go even further, and write

C(s, t) = C(|s− t|),

where the second C is defined on R+.

2.3.2 Random Polynomials

What appear at first sight to be the simplest of stochastic processes are the
random polynomials on R, functions of the form

f(t) =

n∑
k=0

ξkt
k,

for some finite n, where the random coefficients ξk are generally taken to be
either uncorrelated or independent. The random field version, on RN , is given
by

f(t) =

n∑
k=0

∑
j1+···+jN=k

ξj1...jN t
j1
1 · · · t

jN
N ,

again with uncorrelated or independent coefficients.
Perhaps surprisingly (since polynomials really are the simplest of all non-

random functions) random polynomials are actually very hard to study. For
a start, they are clearly non-stationary, not even having constant variance.
Nevertheless, despite this, or perhaps because of it, they are at the centre of
considerable research activity at the moment, interest concentrating on the
number of points in the zero set {t : f(t) = 0} in the one-dimensional case,
and the structure of this set in higher dimensions.

We shall take a look at this zero set using the tools we have developed,
much later, in Section 12.1.
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2.3.3 The Cosine Process

If random polynomials is where the theory of random processes might have
begun, the true development of the theory began with what is perhaps the
grandfather of all stationary processes, the so-called cosine random process on
R. It is defined as

f(t)
∆
= ξ cosλt+ ξ′ sinλt, (2.3.3)

where ξ and ξ′ are uncorrelated, equidistributed, random variables and λ is a
positive constant.

The cosine process provides the simplest version of the the wave example
that we met in Section 2.1, and we shall soon see that it also provides the
elementary building block for general stationary processes.

It is elementary trigonometry to see that the cosine process can also be
written as

f(t) = R cos(λt− θ), (2.3.4)

where R2 = ξ2 + (ξ′)2 ≥ 0 and θ = arctan(ξ′/ξ) ∈ (−π, π], from whence the
name ‘cosine process’. It is now obvious that the cosine process is no more
than a cosine function with fixed wavelength 2π/λ, but random amplitude
and phase. Furthermore, supposing for convenience that E{ξ} = 0, we have
that its covariance function is given by

C(s, t) = E{f(s)f(t)}
= E{(ξ cosλs+ ξ′ sinλs)(ξ cosλt+ ξ′ sinλt)}
= E{ξ2} cos(λ(t− s)),

on using the fact that ξ and ξ′ are uncorrelated and equidistributed. Conse-
quently, regardless of the distribution of ξ, the cosine process is stationary. In
fact, as we shall soon see, it is the archetype of all stationary processes, all of
which can be represented as a sum of cosine processes.

One of the nice aspects of the cosine process is that many things that are
either difficult or impossible to compute for more general processes can be
computed exactly, and from first principles, once some assumptions are made
on the distribution of ξ. We shall therefore now assume that ξ and ξ′ are
independent, Gaussian variables, with zero mean and common variance σ2.

Now consider, for u > 0, the exceedence probability

P
{

sup
0≤t≤T

f(t) ≥ u
}
, (2.3.5)

which you know from reading the Preface is one of the important quantities
of this book.
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Under the Gaussian assumption, R2 has an exponential distribution with
mean 2σ2, θ has a uniform distribution on (−π, π], and R and θ are indepen-
dent. We can use this information to compute some exceedence probabilities
directly, and start by defining

Nu = Nu(f, T ) = #{t ∈ [0, T ] : f(t) = u and df(t)/d(t) > 0}.

Then Nu is known as the number of upcrossings by f of the level u in time
[0, T ], and the points being counted as upcrossings. Upcrossings and their
generalizations will play a major rôle throughout this book.

It is trivial to see that the exceedence probability that we are after can
now be written as

P
{

sup
0≤t≤T

f(t) ≥ u
}

= P {f(0) ≥ u}+ P {f(0) < u,Nu ≥ 1} (2.3.6)

= Ψ
(u
σ

)
+ P {f(0) < u,Nu ≥ 1} .

Obtaining an explicit expression for this process depends on the value of T .
Consider first the case T ≤ π/λ, in which case the event {f(0) ≥ u,Nu ≥ 1}
is empty, implying that

P {f(0) < u,Nu ≥ 1} = P {Nu ≥ 1} .

Again using the fact that T ≤ π/λ, note that Nu is either 0 or 1. In order
that it be 1, two independent events must occur. Firstly, we must have R > u,
with probability e−u

2/2σ2

. Secondly (draw a picture) θ must fall in an interval
of length λT , so that the final result is

P
{

sup
0≤t≤T

f(t) ≥ u
}

= Ψ
(u
σ

)
+
λT

2π
e−u

2/2σ2

, (2.3.7)

and the probability density of the supremum is given by

1

σ
ϕ
(u
σ

)
+
λTu

2πσ2
e−u

2/2σ2

. (2.3.8)

For completeness, note that if T ≥ 2π/λ, then the process will achieve
the supremum R at some point 0 ≤ t ≤ T , and so the exceedence probability
(2.3.5) is P{R > u} = e−u

2/2σ2

. For π/λ < T < 2π/λ, the situation is more
complicated.

The above computation was elementary, in the sense that it involved only
two random variables and basic trigonometry. Thus one is tempted to believe
that it must be easy to extend to many other processes. In fact, this is not
the case, and the cosine process and field (see below) are the only differen-
tiable, stationary, Gaussian processes for which the exceedence probabilities
are explicitly known.
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However, before we leave it, we can use it to nevertheless motivate a more
general approach. Note first that since, as noted above, Nu is either 0 or 1
when T < π/λ, we can rewrite (2.3.6) as

P
{

sup
0≤t≤T

f(t) ≥ u
}

= Ψ
(u
σ

)
+ E{Nu}. (2.3.9)

Thus, rather than arguing as above, we could concentrate on finding an ex-
pression for the mean number of upcrossings.

More importantly, note that for any T , and, indeed, for any differentiable
random process, the argument leading to (2.3.6) and the fact that P{Nu ≥
1} ≤ E{Nu} give

P
{

sup
0≤t≤T

f(t) ≥ u
}
≤ P {f(0) ≥ u}+ E{Nu}. (2.3.10)

Thus there would seem to be a close relationship between exceedence
probabilities and level crossing rates, that actually becomes exact for the
cosine process over certain intervals. In fact, since, for a one dimensional
set, its Euler characteristic is given by the number of its connected compo-
nents, the right hand sides of both (2.3.9) and (2.3.10) could be written as
E{ϕ(Au(f, T ))}, where ϕ is the Euler characteristic and Au(f, T ) the excur-
sion set {t ∈ [0, T ] : f(t) ≥ u}.

We shall investigate and exploit this, in detail, in Chapter 5.

2.3.4 The Cosine Field

The cosine field is a straightforward extension to RN of the cosine process,
and has the respresentation

f(t) = f(t1, . . . , tN )
∆
=

1√
N

N∑
k=1

fk(λktk), (2.3.11)

where each fk is the process on R given by

fk(t) = ξk cos t+ ξ′k sin t.

The λk are fixed, and the ξk and ξ′k are taken to be identically distributed
and uncorrelated.

Again, it is a simple excercise to check that the cosine field is both station-
ary and isotropic (Exercise 2.8.5) JT: Not sure it’s isotropic unless λk’s are
identical. but is a little harder to compute its exceedence probabilities. To see
what can be done, we restrict attention to the cosine process on a rectangle
of the form T =

∏N
k=1[0, Tk]. Then, given the structure of the cosine field as

a sum, it is immediate that
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sup
t∈T

f(t) =
1√
N

N∑
k=1

sup
0≤tk≤Tk

fk(t).

If we assume that the ξk and ξ′k are all independent N(0, σ2), then the
suprema of the individual fk are also independent. Further assuming that
each Tk ∈ (0, π/λk], (2.3.7) and (2.3.8) give their individual distributions.
The distribution of the supremum of the cosine field is then the convolution
of these. JT: Not sure this is quite correct as the cosine process distribution
is only exact for u > 0. In Exercise 2.8.6 you are asked to actually do the
computation, to find that, if pN (u) is the density function of the supremum,
ϕ the usual standard Gaussian density and ϕ(k) its k-derivative, then there
are simple constants, Cnk, depending only on n and k, such that

(2.3.12)

pN (u) = ϕ
(u
σ

)
+

N∑
k=1

(−1)kCnkϕ
(k)
(u
σ

) ∑
j1...jk

k∏
i=1

λjiTji
σ

.

The inner sum here is over the
(
N
k

)
subsets of size k of {1, . . . , N}.

This is actually the archetype of a far more general result of a geometrical
nature. To see it in its easiest formulation, take σ2 = 1 and λk = λ for all k,
so that the product over the λji becomes merely λk, and consider the sums∑

j1...jk

Tj1 · · ·Tjk .

When k = N , this gives the volume of the parameter space. When k = N −1,
it gives its surface area. In fact, if you recall the Lk of Chapter 1, then this is
precisely what these sums are, and we now define10 the Lk of N -dimensional
rectangles to be

Lk
( N∏

1

[0, Tj ]
)

=
∑
j1...jk

Tj1 · · ·Tjk , (2.3.13)

where the sum is over the
(
N
k

)
distinct choices of k indices between 1 and N .

Thus (2.3.12) becomes11

pN (u) =

N∑
k=0

(−1)kC ′nk ϕ
(k)(u)λkLj(T ). (2.3.15)

10 Precisely why this is a useful definition will be made clear in Chapter 3. See also
Exercise 3.6.4.

11 Actually, (2.3.15) still makes sense if the λj are not all identical and σ2 6= 1 but
we define the Lk by

Lk
( N∏

1

[0, Tj ]
)

=
∑
j1...jk

k∏
i=1

λjiTji
σ

, (2.3.14)
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Integrating over u, and applying some asymptotics12, one finds that

P
{

sup
t∈T

f(t) ≥ u
}

(2.3.16)

= Ψ(u) + e−u
2/2

N∑
k=1

C ′′nkHk−1(u)λkLj(T ) + o
(
e−(1+η)u2/2

)
,

for some η > 0, where the Hk are Hermite polynomials, which we shall have
cause to meet many times in the future. (cf. (3.3.20) for a definition.)

It turns out that the cosine process and field are the only smooth (non-
degenerate) Gaussian processes for which it is possible to actually compute
the distribution of the supremum13. This means that in general we shall have
to adopt other approaches, as we have mentioned before. However, the fact
that there is at least one class of Gaussian fields for which the distribution
of the supremum is explicitly known is extremely useful. We shall soon see
that Slepian’s Inequality (Theorem 2.6.3) will enable us to use the known
exceedence probabilities of the cosine process and field to bound those of
other Gaussian processes and fields as well.

2.3.5 Orthogonal Expansions

The idea of summing simple random fields to get more complicated ones,
intrinsic to the definition of the cosine field, can be carried much further.

For example, suppose we have a collection {ϕn} of real valued14 functions
on our parameter space T , and a collection of uncorrelated random variables
{ξn} with, for convenience, mean zero and variances σ2

n. From these, we can
form the sum

which is based on a change of scale in (2.3.13). This is an example of what we
shall call the ‘inducing of a Riemannian metric on RN via the random field f ’,
something that we shall meet up with in some detail in Chapter 4 and that will
be an important tool in later parts of the book.

12 The asymptotics, while not being intrinsically difficult, are also not easy, and this
is left to you as an exercise. You can find the details in Section 2.5 of Piterbarg’s
important monograph [75], which is where, to the best of our knowledge, (2.3.16)
appeared for the first time.

13 There are five non-smooth, essentially Markov, stationary Gaussian processes on
R for which this is possible, but no other random fields. See Footnote 2 in Chapter
4 of RFG for a list.

14 We are treating only the real valued case here for convenience. The extension to
vector valued random fields in all that follows is straightforward. One needs only
require that the ϕn map T to Rd and that the random variables ξn are replaced
by random matrices ξn which are either independent or uncorrelated in the sense
that E{ξ′nξm} is the zero matrix if n 6= m. The covariance function (2.3.18) is
then replaced by the covariance matrix,

∑∞
n=1 ϕ

′
n(s)E{ξ′nξn}ϕn(t), etc.



2.3 Examples of Random Fields 37

f(t) =

∞∑
n=1

ξn ϕn(t), (2.3.17)

which will have covariance function

E{f(s)f(t)} =

∞∑
n=1

σ2
n ϕn(s)ϕn(t), (2.3.18)

and variance function

E{f2(t)} =

∞∑
n=1

σ2
n ϕ

2
n(t), (2.3.19)

as long as everything that needs to converge does in fact do so.
Random fields with the above structure are attractive to theoreticians

and practitioners alike. For the theoretician, the mathematical structure of
a summation of uncorrelated or independent variables is easy to handle. For
the practitioner, this structure is even more useful. For a start, it generally
matters little to a practitioner if the summations are finite or infinite. After
all, even if they are infinite, the fact that they converge must mean that all
but a finite number of terms are very small, or at least too small to see on
a computer screen, so that they can be taken to be finite. Doing so means
that one needs only a finite number of deterministic functions, and a finite
number of random variables, to understand an entire random field. This, of
course, has significant implications for simulation, which we shall look at in
some detail in Chapter 7.

For the moment, however, we shall concentrate on the more theoretical
aspects of fields defined by such sums. A particularly interesting question is
how general they are.

Clearly, if the random coefficients in (2.3.17) are Gaussian, then so is
the sum. However, there is also a converse, which states that every centered
Gaussian process with a continuous covariance function has an expansion15 of
the form (2.3.17), in which the the ξn are i.i.d. N(0, 1), and the ϕn are certain
functions on T determined by the covariance function C of f , and possess
certain orthogonality properties16.

To see how this works, we consider the case in which the parameter set
T is a compact domain in RN . The corresponding expansion of f , given by
(2.3.22) below, is then known as the Karhunen-Loève expansion. To set up the

15 In general, the convergence in the expansion (2.3.17) is in L2(P) for each t ∈ T ,
but, if f is Gaussian and continuous with probability one, then the convergence is
uniform over T , and with probability one. For more details – and there are many
– see Chapter 3 of RFG for an introduction to a rich and beautiful theory.

16 Orthogonality is in the so-called reproducing kernel Hilbert space (RKHS) of f . In
essence, the RKHS is made up of functions that have about the same smoothness
properties that C(s, t) has, as a function in t for fixed s, or vice versa. To construct
it, start with
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expansion, suppose that f has covariance function C and define an operator
C, taking the space of square integrable functions on T to itself, by

(Cψ)(t) =

∫
T

C(s, t)ψ(s) ds.

Suppose that λ1 ≥ λ2 ≥ . . . , and ψ1, ψ2, . . . , are, respectively, the (ordered)
eigenvalues and normalised eigenfunctions of the operator. That is, the λn
and ψn solve the integral equation∫

T

C(s, t)ψ(s) ds = λψ(t), (2.3.20)

with the normalisation∫
T

ψn(t)ψm(t) dt =

{
1 n = m,

0 n 6= m.

These eigenfunctions lead to a natural expansion of C, known as Mercer’s
Theorem, which states that

C(s, t) =

∞∑
n=1

λnψn(s)ψn(t) , (2.3.21)

where the series converges absolutely and uniformly on T × T .
The Karhunen-Loève expansion of f is then obtained by setting ϕn =

λ
1
2
nψn in the expansion (2.3.17), so that

ft =

∞∑
n=1

λ
1
2
n ξn ψn(t), (2.3.22)

where the ξn are i.i.d. N(0, 1). For an example of how this approach works for
Brownian motion on the line, see Exercise 2.8.11.

S =
{
u : T → R : u(·) =

n∑
i=1

aiC(si, ·), ai real, si ∈ T, n ≥ 1
}
,

and define an inner product on S by setting

(u, v)H =
( n∑
i=1

aiC(si, ·),
m∑
j=1

bjC(tj , ·)
)
H

=
n∑
i=1

m∑
j=1

aibjC(si, tj).

Note that this inner product has the unusual property that

(u,C(t, ·))H =
( n∑
i=1

aiC(si, ·), C(t, ·)
)
H

=

n∑
i=1

aiC(si, t) = u(t).

This is called the reproducing kernel property, and the closure of S under the
corresponding norm is called the RKHS of f or of C.
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As simple as this approach might seem, it is generally limited by the fact
that it is usually not easy to analytically solve the integral equation (2.3.20),
even for parameter sets as simple as the unit interval. Moreover, the handful
of examples for which it can be solved involve non-differentiable processes,
well outside our range of interests. Nevertheless, it is nice to know that such
expansions exist, and, as we shall soon see, they have a wealth of applications.

In particular, the same approach will work if T is replaced by a finite set
of points17. Then the integral in (2.3.20) becomes a finite sum, as does the
expansion (2.3.22), and eigenfunctions become eigenvectors. Thus, even if no
analytic solution is possible, we now have an eigenvector problem that will be
easy to solve numerically, as long as the number of points is not too large.

We shall return to this in Chapter 7, when we discuss simulations. However,
the important thing to note, already at this stage, is that, whether we are
in the finite or infinite scenario, in order to simulate f via the Karhunen-
Loève expansion one needs only once to solve a deterministic eigenfunction or
eigenvector problem, and then simulate nothing more difficult than a set of
i.i.d. standard normals.

2.4 Stationarity and Isotropy

Although we have already met both stationarity and isotropy more than once,
the time has now come to look at both of them in some detail. Understanding
the structure of random fields with these properties is imperative for working
in the subject at all, and understanding the analytic properties of stationary
and isotropic covariance functions will be crucial for carrying out many of the
calculations we shall need to make later.

The most important classic results of this chapter are the spectral distribu-
tion and spectral representation theorems for RN which we shall meet soon in
Section 2.4.2. However, the most important results for us will be some of the
consequences of these theorems for relationships between spectral moments,
and these are concentrated in Section 2.4.3. This is the one part of this section
that you will almost definitely need to come back to, even if you have decided
that you are familiar enough with stationarity to skip the remainder for the
moment.

2.4.1 Basic Definitions

Although our primary interest lies in the study of real valued random fields it
is mathematically more convenient to discuss stationarity in the framework of

17 Think of a continuous parameter space being replaced by a grid of points, and
the smooth random field being replaced by the values of the original field on this
grid. This kind of discretization is, of course, what one always has on a computer.
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complex valued processes18. Hence, unless otherwise stated, we shall assume
throughout this section that f(t) = (fR(t)+ifI(t)) takes values in the complex
plane C and that

E
{
‖f(t)‖2

}
= E

{
f2
R(t) + f2

I (t)
}
<∞.

(Both fR and fI are, obviously, real valued.) The parameter space of f will
be RN although it could be any space with a group structure without much
change in notation. As for a definition of normality in the complex scenario,
we first define a complex random variable to be Gaussian if the vector of its
two components is bivariate Gaussian19. A complex process f is Gaussian
if
∑
i αifti is a complex Gaussian variable for all sequences {ti} in T and

complex {αi}.
Since ft ∈ C, it follows that the mean function m(t) = E{f(t)} is also com-

plex valued, as is the covariance function, which we redefine for the complex
case as

C(s, t)
∆
= E

{
[f(s)−m(s)] [f(t)−m(t)]

}
, (2.4.1)

with the bar denoting complex conjugation.
Two basic properties of covariance functions follow immediately from

(2.4.1).

(i) C(s, t) = C(t, s), which becomes the simple symmetry C(s, t) = C(t, s) if
f (and so C) is real valued.

(ii) For any k ≥ 1, t1, . . . , tk ∈ T and z1, . . . , zk ∈ C, the Hermitian form∑k
i=1

∑k
j=1 C(ti, tj)zizj is always real and non-negative. We summarise

this, as before, by saying that C is non-negative definite.

Stationarity and homogeneity of f are defined as in the real valued case,
whether they be strict or second order, the latter requiring that the mean is
constant and C(s, t) is a function of the difference s− t only.

The Gaussian situation is, however, a little different in the complex case.
Whereas weakly stationary, real valued, Gaussian processes are also strongly
stationary, in the complex case we also require that20

18 The main reason for this is that it is so much more convenient to multiply complex
exponentials than it is to multiply sines and cosines. No damage is done, since in
dealing with real valued processes one just restricts to complex processes whose
imaginary parts have mean and variance both zero.

19 It therefore follows that a complex Gaussian variable X = XR + iXI is defined
by five parameters: E{XI}, E{XR}, E{X2

I }, E{X2
R} and E{XIXR}.

20 The reason for the additional condition in the complex case lies in the structure
of the multivariate complex normal distribution. Following on from Footnote 19,
in order to move from weak stationarity to strong stationarity we need that
all covariances, including those between real and imaginary parts and among
themselves. Knowing both C and C′ is enough to do this, but knowing only one
is not enough.
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C ′(s, t) = E{[f(s)−m(s)] [f(t)−m(t)]}

is also a function only of s − t. If f is real valued, C ≡ C ′ and so we are
back to the usual situation that strong and weak stationarity are equivalent
for Gaussian processes.

Isotropy has the same definition in the complex case as in the real one.

2.4.2 Spectral Distribution Theorem

We shall now investigate some of the basic properties of covariance functions,
and what information can be easily gleaned from them, starting with an im-
portant characterization result.

The result, which dates back to Bochner [21], in the setting of (non-
stochastic) Fourier analysis, is classical and a proof can be found in almost
any text on Fourier analysis.

Theorem 2.4.1 (spectral distribution theorem). A continuous function
C : RN → C is non-negative definite (i.e. a covariance function) if and only
if there exists a finite measure ν on the Borel σ-field BN of RN such that

C(t) =

∫
RN

ei〈t,λ〉 ν(dλ), (2.4.2)

for all t ∈ RN .

The ”if” part of the theorem is easy to prove (see Excercise 2.8.7).
With randomness in mind, we write σ2 = C(0) = ν(RN ). The measure ν

is called the spectral measure (for C) and the function F : RN → [0, σ2] given
by

F (λ)
∆
= ν

(
N∏
i=1

(−∞, λi]

)
, λ = (λ1, . . . , λN ) ∈ RN , (2.4.3)

is called the spectral distribution function21. When F is absolutely continuous
the corresponding density is called the spectral density. .

Note that if C is the covariance of a real valued random field, then C
must also be real valued. In this case, it follows that ν must be a symmetric
measure, in the sense that ν(A) = ν(−A) for all A ∈ BN . In terms of spectral
densities p, this implies that p(x) = p(−x) for all x ∈ RN .

Similarly, if C is isotropic then ν must be spherically symmetric, and the
spectral density must satisfy p(x) = p(xM) for all x ∈ RN and any rotation
matrix M .

It is important to note that the spectral distribution theorem is a purely
analytic result and would have nothing to do with random fields were it not

21 Of course, unless ν is a probability measure, so that σ2 = 1, F is not a distribution
function in the usual usage of the term.
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for the fact that covariance functions are non-negative definite. Understanding
of the result comes from the spectral representation theorem (Theorem 2.4.2)
for which we offer two approaches, in Section 2.4.6.

However, before we turn to this more powerful result, we shall collect some
easy but important facts that can be gleaned from covariance functions per
se.

2.4.3 Spectral Moments and Derivatives of Random Fields

We start by taking a closer look at spectral measures and, in particular, their
moments. Given the the spectral representation (2.4.2) we define the spectral
moments

λi1...iN
∆
=

∫
RN

λi11 · · ·λ
iN
N ν(dλ), (2.4.4)

for all multi-indices (i1, . . . , iN ) with ij ≥ 0. Assuming that the underlying
random field, and so the covariance function, are real valued, so that, as
described above, stationarity implies that C(t) = C(−t) and ν(A) = ν(−A),
it follows that the odd ordered spectral moments, when they exist, are zero;
i.e.

λi1...iN = 0 if

N∑
j=1

ij is odd. (2.4.5)

There are two ways to understand the meaning of the spectral moments
of even order. One of these has to do with the ‘high frequency components’ of
f , and relies on understanding the spectral representation theorem of Section
2.4.6. The other, which is already in reach, is related to the mean square, or
L2, derivatives of random fields.

To define L2 derivatives, choose a point t ∈ RN and a sequence of k
‘directions’ t′1, . . . , t

′
k in RN , and write these as t′ = (t′1, . . . , t

′
k). We say that

f has a k-th order L2 partial derivative at t, in the direction t′, if the limit

Dk
L2f(t, t′)

∆
= lim
h1,...,hk→0

1∏k
i=1 hi

∆kf (t, t′, h) (2.4.6)

exists in mean square, where h = (h1, . . . , hk). Here ∆kf(t, t′, h) is the sym-
metrized difference

∆kf(t, t′, h) =
∑

s∈{0,1}k
(−1)k−

∑k
i=1 si f

(
t+

k∑
i=1

sihit
′
i

)

and the limit in (2.4.6) is interpreted sequentially, i.e. first send h1 to 0, then
h2, etc. A simple sufficient condition for L2 partial differentiability of order k
in all directions and throughout a region T ⊂ RN is that
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(2.4.7)

lim
h1,...,hk,ĥ1,...,ĥk→0

1∏k
i=1 hiĥi

E
{
∆kf (t, t′, h)∆kf

(
s, s′, ĥ

)}
exists22 for all s, t ∈ T , all directions s′, t′, and all h = (h1, . . . , hk), ĥ =

(ĥ1, . . . , ĥk), where the limits are again to be interpreted sequentially. Note
that if f is Gaussian then so are its L2 derivatives, when they exist.

By choosing t′ = (ei1 , . . . , eik), where ei is the vector with i-th element 1
and all others zero, we can talk of the mean square partial derivatives

∂k

∂ti1 . . . ∂tik
f(t)

∆
= Dk

L2f (t, (ei1 , . . . , eik))

of f of various orders.
It is then straightforward (Exercise 2.8.9) to see that the the covariance

function of such partial derivatives of a (not necessarily stationary) random
field must be given by

E
{

∂kf(s)

∂si1∂si1 . . . ∂sik

∂kf(t)

∂ti1∂ti1 . . . ∂tik

}
=

∂2kC(s, t)

∂si1∂ti1 . . . ∂sik∂tik
. (2.4.8)

The corresponding variances have a nice interpretation in terms of spectral
moments when f is stationary. For example, if f has mean square partial
derivatives of orders α + β and γ + δ for α, β, γ, δ ∈ {0, 1, 2, . . . }, then (still
Exercise 2.8.9) (2.4.2) implies

E
{
∂α+βf(t)

∂αti∂βtj

∂γ+δf(t)

∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C(t)

∣∣∣
t=0

(2.4.9)

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ),

where the i in front of the integral is obviously
√
−1. Note that although

this equation seems to have some asymmetries in the powers, these disappear
due to the fact that all odd ordered spectral moments, like all odd ordered
derivatives of C, are identically zero.

Here are some important special cases of the above, for which we adopt
the shorthand fj = ∂f/∂tj and fij = ∂2f/∂ti∂tj along with a corresponding
shorthand for the partial derivatives of C.

(i) fj has covariance function −Cjj and thus variance λ2ej = −Cjj(0), where
ej , as usual, is the vector with a 1 in the j-th position and zero elsewhere.

(ii) In view of (2.4.5), and taking α = γ = δ = 0, β = 1 in (2.4.9)

22 This is an immediate consequence of the fact that a sequence Xn of random
variables converges in L2 if, and only if, E{XnXm} converges to a constant as
n,m→∞.
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f(t) and fj(t) are uncorrelated, (2.4.10)

for all j and all t. If f is Gaussian, this is equivalent to independence. Note
that (2.4.10) does not imply that f and fj are uncorrelated as processes.
In general, for s 6= t, we will have that E{f(s)fj(t)} = −Cj(s− t) 6= 0.

(iii) Taking α = γ = δ = 1, β = 0 in (2.4.9) gives that

fi(t) and fkl(t) are uncorrelated (2.4.11)

• for all i, k, l and all t. Again, if f is Gaussian, this is equivalent to inde-
pendence.

Under the additional condition of isotropy, with its implication of spherical
symmetry for the spectral measure, the structure of the spectral moments
simplifies significantly, as do the correlations between various derivatives of f .
In particular, it follows immediately from (2.4.9) that

E {fi(t)fj(t)} = −E {f(t)fij(t)} = λ2δij (2.4.12)

where δij is the Kronecker delta and λ2 is the second spectral moment

λ2
∆
=

∫
RN

λ2
i ν(dλ),

which, because of isotropy, is independent of the value of i. Consequently, if
f is Gaussian, then the first order derivatives of f are independent of one
another, in addition to being independent of f itself.

2.4.4 Constant Variance

It will be important for us in later chapters that some of the relationships
of the previous section continue to hold under a condition much weaker than
stationarity. Of particular interest is knowing when (2.4.10) holds; i.e. when
f(t) and fj(t) are uncorrelated.

Suppose that f has constant variance, σ2 = C(t, t), throughout its domain
of definition, and that its L2 first-order derivatives all exist. In this case, from
(2.4.9), we have that

E {f(t) fj(t)} =
∂

∂tj
C(t, s)

∣∣∣
s=t

=
∂

∂sj
C(t, s)

∣∣∣
s=t

. (2.4.13)

Since constant variance implies that ∂/∂tjC(t, t) ≡ 0, this and the equiv-
alence of the above two partial derivatives implies that these must also be
identically zero. Consequently, f and its first order derivatives at any given
point are uncorrelated.

One can, of course, continue in this fashion. If first derivatives have con-
stant variance, then they, in turn, will be uncorrelated with second derivatives,
in the sense that fi will be uncorrelated with fij for all i, j. It will not nec-
essarily be true, however, that fi and fjk will be uncorrelated if i 6= j and
i 6= k.
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2.4.5 White Noise and Integration

With some easy, but extremely important, consequences of the spectral dis-
tribution theorem established, we now turn to understanding the structure of
stationary random fields in a little more depth. This structure relies on some
rather simple stochastic calculus. However, although stochastic calculus is a
subject with an enormous and difficult literature, we shall need only a very
small part of it, and even then we shall do it without detailed proofs.

The principal aim of the current section is to set up some of the basic
machinery of stochastic integration. When this is done, we can turn to the
spectral representation theorem, which will provide the deeper understanding
of stationary that we are looking for. En passant, in this section we shall meet
for the first time an extremely important class of random fields, known as
moving averages.

We start with a collection of independent Gaussian random variables.
While such a collections are easy to construct if they are finite or count-
able, serious technical difficulties obstruct the construction for uncountable
collections. This is why white noise, which is essentially a collection of i.i.d.
random variables indexed by the points RN , is such a delicate object. The
way around this is to avoid giving the value of the noise at specific points,
and to treat is as a sort of signed measure over subsets of RN .

More formally, suppose ν is a measure on RN . The classical example is
Lebesgue measure, but any measure that can be written in the form

ν(A) =

∫
A

p(x) dx, (2.4.14)

will do. Here A ⊂ BN and p is a non-negative, but not necessarily integrable
function on RN . For obvious reasons p is called the (Radon-Nikodym) density
of ν, although, since it generally will not integrate to one (or, indeed, any-
thing finite) it is not a probability density. If (2.4.14) holds we say that ν is
continuous.

However, completely discrete ν, that put all their mass on a finite or count-
able set of points, will also be important to us, and we shall even meet mea-
sures that distribute their mass smoothly over lower dimensional subsets of
RN , such as spheres.

We can now define a Gaussian noise23 W based on ν, or ‘Gaussian ν-
noise’ as a random process defined on the Borel subsets of RN such that, for
all A,B ∈ BN with ν(A) and ν(B) finite,

W (A) ∼ N(0, ν(A)). (2.4.15)

A ∩B = ∅ ⇒W (A ∪B) = W (A) +W (B) a.s. (2.4.16)

A ∩B = ∅ ⇒W (A) and W (B) are independent. (2.4.17)

23 While the notation ‘W ’ is inconsistent with our decision to use lower case Latin
characters for random functions, we retain it as a tribute to Norbert Wiener, who
is the mathematical father of these processes.
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Property (2.4.17) is described by saying that W has independent incre-
ments24. When ν is Lebesgue measure, W is called white noise and it is closely
connected to Brownian motion (N = 1) and the Brownian sheet. See Exercise
2.8.12.

Having defined Gaussian noises, our next step is to make sense out of the
integral ∫

RN
ϕ(t)W (dt), (2.4.18)

for deterministic ϕ with
∫
ϕ2(x) ν(dx) <∞.

In principle, this is not hard to do. Roughly, the argument goes as follows:
Start with simple functions

ϕ(t) =

n∑
1

ai1Ai(t), (2.4.19)

where A1, . . . , An ⊂ RN are disjoint, and the ai are real, and define

W (ϕ) ≡
∫
T

ϕ(t)W (dt) =

n∑
1

aiW (Ai). (2.4.20)

It follows immediately from (2.4.15) and (2.4.17) that in this case W (ϕ) has
zero mean and variance given by

∑
a2
i ν(Ai). Now think of W as a mapping

from simple functions to random variables, and extend it to all functions
square integrable with respect to ν. The extension is standard, and we send
you to either RFG or any standard text for details.

An important point to note, however, is that if ϕ and ψ are the simple
functions

ϕ(t) =

n∑
1

ai1Ai(t), ψ(t) =

n∑
1

bi1Ai(t),

then, again by (2.4.15) and (2.4.17),

E{W (ϕ)W (ψ)} = E

{
n∑
1

aiW (Ai) ·
n∑
1

biW (Ai)

}
(2.4.21)

=

n∑
1

aibiE
{

[W (Ai)]
2
}

=

n∑
1

aibiν(Ai) (2.4.22)

=

∫
RN

ϕ(t)ψ(t) ν(dt),

24 Much of what follows can be done without the assumption of Gaussianity, in which
case (2.4.15) is replaced by requiring that E{W (A)} = 0 and E{[W (A)]2} = ν(A).
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a result that extends, in general, to

E
{∫

RN
ϕ(t)W (dt)

∫
RN

ψ(t)W (dt)

}
=

∫
RN

ϕ(t)ψ(t) ν(dt). (2.4.23)

Note also that since linear combinations and limits of Gaussian random vari-
ables remain Gaussian, it follows that W (ϕ) is also Gaussian.

With our integral defined, we can now start looking at some examples
of what can be done with it. One very important use is the definition of
moving average random fields. These are now easily constructed by taking
white noise with Lebesgue measure as control measure, choosing a square
integrable function ϕ : RN → R, and defining

f(t)
∆
=

∫
RN

ϕ(t− s)W (ds). (2.4.24)

Since

E {f(t)f(s)} =

∫
RN

ϕ(t− u)ϕ(s− u) du

=

∫
RN

ϕ(t− s+ v)ϕ(v) dv

∆
= C(t− s),

moving averages are clearly stationary.
Furthermore, if ϕ is spherically symmetric, so that it depends only on |t|,

f is isotropic. This is easiest to see as follows: let M be a rotation matrix,
then

C(sM, tM) = E {f(tM)f(sM)}

=

∫
RN

ϕ(tM − u)ϕ(sM − u) du

=

∫
RN

ϕ(tM − uM)ϕ(sM − uM) du

=

∫
RN

ϕ(t− u)ϕ(s− u) du

= C(s, t)

2.4.6 Spectral Representation Theorem

Moving averages gave us examples of stationary fields that are rather easy to
generate from white noise. Now, however, we want to use stochastic integrals
to find a very general way of representing all stationary fields on RN , via the
so-called spectral representation.

We require a minor extension of the integrals of the previous section, how-
ever, since we want to work in a complex valued scenario. Thus, given a
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measure ν on RN , define a complex ν-noise W to be a C-valued process sat-
isfying

E{W (A)} = 0, E{W (A)W (A)} = ν(A). (2.4.25)

A ∩B = ∅ ⇒ W (A ∪B) = W (A) +W (B) a.s. (2.4.26)

A ∩B = ∅ ⇒ E{W (A)W (B)} = 0. (2.4.27)

We can, in addition, assume that W is Gaussian, in which case you should
note that (2.4.25) does not specify all its parameters25.

It is then a straightforward exercise to extend the construction of the
previous section to an L2 stochastic integral

W (ϕ) =

∫
RN

ϕ(λ)W (dλ)

for ϕ : RN → C with
∫
RN ‖ϕ‖

2 dν <∞. It is immediate from the construction
that

E{W (ϕ)W (ψ)} =

∫
RN

ϕ(λ)ψ(λ) ν(dλ). (2.4.28)

This construction allows us to state the following important result.

Theorem 2.4.2 (spectral representation theorem). Let ν be a finite
measure on RN and W a complex ν-noise. Then the complex valued random
field

f(t) =

∫
RN

ei〈t,λ〉W (dλ) (2.4.29)

has covariance

C(s, t) =

∫
RN

ei〈(s−t),λ〉 ν(dλ), (2.4.30)

and so is (weakly) stationary. If W is Gaussian, then so is f .
Furthermore, to every mean square continuous, centered, (Gaussian) sta-

tionary random field f on RN with covariance function C and spectral measure
ν there corresponds a complex (Gaussian) ν-noise W on RN such that (2.4.29)
holds in mean square for each t ∈ RN .

In both cases, W is called the spectral process corresponding to f .

25 See Footnote 19 above. In general, if we split a complex ν-noise into its real and
imaginary parts, WR and WI say, it does not follow from (2.4.27) that A∩B = ∅
implies any of E{W (A)W (B)} = 0, E{WR(A)WR(B)} = 0, E{WI(A)WI(B)} =
0, or E{WI(A)WR(B)} = 0. Indeed, this is most definitely not the case for the
complex W of Theorem 2.4.2 when, for example, the stationary process f there is
real valued. See the discussion following (2.4.31) on ‘real’ spectral representations,
in which the above problem is addressed by taking W to be defined on a half space
rather than all of RN .
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In one direction, this theorem does need a proof. It is a consequence of the
construction of the stochastic integral that the process f defined by (2.4.29)
has covariance function (2.4.30). The other direction is not so easy, although
not hard. You can find the details in almost any book on time series – our
favourite is [23] – for processes on either Z or R, and the extension to RN
is trivial26. Note that the spectral representation theorem, Theorem 2.4.2,
is more general than the spectral distribution theorem, Theorem 2.4.1. The
spectral distribution theorem gives the Fourier expansion of the covariance
function only, while the spectral representation theorem gives the Fourier
expansion of the process itself.

When the basic field f is real, it is natural to expect a ‘real’ spectral
representation, and this is in fact the case, although notationally, and compu-
tationally, it is still generally more convenient to use the complex formulation.
Nevertheless, the real representation is also useful. To describe it, note firstly
that if f is real, the symmetry of the spectral measure ν allows us to introduce
three27 new measures, on R+ × RN−1, by setting28

ν1(A) = ν(A ∩ {λ ∈ RN : λ1 > 0}),
ν2(A) = ν(A ∩ {λ ∈ RN : λ1 = 0}),
µ(A) = 2ν1(A) + ν2(A).

We can now rewrite (2.4.2) in real form, as

C(t) =

∫
R+×RN−1

cos(〈λ, t〉)µ(dλ). (2.4.31)

There is also a corresponding real form of the spectral representation
(2.4.29). The fact that the spectral representation yields a real valued pro-
cess also implies certain symmetries on the spectral process W . In particular,
it turns out that there are two independent real valued µ-noises, W1 and W2,
such that29

ft =

∫
R+×RN−1

cos(〈λ, t〉)W1(dλ) +

∫
R+×RN−1

sin(〈λ, t〉)W2(dλ). (2.4.32)

It is easy to check that f so defined has the right covariance function.

26 There is also an inverse to (2.4.29), expressing W as an integral involving f , but
we shall have no need of it.

27 Note that if ν is continuous (so that (2.4.14) holds) the second of these measures,
ν2, will be identically zero.

28 There is nothing special about the half-space λ1 ≥ 0 taken in this representation.
Any half space will do.

29 In one dimension, it is customary to take W1 as a µ-noise and W2 as a (2ν1)-noise,
which at first glance is different to what we have. However, noting that, when
N = 1, sin(λt)W2(dλ) = 0 when λ = 0, it is clear that the two definitions in fact
coincide in this case.
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The real representation goes a long way to helping one develop a good
understanding of what the spectral representation theorem says, and so we
devote a few paragraphs to this. While it is not necesary for the rest of the
theory, it does help develop intuition and very much comes into its own when
we turn to issues of simulation in Chapter 7.

One way to think of the integral in (2.4.32) is via the approximating sum∑
i

{cos(〈λit〉)W1(Λi) + sin(〈λi, t〉)W2(Λi)} (2.4.33)

where the {Λi} give a partition of R+ × RN−1 and λi ∈ Λi. Indeed, this sum
will be exact if the spectral measure is discrete with atoms λi. In either case,
what (2.4.33) does is to express the random field as the sum of a large number
of sinusoidal components.

In the one-dimensional situation the basic components in (2.4.33) are sim-
ple sine and cosine waves of (random) amplitudes |W2(Λi)| and |W1(Λi)|,
respectively, and wavelengths equal to 2π/λi. In two dimensions let λ be a
generic λi in (2.4.33) (i.e. drop the subscript on λi) with components λ1 and
λ2, we have that an elementary cosine wave is of the form cos(λ1t1+λ2t2). The
points λ1 and λ2 are fixed and the point (t1, t2) ranges over R2. This gives a se-
quence of waves travelling in a direction which makes an angle arctan (λ2/λ1)
with the t1 axis and having wavelength 2π/

√
λ2

1 + λ2
2, the distance between

troughs or crests, as measured along the line perpendicular to the crests. An
example is given in Figure 2.4.1.

Fig. 2.4.1. The elementary wave form cos(λ1t1 + λ2t2) in R2.

The corresponding sine function is exactly the same, except for the obvi-
ous a phase shift of half a wavelength. As in the one-dimensional case, the
amplitudes of the components cos(〈λi, t〉) and sin(〈λi, t〉) are given by the
random variables |W1(Λi)| and |W2(Λi)|. Figure 2.4.2 shows what a sum of 10
such components looks like, when the λi are chosen randomly in (−π, π]2 and
the Wj(λi) are independent N(0, 1). Higher dimensional situations behave
analogously.
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Fig. 2.4.2. A more realistic surface based on (2.4.33), along with contour lines at
the zero level.

Another way to think of the spectral representation theorem is as a par-
ticular (rather non-rigorous) application of the Karhunen-Loève expansion of
Section 2.3.5. Let’s start by assuming that all that we wrote back there also
works for complex valued processes and on the definitely unbounded region
RN . Since we are in the stationary scenario, it is actually quite easy to find
eigenfunctions for the integral equation (2.3.20), via complex exponentials. In
fact, for any λ ∈ RN , the function ei〈t,λ〉 (as a function of t ∈ RN ) satisfies∫

RN
C(s, t) ei〈s,λ〉 ds =

∫
RN

C(t− s) ei〈s,λ〉 ds

= ei〈t,λ〉
∫
RN

C(u) e−i〈u,λ〉 du

= Kλ e
i〈t,λ〉,

for some, possibly zero, Kλ.
Suppose that Kλ 6= 0 for only a countable number of λ ∈ RN . Then the

stationary, complex version of the Mercer expansion (2.3.21) can be written
as

C(t) =
∑
λ

Kλ e
i〈t,λ〉, (2.4.34)

while the Karhunen-Loève expansion becomes

f(t) =
∑
λ

K
1/2
λ ξλ e

i〈t,λ〉. (2.4.35)

These are, respectively, special cases of the spectral distribution theorem (cf.
(2.4.2)) and the spectral representation theorem (cf. (2.4.29)) when the spec-
tral measure is discrete.

Despite the minor irregularity of assuming that f is complex valued, the
above argument is completely rigorous. On the other hand, what follows for
the case in which Kλ 6= 0 on an uncountable set, is not. Nevertheless, it is still
somewhat enlightening to look at. In this case, one could imagine replacing
the summations in (2.4.34) and (2.4.35) by integrals, to obtain
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C(t) =

∫
RN

Kλ e
i〈t,λ〉 dλ

and

f(t) =

∫
RN

K
1/2
λ ξλ e

i〈t,λ〉 dλ. (2.4.36)

Everything is well defined in the first of these integrals, but in the second we
have the problem that the ξλ should be independent for each λ. The way to
make mathematics of this is, of course, via stochastic integration, which is
precisely what we did above. Thus, instead of (2.4.36), we could use (2.4.29)
in the spectral representation theorem and write

f(t) =

∫
RN

ei〈t,λ〉W (dλ)

where W is Gaussian ν-noise according to the measure defined by ν(dλ) =
Kλdλ.

Despite the lack of rigor of the above ideas, they do give a useful way of
thinking about the spectral representation theorem.

2.4.7 Isotropy

We now turn to the special case of stationary, isotropic random fields on RN ,
for which the covariance function C(t) is a function only of |t|. Not surpris-
ingly, isotropy implies significant simplifying consequences for the spectral
distribution and representation theorems.

As we already noted in Section 2.4.2, spectral measures of isotropic random
fields are spherically symmetric. Consequently, they cannot have all their mass
concentrated in one small region in RN away from the origin. In particular,
it is not possible to have a spectral measure degenerate at one point, unless
that point is the origin. The closest the spectral measure of an isotropic field
can come to this sort of behavior is to have all its probability concentrated in
an annulus of the form

{λ ∈ RN : a ≤ |λ| ≤ b}, a ≤ b.

In such a case it is not hard to see that that the field itself is then composed
of a ‘sum’ of waves travelling in all directions but with wavelengths between
2π/b and 2π/a only.

Other, often unexpected, restrictions on covariance functions also arise
from isotropy. For example, isotropic covariance functions cannot be very neg-
ative, a result due originally to the Matérn [62], who, in the 1950’s, was one
of the first researchers to actually employ random fields as a statistical mod-
elling tool. In particular, he showed that the covariance functions of centered,
isotropic random fields must satisfy (Exercise 2.8.14)
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C(t) ≥ −C(0)/N, for all t ∈ RN . (2.4.37)

More important than the above, however, are the consequences of isotropy
for the spectral distribution and representation theorems. We shall state these
formally, and even show how they are derived, since the first response of a
modern mathematician on seeing Bessel functions is to imagine that they arise
from something quite mysterious. In fact, here quite the opposite is the case,
and although the original statement of the spectral distribution theorem, with
its complex exponentials, may look simpler than the version that follows, there
are other consequences, at the level of the spectral representation theorem
for isotropic processes (Theorem 2.4.4) that have quite significant practical
importance. In particular, this will help set the scene for what happens when
we look at random fields on spheres.

The following result, due originally to Schoenberg [83] (in a somewhat
different setting) and Yaglom [102] describes what happens.

Theorem 2.4.3. For C to be the covariance function of a mean square con-
tinuous, isotropic, random field on RN it is necessary and sufficient that

C(t) =

∫ ∞
0

J(N−2)/2(λ|t|)
(λ|t|)(N−2)/2

µ(dλ), (2.4.38)

where µ is a finite measure on R+ and Jm is the Bessel function of the first
kind of order m; viz.

Jm(x) =

∞∑
k=0

(−1)k
(x/2)2k+m

k!Γ (k +m+ 1)
.

Proof. The proof consists in simplifying the basic spectral representation
(2.4.29) by using the symmetry properties of ν.

We commence by converting to polar coordinates, (λ, θ1, . . . , θN−1), λ ≥ 0,
(θ1, . . . , θN−1) ∈ SN−1, where

SN−1 =
{
t ∈ RN : |t| = 1

}
is the unit sphere in RN . Define a measure µ on R+ by setting µ([0, λ]) =
ν(BNλ ), and extending as usual, where

BNλ =
{
t ∈ RN : |t| ≤ λ

}
is the N -ball of radius λ and ν is the spectral measure of (2.4.2).

Then, on substituting into (2.4.2) with t = (|t|, 0, . . . , 0) and performing
the coordinate transformation, we obtain

C(|t|) =

∫ ∞
0

∫
SN−1

exp(i|t|λ cos θN−1)σ(dθ)µ(dλ)
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where σ is surface area measure on SN−1. Integrating out θ1, . . . , θN−2 it
follows that

C(|t|) = sN−2

∫ ∞
0

∫ π

0

eiλ|t| cos θN−1 (sin θN−1)
N−2

dθN−1µ(dλ)

where

sN
∆
=

2πN/2

Γ (N/2)
, N ≥ 0, (2.4.39)

is the surface area30 of SN−1.
The inside integral can be evaluated in terms of Bessel functions to yield,

up to a multiplicative constant,∫ π

0

eiλ|t| cos θ sinN−2 θ dθ =
J(N−2)/2(λ|t|)
(λ|t|)(N−2)/2

which, on absorbing all constants into µ, completes the proof. 2

For small values of the dimension N , (2.4.38) can be simplified even fur-
ther. For example, substituting N = 2 into (2.4.38) yields that in this case

C(t) =

∫ ∞
0

J0(λ|t|)µ(dλ),

while substituting N = 3 and evaluating the inner integral easily yields that
in this case

C(t) =

∫ ∞
0

sin(λ|t|)
λ|t|

µ(dλ).

Given the fact that the covariance function of an isotropic field takes such
a special form, it is natural to seek a corresponding form for the spectral
representation of the field itself. Such a representation does in fact exist and we
shall now describe it, albeit without giving any proofs. These can be found, for
example, in the book by Wong [98], or as special cases in the review by Yaglom
[103]. Another way to verify it would be to check that the representation given
in Theorem 2.4.4 below yields the covariance structure of (2.4.38). This is
essentially an exercise in the manipulation of special functions.

The spectral representation of isotropic fields on RN is based on the so-
called spherical harmonics on the (N − 1)-sphere, which form an orthonor-
mal basis for the space of complex, square integrable functions on SN−1

equipped with the usual surface measure. We shall denote them by {h(N−1)
ml ,

l = 1, . . . , dm, m = 0, 1, . . . } where dm =
(
N+m−2
N−2

)
(N + 2m−2)/(N +m−2).

30 Including the case N = 0 here is not a mistake. We shall need it later. In any case,
it makes perfect sense if we think of R0 as the integers with counting measure.
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Figure 2.4.3 is a representation of the first few spherical harmonics, withN = 3
and 0 ≤ m ≤ 3 in descending order in m. In each representation the distance
from the underlying sphere indicates the size of |hml|, while the color/shading
represents the ray in the complex plane on which hml sits. The color/shading
key is shown in the disc at top right. Thus h01 takes a constant, positive, real
value (1), while h11 takes positive real values in the upper hemisphere and
negative real values in the lower hemisphere, etc.

Fig. 2.4.3. Spherical harmonics, N = 3, 0 ≤ m ≤ 3.

Given the spherical harmonics, we can now use the spectral decomposition

f(t) =

∫
RN

ei〈t,λ〉W (dλ)

to define a family of noises on R+ by setting

Wml(A) =

∫
A

∫
SN−1

h
(N−1)
ml (θ)W (dλ, dθ)

where, once again, we work in polar coordinates. Note that since W is a ν-
noise, where ν is the spectral measure, information about the covariance of f
has been coded into the Wml. From this family, define a family of mutually
uncorrelated, stationary, one-dimensional processes {fml} by

fml(r) =

∫ ∞
0

Jm+(N−2)/2(λr)

(λr)(N−2)/2
Wml(dλ),

where, as in the spectral representation (2.4.29), one has to justify the exis-
tence of this L2 stochastic integral. These are all the components we need in
order to state the following.
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Theorem 2.4.4. A centered, mean square continuous, isotropic random field
on RN can be represented by

f(t) = f(r, θ) =

∞∑
m=0

dm∑
l=1

fml(r)h
(N−1)
ml (θ). (2.4.40)

In other words, isotropic random fields can be decomposed into a countable
number of mutually uncorrelated stationary processes with a one-dimensional
parameter, a result which one would not intuitively expect. As noted above,
there is still a hidden spectral process in (2.4.40), entering via the Wml and
fml. This makes for an important difference between (2.4.40) and the similar
looking Karhunen-Loève expansion we met in Section 2.3.5. Another difference
lies in the fact that while it is possible to truncate the expansion (2.4.40) to
a finite number of terms and retain isotropy, this is not true of the standard
Karhunen-Loève expansion. In particular, isotropic fields can never have finite
Karhunen-Loève expansions. For a heuristic argument as to why this is the
case, recall from that under isotropy the spectral measure must be invariant
under rotations, and so cannot be supported on a finite, or even countable,
number of points. Consequently, one also needs an uncountable number of
independent variables in the spectral noise process to generate the process via
(2.4.29). However a process with a finite Karhunen-Loève expansion provides
only a finite number of such variables, which can never be enough.

We close this section on isotropy with a brief discussion of fields in ‘space-
time’. Taking the lead from the moving ocean waves with which we motivated
this chapter, it is not at all uncommon in applications to find random fields
that are functions of ‘space’ x and ‘time’ t, so that the parameter set is most
conveniently written as (t, x) ∈ R × RN . Such processes are often stationary
in t and isotropic in x, in the sense that

E{f(s, u)f(s+ t, u+ x)} = C(t, |x|),

where C is now a function from R×R+ to C. In such a situation the methods
that we used to study the purely isotropic case also suffice to show that C
can be written in the form

C(t, x) =

∫ ∞
−∞

∫ ∞
0

eitνGN (λx)µ(dν, dλ),

where

GN (x) =

(
2

x

)(N−2)/2

Γ

(
N

2

)
J(N−2)/2(x)

and µ is a measure on the half-plane R+ × RN .
It is not hard to also develop a corresponding representation for the field

itself.
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2.4.8 Isotropic Fields on the Sphere and Other Homogenous
Spaces

While the stationary and isotropic random fields that we have studied so far
in this section have a very nice theory, they all had the common property
that were defined over the Euclidean spaces RN . However, when we turn to
applications we shall see that there are many random fields defined on more
delicate parameter spaces, such as surfaces.

One classic example is electroencephalogram (EEG) data, neurophysio-
logic measurements of the electrical activity of the brain taking by recording
from electrodes placed on the scalp. Unlike the fMRI data of Chapter 1,
which is data taken over a solid domain in R3, EEG data is taken over a sur-
face which, for the moment, we can think of as a sphere. Another example is
provided by the Nobel Prize winning COBE (COsmic microwave Background
Explorer) astrophysical data. This data is on the sphere of all directions away
from the Earth, and measures an integral of microwave radiation throughout
the universe, in each direction. We shall look at these two examples in some
detail in Chapters 9 and 10.

However, since at the moment we are still doing theory rather than ap-
plication, there is no reason to stay with the two dimensional sphere, and we
introduce

SN−1
λ = {t ∈ RN : |t| = λ}, (2.4.41)

the sphere in RN of radius λ, so that SN−1
1 is the unit sphere SN−1.

To define stationarity and isotropy for random fields defined on SN−1
λ

we need a notion of translation, which is usually done by identifying each
point t ∈ SN−1

λ with a rotation, and thinking of t1 + t2 as a composition of
two rotations. On the sphere, stationarity and isotropy mean the same thing,
which is that the covariance function is invariant under rotations. ROBERT
SAYS: I NEED TO THINK ABOUT THIS

Then an interesting corollary of Theorem 2.4.4 is obtained by fixing r
in (2.4.40). We then have, for a homogeneous and isotropic random field on
SN−1
λ , a simple representation in terms of uncorrelated random coefficients
fml(r) and spherical harmonics. If the random field is Gaussian, then the
coefficients are actually independent, and we will, essentially, have generated
a Karhunen-Loève expansion.

Furthermore, the covariance function can be written as

C(t1, t2) = C(α12) =

∞∑
m=0

σ2
mC

(N−1)/2
m (cosα12), (2.4.42)

where α12 is the angular distance between t1 and t2, the CNm are Gegenbauer
polynomials, and σ2

m is the common variance of the f2
ml(r) in (2.4.40). An

important special case of (2.4.42) occurs when σ2
m = 0 for all m other than

m = 1, and σ2
1 = 1/(N − 1). In this case the covariance function is given by
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C(t1, t2) = 〈t1, t2〉 and the resulting random field is known as the canonical
(isotropic) Gaussian field on the sphere. This field can be constructed directly
as f(t) = 〈t, ξ〉, where ξ ∼ N(0, IN×N ), in which case the stationarity and
isotropy are easy to show (Exercise 2.8.15). This canonical field plays a central
rôle in the theory of smooth Gaussian fields, and is the point at which the
Gaussian kinematic formulae of Chapter 4 meet the kinematic fundamental
formula of Chapter 3. The details of the mathematics can be found in Chapter
15 of RFG.

By now it should be starting to become evident that all of these represen-
tations must be special cases of some general theory, that might also be able
to cover quite non-Euclidean parameter spaces, as long as they have some
group structure that mimics the ideas of translation and perhaps rotation.
This is indeed the case, and what happens, in essence, is that the complex ex-
ponentials that have been at the core of all the representations of this section
are replaced by the so-called ‘characters’ of the group.

You can find many more results of this kind, with much more detail, in
the classic paper of Yaglom [103] or the book by Leonenko [54]. Other useful
treatments, with various emphases, can be found in [14, 40, 55] and [104].

2.4.9 Transforming to Stationarity and Isotropy

The notions of stationarity and isotropy are clearly important, and particu-
larly pleasant from a mathematical viewpoint, in that, as we have just seen,
they allow for quite simple representations of random fields.

Nevertheless, Nature is not always as kind as to provide stationarity or
isotropy, and it is natural to ask what can be done in that case. In particular,
is would be natural to ask if there was a simple way to transform general
random fields to stationarity and/or isotropy.

Despite the fact that the applied literature abounds with papers having
titles which seem to indicate that this is indeed possible, the fact, sadly, is
that in general it is not. We shall nevertheless take a moment to indicate what
is known.

In a literature that seems to have begun with a statistical paper [80] by
Sampson and Guttorp in 1992, there has been considerable interest in models
of the form

f(t) = g(ϕ(t)),

where g is a stationary, isotropic random field and ϕ a bijective transforma-
tion of some kind. The now generally non-stationary and non-isotropic f can
therefore be transformed to stationarity and isotropy by studying f(ϕ−1(t)).

In [80] a statistical procedure was developed, based on the so-called vari-
ogram31

31 While the name is different, the variogram is no more than the square of the
canonical metric that we shall meet and heavily use in the following section.
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V (s, t)
∆
= E

{
[f(t)− f(s)]2

}
,

for estimating the transformation ϕ in a non-parametric fashion. The pro-
cedure, while obviously useful, applies only for two-dimensional, real valued
random fields, and does not seem to have an easy extension to higher dimen-
sions.

There are some more recent papers [7, 8] which approach this problem
a different way, by assuming the transformation ϕ to be quasi-conformal.
Once again, the approach is limited to two dimensions, and, in this case, the
extension to higher dimensions seems completely blocked.

However, neither these procedures nor related ones (see [7, 8] for a recent
bibliography) answer the general question we originally asked: Can general
non-stationary or non-isotropic fields be easily treated within the station-
ary/isotropic framework; i.e. fields which we do not know a priori to be simple
transforms?

Unfortunately, the answer to this question is negative. Nevertheless, there
are some techniques that can help. For example, there is a notion of local
isotropy that is often useful. To define this, recall from Section 2.4.3 that if a
random field is stationary and isotropic, then, among many other properties,
its first order partial derivatives are uncorrelated and have common variance.
It turns out that many of the properties of Gaussian and related random
fields rely only on these consequences, and so we shall define a locally isotropic
random field to be one with constant variance and

E {fi(t)fj(t)} = λ2δij , (2.4.43)

for some common second spectral moment λ2, where fi(t) = ∂f(t)/∂ti.
A natural question to now ask is how easy is it to transform general

random fields to locally isotropic ones. For stationary random fields f this
is straightforward. If Λ is the N × N matrix of second spectral moments
λij = E {fi(t)fj(t)}, then it is trivial to check that the field defined by
f(Λ−1/2t) is locally isotropic.

In general, however, there is no such simple transformation available. How-
ever, there is a trick, based on Riemannian geometry, that allows one to com-
pute many things about constant variance Gaussian random fields as if they
were, in fact, locally isotropic. It was this trick that, in many ways, was one
of the most important themes of RFG. It will be explained in Section 4.3 and
heavily used thereafter. However, we shall have to develop a few more concepts
and notation before we can introduce it, so we leave it for the moment.

Finally, we note that there is a technique [34, 68, 69, 70] for making sta-
tionary fields from non-stationary ones, at the price of enlarging the param-
eter space. Suppose f is a non-stationary random field f on T ⊂ RN , and
ϕ : RN → R2N an injective mapping. Consider the parameter space

While there, as the canonical metric, it will play an important rôle for developing
theory, it plays no less an important rôle in the applied literature as the variogram.
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T̂
∆
= {(t, ϕ(t)) : t ∈ T} ⊂ R2N ,

and the random field f̂ on the manifold T̂ defined by f̂(x, ϕ(x)) = f(ϕ−1(x)).
Then it is easy to check (Don’t see it. ROB: I will expand or set

exercise here.) that f̂ is ‘stationary’ on T̂ in the sense

E
{
f̂(x, ϕ(x))f̂(y, ϕ(y))

}
is a function of (x, ϕ(x))− (y, ϕ(y)) only32. However, since it is an open (and

hard) question as to whether f̂ can be extended to a stationary process on all
of R2N , it is hard to exploit this fact in any practical fashion.

2.5 Smoothness of Random Fields

Now that we have discussed the basic construction and structure of random
fields, we turn to discussing basic sample path properties. For example, we
would like to know when a random field f is continuous, or continuously
differentiable. These two issues are precisely what we shall look at in this
section, mainly for Gaussian fields.

It is actually quite easy to describe what kinds of conditions are needed to
ensure that these smoothness properties hold, at least in the Gaussian case.
For simplicity, suppose that f is Gaussian, centered, and stationary, with co-
variance function C. Since C determines the finite dimensional distributions of
f , and these determine its properties, ultimately we are looking for conditions
on C.

Now, if f is to be smooth, it must be true that for s and t close, the
difference f(t)− f(s) must be small. However, these differences have a known
distribution, viz.

f(t)− f(s) ∼ N
(
0,E

{∣∣f(s)− f(t)|2
∣∣})

= N (0, 2[C(0)− C(t− s)]) ,

the second line a consequence of stationarity. Thus, what we require is that
C itself is smooth in the neighborhood of the origin33. The only question is
“exactly how smooth does it need to be?”, and this is what we plan to answer.

Still in the stationary Gaussian scenario, one can also consider smoothness
properties from the point of view of the spectral representation theorem. As
we described in Section 2.4.6, one can think of stationary processes as a sum of
infinitely many sinusoids. In particular, think of the (non-rigorous) Karhunen-
Loève type representation (2.4.35), in terms of complex exponentials, in which
we wrote

32 In essence, this result is a consequence of the famous Nash embedding theorem.
33 As a consequence, it will be smooth everywhere. See Exercise 2.8.17.
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f(t) =
∑
λ

K
1/2
λ ξλ e

i〈t,λ〉.

Obviously, since each function ei〈t,λ〉 is infinitely differentiable, the first few
terms in the sum have no affect on the level of smoothness of f . In fact, no
finite number of terms can affect it. Thus, the issue of smoothness is deter-
mined by the behavior of the tail of the sum, or, equivalently, by the behavior
of E{|Kλ|} as |λ| → ∞. Equivalently, it is determined by the variance of the
high frequency components, or, in terms of the spectrum, by its decay rate at
infinity.

These two considerations – the behavior of the covariance function at the
origin and the behavior of the spectral measure at infinity – are actually
the same mathematically, since they are linked by the Tauberian theorems
of Fourier analysis. However, from a stochastic point of view, they give us
two seemingly quite different ways to think about the smoothness of random
fields.

To turn these ideas into mathematics is not trivial, and we shall decribe
how to do it in the remainder of this section. The details (but not the results)
can, however, be skipped by the reader who cares only about the ‘what’ rather
than the ‘why’ of smoothness, or by the reader who feels that rigor leads only
to rigor mortis. However, the reader who is prepared to accept that all his
random fields satisfy regularity requirements, without checking, will do well
to remember the principle of caveat emptor.

We start with the issue of continuity. Rather interestingly, and importantly,
this turns out to be a problem which can be studied, at least for Gaussian
processes, just as easily over very general parameter spaces as over RN , as long
as they have metrics defined on them34. First of all, however, it is important
to recall that there are several notions of continuity for random processes over
a parameter space T , among them

Continuity in probability:

lim
s→t

P {|f(t)− f(s)| ≥ ε} = 0, for each t ∈ T and each ε > 0.

Continuity in mean square, or L2 continuity:

lim
s→t

E
{
|f(t)− f(s)|2

}
= 0, for each t ∈ T .

Continuity with probability one, sample path, or almost sure (a.s.), conti-
nuity:

P
{

lim
s→t
|f(t)− f(s)| = 0, for all t ∈ T

}
= 1.

34 In fact, not even a metric is required. It suffices that T is metrizable, and one can
then study everything in terms of the canonical metric (2.5.1). That the main
questions of continuity are actually independent of the choice of metric is proven,
for example, in Section 1.3 of RFG.
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That these can be quite different is shown in Exercise 2.8.16. We are interested
in the strongest of these, continuity with probability one.

2.5.1 The General Gaussian Theory

The aim of this section is to describe useful sufficient conditions for a centered
Gaussian random field on a parameter space T to be almost surely bounded
and/or continuous; i.e. to determine conditions for which

P
{

sup
t∈T
|f(t)| <∞

}
= 1 or P

{
lim
s→t
|f(t)− f(s)| = 0, for all t ∈ T

}
= 1.

To start, define a metric d on T , known as the canonical metric for T
induced by the field f , by setting

d(s, t)
∆
=
{
E
[
(f(s)− f(t))

2
]} 1

2

, s, t ∈ T , (2.5.1)

in a notation that will henceforth remain fixed35.
The next thing we need is notation for the ball, of radius ε, in the canonical

metric, centered at a point t ∈ T , which we denote by

Bd(t, ε)
∆
= {s ∈ T : d(s, t) ≤ ε} . (2.5.2)

It is important to realise that even if the underlying parameter space is as
simple as R2 these ‘balls’ need not be ‘round’. For example, consider the four
balls in Figure 2.5.1, which are all assumed to have the same radius in the
canonical metric. Balls a and b are physically (in a Euclidean sense) round,
which indicates that in the regions in which they are placed the canonical
distance between two points is proportional to the Euclidean distance. How-
ever, the constant of proportionality is different in the two regions. In both
cases it makes sense to talk about some sort of local isotropy, at least as seen
through the canonical metric. Of course, since this metric only takes into ac-
count second moments, such local isotropy is in the limited sense of Section
2.4.9.

To understand what this means about the random process, note from
(2.5.1) that for, s, t ∈ T , the d-distance between any two points is the stan-
dard deviation of the difference f(t)− f(s). Thus, in regions where this stan-
dard deviation is large, we expect the process to move around comparatively
rapidly, and, as a consequence, the ‘physical’ balls of fixed d-radius will be
smaller. Thus while both a and b are regions of local isotropy, we would expect
f to behave far more erratically in the former.

35 Actually, d is only a pseudo-metric, since although it satisfies all the other de-
mands of a metric, d(s, t) = 0 does not necessarily imply s = t. To see why, think
of a periodic process on R, with period p. Then d(s, t) = 0 implies no more than
s− t = kp for some integer k.
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Fig. 2.5.1. Balls in the canonical metric

In regions c and d we have also lost local isotropy, and so the balls, albeit
of the same d-radius, look quite different.

Once this is understood, it is not a big jump to realise that the number of
balls needed to cover T must, in some way, measure the behavior of f over T ,
and this brings us to an important definition.

Definition 2.5.1. Let f be a centered Gaussian field on T , and d the canon-
ical metric (2.5.1). Assume that T is d-compact. This implies

diam(T )
∆
= sup
s,t∈T

d(s, t) <∞. (2.5.3)

Fix ε > 0 and let N(T, d, ε) ≡ N(ε) denote the smallest number of d-balls of
radius ε whose union covers T . Set

H(T, d, ε) ≡ H(ε) = ln (N(ε)) . (2.5.4)

Then N and H are called the (metric) entropy and log-entropy functions for
T (or f). We shall refer to any condition or result based on N or H as an
entropy condition/result.

Note that since we are assuming that T is d-compact, it follows thatH(ε) <
∞ for all ε > 0. On the other hand, the same need not be (nor generally is)
true for limε→0H(ε), since as ε→ 0 the d-balls get smaller and smaller, and
we need more and more of them to cover T . It is precisely the growth rate
of H at zero that captures the ‘smoothness of the covariance at the origin’
that we described in the setting of stationary fields at the beginning of this
section.

Here then is the main result about Gaussian continuity and boundedness,
due originally, more or less in the form given below, to Richard Dudley [30, 31].
However this result has a long and rich history, and, as we shall describe briefly
below, is far from being the last word on the subject.
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Theorem 2.5.2. Let f be a centered Gaussian field on a d-compact T , d
the canonical metric, and H the corresponding entropy. Then there exists a
universal constant K such that

E
{

sup
t∈T

ft

}
≤ K

∫ diam(T )/2

0

H1/2(ε) dε, (2.5.5)

and

E {ωf,d(δ)} ≤ K
∫ δ

0

H1/2(ε) dε, (2.5.6)

where

ωf (δ) ≡ ωf,d(δ)
∆
= sup
d(s,t)≤δ

|f(t)− f(s)| , δ > 0, (2.5.7)

is the modulus of continuity of f on T with respect to the canonical metric
d. Furthermore, there exists a random η ∈ (0,∞) and a universal constant K
such that

ωf,d(δ) ≤ K
∫ δ

0

H1/2(ε) dε, (2.5.8)

for all δ < η.

We are not going to attempt to prove this general result here, since you
can find a full proof in Section 1.3 of RFG. Furthermore, the proof, while not
difficult, is a little too technical for our current purposes. Nevertheless, we
encourage you to go to RFG for the details.

Reading Theorem 2.5.2 carefully, you will note that there is no claim that
the sufficient conditions given there are also necessary and, indeed, they gen-
erally are not36. However, when f is a stationary, centered, Gaussian process
there is such a result, and then it can be shown that

f is a.s. continuous on T ⇐⇒ f is a.s. bounded on T (2.5.9)

⇐⇒
∫ ∞

0

H1/2(ε) dε < ∞.

We shall not go into further details for the general case, but now do want to
see how to apply these results to Gaussian random fields on RN .

36 There is a theory which gives necessary and sufficient conditions for boundedness
and continuity of general Gaussian processes, based on the ideas of majorising
measures. For details, see, for example, [53, 90].
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2.5.2 Gaussian Fields on RN

Returning to Euclidean space after the abstraction of entropy on general met-
ric spaces, it is natural to expect that conditions for continuity and bounded-
ness will become so simple to both state and prove that there was really no
need to introduce such abstruse general concepts.

This expectation is both true and false. Although we did not actually give
detailed proofs here, it turns out that avoiding the notion of entropy does not
make it any easier to establish continuity theorems, and, indeed, reliance on
the specific geometry of the parameter space often confounds the basic issues.

On the other hand, the basic results for Gaussian processes on RN are
easy to state without specifically referring to any abstract notions. We shall
do this first for continuity, and then for differentiability. In both, we assume
that f is a centered Gaussian process with continuous covariance function C
defined on a compact T ⊂ RN .

Continuity

We start by defining a function which captures the size of increments, by
setting

p2(u)
∆
= sup
|s−t|≤u

E
{
|fs − ft|2

}
(2.5.10)

= sup
|s−t|≤u

[
C(t, t) + C(s, s)− 2C(s, t)

]
.

If f is stationary, then

p2(u) = 2 sup
|t|≤u

[C(0)− C(t)], (2.5.11)

and so one sees that the rate of convergence on p to zero as u → 0 is closely
related to the smoothness of C at the origin discussed above. Since p is non-
decreasing, there is no problem in defining

p−1(δ)
∆
= sup{u : p(u) ≤ δ}, δ > 0.

Here is the main result on continuity of Gaussian random fields on RN .

Theorem 2.5.3. If, for some δ > 0, either∫ δ

0

(− lnu)
1
2 dp(u) <∞ or

∫ ∞
δ

p
(
e−u

2
)
du <∞, (2.5.12)

then f is continuous and bounded on T with probability one. A sufficient
condition for either integral in (2.5.12) to be finite is that, for some 0 < K <
∞ and α, η > 0,
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E
{
|fs − ft|2

}
= C(t, t) + C(s, s)− 2C(s, t) (2.5.13)

≤ K

|ln|s− t| |1+α ,

for all s, t with |s− t| < η. Furthermore, there exists a constant K ′, dependent
only on the dimension N , and a random δ0 > 0, such that, for all δ < δ0,

ωf (δ) ≤ K ′
∫ p−1(δ)

0

(− lnu)
1
2 dp(u), (2.5.14)

where the modulus of continuity ωf is as in (2.5.7), but taken with respect to
the usual Euclidean metric rather than the canonical one. A similar bound, in
the spirit of (2.5.6), holds for E{ωf (δ)}.

Proof. For once, we shall actually prove something in detail, the motiva-
tion being that it is worthwhile seeing how to convert the abstract entropy
conditions to something more concrete.

Note first that since p(u) is obviously non-decreasing in u, the Riemann-
Stieljes integral (2.5.12) is well defined. The proof that both integrals in
(2.5.12) converge and diverge together and that the convergence of both is
assured by (2.5.13) is simple calculus and is Exercise 2.8.19. Of more signif-
icance is relating these integrals to the entropy integrals of Theorem 2.5.2.
Indeed, all the claims of the theorem regarding the modulus of continuity ωf
in (2.5.14) will follow from these results if we show that∫ δ

0

H1/2(ε) dε ≤ K

∫ p−1(δ)

0

(− lnu)
1
2 dp(u) (2.5.15)

for small enough δ.
Since T is compact, we can enclose it in a N -cube CL of side length

L = maxi=1,...,N sups,t∈T |ti−si|, where s = (s1, . . . , sN ) and t = (t1, . . . , tN ).
Now note that, for each ε > 0, the cube CL, and so T , can be covered by
[1+L

√
N/(2p−1(ε))]N (Euclidean) N -balls, each of which has radius no more

than ε in the canonical metric d. Thus,∫ δ

0

H1/2(ε) dε ≤
√
N

∫ δ

0

(
ln(1 + L

√
N/(2p−1(ε))

) 1
2

dε

=
√
N

∫ p−1(δ)

0

(
ln(1 + L

√
N/2u)

) 1
2

dp(u)

≤ 2
√
N

∫ p−1(δ)

0

(− lnu)
1
2 dp(u)

for small enough δ. This completes the proof. 2
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The various sufficient conditions for continuity of Theorem 2.5.3 are quite
sharp, but not necessary. There are two stages at which necessity is lost. One
is simply that, as we mentioned earlier, entropy conditions, in general, need
not be necessary in the non-stationary case. The second is that something is
lost in the passage from entropy to the conditions on p. For an example of the
latter, see Exercise 2.8.18.

Despite these drawbacks, the results of Theorem 2.5.3 are, from a practical
point of view, reasonably definitive. For example, if f is stationary, then,
following on from (2.5.9), it is possible to check that if

K1

(− ln |t|)1+α1
≤ C(0)− C(t) ≤ K2

(− ln |t|)1+α2
, (2.5.16)

for |t| small enough, then f will continuous if α2 > 0 and discontinuous if
α1 < 0.

In practical situations, it is rare indeed that one even gets close to the
logarithmic behavior of (2.5.13) or (2.5.16). The more common situation in
the applications considered in this book is that the covariance function has a
power series representation of the form

C(s, t) = C(t, t)−(t− s)Λt(t− s)′ + o
(
|t− s|2+δ

)
, (2.5.17)

for |t− s| small and some δ > 0, or, in the stationary case

C(t) = C(0)−tΛt′ + o
(
|t|2+δ

)
, (2.5.18)

for t in the neighborhood of the origin. The matrices Λt and Λ are N × N
and positive definite. In the stationary case, the elements of Λ are the second
order spectral moments (cf. (2.4.4)). In each of these cases the upper bound
of (2.5.13) or (2.5.16) holds, with room to spare.

The condition (2.5.18) on the covariance function can easily be translated
to spectral terms. It is standard Tauberian theory, which translates the be-
haviour of C at the origin to that of the spectral measure ν at infinity, to see
that if the integral ∫

RN

(
log(1 + |λ|)

)1+α
ν(dλ) (2.5.19)

converges for some α > 0 then f is continuous, while if it diverges for some
α < 0 then f is discontinuous. (cf. Exercise 2.8.20.)

In other words, it is the behavior of the ‘high frequency oscillations’ in
the spectral representation that are controlling the continuity/discontinuity
dichotomy. This, of course, is what we suggested, on a purely heuristic basis,
at the beginning of this section.

Differentiability

The step beyond continuity for a function on RN is differentiability, which we
investigate now, again in the Gaussian setting.
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As for continuity, there are various notions of differentiability. We have
already seen one, in the mean square setting of (2.4.6). Now, however, we
would like to know when the limits in (2.4.6) not only exist, for all points t ∈ T
and for all directions t′, with probability one, but when they are the same as
what one gets by differentiating the sample paths of f in the usual sense.
Furthermore, we would like to know when these derivatives are continuous.

It turns out that, at least in the Gaussian scenario, this question can be
handled within the framework of basic continuity since derivatives, if they
exist, must still be Gaussian. To see how to do this, first endow the space
RN ×⊗kRN with the norm

‖(s, s′)‖N,k
∆
= |s|+ ‖s′‖⊗kRN = |s|+

(
k∑
i=1

|s′i|2
)1/2

,

and write BN,k(y, h) for the ball centered at y = (t, t′) and of radius h in the
metric induced by ‖ · ‖N,k. Furthermore, write

Tk,ρ
∆
= T × {t′ : ‖t′‖⊗kRN ∈ (1− ρ, 1 + ρ)}

for the product of T with the ρ-tube around the unit sphere in ⊗kRN . This
is enough to allow us to formulate

Theorem 2.5.4. Suppose f is a centered Gaussian random field on an open
T ∈ RN , possessing k-th order partial derivatives in the L2 sense in all direc-
tions everywhere inside T . Suppose, furthermore, that there exists 0 < K <∞,
and ρ, δ, h0 > 0 such that for 0 < η1, η2, h < h0,

E
{[
η−k1 ∆kf(t, η1t

′)− η−k2 ∆kf(s, η2s
′)
]2}

(2.5.20)

< K
∣∣ ln (‖(t, t′)− (s, s′)‖N,k + |η1 − η2|

)∣∣−(1+δ)
,

for all

((t, t′), (s, s′)) ∈ Tk,ρ × Tk,ρ : (s, s′) ∈ BN,k((t, t′), h),

where ∆kf(t, t′) is the symmetrized difference

∆kf(t, t′) =
∑

s∈{0,1}k
(−1)k−

∑k
i=1 si f

(
t+

k∑
i=1

sit
′
i

)

Then, with probability one, f is k times continuously differentiable.

Proof. Since we have assumed the existence of L2 derivatives, we can define
the Gaussian field
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f̂(t, t′, η) =

{
η−k∆kf(t, ηt′) η 6= 0,

Dk
L2f(t, t′) η = 0,

where Dk
L2f is the mean square derivative (2.4.6). This process is defined

on the parameter space T̂
∆
= Tk,ρ × (−h, h), an open subset of the finite

dimensional vector space RN ×⊗kRN × R, with norm

‖(t, t′, η)‖N,k,1 = ‖(t, t′)‖N,k + |η|.

Whether or not f is k times differentiable on T is clearly the same issue as
whether or not f̂ is continuous in T̂ , with the issue of the continuity of f̂
really being only on the hyperplane where η = 0. But this puts us back into
the setting of Theorem 2.5.3, and it is easy to check that condition (2.5.13)
there translates to (2.5.20) in the current scenario. 2

The left hand side of (2.5.20) can, obviously, be written in terms of the
covariance function C, although it becomes rather messy rather quickly. Con-
sider what is perhaps the simplest of cases, in which k = 1, t = s, and t′ = s′,
so that we are looking at the simple, first order derivative of a random process
f on the real line. Then (2.5.20) becomes

C(t+ h, t+ h)− C(t+ h, t)− C(t, t+ h) + C(t, t) ≤ K

|ln(|h|)|1+δ
,

for all h ∈ R1 with |h| sufficently small.
If we want to ensure that all first order partial derivatives of a random field

on RN exist and are continuous, then precisely the same condition suffices,
with the understanding that now t and h are both in RN .

Second order partial derivatives of f of general order k require similar
bounds, but the ‘difference’ of C on the left hand side will always be a differ-
ence of order 2k.

As for continuity, it is rare in practice to get close to the upper bound in
(2.5.20), and this condition will easily be satisfied if, in analogy to (2.5.17) and
(2.5.18), the covariance function has a Taylor series expansion of up to order
2k with a remainder of o(|h|2k+η) for some η > 0. There is also a corresponding
spectral result, which you are asked to prove in Exercise 2.8.20.

2.5.3 Non-Gaussian Processes

A natural question to ask is whether or not the results and methods relating
to continuity and differentiabilty that we have seen so far only for Gaussian
random fields extend naturally to the non-Gaussian scenario.

In fact, for most of the processes that will concern us, this will not be
terribly relevant, since we plan to concentrate on Gaussian related fields which
can be written in the form
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f(t) = F
(
g1(t), . . . , gd(t)

)
,

where the gi are i.i.d. Gaussian and F : Rd → R is smooth. In this setting,
continuity and boundedness of the non-Gaussian f follow deterministically
from similar properties on F and the gi, and so no additional theory is needed.

Nevertheless, there are many processes that are not attainable in this way,
With these in mind, and for completeness, we state the following result, in
which ft is a random field on a parameter space T with a metric τ . (This is
usually something corresponding to the canonical metric d of the Gaussian
case.) Recall that a function ϕ : R → R is called a Young function if it is
even, continuous, convex, and satisfies

lim
x→0

ϕ(x)

x
= 0 and lim

x→∞

ϕ(x)

x
=∞.

A simple example of a Young function is given by |x|1+α, α > 0.

Theorem 2.5.5. Take f as above and let Nτ be the metric entropy function
for T with respect to the metric τ . If there exist an α ∈ (0, 1] and a Young
function ϕ such that

E
{
ϕ

(
‖f(t)− f(s)‖αB

τ(s, t)

)}
≤ 1 and

∫
Nτ (u)>1

ϕ−1 (Nτ (u)) du <∞,

then f is continuous with probability one.

The best place to read about this is in Ledoux and Talagrand [53].
Note that, in the Gaussian case, once we had solved the issue of continuity,

continuous differentiability was in essence a corollary. This will not be true in
general, since then derivatives need not belong to the same class of processes
as the original one.

2.6 Gaussian Exceedence Probabilities

If you have read this far, you know that one of the things that we care about
most are the exceedence probabilities

P
{

sup
t∈T

ft > u

}
(2.6.1)

for Gaussian random fields.
There are at least four ways to approach these probabilities.

(i) Choose a particular random field, and use its special properties to cal-
culate the exceedence probabilities from first principles. This is what we
did for the cosine process and field in Section 2.3.4. However, we already
stated there, that, as far as differentiable processes are concerned, these
are the only cases for which this direct approach works.
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(ii) Search for general inequalities, that will always work. After all, basic
statistics has its Chebychev inequality, martingale theory has its maximal
inequalities, Markov processes have large deviations, and so on, so surely
there should be something for Gaussian processes. In fact, there is, and
we shall meet it in Theorem 2.6.1 below. It was discovered independently,
and established with very different proofs, by Borell [22] and Tsirelson,
Ibragimov and Sudakov (TIS) [94]. For brevity, we shall call it the Borell-
TIS inequality. However, like all blanket inequalities, while it provides an
excellent tool for probabilists who wish to prove theorems, it is a poor tool
for statisticians who need to see numbers.

(iii) Use comparison techniques. We do have exact results for the cosine pro-
cesses. Perhaps these could be used as a basis for comparison. It seems
reasonable, for example, that, other things (like means and variances) be-
ing equal, a random field with a weak correlation structure should have
higher exceedence probabilities than a tightly correlated one. To a cer-
tain extent this is true, and the basic results quantifying this are Slepian’s
inequality, Theorem 2.6.3, and its extensions, below.

(iv) Finally, we could compromise. Rather than assuming everything about the
process, as in (i), or nothing, as in (ii), we could assume perhaps a little
more than we would like to, and obtain approximations to exceedence
probabilities which, while not perfect, yield numbers that can be used by
practicing statisticians.

In fact, (iv) is the path that we shall concentrate on later. However, since
(ii) and (iii) are important, and often useful, we shall first invest a little time
saying something about them, along with some of their extensions. We shall
not give proofs. They can all be found in RFG.

2.6.1 Borell-TIS Inequality

In a notation that will remain fixed for the rest of the book, for any random
field f on any parameter space T , set

σ2
T
∆
= sup

t∈T
E{f2

t }.

Then the Borell-TIS inequality37 is

Theorem 2.6.1 (Borell-TIS inequality). Let ft be a centered Gaussian
process, a.s. bounded on T 38. Write

37 Actually, Theorem 2.6.1 is not in the same form as Borell’s original inequality,
in which E{‖f‖} was replaced by the median of ‖f‖. However, the two forms are
equivalent.

38 The parameter space T in the Borell-TIS inequality is completely general, the
only requirement being that it be compact with respect to the canonical metric
d, in the sense of (2.5.3) .
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‖f‖ = ‖f‖T
∆
= sup

t∈T
ft.

Then

E{‖f‖} < ∞,

and, for all u > 0,

P {‖f‖ − E{‖f‖} > u} ≤ e−u
2/2σ2

T . (2.6.2)

Note that, despite the misleading notation, ‖ ‖ ≡ sup is not a norm, and
that very often one needs bounds on the tail of supt |ft|, which does give a
norm. However, symmetry immediately gives

P
{

sup
t
|ft| > u

}
≤ 2P

{
sup
t
ft > u

}
. (2.6.3)

To obtain an appreciation of how tight this very general inequality is, note
that it immediately implies that

P{‖f‖>u} ≤ eµu−u
2/2σ2

T , (2.6.4)

where µu = (2uE{‖f‖}−[E{‖f‖}]2)/2σ2
T , which tells us that, for high levels u,

the dominant behavior of all Gaussian exceedence probabilities is determined
by e−u

2/2σ2
T .

This is somewhat surprising, for if X is a single Gaussian variable with
distribution N(0, σ2

T ) then we already know (cf. (2.2.2)) that, for all u > 0,(
σT√
2πu

− σ3
T√

2πu3

)
e−

1
2u

2/σ2
T ≤ P{X > u} ≤ σT√

2πu
e−

1
2u

2/σ2
T .

In other words, at high levels, the exceedence probability of a Gaussian random
field is not that different from the exceedence probability of the field at the
point of maximal variance.

For a stationary field, where the maximal variance is achieved at every
point in T , this strengthens to the claim that, still at high levels, the excee-
dence probability of a Gaussian random field is not that different from the
exceedence probability of the field at any given point.

Does this mean that we need go no further in studying Gaussian extrema?
Not at all, for a number of reasons:

(i) First of all, while the exponent µu in (2.6.4) grows only linearly in u,
eµu grows much faster. It can therefore hardly be ignored, other than
perhaps by a probabilist in the throes of a proof where “large u” is so large
that linear terms are irrelevent when compared to quadratic, regardless of
whatever constants may be around. Statisticians, however, will rarely feel
this way.
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(ii) If, in view of (i), we decide to keep track of the term eµu , we find it involves
the expectation of the supremum, and this is hard to obtain. While it is
true that under entropy conditions we did manage to find an upper bound
for it (cf. Theorem 2.5.2) this bound involved an admittedly universal, but
essentially unknown39, constant.

(iii) As we shall see later, for most smooth random fields the factor of eµu ,
which is generally O(ecu), can be replaced for a factor of the form Cuα,
where both C and α are explicitly computable. Furthermore, it can be
shown that this is the correct order of growth. This is where expected
Euler characteristics will come into their own, and justify the claims that
we made back in Chapter 1 (cf. (1.5.12)).

As an example of how easy it is to improve on the Borell-TIS bound in the
spirit of (ii), when a little more is assumed, consider the following, definitely
sub-optimal, result.

Theorem 2.6.2. Let be f a centered, a.s. continuous Gaussian field over T
with entropy function N . If N(ε) ≤ Kε−α, then, for all sufficiently large u,

P
{

sup
t∈T

f(t) ≥ u
}
≤ Cα uα+η e−u

2/2σ2
T , (2.6.5)

for every η > 0, where Cα = C(K,α, σ2
T ) is a finite constant.

Proof. Take ε > 0 and define

µ(t, ε) = E

{
sup

s∈Bd(t,ε)

fs

}
,

and

µ(ε) = sup
t∈T

µ(t, ε),

where Bd(t, ε) is a ball of radius ε around t in the canonical metric d of (2.5.1).
Since N(ε) balls of radius ε cover T , it is an immediate consequence of the
Borell-TIS inequality that, for u > µ(ε),

P
{

sup
t∈T

f(t) ≥ u
}
≤ N(ε) e−

1
2 (u−µ(ε))2/σ2

T . (2.6.6)

Allowing C = C(α) to denote a constant, dependent only on α, that may
change from line to line, we have from Theorem 2.5.2 that

39 Actually, there are known values for this constant. However, they are so large as
to yield bounds that are effectively valueless from the point of view of generating
useful numerical bounds to exceedence probabilities.
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µ(t, ε) ≤ C

∫ ε

0

(
ln(N(ε))

) 1
2 dε ≤ C

∫ ε

0

(
lnK + α ln(1/ε)

) 1
2 dε,

so that, for small enough ε,

µ(t, ε) ≤ C
∫ ε

0

(
ln(1/ε)

) 1
2 dε ≤ C ε

√
ln(1/ε).

Set ε = ε(u) = u−1, choose u large enough so that u > Cu−1
√

lnu and
substitute into (2.6.6) to obtain

P
{

sup
t∈T

f(t) ≥ u
}
≤ C1 u

α e−
1
2

(
u−C2u

−1
√

lnu
)2
/σ2
T

≤ C3 u
α eC4

√
lnue−u

2/2σ2
T .

Since for η > 0 and u large enough eC
√

lnu < uη, this gives us (2.6.5) and so
completes the proof. 2

One can do much better than Theorem 2.6.2, by assuming a little more
on the entropy function, or by working a little harder. However, the basic
idea should be clear from this one simple result and its proof. In particular,
in the situations in which we shall generally be working, of smooth, twice
differentiable functions, power law behavior for the entropy function is always
assured (cf. the proof of Theorem 2.5.3). Thus, in those cases, we can expect
bounds on exceedence probabilities which are much better than those given
by the Borell-TIS inequality. On the other hand, it is going to be difficult to
get bounds with useful constants using only entropy arguments.

2.6.2 Comparison Inequalities

Having now seen that it is not going to be easy to get good, quantitative
estimates for exceedence probabilities, we can now investigate the second path,
that of using comparison with known cases.

The theory of Gaussian processes is rich in comparison inequalities, where
by this term we mean results of the form “if f is a ‘rougher’ process than g,
and both are defined over the same parameter space, then ‖f‖ will generally
be ‘larger’ than ‖g‖”, where, as in the previous section, we write ‖ · ‖ for
supremum. The most basic of these results is Slepian’s inequality, which, like
the Borell-TIS inequality, holds for all parameter spaces T .

Theorem 2.6.3 (Slepian’s inequality). If f and g are a.s. bounded, cen-
tered Gaussian processes on T such that E{f2

t } = E{g2
t } for all t ∈ T and

E
{

(ft − fs)2
}
≤ E

{
(gt − gs)2

}
, (2.6.7)

for all s, t ∈ T , then for all real u
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P{‖f‖ > u} ≤ P{‖g‖ > u}. (2.6.8)

Furthermore,

E{‖f‖} ≤ E{‖g‖}. (2.6.9)

Slepian’s inequality is so natural that it hardly seems to require a proof,
and hardly the rather analytic, non-probabilistic one that will follow. To see
that there is more to the story than meets the eye, one need only note that
(2.6.8) does not follow from (2.6.7) if we replace supT ft by supT |ft| and
supT gt by supT |gt| (cf. Exercise 2.8.21).

Furthermore, the proof of Slepian’s inequality does not use the above ‘ob-
vious’ heuristic argument at all, but uses little more than basic calculus and
some approximation arguments. Since the proof is not long, and the result
is important, we shall give a full proof. The proof is based on the following
lemma, the proof of which, in all its important details, goes back to Slepian’s
original paper [85].

Lemma 2.6.4. Let f1, ..., fk be centered Gaussian variables with covariance
matrix C = (cij)

k
i,j=1, cij = E{fifj}. Let h : Rk → R be C2, and assume that

h and its derivatives are all integrable with respect to the Gaussian density on
Rk. Let

H(C) = E {h(f1, . . . , fk)} , (2.6.10)

and assume that for a pair (i, j), 1 ≤ i < j ≤ k

∂2h(x)

∂xi∂xj
≥ 0 (2.6.11)

for all x ∈ Rk. Then H(C) is an increasing function of cij.

Proof. We have to show that

∂H(C)

∂cij
≥ 0.

To make our lives a little easier we assume that C is non-singular, so that
it makes sense to write ϕ(x) = ϕC(x) for the centered Gaussian density on
Rk with covariance matrix C. Straightforward algebra shows that40

∂ϕ

∂cii
= 1

2

∂2ϕ

∂x2
i

,
∂ϕ

∂cij
=

∂2ϕ

∂xi∂xj
, i 6= j. (2.6.12)

Applying this and our assumptions on h to justify two integrations by
parts, we obtain, for i 6= j,

40 This is, of course, little more that the heat equation of PDE theory.
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∂H(C)

∂cij
=

∫
Rk
h(x)

∂ϕ(x)

∂cij
dx =

∫
Rk

∂2h(x)

∂xi∂xj
ϕ(x) dx ≥ 0.

This completes the proof for the case of non-singular C. The general case
can be handled by approximating a singular C via a sequence of non-singular
covariance matrices. 2

Proof of Theorem 2.6.3 Actually, we are only going to prove the main
inequality, (2.6.8), for T discrete and finite. The extension to general T can
be found in RFG, and while slightly technical, is not hard.

Note that since E{f2
t } = E{g2

t } for all t ∈ T , (2.6.7) implies that E{fsft} ≥
E{gsgt} for all s, t ∈ T . Let h(x) =

∏k
i=1 hi(xi), where each hi is a positive

non-increasing, C2 function satisfying the growth conditions placed on h in
the statement of Lemma 2.6.4, and k is the number of points in (our finite,
discrete) T . Note that, for i 6= j

∂2h(x)

∂xi∂xj
= h′i(xi)h

′
j(xj)

∏
n6=i
n6=j

hn(xn) ≥ 0,

since both h′i and h′j are non-positive. It therefore follows from Lemma 2.6.4
that

E

{
k∏
i=1

hi(fi)

}
≥ E

{
k∏
i=1

hi(gi)

}
. (2.6.13)

Now take {h(n)
i }∞n=1 to be a sequence of positive, non-increasing, C2 approx-

imations to the indicator function of the interval (−∞, u], to derive that

P{‖f‖ < u} ≥ P{‖g‖ < u},

which implies (2.6.8).
To complete the proof, all that remains is to show that (2.6.8) implies

(2.6.9). But this is a simple consequence of the tail formula for the mean,
since

E{‖f‖} =

∫ ∞
0

P{‖f‖ > u} du −
∫ 0

−∞
P{‖f‖ < u} du

≤
∫ ∞

0

P{‖g‖ > u} du −
∫ 0

−∞
P{‖g‖ < u} du

= E {‖g‖} .

This completes the proof. 2

There are many extensions of Slepian’s inequality, the most important of
which is probably the following, which we shall not attempt to prove.
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Theorem 2.6.5 (Sudakov-Fernique inequality). Let f and g be a.s.
bounded Gaussian processes on T . If

E{ft} = E{gt}

and

E
{

(ft − fs)2
}
≤ E

{
(gt − gs)2

}
for all s, t ∈ T , then

E{‖f‖} ≤ E{‖g‖}. (2.6.14)

In other words, a Slepian-like inequality holds without a need to assume either
zero mean or identical variance for the compared processes. However, in this
case we have only the weaker ordering of expectations of (2.6.9) and not the
stochastic domination of (2.6.8). Alternatively, while keeping the mean of a
field constant, one can obtain a higher expected supremum by either increasing
the variance or reducing the covariance.

2.6.3 Exceedence Probabilities for Smooth Processes

Now that you have had a little taste of the general theory, the time has come
tp say something about the cases that will be of central interest to us, those
in which the random field has smooth sample paths.

Perhaps the first result of this kind, in the setting of random fields, goes
back to the Russian school of Belyaev [18, 19] and treats stationary, zero
mean, Gaussian random fields on RN with covariance functions which, near
the origin, can be written as

C(t) = 1− tΛt′ + o(|t|2), (2.6.15)

where Λ is the matrix of second order spectral moments (cf. (2.4.4)) and, for
convenience, we have also assumed unit variance. We already know that these
random fields are both continuous with probability one, and differentiable in
mean square41.

In this case, one can show42 that, for N -dimensional rectangles T =∏N
i=1[0, Ti],

41 If the o(|t|2) in (2.6.15) is small enough (o(|t|2+δ) will do) then they are also
continuously differentiable, with probability one. See Theorem 2.5.4.

42 You can learn a lot more about results of this kind, and how to prove them, in
a variety of places. The book by Leadbetter, Lindgren and Rootzén [51] treats
mainly processes on the real line, but is very readable. Piterbarg’s monograph [75]
is harder going, but treats random fields on RN as well as processes on the line.
There you will also find a detailed treatment of the so-called ‘double-sum method’
which can be used to compute results like (2.6.16) for a far wider collection of
random fields.
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lim
u→∞

P {supt∈T ft ≥ u}
uNΨ(u)

=
|T | |Λ|1/2

(2π)N/2
, (2.6.16)

where |T | =
∏
Ti is the volume of T , but |Λ| is the determinant of Λ.

In view of what we know about the tail probabilities Ψ(u) (cf. (2.2.2))
another way to write this result would be

P
{

sup
t∈T

ft ≥ u
}

= uN−1e−u
2/2

[
|T ||Λ|1/2

(2π)(N+1)/2
+R(u)

]
.

The remainder term R(u) tends to 0 as u → ∞, but otherwise (2.6.16) tells
us nothing about it.

On the other hand, if one assumes just a little more, that f is twice continu-
ously differentiable, it is possible to show that there exist explicitly computable
constants α, n and Cj such that

P
{

sup
t∈T

f(t) ≥ u

}
= Ψ(u) + uα e−u

2/2

 n∑
j=0

Cju
−j + error

 , (2.6.17)

where the error is small for large u. Furthermore, one can get a good handle
on the error term, which turns out to be much smaller than expected43.

Indeed, while, for convenience, we have been assuming stationarity above,
results like (2.6.17) hold in quite wide generality and also without the assump-
tion that T be a simple rectangle in RN .

To explain all of this properly, however, needs an excursion into geometry,
which is the content of the next chapter, followed by some hard computation,
which is the content of Chapter 4. We shall return to extremal problems, and
results like (2.6.17), only in Chapter 5.

2.7 An Expectation Meta-Theorem: The Rice-Kac
Formula

In this section, we quote a basic tool, the Rice-Kac formula, which we shall use
later, in Chapter 4, to compute the expectations of certain functionals of the
excursion sets of smooth random fields. Consider two vector-valued random
fields f = (f1, . . . , fN ) and g = (g1, . . . , gK) defined on some compact set
T ⊂ RN with non-empty interior. For B ⊂ RK , we need formulae for the
expectations

E
{

# {t ∈ T : f(t) = u, g(t) ∈ B}
}
. (2.7.1)

43 Since (2.6.17) looks like the beginning of a power series expansion, one would

‘expect’ the error term to be o(u−(n+1)). In fact, it turns out to be o(e−δu
2

), for
an identifiable δ > 0. This, of course, is much smaller, and is reminiscent of what
we saw for the cosine field at (2.3.16).
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Perhaps the most basic application of (2.7.1) is to prove the famous Rice,
or Rice-Kac formula44. The Rice formula gives an expression for the number
of upcrossings of the level u of a real-valued process h on the line where an
upcrossing is defined as a point t where h(t) = u and h(t) is increasing. In
this example, we set f = h, g = ḣ and B = [0,+∞). See Exercise 2.8.23.

However, we shall require these expectations for a number of reasons. For
example, in Chapter 3 we shall see how, using Morse theory, critical points of
random fields above a level u, which are local features, can be used to compute
certain global properties of excursion sets. In turn, these can be related to the
exceedence probabilities (2.6.1) of f above the level u.

To see how (2.7.1) helps, note that that the critical points of a random field
Z, say, are solutions to the equation ∇Z = 0. If we are to count critical points
of Z above the level u, this suggests setting f = ∇Z, g = Z and B = [u,+∞)
in (2.7.1). See Exercise 2.8.25 on applying this formula to maxima in one
dimension.

We are now ready to quote the theorem. Below, ∇f denotes the derivative
field of f . Since f takes values in RN , this is now a N×N matrix of first-order
partial derivatives of f ; i.e.

(∇f)(t) ≡ ∇f(t) ≡
(
f ij(t)

)
i,j=1,...,N

≡
(
∂f i(t)

∂tj

)
i,j=1,...,N

.

Theorem 2.7.1. Let f , g, T and B be as above, with the additional assump-
tion that the boundaries of T and B have finite N − 1 and K − 1 dimensional
measures, respectively. Furthermore, assume that the following conditions are
satisfied for some u ∈ RN :

(a) All components of f , ∇f , and g are a.s. continuous and have finite vari-
ances (over T ).

(b) For all t ∈ T , the marginal densities pt(x) of f(t) (implicitly assumed to
exist) are continuous at x = u.

(c) The conditional densities pt(x|∇f(t), g(t)) of f(t) given g(t) and ∇f(t)
(implicitly assumed to exist) are bounded above and continuous at x = u,
uniformly in t ∈ T .

(d) The conditional densities pt(z|f(t) = x) of det∇f(t) given f(t) = x, are
continuous for z and x in neighbourhoods of 0 and u, respectively, uni-
formly in t ∈ T .

(e) The conditional densities pt(z|f(t) = x) of g(t) given f(t) = x, are con-
tinuous for all z and for x in a neighbourhood u, uniformly in t ∈ T .

(f) The following moment condition holds:

sup
t∈T

max
1≤i,j≤N

E
{∣∣f ij(t)∣∣N} <∞. (2.7.2)

44 In fact, the name Rice-Kac formula comes from the fact that the first version of
the above formula was used in exactly this way in Kac [45] and Rice [78], following
on earlier work by Rice [77] in 1939.
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(g) The moduli of continuity with respect to the usual Euclidean norm (cf.
(2.5.7)) of each of the components of f , ∇f , and g satisfy

P {ω(η) > ε } = o
(
ηN
)
, as η ↓ 0, (2.7.3)

for any ε > 0.

Then, if

Nu ≡ Nu(T ) ≡ Nu(f, g : T,B)

denotes the number of points in T for which

f(t) = u ∈ RN and g(t) ∈ B ⊂ RK ,

and pt(x,∇y, v) denotes the joint density of (ft,∇ft, gt), we have, with D =
N2 +K,

E{Nu} =

∫
T

∫
RD
|det∇y| 1B(v) pt(u,∇y, v) d(∇y) dv dt. (2.7.4)

It is sometimes more convenient to write this as

E{Nu} =

∫
T

E
{
|det∇f(t) | 1B(g(t))

∣∣∣ f(t) = u
}
pt(u) dt, (2.7.5)

where pt here is the density of f(t).

In our applications of Theorem 2.7.1, the expression (2.7.5) will be the
principal form used.

For a full proof, see RFG, where this result appears as Theorem 11.2.1.
An outline of the beginning of this proof, that at least shows from where the
result comes, will be given in a moment.

Conditions (a)–(g) are often tedious to check, but almost disappear when
both f and g are either Gaussian, or simple functions of Gaussian (vector-
valued) Gaussian random fields. In these situations, the primary consideration
becomes one of sample path continuity and differentiability, which we already
looked at in some detail in Section 2.5.1. Here is the Gaussian result.

Corollary 2.7.2. Let f and g be centered Gaussian fields, and let T and B
satisfy the conditions of Theorem 2.7.1. Assume that f,∇f and g are all a.s.
continuous with finite variances over T and that, for each t ∈ T , the joint
distribution of (f(t),∇f(t), g(t)) is non-degenerate.

Write Cif = Cif (s, t) for the covariance function of f i, Cifj = ∂2Cif/∂sj∂tj

for the covariance function of f ij = ∂f i/∂tj, and Cig for the covariance func-

tion of gi. If



2.7 An Expectation Meta-Theorem: The Rice-Kac Formula 81

max
i,j

∣∣∣Cifj (t, t) + Cifj (s, s)− 2Cifj (s, t)
∣∣∣ ≤ K |ln |t− s| |−(1+α)

,

max
i

∣∣Cig(t, t) + Cig(s, s)− 2Cig(s, t)
∣∣ ≤ K |ln |t− s| |−(1+α)

,
(2.7.6)

for some finite K > 0, some α > 0 and all |t − s| small enough, then the
conclusions of Theorem 2.7.1 hold.

To close this Chapter, we look at a partial proof of Theorem 2.7.1. For a
start, however, you should try Exercise 2.8.26, which shows that, if T = [0, 1]N ,
then, under conditions (a), (b) and (d) of Theorem 2.7.1, there are, with
probability one, no points t ∈ ∂T satisfying f(t) = u. We shall use this and
other regularity properties of f and g in what follows. This is the easiest one
to prove.

To start, let δε : RN → R be an approximate delta function, constant on
the N -ball B(ε) = {t ∈ RN : |t| < ε}, zero elsewhere, and normalized so that∫

B(ε)

δε(t) dt = 1. (2.7.7)

We then claim that

Nu(f, g;T,B) = lim
ε→0

∫
T

δε(f(t)− u) 1B(g(t)) |det∇f(t) | dt. (2.7.8)

If this is true, then, with no further pretense to rigor, take expectations on
both sides and freely change the orders of limit and expectation to find that

E{Nu} = lim
ε→0

E
∫
T

δε(f(t)− u) 1B(g(t)) |det∇f(t) | dt

=

∫
T

∫
RN(N+1)/2

∫
RK

1B(v) |det∇y|

×
{

lim
ε→0

∫
RN

δε(x− u) pt(x,∇y, v) dx

}
d∇y dv dt,

where the pt are the obvious densities. Taking the limit in the innermost
integral yields

E{Nu} =

∫
T

∫ ∫
1B(v) |det∇y| pt(u,∇y, v) d∇y dv dt

=

∫
T

E{|det∇f(t)|1B(g(t))
∣∣ f(t) = u} pt(u) dt,

which is what we wanted to show.
Of course, interchanging the order of integration and the limiting proce-

dure requires justification, and not only is it far from trivial, it is in fact so
hard to do that a fully rigorous proof requires a rather different approach. See
Theorem 11.2.1 of RFG for details.
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Now, however, we return to the proof of (2.7.8).
To save on notation, and without any loss of generality, we take u = 0.

Consider those t ∈ T for which f(t) = 0, of which we claim (without proof)
that there is only a finite number. Furthermore, by Exercise 2.8.26, none of
them lie in ∂T . Consequently, each one can be surrounded by an open ball,
of radius η, say, in such a way that the balls neither overlap nor intersect ∂T .
Furthermore (again as an unproven consequence of the assumptions) we can
take η small enough so that within each ball g(t) always lies in either B or
the interior of its complement, but never both.

Let σ(ε) be the ball |f | < ε in the image space of f . From what we have
just claimed follows the fact that we can also choose ε small enough for the
inverse image of σ(ε) in T to be contained within the union of the η spheres.

Furthermore, by the inverse mapping theorem we can choose ε, η so small
that, for each η sphere in T , σ(ε) is contained in the f image of the η sphere, so
that the restriction of f to such a sphere will be one-one. Since the Jacobian of
the mapping of each η sphere by f is |det∇f(t)| it follows that we can choose
ε small enough so that

N0 =

∫
T

δε(f(t)) 1B(g(t)) |det∇f(t) | dt.

This follows since each η sphere in T over which g(t) ∈ B will contribute
exactly one unit to the integral, while all points outside the η spheres will not
be mapped onto σ(ε). Since the left-hand side of this expression is independent
of ε we can take the limit as ε→ 0 to obtain (2.7.8), as required.

2.8 Exercises

Exercise 2.8.1. Prove the basic, but very important, Gaussian inequality
(2.2.2), that (

1

x
− 1

x3

)
ϕ(x) < Ψ(x) <

1

x
ϕ(x),

for all x > 0.

Exercise 2.8.2. Show that the conditional distributions of multivariate Gaus-
sian variables, are also Gaussian, with mean vectors given by (2.2.6) and co-
variance matrices given by (2.2.7).
Hint: Take

A =

(
In −C−1

11 C12

0 Id−n

)
in (2.2.5) and define Y = (Y 1, Y 2) = XA, where Y 1 has length n. Check that
Y 1 ≡ X1 and Y 2 are independent and use this to obtain (2.2.6) and (2.2.7)
for i = 2, j = 1.
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Exercise 2.8.3. Prove the Wick product formula for Gaussian random vari-
ables, which says the following:

Let X1, X2, . . . , Xn be a set of real-valued random variables having a joint
Gaussian distribution and zero means. Then, for any integer m,

E{X1X2 · · ·X2m+1} = 0,

E{X1X2 · · ·X2m} =
∑

E{Xi1Xi2} · · ·E{Xi2m−1Xi2m},

where the sum is taken over the (2m)! /m! 2m different ways of grouping
X1, . . . , X2m into m pairs.
Hint: Use characteristic functions.

Exercise 2.8.4. Using nothing but the definition (2.2.9) of the covariance
function,

(i) Show that covariance functions of random processes must always be non-
negative definite. (cf. Footnote 4 for a definition of non-negative definite-
ness.)

(ii) Find a simple non-degeneracy condition on a random process for its co-
variance function to be positive definite.

Exercise 2.8.5. Compute the covariance function of the cosine random field
(2.3.11), and show that it is both stationary and isotropic.

Exercise 2.8.6. Let f be the cosine field of (2.3.11) with the ξk and ξ′k all
independent N(0, σ2).

(i) Following the argument described in Section 2.3.4, derive the density
(2.3.12) for the supremum, identifying the Cnk.
Hint: Use characteristic functions to handle the convolution.

(ii) Using (2.3.12) (and quite a lot of calculus) establish (2.3.16).

Exercise 2.8.7. Prove the“if” part of the spectral distribution theorem, The-
orem 2.4.1. That is, prove that C(t) in (2.4.2) is a non-negative definite func-
tion.

Exercise 2.8.8. In the statement of the spectral distribution theorem, The-
orem 2.4.1, there is an implicit assumption that every non-negative definite
function is also a covariance function. Show that this is true by showing that
there exists a field with that covariance function.

Exercise 2.8.9. Prove that (2.4.8) and (2.4.9) hold, under condition (2.4.7).
Hint: It is easiest, but not necessary, to use both the spectral distribution
theorem and the spectral representation theorem.
Warning: Don’t forget that i2 = −1 if you want to get the power of −1 correct!
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Exercise 2.8.10. Let f be a stationary, C2, random field, ∇f the vector of
its first order partial derivatives, and ∇2f(t) the matrix of its second order
derivatives, written out as a vector for the following to make dimensional
sense.

(i) Show that the covariance of (f(t),∇f(t),∇2f(t)) can be written as

Var

 f(t)
∇f(t)
∇2f(t)

 =

 σ2 0 −Λ
0 Λ 0
−Λ 0 E

 (2.8.1)

where
Λij = E {fi(t)fj(t)}

and

Eij,kl
∆
= E {fij(t)fkl(t)} .

(ii) Express Λ and E in terms of the spectral measure (2.4.2) of f .
(iii) Show that E is symmetric in i, j, k, l.
(iv) How do these covariances simplify if f is isotropic?

Exercise 2.8.11. Taking W to be the Brownian motion on [0, 1] – i.e. the zero

mean Gaussian process with covariance function C(s, t) = s ∧ t ∆= min(s, t)
– show that integral equation defining the eigenvalues λn and eigenfunctions
ψn needed for finding a Karhunen-Loève expansion for W (i.e. (2.3.20)) is

λψ(t) =

∫ 1

0

min(s, t)ψ(s) ds =

∫ t

0

sψ(s) ds + t

∫ 1

t

ψ(s) ds.

Differentiate both sides twice with respect to t to find a second order ordinary
differential equation whose solution, together with the appropriate conditions,
gives

ψn(t) =
√

2 sin
(

1
2 (2n+ 1)πt

)
, λn =

(
2

(2n+ 1)π

)2

.

Exercise 2.8.12. Let W be a Gaussian white noise based on Lebesgue mea-
sure, and use it to define a random field on RN+ = {(t1, ..., tN ) : ti ≥ 0} by
setting

W (t) = W ([0, t]) , (2.8.2)

where [0, t] is the rectangle
∏N
i=1[0, ti]. Wt is called the Brownian sheet on

RN+ , or multiparameter Brownian motion. If N = 1 it is standard Brownian
motion.

(i) Show that W is a centered Gaussian field on RN+ with covariance

E{WsWt} = (s1 ∧ t1)× · · · × (sN ∧ tN ), (2.8.3)

where s ∧ t ∆= min(s, t).
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(ii) Suppose N > 1, and fix N − k of the indices. Show that W is a scaled
k-parameter Brownian sheet in the remaining variables.

(iii) Using the result of Exercise 2.8.11, find a Karhunen-Loève expansion for
W on [0, 1]N .

Exercise 2.8.13. Show that for an isotropic random field on RN the orthog-
onal expansion (2.3.17) can never be finite.

Exercise 2.8.14. By using the fact that covariance functions must be non-
negative definite, show that (2.4.37) is true.

Exercise 2.8.15.

(i) Let f(t) = 〈t, ξ〉, t ∈ SN−1, be the canonical Gaussian field on the sphere
in RN , where ξ ∼ N(0, IN×N ). Show that f(t) is stationary and isotropic
with covariance function C(t1, t2) = 〈t1, t2〉.

(ii) Show that the restriction of a stationary isotropic random field in RN to
any fixed lower dimensional sphere is also stationary and isotropic on that
sphere.

Exercise 2.8.16. Let N(t), t ≥ 0, be a standard, unit rate, Poisson process.

(i) Show that N is continuous in probability and in mean square, but not
with probability one.

(ii) Can you find an example of a stochastic process that is continuous in
probability but not in mean square? What about the other way around?

(iii) Show that M(t)
∆
=
∫ t

0
N(s) ds is differentiable in mean square, but not

with probability one.

Exercise 2.8.17. Let f be any stochastic process on RN .

(i) Show that f is mean square continuous if and only if its covariance func-
tion C is continuous on T × T .

(ii) Show that if C is continuous at diagonal points (t, t), then it is continuous
everywhere on T × T .

Exercise 2.8.18. Suppose f is a continuous Gaussian process on [0, 1], ϕ
a homeomorphism of [0, 1], and g a new process defined, also on [0, 1], by
gt = f(ϕ(t)).

(i) Show that f and g have identical entropy functions.
(ii) Show, by example, that it is possible for the covariance function of f to

satisfy (2.5.12) while that of g does not.

Hint: Use Brownian motion as your process.

Exercise 2.8.19. Prove the equivalence of the finiteness of the two integrals
in (2.5.12) and that the convergence of both is assured by (2.5.13).
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Exercise 2.8.20. Given a stationary Gaussian field f on RN with spectral
measure ν,

(i) Show that the finiteness of the spectral integral (2.5.19) ensures that f is
sample path continuous.

(ii) Show that f will be k times continuously differentiable if∫
RN
|λ|2k

(
log(1 + |λ|

)1+α
ν(dλ) <∞,

for some α > 0.

Exercise 2.8.21. Find a counterexample to “Slepian’s inequality for absolute
values” which, if it were correct, would claim that the inequality holds with
absolute values.
Hint: It suffices to find a counterexample based on a parameter space with
only two points.

Exercise 2.8.22. Suppose that f is a stationary, zero mean, Gaussian ran-
dom field on RN , with a covariance function C(t) that can be expanded as

C(t) = C(0) + 1
2 tΛt

′ + o(|t|2),

for some matrix Λ of second spectral moments, and for |t| in some neighbor-
hood of the origin.

(i) Using Slepian’s inequality, show that there is (perhaps another) neigh-
borhood of the origin throughout which the exceedence probabilities of f
can be bounded, above and below, by those of a cosine process.

(ii) Identify the parameters of the cosine process.

Exercise 2.8.23 (Rice formula). Let f be a C1 process defined on the real
line. Let Nu(T ) denote the number of upcrossings by f of the level u in [0, T ],
viz.

Nu(T ) =
{

#
{
t ∈ [0, T ] : f(t) = u, ḟ(t) > 0

}}
(i) Use Theorem 2.7.1 to derive Rice’s original formula:

E {Nu(T )} =

∫ T

0

E
{
ḟ(t) 1{ḟ(t)>0}

∣∣f(t) = u
}
pt(u) dt,

where pt(u) is the density of f(t).
(ii) Assume that f is stationary and Gaussian with zero mean and unit vari-

ance and show that

E {Nu(T )} = T
λ

1/2
2

2π
e−u

2/2, (2.8.4)
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where λ2 is the second spectral moment

λ2 = E
{
ḟ(t)2

}
=

∫
R
λ2 ν(dλ)

and ν is the spectral measure (2.4.2).
(iii) Assume that f is Gaussian with zero mean and constant unit variance.

Show that

E {Nu(T )} =
e−u

2/2

2π

∫ T

0

λ
1/2
t (t) dt,

where λt = E
{
ḟ(t)2

}
.

Exercise 2.8.24. Let f be the cosine process of (2.3.3). Show, from first
principles, (i.e. without using the results of Section 2.7) that, for T ≤ π/λ,
the Rice formula (2.8.4) holds for this process.

Exercise 2.8.25. Let f be a C2 process defined on the real line, and let
Mu(T ) be the number of local maxima of f above the level u in [0, T ], viz.

Mu(T ) = #
{
t ∈ [0, T ] : ḟ(t) = 0, f̈(t) < 0, f(t) ≥ u

}
.

Also, let M(T ) = M−∞(T ) be the total number of local maxima in [0, T ].

(i) Apply Rice’s formula to show that if f is stationary and Gaussian with
mean 0 and variance 1 then

E {M(T )} = T
λ

1/2
4

2πλ
1/2
2

,

where λ4 is the fourth order spectral moment

λ4 = E
{
f̈(t)4

}
=

∫
R
λ4 ν(dλ),

and ν is the spectral measure (2.4.2).
(ii) For general f , use Theorem 2.7.1 to show that

E {Mu(T )} =

∫ T

0

E
{
−f̈(t) 1{f̈(t)<0} 1{f(t)>u}

∣∣ḟ(t) = 0
}
ṗt(0) dt,

where ṗt is the density of ḟ(t).
(iii) Again assuming that f is stationary and Gaussian with mean 0 and vari-

ance 1, and using the above, show that

E {Mu(T )} = T
λ

1/2
4

2πλ
1/2
2

Ψ

(
λ

1/2
4 u

∆1/2

)
− T λ

1/2
2√
2π
ϕ(u)Φ

(
λ2u

∆1/2

)
,

where ∆ = λ4 − λ2
2.
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(iv) Using the above and Rice’s formula show that, for C2, stationary, zero
mean and unit variance Gaussian processes on the real line,

lim
u→∞

E {Mu(T )}
E {Nu(T )}

= 1.

Exercise 2.8.26. Suppose that T = [0, 1]N . Show that under conditions (a)
and (b) of Theorem 2.7.1 there are no points t ∈ ∂T satisfying f(t) = u.
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Geometry

In this chapter we shall introduce some of the basic ideas of integral geometry
that will be needed later. Among these will be the Euler characteristic, in-
trinsic volumes and kinematic formulas of various kinds. Quite comprehensive
studies of integral geometry are available in the monographs of Schneider [82]
and Santaló [81]. A more complete treatment than the one following, with
proofs and using the same notation, can be found in [5].

3.1 Basic Complexes and the Euler Characteristic

Before we can begin to talk about functionals such as the Euler characteristic,
already discussed in Chapter 1, we have to make certain that they are well
defined. Thus, we need first of all to find classes of sets which guarantee this,
while at the same time being broad enough to include the excursion sets of
random fields.

To build these sets, we begin with a class of geometric objects known as
basic complexes. On these it will be rather straightforward to study the basic
properties of the Euler characteristic. Also, while we shall not prove it, it is
possible to show that, with probability one, excursion sets of a wide variety
of random fields belong to this class.

We commence with some definitions and simple results, all of which are
due to Hadwiger [38].

Assume that we have equipped RN with a Cartesian coordinate system,
so that the N vectors ej (with 1 in the j-th position and zeros elsewhere)
serve as an orthonormal basis. Throughout this section, everything that we
shall have to say will be dependent on this choice of basis. The restriction
to a particular coordinate system disappears in the coordinate free approach
based on Morse theory, which will be presented in Section 3.2.

We call a k-dimensional affine subspace of the form

E =
{
t ∈ RN : tj = aj , j ∈ J ; −∞ < tj <∞, j /∈ J

}
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a (coordinate) k-plane of RN if J is a subset of size N − k of {1, . . . , N} and
aj , j ∈ J , are fixed.

We shall call a compact set B in RN basic if the intersections E ∩ B are
simply connected for every k-plane E of RN , k = 1, . . . , N . Note that this
includes the case E = RN . These sets, as their name implies, will form the
basic building blocks from which we shall construct more complicated and
interesting structures. It is obvious that the empty set ∅ is basic, and that
in R1 basic sets are closed intervals or points. All closed convex sets in RN
are basic. Indeed, convex sets remain basic under rotation, a property which
characterizes them. Note that it follows from the definition that, if B is basic,
then so is E ∩B for any k-plane E.

A set A ⊂ RN is called a basic complex if it can be represented as the
union of a finite number of basic sets, B1, . . . Bm, for which the intersections
Bν1∩· · ·∩Bνk are basic for any combination of indices ν1, . . . , νk, k = 1, . . . ,m.
There is, obviously, no uniqueness in this representation, which is called a
partition of A.

The class of N -dimensional basic complexes, which we denote by CNB ,
is quite large, and, in view of the fact that convex sets are basic, includes
the convex ring (i.e. the collection of all sets formed via finite union and
intersection of convex sets.)

With a class of sets in mind, we can now begin our search for a way to
describe the shape of sets by looking for an integer valued functional with the
following two basic properties:

ϕ(A) =

{
0 if A = ∅,
1 if A 6= ∅ is basic,

(3.1.1)

and

ϕ(A ∪B) = ϕ(A) + ϕ(B)− ϕ(A ∩B), (3.1.2)

whenever A, B, A∪B, A∩B ∈ CNB . That is, ϕ is a finitely additive functional
that assigns the value one to every basic set.

An important result of integral geometry states that not only does a func-
tional possessing these two properties exist, but it is uniquely determined by
them. This functional is the Euler characteristic, and we shall continue to
denote it by ϕ.

One way to compute the Euler characteristic that follows by iterating the
additivity relationship (3.1.2) is to take a partition B1, . . . , Bn of A and note
that

(3.1.3)

ϕ(A) =
∑(1)

ϕ(Bj)−
∑(2)

ϕ(Bj1 ∩Bj2) + . . .+ (−1)n+1ϕ(B1 ∩ . . . ∩Bn),

where
∑(k)

denotes summation over all subsets {j1, . . . , jk} of {1, . . . , n},
1 ≤ k ≤ n. Since from the definition of a partition all the intersections in
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(3.1.3) are either empty or basic sets, their Euler characteristics must zero or
one, and so we can rewrite (3.1.3) as

ϕ(A) = #{Elements in the partition} (3.1.4)

−#{Pairs in the partition with non-empty intersection}
+#{Triples in the partition with non-empty intersection}

− . . .

If you recall our first meeting with the Euler characteristic in the introductory
Section 1.3, then this ‘inclusion-exclusion’ should remind you of the Euler
characteristic we defined there for sets made up out of cubes. See Exercise
3.6.1.

An immediate consequence of (3.1.4) is that the Euler characteristic is an
integer valued functional, something which was not explicitly required by our
initial requirements (3.1.1) and (3.1.2).

The following theorem, which also follows from (3.1.3), albeit somewhat
less directly, describes another algorithm for computing ϕ(A) for A ∈ CNB . It
could actually be taken as a definition of the Euler characteristic for basic
complexes

Theorem 3.1.1. For basic complexes A ∈ CNB , the Euler characteristic ϕ, as
defined by (3.1.1) and (3.1.2) has the following equivalent iterative definition
for any 1 ≤ j ≤ N :

ϕ(A) =

{
number of disjoint intervals in A if N = 1,∑
x{ϕ(A ∩ Ex)− ϕ(A ∩ Ex−)} if N > 1,

(3.1.5)

where Ex
∆
= {t ∈ RN : tj = x},

ϕ(A ∩ Ex−)
∆
= lim

y↓0
ϕ(A ∩ Ex−y), (3.1.6)

and the summation in (3.1.5) is over the finite number of real x for which the
summand is non-zero.

Figure 3.1.1 shows an example of this iterative procedure in R2. Here
j = 2, so the lines Ex are parallel to the horizontal t1 direction. The values
of ϕ(A ∩ Et2) appear closest to the vertical axis, with those of ϕ(A ∩ Et2) −
ϕ(A ∩ Et−2 ) to their left. Note in particular the set with the hole ‘in the

middle’. It is on sets like this, and their counterparts in higher dimensions,
that the Euler characteristic ϕ and the number of connected components of
the set differ. In this example they are, respectively, zero and one. The arrows
indicate contributions to ϕ as described in Theorem 3.1.1.

Although Theorem 3.1.1 gave a definition of the Euler characteristic based
on the local behavior of sets at certain boundary points, it is not hard to see,
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Fig. 3.1.1. Computing the Euler characteristic.

at least in two dimensions, that it also has a global, topological definition. In
particular, if A is a basic complex in R2, then

ϕ(A) = Number of connected components in A minus the number of holes.

The three dimensional case is a little harder, but you should still be able to
convince yourself, via a few examples, that in this case,

ϕ(A) = Number of connected components in A

minus the number of handles plus the number of holes.

At this point, we can define ‘holes’ and ‘handles’ by example. A tennis ball
has one hole in the middle. A teacup has one handle. One can replace ‘han-
dles’ by ‘tunnels’ (think of the ‘tunnel’ going through the teacup’s handle) or
‘cylindrical holes drilled through A’, as we shall in a moment.

To understand how this works in higher dimensions, you should try to
visualize some N -dimensional examples to convince yourself that for the N -
dimensional unit ball, BN and its boundary, the (N − 1)-dimensional unit
sphere, SN−1:

ϕ(BN ) = 1, ϕ(SN−1) = 1 + (−1)N−1. (3.1.7)

It is somewhat less easy (and, indeed, quite deep in higher dimensions) to see
that, if KN,k denotes BN with k non-intersecting cylindrical holes of dimen-
sion N drilled completely through it1, then, since both KN,k and its boundary
belong to CNB ,

ϕ(KN,k) = 1 + (−1)Nk,

while

1 Thus, for example, drilling a three-dimensional hole through a two dimensional
disk will split it into two separate pieces, while doing this to a three dimensional
ball will turn it into a bagel.
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ϕ(∂KN,k) = [1 + (−1)N−1](1− k).

Finally, if we write K̄N,k to denote BN with k ‘handles’ attached, then,

ϕ(K̄N,k) = 1− k.

One final point to note about the Euler characteristic is that it possesses an
important invariance property. Formally, homotopically equivalent sets have
the same Euler characteristic. Less formally, sets which can be deformed into
one another in a smooth fashion have the same Euler characteristic.

3.2 Excursion Sets and Morse Theory

You may have noticed that the points contributing to the Euler character-
istic in Figure 3.1.1 are always maxima or minima of the height function
h(t1, t2) = t2, as one follows the values of h along the boundary of the re-
gions. Not all maxima and minima contribute, however. Neither of these facts
is a coincidence, and, in fact, one can use the critical points of almost any
twice differentiable function to compute the Euler characteristic. This is the
basis of Morse theory, one of the topics of this section. The claim ‘almost any’
above is of course, rather imprecise, and a little searching for counter-examples
will easily produce them. A class of functions for which this argument does
work are the Morse functions which we shall define soon. With this definition,
however, ‘almost any’ can be given a more precise meaning, since it turns out
that, under mild assumptions, the sample paths of smooth random fields are
Morse functions, with probability one.

Let us return briefly to the setting of excursion sets. To enable later prob-
abilistic calculations, we would like to be able to compute their Euler char-
acteristics directly from the function f , without having to look at the sets
themselves. In other words, if we think of the sets in Figure 3.1.1 as the
excursion sets of functions, then we need a way of describing which points
contribute to the Euler characteristic of the excursion set, along with the con-
tribution they make, in terms of local properties of f . To do this2, we need
some Morse theory.

We first state Morse’s theorem for C2 domains, i.e. closed compact sets
in RN bounded by C2 hypersurfaces. The sets in Figure 3.1.1 satisfy this
condition. (Not exactly the way they are drawn now.) However, be-
fore stating the theorem, we must first define the notion of non-degeneracy
for both critical points of functions on domains and for their restrictions to
hypersurfaces.

Suppose M ⊂ RN is a C2 domain and f ∈ C2(RN ). We say a critical point
of f , i.e. a point t∗ satisfying

2 In fact, it turns out that Theorem 3.1.1 is no more that a special case of Morse’s
theorem (cf. Exercise 3.6.3).
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∇f(t∗) = 0,

is non-degenerate if
det
(
∇2f(t∗)

)
6= 0,

where ∇2f(t) = ∇2
Nf(t) (In contrast with the N − 1 dimensional

Hessian to be defined below) is the N×N matrix of second order partial
derivatives of f .

A critical point of f|∂M , the restriction of f to the boundary ∂M of M , is
a point t∗ ∈ ∂M for which ∇f is parallel to η, the unique outward pointing
normal vector along ∂M . We write this as

∇f(t∗) ‖ η(t∗).

This is equivalent to
∇f|∂M (t) = 0,

where
∇f|∂M (t) = ∇f(t)− 〈∇f(t), η(t)〉η(t).

A critical point of f|∂M is non-degenerate if

det
(
∇2f|∂M (t∗)

)
6= 0.

The definition of the Hessian, or second derivative, ∇2f|∂M (t) here requires a
little care, as it involves the tangent space at t ∈ ∂M as well as the curvature
matrix at t ∈ ∂M .

The curvature matrix is important, both now, for Morse’s theorem, and
later in Section 3.3 where, in Theorem 3.3.1, it plays an important rôle in
the calculation of intrinsic volumes. Thus we shall take some time to define it
carefully, as well as the Hessian ∇2f|∂M (t), already now.

The tangent space at t is an (N − 1)-dimensional linear approximation to
∂M at t, for which we can choose an orthonormal basis {e1(t), . . . , eN−1(t)}.
The (outward) curvature matrix C(t) at t ∈ ∂M is the (N − 1) × (N − 1)
matrix of usual second derivatives3 of the following ‘height function’ at t,

Add a figure here depicting f with full comment, noting s ∈
∂M . Maybe rephrase description.

ht(s) =
1

2
〈s− t, η(t)〉, s ∈ ∂M,

in the directions e1(t) through eN−1(t). With these definitions, the Hessian
above is

∇2f|∂M (t) = ∇2
N−1f(t)− 〈∇f(t), η(t)〉C(t)

3 More precisely, to properly define these second derivatives, we should define ht
on a neighbourhood of t. To do this, we can choose any C1 extension of η in this
neighbourhood of t.



3.2 Excursion Sets and Morse Theory 95

where ∇2
N−1f(t) is the (N − 1)× (N − 1) matrix of second derivatives of f in

the directions e1(t) through eN−1(t).
The last ingredient we need for Morse’s theorem is the (tangential) index

of (the Hessian of) a critical point, where we define the index of a symmetric
matrix A as

Ind(A) = Number of negative eigenvalues of A. (3.2.1)

We now have all that we need to state Morse’s theorem for C2 domains.

Theorem 3.2.1 (Morse’s theorem for C2 domains). Let M ⊂ RN be a
C2 domain and f ∈ C2(RN ) be such that

(i) f has no critical points on ∂M .
(ii) ∇2f , the Hessian of f , is non-degenerate at each critical point of f in

M .
(iii) ∇2f|∂M , the Hessian of f restricted to ∂M , is non-degenerate at each

critical point of f|∂M .

Then,

ϕ(M) =
∑

{t∈M :∇f(t)=0}

(−1)Ind(∇2f(t))

+
∑

{t∈∂M :∇f|∂M (t)=0}

(−1)Ind(∇2f|∂M (t))1{〈∇f(t),η(t)〉<0}.
(3.2.2)

Remark 3.2.2 The condition that 〈∇f(t), η(t)〉 < 0 in the indicator is related
to the one-sided limit (3.1.6) in Theorem 3.1.1 and the counting of only the
critical points on the lower boundary in Figure 3.1.1 when computing Euler
characteristics, both of which result from a particular choice of f .

Add another diagram here, perhaps of f(t) = a − |t|2 over a
domain with wrinkled boundary.

For details, see Exercise 3.6.3, which also confronts some of the limitations
of Theorem 3.2.1, including the fact that it does not apply to domains as simple
as rectangles.

Definition 3.2.3. We call C2 functions satisfying conditions (i)–(iii) of The-
orem 3.2.1 Morse functions.

Theorem 3.2.1 gives a way of computing the Euler characteristic of a C2

domain M in terms of critical points of Morse functions restricted to M . Note
that these functions have no particular relationship to the domain itself, and
there is no uniqueness of the Morse function used in Theorem 3.2.1 to compute
the Euler characteristic of M . In fact, this is one of the deepest aspects of the
theorem.

Soon, however, we shall be interested in the Euler characteristic of excur-
sion sets of the form
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M ∩ f−1[u,+∞),

so that now there is a connection between f and the set whose Euler char-
acteristic we want to calculate. Unfortunately, this set no longer fits into the
framework of Theorem 3.2.1, since M ∩ f−1[u,+∞) is not generally a C2

domain. The problem is that there are usually corners, edges, etc. where ∂M
meets f−1(u). Hence, the above version of Morse’s theorem cannot be used for
excursion sets. Furthermore, as we have already noted, Theorem 3.2.1, as it is
currently formulated, cannot be applied to domains as simple as rectangles.

One way around these difficulties is to reinterpret the condition in the
indicator in (3.2.2) as requiring that the vector−∇f be directed to the exterior
of the domain M at boundary critical points. However, while it is clear what
this means for C2 domains, it is a somewhat more delicate in general, where,
instead of there being a single outward normal direction, there may be many.

To describe these, we first need the normal cone and support cone at a
point t ∈M . To define these, let Vt denote all those vectors whose base point
is t, and define the support cone to be

St ≡ StM
∆
= {X ∈ Vt : εX ∈M for all ε > 0 sufficiently small} . (3.2.3)

In other words, these are the vectors pointing into the interior of M .
The normal cone at t is defined as

Nt ≡ NtM
∆
= {X ∈ Vt : 〈X,Y 〉 ≤ 0 for all Y ∈ St(M)} . (3.2.4)

We shall often call vectors which lie in the normal cones extended outward
vectors or directions, and boundary critical points for which ∇f(t) ∈ NtM
extended outward critical points. Note that with normal cones defined, the
indicator in (3.2.2) can be rewritten as 1{−∇f(t)∈NtM}, and, as such, refers to
extended inward critical points.

An example should make this definition quite clear. Consider a cube in R3,
written as the disjoint union of the faces of all dimensions from three down
to zero. Then,

(i) In the interior of the cube, the support cone is all of R3, the normal cone
is empty, and so there are no extended outward directions.

(ii) Each point on a two dimensional face has a three dimensional half space
as its support cone, and a unique outward pointing normal vector, as for
the case of C2 domains. This unique vector makes up the entire normal
cone.

(iii) Along the one dimensional edges the support cones are three dimensional
wedges. The normal cones are two dimensional, quarter-disks of directions
within which the corresponding vectors are extended outward.

(iv) At the zero dimensional vertices, both the support cones and the normal
cones are three-dimensional octants.
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Fig. 3.2.1. The cube in R3 and some of its normal cones of extended outward
directions.

Each point in a 3-dimensional cube T can therefore be associated with a
set of extended outward directions, depicted in Figure 3.2.1. The collection of
these directions at a point is called the normal cone4 at t, which we denote
by Nt. For another example, a triangle in the plane, see Figure 3.3.1.

More formally, extending the example of the cube to a rectangle

T =

N∏
j=1

[0, Tj ],

it is possible to find a simple, albeit notationally a little tedious, way of writing
the normal cones. The notation provides a simple way to index the faces of
T . In particular, a face J of T , of dimension k, is defined by fixing a subset
σ(J) of {1, . . . , N} of size k and a sequence of N − k zeros and ones, which
we write as ε(J) = {εj(J), j 6∈ σ(J)}, so that

J = {t ∈ T : tj = εj(J)Tj , if j 6∈ σ(J); 0 < tj < Tj , if j ∈ σ(J)} . (3.2.5)

In other words, each k-dimensional face F is determined by fixing N − k
coordinates, and each of these coordinates can be fixed at either the top or
bottom of the cube. Note that, with the above definition, faces are always
open sets when considered as subsets of the affine subspaces in which they sit.

In anticipation of later notation, we write ∂kT for the collection of faces of
dimension k in T . This is known as the k-skeleton of T . Then ∂NT contains
only T ◦, the interior of T , while ∂0T contains the 2N vertices of the rectangle.

4 Normal cones can be defined for general convex sets, and even for sets satisfying a
type of local convexity [5], although we shall consider only polygons in this book.
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In general, ∂kT has 2N−k
(
N
k

)
elements. Note also that the boundary of a

k-dimensional face J , ∂J = J \ J , is given by the disjoint union

∂J =

k−1⋃
k=0

⋃
J∈∂kT

J. (3.2.6)

With this notation, the normal cone at t ∈ J is simply the set of directions
ν that satisfy

νi = 0 i 6∈ σ(J),

sgn(νi) = ε∗i (J) i ∈ σ(J)

where ε∗i (J) = 2εi(J)− 1.
The following is a version of Morse’s theorem for the excursion sets of a

C2 function f defined on a rectangle.

Theorem 3.2.4 (Morse’s theorem for excursion sets over rectangles).

Let T =
∏N
j=1[0, Tj ] be a rectangle in RN and f ∈ C2(RN ) such that, for

every face J of T ,

(i) f|J , the restriction of f to the closure of J , has no critical points on ∂J .

(ii) u is a regular value of f|J , in the sense that f|J has no critical points at
which fJ(t) = u.

(iii) ∇2f|J is non-degenerate at each critical point of f|J .

Then

ϕ
(
T ∩ f−1[u,+∞)

)
=
∑
J∈T

∑
t∈J:∇f|J (t)=0

(−1)Ind(−∇2f|J (t))1{f(t)≥u}1{sgn
(
∂f
∂ti

)
=ε∗i (J),∀i∈J

}.

There is also a corresponding version of this result for C2 domains.

Theorem 3.2.5 (Morse’s theorem for excursion sets over C2 do-
mains). Let M ⊂ RN be a C2 domain and f ∈ C2(RN ) be such that

(i) f has no critical points on ∂M .
(ii) f has no critical points at which f(t) = u.

(iii) ∇2f is non-degenerate at each critical point of f in M .
(iv) ∇2f|∂M is non-degenerate at each critical point of f|∂M .

Then,

ϕ
(
M ∩ f−1[u,+∞)

)
=

∑
t∈M :∇f(t)=0

(−1)Ind(−∇2f(t))1{f(t)≥u}

+
∑

t∈∂M :∇f|∂M (t)=0

(−1)Ind(−∇2f|∂M (t))1{f(t)≥u}1∇f∈NtM .
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Since Theorems 3.2.4 and 3.2.5 cover parameter spaces that are, respec-
tively, rectangles and C2 domains, they treat completely disjoint classes of
domains. Nevertheless, the final results are close enough that one expects
that they should both be special cases of a more general theorem, where the
domains are in part smooth, and yet are allowed to have edges and corners.
This is in fact true, although stating the general result would involve us in
more notation that we do not plan to develop in this book. We shall discuss
this briefly in Section 3.5 below, and you can find full details in Chapter 9 of
RFG.

3.3 Volume of Tubes and Intrinsic Volumes

The Euler characteristic of Section 3.1 arose as the unique additive functional
on basic complexes (cf. (3.1.1) and (3.1.2)) that assigned the value one to
basics, and zero to the empty set. It turned out to be integer valued, although
we did not demand this in the beginning, and has an interpretation in terms
of ‘counting’ the various topological components of a set. However, the Euler
characteristic by itself is of limited value. For example, the empty set, a disk
with a hole, and 100 disks of which one contains 100 holes, all have the same
Euler characteristic of zero, despite the fact that they are quite different. Also,
a disk of radius 1, and a disk of radius 100, have the same Euler characteristic
of one.

It is therefore natural to want to go beyond the Euler characteristic and
beyond mere counting, and begin to say things about the volume of sets, the
surface area of their boundaries, their curvatures, etc. This is what we shall
do now.

3.3.1 Euclidean Sets

In this section, we consider simple sets in Euclidean space, and describe N
new, position and rotation invariant functionals {Lj}Nj=1, which are also ad-
ditive in the sense of (3.1.2) but scale with dimensionality in the sense that

Lj(λA) = λjLj(A), λ > 0, (3.3.1)

where λA
∆
= {t : t = λs, s ∈ A}.

Defining L0 to be the Euler characteristic, these functionals make up what
are known as the intrinsic volumes and can be defined on quite large classes
of sets. They can be defined in a number of ways, one of which is implicitly
via Steiner’s formula [49, 81] and its generalisations. To describe Steiner’s
formula, we first require the notion of a tube around a set.

For A ⊂ RN and ρ > 0, let

Tube(A, ρ) = {x ∈ RN : d(x,A) ≤ ρ}
=
{
x ∈ RN : ∃ y ∈ A such that d(x, y) ≤ ρ

} (3.3.2)



100 3 Geometry

be the tube of radius ρ, or ρ-tube, around A, where

d(x,A)
∆
= inf
y∈A
|x− y|

is the usual Euclidean distance from the point x to the set A. An example
is given in Figure 3.3.1, in which A is the inner triangle and Tube(A, ρ) the
larger triangular object with rounded-off corners (which includes, of course,
the original triangle as well).

Fig. 3.3.1. The tube around a triangle.

However, unlike this particular example, it is not necessary that a set and
its tube have the same dimension. For example, the tube around a simple
one-dimensional curve in R3 will have dimension three.

With λN denoting Lebesgue measure in RN , Steiner’s formula states that,
for convex A, the volume λN (Tube(A, ρ)) is a polynomial in ρ with terms of
order N, N − 1, . . . , N − dim(A), where dim(A) is the dimension of A. In
particular, if we write this polynomial in the form

λN (Tube(A, ρ)) =

dimA∑
j=0

ωN−jρ
N−jLj(A), (3.3.3)

where

ωj = λj(B(0, 1)) =
πj/2

Γ
(
j
2 + 1

) (3.3.4)

is the volume of the unit ball in Rj , then (3.3.3) defines the intrinsic volumes
of A.

We shall not attempt to prove Steiner’s formula, but rather motivate it
by looking at some simple examples. For example, to find the area (i.e. 2-
dimensional volume) of the tube about the triangle of Figure 3.3.1, one needs
only sum three terms:

• The area of the original, inner triangle.
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• The area of the three rectangles. Note that this is the perimeter (i.e. ‘sur-
face area’) of the triangle multiplied by ρ.

• The area of the three corner sectors. Note that the union of these sectors
will always give a disk of Euler characteristic one and radius ρ.

Putting the above pieces5 together we have

area (Tube(A, ρ)) = πρ2ϕ(A) + ρ perimeter(A) + area(A).

Comparing this to (3.3.3) it now takes only a little thought to guess what the
intrinsic volumes must measure. If A is two-dimensional, then

L2(A) = The area of A,

L1(A) = 1
2 × (The boundary length of A)

L0(A) = The Euler characteristic of A.

(3.3.5)

If A is three-dimensional, then

L3(A) = The volume of A,

L2(A) = 1
2 × (The surface area of A),

L1(A) = 2× (The caliper diameter of A) (cf. Section 1.4.2)

L0(A) = The Euler characteristic of A.

(3.3.6)

Higher dimensions require a little more imagination, but it is reasonably
obvious that LN and LN−1 measure volume and surface area, while L0 is still
the Euler characteristic. Notice that Lj(A) = 0 for all j > dimA.

We now consider an N -dimensional example for which no hand-waving
is needed. As usual, let BNλ be the ball of radius λ in RN . Noting that
Tube(BNλ , ρ) = BNλ+ρ, we have

λN
(
Tube

(
BNλ , ρ

))
= (λ+ ρ)NωN

=

N∑
j=0

(
N

j

)
λjρN−jωN

=

N∑
j=0

ωN−jρ
N−j

(
N

j

)
λj

ωN
ωN−j

.

Comparing this to Steiner’s formula (3.3.3) it is immediate that

Lj
(
BNλ
)

=

(
N

j

)
λj

ωN
ωN−j

. (3.3.7)

5 Note that the above breakdown of the tube into its component parts is completely
analagous to the breakdown of the different possibilities of the normal cone in
the cube example in Figure 3.2.1
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Three more important N -dimensional examples, of cubes, rectangles and
spheres, can be found in Exercises 3.6.4 and 3.6.5.

It is sometimes useful consider a slightly different indexing and normaliza-
tion of the intrinsic volumes, to obtain the so-called Minkowski functionals, a
term which might be more familar to many readers. These are defined as

Mj(A) = (j! ωj)LN−j(A), j = 0, . . . , N, (3.3.8)

so here Mj(A) = 0 for j < N − dimA. When expressed in terms of the Mj ,
Steiner’s formula now reads like a Taylor series expansion, since then we have

λN (Tube(A, ρ)) =

N∑
j=0

ρj

j!
Mj(A). (3.3.9)

Of course, this is a very special Taylor series, since it terminates after the N -th
term. It is this fact that is actually one of the main points of Steiner’s for-
mula, along with the fact that the coefficients in the expansion have geometric
meanings.

Given the intrinsic definition of the intrinsic volumes of A as coefficients
in a polynomial expansion of the volume of a tube around A, we have seen,
for some simple examples, how to compute them. Moving from these simple
examples to more complicated ones is not always easy. If the more complicated
sets can be expressed as unions and intersections of simple ones, then we can
use the additivity properties of the Lj .

However, this is not always possible, so we now give a result that describes
how to compute intrinsic volumes for C2 domains.

Theorem 3.3.1 (Intrinsic volumes of C2 domains). Let M ⊂ RN be
a compact C2 domain with outward curvature matrix C(t), t ∈ ∂M . Then,
Steiner’s formula, now called Weyl’s tube formula, still holds, in that, for some
ρc > 0 and for all ρ < ρc,

λN (Tube(M,ρ)) =

dimA∑
j=0

ωN−jρ
N−jLj(M), (3.3.10)

where the intrinsic volumes can by computed as

Lj(M) =
1

sN−j

∫
∂M

detrN−1−j(−C(s)) ds. (3.3.11)

Here, for a square matrix A, detrj(A) is the sum of the determinants of all
j × j principal minors of A. The integration over ∂M is with respect to the
usual surface measure.

The proof of Theorem 3.3.1 is of a debatable level of difficulty. In the paper
[96] in which it was originally proven, the author, Hermann Weyl, claimed that
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it is hardly “more than what could have been accomplished by any student
in a course of calculus.”6 On the other hand, most professors of mathematics
have been searching for students of this caliber ever since. However, Weyl is
undeniably correct in his implication that the proof requires little more than
calculus. The basic approach involves parameterizing the tube of radius ρ
about M , but with the interior of M removed, as the image of ∂M × [0, ρ]
under the mapping

(t, r) 7→ t+ r · ηt,

where ηt is the unique outward pointing normal vector on ∂M . The rest of the
work involves computing the Jacobean Jacobian of this transformation. You
can find a proof, in a more complicated scenario, but with the same notation,
in Chapter 10 of RFG.

Before we move on to our next topic, there is one more fact that is worth
noting, which testifies further to the centrality of intrinsic volumes in geome-
try.

Recall that the Euler characteristic was introduced at the very beginning of
this chapter by demanding that it satisfy the additivity condition (3.1.2) and
take the value one on basics take the value one on basics, stated as condition
(3.1.1), and satisfy the additivity condition (3.1.2). Suppose that we drop
the second first of these conditions, and look only for additive functionals ψ
on nice sets that are invariant under rigid motions and, either monotonic or
continuous (in an appropriate7 metric).

Then an extremely important result due to Hadwiger [37] for basic com-
plexes, and others for more general classes of sets8, is the following.

Theorem 3.3.2 (Hadwiger’s theorem). Let ψ be a real valued function
on nice classes of sets in RN , invariant under rigid motions, additive (in the
sense of (3.1.2)) and monotone, in the sense that, for all pairs A,B, either
A ⊆ B ⇒ ψ(A) ≤ ψ(B) or A ⊆ B ⇒ ψ(A) ≥ ψ(B). Then

ψ(A) =

N∑
j=0

cjLj(A), (3.3.12)

where c0, . . . , cN are (ψ-dependent) constants.

6 Actually, Weyl’s statement was made in the more general setting of embedded
submanifolds of RN , and the case of domains is considerably easier.

7 The metric here is most definitely not one of the standard ones – such as the
symmetric difference metric d(A,B) = |A ∩ Bc| + |Ac ∩ B| – unless one makes
additional assumptions, such as restricting the entire discussion to convex sets
(but not the convex ring). See the original papers for details.

8 The last word on this, at the time of writing, seems to be due to Zahle [105].
The proofs are not easy, although Klain and Rota [49] have a self-contained and
readable proof for continuous invariant functionals on the convex ring.
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Thus, studying intrinsic volumes is equivalent to studying a far wider class
of functionals on sets. We shall have cause to apply this result on a number
of occasions.

3.3.2 Intrinsic Volumes for Simplicial Complexes

Having described some geometry for basic complexes and C2 domains, there
are now essentially two directions in which we could continue. One involves
moving to more general domains, such as stratified manifolds. This is im-
portant, but highly technical, and we shall discuss it briefly in Section 3.5.
Now, however, we want to take an almost orthogonal direction, moving from
Euclidean domains to something seemingly intrinsically simpler, simplicial
complexes. The main reason for this is a practical one.

In all of the applications in Part IV of this book, and, indeed, for all of the
applications of which we aware, data never comes in the form of a continuous
random field. Rather, by the very nature of computing, it is discrete in both
the parameter space and the values it takes. The latter is of no real importance.
Here the level of accuracy is so high that there is no practical difference
between continuous and discrete. This is not always true of the discreteness in
the parameter space, however, which is generally due more to limited sampling
than to computing limitations, the basic data generally being made up of
observations of a smooth random field on an underlying mesh.

These underlying meshes are usually examples of what is called a simplicial
complex.

Definition 3.3.3. Given a set of points V , a simplicial complex S on V is a
collection of subsets of V with the property that if F ∈ S, then so are all the
subsets of F .

A simple example of a simplicial complex is given in Figure 3.3.2. An ex-
ample in three dimensions is given by a tetrahedral mesh, by taking every
tetrahedron in the mesh, along with its triangular faces, and edges and ver-
tices. With each simplex F ∈ S we associate the physical simplex F consisting
of the (closed) convex hull of the points in F . With this convention we as-
sume, in this section, that S is the union of all the simplices in S. For further
details on general simplicial complexes see [49] and for statistical applications
see [64, 65].

An immediate consequence of Definition 3.3.3 is that if we sample from
a simplicial complex, then we once again have a simplicial complex. In par-
ticular, if f is a function defined on a the vertices of a simplicial complex S,
then its excursion set is also a simplicial complex. That is, {F ∈ S : f(v) ≥
u, ∀ v ∈ F} is a simplicial complex.

It should now be obvious, in view of what has gone before, that intrinsic
volumes of sets S arising from simplicial complexes will be of interest to us.
Using the basic additivity properties of the intrinsic volumes, and the fact that
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Fig. 3.3.2. Example of a simplicial complex. S = {{s1}, {s2}, {s3}, {s4}, {s5},
{s1, s2}, {s1, s3}, {s2, s3}, {s2, s4}, {s3, s4}, {s4, s5}, {s1, s2, s3}, {s2, s3, s4}} with
V = {s1, . . . , s6}. F is the (open?) solid triangle associated with the simplex F =
{s1, s2, s3}. The union of all the points, edges and triangles in S is the set S ⊂ R2.

all faces F are convex, these are, in principle, easy to compute. Furthermore,
the intrinsic volumes of any simplex F depend only on the edge lengths in
F , something we shall exploit later in Chapter ????? when we use distances
between residual vectors to estimate curvatures.

However, these computations can be quite tedious. Fortunately, there are
shortcuts.

For example, suppose that F is a simplex in RN . It is not hard to see
that, for any face G ⊂ F , the normal cone is identical for all t ∈ G. Define
β(G,F ) to be the proportion of normal vectors to the span of G that are in

the normal cone, with β(F, F )
∆
= 1. (Unclear definition because nor-

mal vectors are uncountable. Is it proportion of area or volume
or proportion of dimensions? Also, what is |F |?) Then (cf. Exercise
3.6.10)

Lj(F ) =
∑

G⊆F : dim(G)=j

|F | · β(G,F ). (3.3.13)

Note how much simpler this sum is than one would obtain via additivity,
which would give an inclusion-exclusion type of sum with many more terms.

Another useful result (cf. Exercise 3.6.11) is that, for any simplicial com-
plex S,

Ld(S) =
∑

F∈S: dim(F )≥d

(−1)dim(F )−dLd(F ) (3.3.14)

where the sum is over all simplices F in S. (Unclear. Suppose F is an
open triangle and S is its closure. Shouldn’t both have the same
L1?)

3.3.3 Volumes of Tubes on Spheres

So far, we have discussed only the usual Euclidean volumes of tubes of rela-
tively simple sets in RN . However, the theory can be extended significantly,
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and there exist complete books devoted to the subject, the classic one being
by Gray [35].

In this section we consider just one more case, in which the underlying
sets are spherically convex subsets of SN−1

λ , the sphere of radius λ in RN .
Spherically convex sets are those which are the intersection of a convex cone
and SλN−1.

In anticipation of later notation, let HN−1 be (N − 1)-dimensional Haus-
dorff measure on SλN−1, or, equivalently, surface measure. Thus

HN−1

(
SλN−1

)
= sNλ

N−1 =
2πN/2

Γ (N/2)
λN−1.

For a spherically convex subset of SN−1
λ , call it A, the geodesic tube of

radius ρ around A is defined as

Tube(A, ρ) =
{
x ∈ SN−1

λ : d(x,A) ≤ ρ
}
, (3.3.15)

where

d(x, y) = λ · θ(x, y)
∆
= λ cos−1

(
〈x, y〉
λ2

)
is geodesic distance on SλN−1. Alternatively, we could write (3.3.15) as

Tube(A, ρ) =

{
x ∈ SN−1

λ : ∃ y ∈ A such that
〈x, y〉
λ2

≥ cos(ρ/λ)

}
. (3.3.16)

The volume of tubes formula for A ⊂ SλN−1 is

HN−1 (Tube(A, ρ)) =

N−1∑
i=0

λN−1−iGi,N−1−i(ρ/λ)Lλ
−2

i (A), (3.3.17)

where, for λ ≥ 0, the

Lκi (A)
∆
=

b dimA−i
2 c∑

n=0

(−κ)n

(4π)n
(i+ 2n)!

n!i!
Li+2n(A) (3.3.18)

are the intrinsic volumes for spaces of constant curvature κ, and

Ga,b(ρ)
∆
=

πb/2

bΓ
(
b
2 + 1

) ∫ ρ

0

cosa(r) sinb−1(r) dr

=
πb/2

Γ
(
b
2

)IB(a+1)/2,b/2(cos2 ρ),

with

IB(a+1)/2,b/2(x)
∆
=

∫ 1

x

x(a−1)/2(1− x)(b−2)/2 dx,
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the tail of the incomplete beta function.
Recall that Steiner’s formula, which was a volume of tubes formula for

convex sets in RN , held for all tube radii ρ > 0. On the other hand, Weyl’s
tube formula, as we presented it for C2 domains in Theorem 3.3.1, only held
for ρ less than some critical ρc. On spheres the situation is a little more
delicate, and even for spherically convex sets the tube formula only holds for
small enough ρ. The problem, of course, is that as the radius of the tube
grows, the tube can meet itself at the ‘back’ of the sphere.

We shall return to (3.3.17) in Chapter 4 when we discuss the suprema dis-
tributions of a special class of Gaussian processes known as finite Karhunen-
Loève processes, processes whose Karhunen-Loève expanesion (2.3.22) termi-
nates after a finite number of terms.

3.3.4 Probabilities of Tubes

Our entire discussion of tube sizes has, up until now, been based on their
volumes, either as subsets of Euclidean space or of spheres. However, there
is an interesting extension of these ideas, from volumes to probabilities. This
extension will be of crucial importance for us in the following chapters.

Suppose that P is a probability measure on Rk with an analytic density
with respect to Lebesgue measure, a canonical example being the Gaussian
measure γk corresponding to the distribution of a N(0, Ik×k) random variable.
As the derivation of the Steiner-Weyl formula (3.3.10) consists of integrating
over hypersurfaces at distance r from A ⊂ RN , it is reasonable to consider
expanding the density of P in a power series in normal directions and inte-
grating the density over these hypersurfaces. Doing so gives an expansion9 of
the form

P {Tube(A, ρ)} ∆=
∞∑
j=0

ρj

j!
MP

j (A), (3.3.19)

in which theMP
j (A) can be represented as curvature integrals. Finding explicit

expressions for the MP
j via this construction is, however, generally not easy,

and beyond the scope of this book. Details, for Gaussian P, can be found in
Chapter 10 of [5]. When P = γk, the distribution of a N(0, Ik×k) random
vector, then the corresponding Mγk

j are known as the Gaussian Minkowski
functionals.

9 Note that there is a qualitative difference between (3.3.19) and the Steiner and
Weyl formula (3.3.9). The latter are expansions with only a finite number of terms,
whereas (3.3.19) is, in principle, and generally in practice, an infinite expansion.

Another difference lies in the fact that MP
j (A) ≡ 0 for all j < N − dim(A), so

that the sum in (3.3.19) actually starts at j = N − dim(A). You might want to
try an example or two (A a straight line in R3 is already instructive) to see why
this should be the case. (But you do it yourself two paragraphs later.)
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Alternatively, given any other way for computing the probability content
of a tube, so that the left hand side of (3.3.19) is known, the right hand
side gives an implicit definition of the MP

j , much as we originally defined the
intrinsic volumes via Steiner’s formula.

To see how this might work, consider the simple, one-dimensional example
for which P is taken to be γ = γ1, the distribution of a standard normal
variable. For A we take the semi-infinite interval [u,∞). The argument is
then simple, although we need some notation first.

Let Hn denote the n-th Hermite polynomial10 on R, so that

Hn(x) = n!

bn/2c∑
j=0

(−1)jxn−2j

j! (n− 2j)! 2j
, n ≥ 0, x ∈ R, (3.3.20)

defined by

dn

dxn
e−x

2/2 = (−1)nHn(x)e−x
2/2, n ≥ 0, x ∈ R. (3.3.21)

We also set

H−1(x)
∆
=
√

2πex
2/2Ψ(x),

where Ψ is the tail probability (2.2.1) of a standard normal. Then it is easy
to check that

We now turn to computing the Mγ
j ([u,∞)) for N = 1, and proceed via a

standard Taylor series expansion of the Gaussian distribution function Φ:

γ
(
Tube([u,∞), ρ)

)
= 1− Φ(u− ρ)

= 1−
(
Φ(u) +

∞∑
j=1

(−ρ)j

j!

(−1)j−1

√
2π

Hj−1(u)e−u
2/2

)

= 1− Φ(u) +

∞∑
j=1

ρj

j!

1√
2π
Hj−1(u)e−u

2/2,

so that, on comparison with (3.3.19), we find that

Mγ
j ([u,∞)) =

1√
2π
Hj−1(u)e−u

2/2, (3.3.22)

and we are done.
This was a particularly easy computation, but it turns out that in very

many of the important cases to follow, in which P = γk, similar arguments

10 These are sometimes called the probabilists’ Hermite polynomials, as opposed to

the physicists’ Hermite polynomials, which use e−x
2

in the definition rather than

e−x
2/2.
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hold. For example, suppose that F : Rk → R is smooth enough for the sets
F−1([u,∞)) to be smooth and locally convex. Suppose also that

Tube
(
F−1([u,∞)), ρ

)
= F−1([u− ρ,∞)), (3.3.23)

a relationship that we shall see holds surprisingly often in practice11. Then it
follows immediately from the tube formula (3.3.19) that, for A of this form,

MP
j (A) =

dk

dρk
P
{
F−1([u− ρ,∞))

} ∣∣∣
ρ=0

(3.3.24)

= (−1)k
dk

dxk
P {F (Z) ≥ x}

∣∣∣
x=u

,

where Z ∼ γk.
These kinds of sets appear often in applications, in which they take the

form of rejection regions of a statistical test.
For an example, involving χ2 distributions, see Exercise 3.6.13.

3.4 Some Integral Geometric Formulae

While the various volume of tubes formulas that we have seen so far are ex-
tremely important, they represent but a small sample of the formulas of inte-
gral geometry. Most of the others, however, require that intrinsic volumes are
already defined, so we have not really wasted time or space by concentrating
on tube formulas to introduce them.

The aim of this section is to describe some of these formulas. The most
important of these is the kinematic fundamental formula (KFF). This is un-
doubtedly one of the most general and fundamental results in integral geome-
try, of which many other well known formulae are special cases or corollaries.
For a full treatment of this result in a variety of scenarios you should turn to
any of the classic references, including [20, 28, 33, 49, 81, 82].

The kinematic fundamental formula deals with the intersection of a fixed
set with a random one. Suppose that M1 and M2 are two nice sets in Rn or
Sn−1
λ . Then the kinematic fundamental formula is essentially a formula giving

the ‘average’ intrinsic volumes of M1∩M2, as M2 is moved about, and rotated,
in a random fashion.

3.4.1 The Euclidean KFF

For the first kinematic fundamental formula we take two nice subsets M1 and
M2 of Rn with finite intrinsic volumes, without being too specific about what
‘nice’ means. Convex sets, basic complexes and C2 domains are all ‘nice’.

11 Alternatively, it might be the case that Tube
(
F−1([u,∞)), ρ

)
= F−1([u+ρ,∞)),

in which case (3.3.24) still holds, but without the alternating sign.
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In order to move M2 ‘randomly’ in Rn, we take Gn, the group of rigid
motions, or isometry group of Rn, and equip it with a Haar measure νn. We
normalize the Haar measure by demanding that, for any x ∈ Rn and any
Borel set A ⊂ Rn,

νn ({gn ∈ Gn : gnx ∈ A}) = λn(A), (3.4.1)

where λn, as usual, is Lebesgue measure. In other words, the set of all rigid
motions that move x into A has the same measure as A itself.

With this normalization, the kinematic fundamental formula states that

(3.4.2)∫
Gn

Li (M1 ∩ gnM2) dνn(gn) =

n−i∑
j=0

[
i+ j
i

] [
n
j

]−1

Li+j(M1)Ln−j(M2)

=

n−i∑
j=0

si+1sn+1

si+j+1sn−j+1
Li+j(M1)Ln−j(M2),

where[
n
k

]
=

[n]!

[k]! [n− k]!
, [n]! = n!ωn, ωn =

πn/2

Γ (n2 + 1)
, sn =

2πn/2

Γ (n2 )
.(3.4.3)

The
[
n
k

]
are known as flag coefficients.

The kinematic fundamental formula is actually a generalization of the
volume of tubes formulas that we have met so far. See Exercise 3.6.14.

3.4.2 The KFF on Spheres

What will actually be more important for us than the kinematic fundamental
formula on Euclidean space, for reasons which will become clearer later, is a
version of the KFF for subsets of spheres. Take Sn−1

λ , the sphere of radius λ
in Rn, as our basic space, and let M1 and M2 be nice subsets of it. To move
M2 ‘randomly’, let Gn,λ be the group of isometries (i.e. rotations) on Sn−1

λ .
We normalize the Haar measure νn,λ on Gn,λ so that, for any x ∈ Sn−1

λ

and every Borel A ⊂ Sn−1
λ ,

νn,λ ({gn ∈ Gn,λ : gnx ∈ A}) = Hn−1(A), (3.4.4)

where Hn−1 is Hausdorff (surface) measure on Sn−1
λ , so that Hn−1(Sn−1

λ ) =
λn−1sn, with sn as in (3.4.3).

Then the kinematic fundamental formula on Sn−1
λ states that
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Gn,λ

Lλ
−2

i (M1 ∩ gnM2) dνn,λ(gn) (3.4.5)

=

n−1−i∑
j=0

[
i+ j
i

] [
n− 1
j

]−1

Lλ
−2

i+j (M1)Lλ
−2

n−1−j(M2)

=

n−1−i∑
j=0

si+1sn
si+j+1sn−j

Lλ
−2

i+j (M1)Lλ
−2

n−1−j(M2),

where the functionals Lκi are from the one parameter family defined in (3.3.18).

3.4.3 Crofton’s Formula

In some sense, Crofton’s formula is a version of the Euclidean kinematic fun-
damental formula when the set that is being moved around is a subspace of
Rn. It is not, however, a consequence of the kinematic fundamental formula
and its consequences are somewhat different.

You may recall that, already in Chapter 1, we talked about the second
intrinsic volume of a set in R3 as being related to its caliper diameter, which we
defined by placing the set between two parallel planes (or calipers), measuring
the distance between the planes, and averaging over all rotations of the set.
Of course, we could have averaged over all rotations of the planes rather than
the set itself, and nothing would have changed.

Crofton’s formula does this in a more formal fashion, and relates all the
intrinsic volumes of nice sets to properties of the cross-sections. In fact, it
goes further, since it shows that all the intrinsic volumes can be computed by
averaging the Euler characteristics of cross-sections. Thus we were justified,
at the beginning of the chapter, for singling out the Euler characteristic for
special treatment.

In order to state Crofton’s formula we need a little notation. In particular,
we write Graff(n, k) for the affine Grassmanian, the set of k-dimensional
affine subspaces of Rn (not necessarily passing through the origin).

Such subspaces can be parameterized by the angle and length of the per-
pendicular line between them and the origin, and this parameterization can
be used to define an appropriate measure, λnn−k, on Graff(n, k). See Section
12.4 of RFG for details.

Crofton’s formula is now that, for nice M ,∫
Graff(n,n−k)

Lj(M ∩ V ) dλnn−k(V ) =

[
k + j
j

]
Lk+j(M). (3.4.6)

The special case j = 0 is generally known as Hadwiger’s formula

Lk(M) =

∫
Graff(n,n−k)

L0(M ∩ V ) dλnn−k(V ). (3.4.7)

This is the result that shows how to obtain all the intrinsic measures from
the Euler characteristics of cross-sections of appropriate dimension.
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3.5 Stratified Riemannian Manifolds

Before leaving our brief and rather selective excursion into geometry, we would
be misleading you if we did emphasise how limited our treatment has been.

Throughout, we have concentrated on spaces and sets that were ‘nice’,
which meant that they were convex, or basic complexes, or C2 domains. From
the point of view of geometry, these restrictions would not actually be con-
sidered severe. For example, there are entire books devoted to the geometry
of the convex ring, and they are considered far from trivial. Indeed, many of
results that we have discussed, but not proven, in this chapter are quite hard
hard to prove even in the purely convex setting.

Nevertheless, we are missing something that is important from the points
of view of both differential geometry and the study of the (random) excursion
sets generated by random fields. What is missing is that all our sets, and all our
measures of volume, are intrinsically Euclidean, and there is no Riemannian
structure to them (I suppose you mean we haven’t defined it yet, not
that it does not exist.). Although the reasons for this being important
for the study of random fields will only become clearer in Chapter 4 we shall
nevertheless describe at least the basic ideas now.

In usual Euclidean geometry, everything hinges on the usual Euclidean in-
ner product (u, v) =

∑
i uivi between vectors u and v. From the inner product

we can compute the angle between two vectors with a common starting point,
or the length of a given vector. Although this is not the way we usually do it,
the inner product is also a basic building block from which we can define the
usual notions of area, volume, and so Lebesgue measure in any dimension.

In Riemannian geometry the Euclidean inner product is replaced by what
is known as a Riemannian metric. If we are dealing with a manifold M , then
a Riemannian metric is actually a collection of functions {gt}t∈M , which, for
any t ∈ M and any two vectors Xt and Yt in the tangent space ∂tM gives a
value gt(Xt, Yt). Like the usual Euclidean metric, each gt must be non-negative
definite and linear in each of its parameters.

Given a Riemannian metric on a manifold, one can use it to define notions
of length, area, volume, etc. A Riemannian manifold is then a pair (M, g); a
‘physical’ manifold M endowed with a metric g. There is no uniqueness here.
There are many metrics for any manifold, and some of them can be quite
different. Examples abound, and, as we already intimated, we shall meet some
important ones resulting from Gaussian random fields in later Chapters.

There was another problem with the geometry treated so far. This limita-
tion is actually a very practical one, and we shall demonstrate it via scale space
problems, some of which we shall meet in Chapters 4 and ???????. Rather than
defining them twice, we give an example, based on the fMRI data of Chapter
1. There, we described data taken over a three dimensional brain, which could
reasonably considered as being a C2 domain in R3, which we denote by B.

However, we did not tell all of the story in Chapter 1. Due to the finite
resolution of fMRI scanners, the data supposed collected at individual points
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are actually local averages of an underlying function f . Each such average
is, effectively, taken over an ellipsoid (This is new for me.). The ellipsoids
are parameterized by two parameters, a point x ∈ R3 which determines the
lengths of the three major axes, and a direction θ on the sphere S2 which gives
the direction of the major axis (How about the direction of the second
axis? I think an angle is missing.). The axis lengths cannot be arbitrary,
and so let us assume that they are chosen from within some three-dimensional
rectangle A.

Thus, if what we thought we observed was the value of a function at some
point t ∈ B, what we are really observing is a value of a function at a point

(t, x, θ) ∈ B ×A× S2 ⊂ R8.

This product parameter space is certainly not a C2 domain, and while it is a
basic complex, it is a far more complicated one than any of the examples for
which we managed to do computations earlier in the chapter.

On the other hand, it is a space that is made out of simple pieces, and this
indicates to where we need to turn for a fuller theory.

Putting together the two issues described above, the approach taken in
RFG was to base everything on parameter spaces that were stratified Rie-
mannian manifolds, or, to be more specific, locally convex Whitney stratified
Riemannian manifolds, satisfying some minor side conditions that we do not
even want to hint at here.

To carefully define what these are is beyond the scope of the current book,
but the idea is as follows:

• Define a manifold to be a smooth surface. Examples are given by a smooth
curve (without its end points), an l-dimensional sphere, half of an l-
dimensional sphere or part of a ball (but without their boundaries).

• Choose a collection of l-dimensional manifolds, and call their union ∂lM .
• Join these unions together to form

M =

dimM⋃
l=0

∂lM. (3.5.1)

Actually, we have already performed such constructions, having, for exam-
ple, decomposed rectangles into their faces of various dimensions, as in (3.2.6).
The only difference here is that instead of gluing together flat surfaces, edges
and corners, we are now gluing together surfaces, or manifolds. The final ob-
ject M of (3.5.1) is a what we mean by the term stratified manifold.

The addition of the qualifier Whitney relates to rules as to what happens
at the joins. Basically, the joins have to have some (very) minimal smoothness
properties.

The term locally convex requires that the support cones (3.2.3) of M all
be convex. Figure 3.5.1 shows a part of the (shaded) support cones for two
domains in R2, where the bases of the cones are the points at the base of



114 3 Geometry

the concavity in each domain. The smooth domain has convex support cones,
while the domain with the concave cusp does not. In fact, C2 domains are al-
ways locally convex. These examples are actually quite generic, since the main
import of the convex support cone assumption is to exclude sharp, concave
cusps. Similarly, while the N -cube IN is locally convex (and, indeed, convex)
its boundary ∂IN is not.

Fig. 3.5.1. Convex and non-convex support cones. The right panel is ugly,
should be redone.

The last remaining qualifier was Riemannian, and this requires putting a
Riemannian metric on each component of the stratified manifold, and then
making sure that they can be joined together in a consistent fashion on the
full set M .

How wide a class of sets is covered here? Among others, it includes

• Piecewise linear sets.
• Finite simplicial complexes.
• Riemannian polyhedra.
• Riemannian manifolds (with boundary).
• Closed semialgebraic (subanalytic) subsets of Euclidean spaces. (i.e. sets

which are finite Boolean combinations of excursion sets of algebraic (ana-
lytic) functions.)

• Basic complexes with C2 boundary.
• The fMRI example, B ×A× S2 ⊂ R8, above.

This then, is the framework, in which we could, and in RFG did, work.
Intrinsic volumes can also be defined in this framework, although they

take on a slightly different meaning when the Riemannian structure is non-
Euclidean. However, with or without the Riemannian structure they are gen-
erally referred to as Lipschitz-Killing curvatures after Rudolf Lipschitz and
Wilhelm Killing, German mathematicians of the late 19-th and early 20-the
centuries, respectively. The reason for the term ‘curvature’ can already be
seen from (3.3.11), where the definition of the Lj for C2 domains is based on
integrals involving the curvature matrix.

To go into further detail would involve the heavy notation that too often
makes RFG a challenge to read. However, we did want to give you some flavor
of a more general theory, before we start looking at the remaining three parts
of this book.
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3.6 Exercises

Exercise 3.6.1. Suppose that B1, . . . , Bn is a collection of unit squares, the
vertices of which all sit on points of the integer lattice in R2, and let A =⋃n
j=1Bj . Using only the ‘inclusion-exclusion’ description (3.1.4) of the Euler

characteristic, show that

ϕ(A) = #{Squares} −#{Distinct sides }+ #{Distinct vertices}, (3.6.1)

where by ‘distinct’ sides (vertices) we mean that a side (vertex) that appears
in two different squares is counted only once.

State and prove a corresponding result for three dimensional sets made up
of the union of unit cubes with vertices on the integer lattice in R3.

Exercise 3.6.2. Let BNλ be the ball of radius λ in RN , with boundary SN−1
λ ,

the sphere of radius λ. Show that the outward curvature matrix (cf. Section
3.2) is given by

C(s) = − 1

λ
I(N−1)×(N−1), ∀s ∈ SN−1

λ .

Exercise 3.6.3. If M is a C2 domain, show that Theorem 3.1.1 is a spe-
cial case of Morse’s theorem, Theorem 3.2.1, by using the height function
f(t1, . . . , tN ) = tN . What additional conditions are required on the domain
M?
Hint: Consider what happens if part of ∂M lies in the plane {(t1, . . . , tN ) :
tN = 0}.

Exercise 3.6.4. Using Steiner’s formula (3.3.3) show that

(i) For a N -dimensional cube of side length T the intrinsic volumes are given
by

Lj
(
[ 0, T ]N

)
=

(
N

j

)
T j . (3.6.2)

(ii) Generalize this to N -dimensional rectangles

Lj

(
N∏
i=1

[0, Ti]

)
=
∑

Ti1 . . . Tij , (3.6.3)

where the sum is taken over the
(
N
j

)
different choices of subscripts

i1, . . . , ij .
(iii) Let T be a parallelogram in RN . Show that

Li(T ) =
∑

J|:dim(J)=i,0∈J

|J |,

(Unclear indexing.) where, for an i-dimensional face J of T , |J | is its
i-dimensional volume.
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Exercise 3.6.5. Let SN−1
λ be the sphere of radius λ in RN . Show, using

Steiner’s formula (3.3.3), that

Lj
(
SN−1
λ

)
= 2

(
N

j

)
ωN
ωN−j

λj = 2

(
N − 1

j

)
sN
sN−j

λj (3.6.4)

if N − 1− j is even, and 0 otherwise.

Exercise 3.6.6. Consider the L and its tube in Figure 3.6.1.

Fig. 3.6.1. A tube around the the letter L.

(i) Calculate the intrinsic volumes of the L by using the their definition for
convex sets and additivity.

(ii) Compute the volume of the tube of radius ρ about the L for small ρ. For
what values of ρ does Steiner’s formula hold for this set?

(iii) What does this say about the applicability of Steiner’s formula to all
non-convex sets?

Exercise 3.6.7. Apply Theorem 3.3.1 and Exercise 3.6.2 to find the intrinsic
volumes of an N -dimensional ball of radius λ.

Exercise 3.6.8. Let M ⊂ R2 be a compact, simply connected (i.e. ball-like)
C2 domain in the plane. Show, using only Weyl’s formula (3.3.10), that

L2(M) = λ2(M),

L1(M) = 1
2 × the arclength of ∂M.

Exercise 3.6.9. Let M ⊂ R3 be a compact, simply connected (i.e. ball-like)
C2 domain in R3. Show, using only Weyl’s formula (3.3.10), that

L3(M) = λ3(M),

L2(M) = 1
2 × the surface area of ∂M,

L1(M) =
1

π

∫
∂M

Tr(−C(s)) ds,

where C is the outward curvature matrix (cf. Section 3.2). (Is L1(M) twice
the caliper diameter or does it have any interpretation at all?)
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Exercise 3.6.10. Let F be a simplex in RN , and G ⊂ F a simplex in F .

(i) Show that the normal cone is identical for all t ∈ G.
(ii) Prove (3.3.13).

Exercise 3.6.11. The following identity is due to Sommerville. For any sim-
plex F and any face G ⊆ F

β(G,F ) =
∑

G⊆H⊆F

(−1)dim(H)−dim(G)β(G,H),

(Is the sum over all subcomplexes H?) where β(F,G) is the proportion
of normal vectors to the span of G that are in the normal cone.

Using this identity and (3.3.13) show that (3.3.14) holds.

Exercise 3.6.12. Using Hadwiger’s theorem (Theorem 3.3.2) show that the
following formula holds for nice A ∈ Rk ;, B ∈ Rn and any j ≥ 0 i ≥ 0:

Li(A×B) =

i∑
j=0

Lj(A)Li−j(B).

In fact, the same holds true for products of Riemannian manifolds when en-
dowed with the product metric. We shall use this heavily in Chapter 4 when
we treat specific examples of (non-Eculidean) Lipschitz-Killing curvatures.

Exercise 3.6.13.

(i) Find an expression for Gaussian Minkowski functionals Mj(A), akin to
(3.3.24), for setsA of the form F−1([u,∞)) when there is a smooth function
g : R+ → R+ satisfying

Tube
(
F−1([u,∞)), ρ

)
= F−1([u− g(ρ),∞)).

(Note that the special case g(x) ≡ x establishes (3.3.24).)
(ii) Using the alternate version of (3.3.24) given in Footnote 11 and taking

P = γk, the law of Z ∼ N(0, Ik×k), show that, for j ≥ 1,

Mγk
j (Bkλ) =

dk

dxk
P {χk ≤ x}

∣∣∣∣
x=λ

(3.6.5)

where Bkλ is the ball of radius λ in Rk and χk is the square root of a χ2
k

random variable.
(iii) Using (3.3.24), compute an explicit expression for Mγk

j (Bkλ) for j ≥ 1.

Hint: Look at the calculations for the χ2 example in Section 4.5.

Exercise 3.6.14. Under appropriate assumptions, the kinematic fundamen-
tal formula is actually a generalization of both Steiner’s formula and the
Weyl’s volume of tubes formula. Show this in the following two cases, by
taking the set M2 in (3.4.2) to be a ball of radius ρ.
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(i) Suppose that A is a convex set in RN . Show that Steiner’s formula holds
for tubes of A of all radii.

(ii) Suppose that A is a C2 domain. Show that Weyl’s tube formula (3.3.10)
holds for tubes of A of small enough radius, and describe the local and
global properties of A that determine the critical radius.



Part II

Quantifiable Properties





4

The Expected Euler Characteristic

Our aim in this chapter is to derive a formula for the mean value of a rather
simple random variable, the Euler characteristic of the excursion set of a
random field. That is, we are looking for

E {ϕ(Au(f, T ))} = E {ϕ{t ∈ T : f(t) ≥ u}} .

We would like to do this for smooth Gaussian f , and also for the Gaussian
related random fields that we met in Section 2.2.3. Furthermore, we should
like to do this for T as general as possible.

Although we shall end up doing more or less all of this, we shall only give a
complete derivation for the case of isotropic, Gaussian f over N -dimensional
rectangles T . The stationary case will be left to you as an exercise, and then
we shall call on a very general result from RFG to handle the remaining cases,
which include non-stationary Gaussian fields and Gaussian-related fields. This
general result is quite complex, but we shall show you how to apply it to a
number of examples, so that by the end of this chapter you should be able to
apply it to new random fields that have not yet been covered in the literature.

In this chapter we shall also see why we invested so much time discussing
Lipschitz-Killing curvatures in Chapter 3. The Euler characteristic ϕ itself is,
of course, the same as the lowest order Lipschitz-Killing curvature L0 and,
from many points of view, it is the most important of them. However, even if
the Euler characteristic of excursion sets were all that we were interested in,
it turns out that we would still need to study the remaining Lipschitz-Killing
curvatures (of T ), since they appear in the formula for E {ϕ(Au(f, T ))}.

Beyond this, the other Lipschitz-Killing curvatures of excursion sets are
themselves of interest. Thus, later in the chapter, in Sections 4.7 and 4.8, we
shall also see how to compute their expectations as well.

Before we start in earnest, however, a brief reminder of one of the reasons
we are interested in the mean Euler characteristic of excursion sets will help
in motivating some of the results of this chapter. Recall that back in the
Introduction, when, in Section 1.5.2, we discussed brain imaging and statistical
testing, we mentioned that, in many cases, it was true that
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P
{

sup
t∈T

f(t) ≥ u
}
' E {ϕ(Au(f, T ))} , (4.0.1)

an approximation that is often refered to as the Euler characteristic heuristic.
We shall treat this in some detail in Chapter 5, but for now you should just
keep it in the back of your mind as you read on.

4.1 Regularity Conditions

We are going to need two sets of regularity conditions in studying the Euler
characteristics of excursion sets. The first will be on the random fields f , and
these are neeeded to guarantee that the sample paths are smooth enough to
be Morse functions in the sense of Definition 3.2.3, and that they are regular
enough so that we can apply the Rice-Kac meta-theorem Theorem 2.7.1 when
needed. The second will be on the subsets T of RN over which we compute
Euler characteristics.

We shall introduce conditions on T as needed, but as far as f is concerned
we already saw in Corollary 2.7.2 that the conditions required for applying the
meta-theorem become quite simple in the Gaussian case, and it is not hard
to see (cf. Section 11.3 of RFG for details) that the same holds for applying
Morse Theory.

In fact, all that we require on f for all the results of this chapter to hold
is that, if f is a real-valued, centered, Gaussian random field on RN with first
and second order partial derivatives fi and fij , then

(i) With ∇f the vector of the fi and ∇2f the matrix of the fij , we require
that the joint distributions of (f(t),∇f(t),∇2f(t)) are, for each t ∈ T ,
non-degenerate.

(ii) If Cij(s, t) is the covariance function of fij , then

max
i,j
|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| ≤ K |ln |t− s| |−(1+α)

,

for some finite K > 0, some α > 0, and all |t− s| small enough.

(Condition (i) implies that the process is twice differentiable, so
why do we need Condition (ii)?)

4.2 Stationary Gaussian Fields

To make the statement of our first result reasonably self-contained, we review
some notation from Section 3.2. Starting with T =

∏N
i=1[0, Ti], a rectangle in

RN , we write ∂kT for the collection of the 2N−k
(
N
k

)
faces of dimension k in T .

As opposed to our previous conventions, in this chapter we take these faces as
closed. Thus all faces in ∂kT are subsets of some face in ∂k′T for all k′ > k.
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Each k-dimensional face J ∈ ∂kT is determined by a subset σ(J) of
{1, . . . , N}, of size k, indicating the coordinates spanning the face, and a
sequence of N − k zeros and ones, which we write as ε(J) = {εj , j 6∈ σ(J)},
indicating the fixed coordinates that determine the face, so that

J =
{
t ∈ RN : tj = εjTj , if j /∈ σ(J); 0 ≤ tj ≤ Tj , if j ∈ σ(J)

}
. (4.2.1)

As before, Ok denotes the
(
N
k

)
elements of ∂kT which include the origin.

We need one more piece of notation. For a stationary random field f , and
1 ≤ i, j ≤ N let λij be the second order spectral moments of (2.4.4), so that

λij = E {fi(t)fj(t)} .

For a face J ∈ ∂kT , write ΛJ for the k×k matrix with elements λij , i, j ∈ σ(J).

We can now state the first expected Euler characteristic (EEC) result.

Theorem 4.2.1 (EEC for stationary fields on rectangles). Let f be a
centered, stationary Gaussian field on RN satisfying the conditions of Section
4.1 and with variance σ2, and let T ⊂ RN be a finite rectangle. For real u, let

Au = Au(f, T ) = {t ∈ T : f(t) ≥ u} = T ∩ f−1[u,+∞),

be an excursion set, and let ϕ be the Euler characteristic. Then

E {ϕ (Au)} = e−u
2/2σ2

N∑
k=1

∑
J∈Ok

|J | |ΛJ |1/2

(2π)(k+1)/2σk
Hk−1

(u
σ

)
+ Ψ

(u
σ

)
, (4.2.2)

where |J | =
∏
i∈σ(J) Ti is the usual k-dimensional measure of the face J , Hk

is the k-th Hermite polynomial (3.3.20) and Ψ is the Gaussian tail probability
(2.2.1).

We shall find other, more general, versions of (4.2.2) later on. In anticipa-
tion of these consider one special, but nevertheless illuminating case. Suppose
that f is also isotropic, and write λ2 for the variance of fi (independent of i
by isotropy). Then each ΛJ in (4.2.2) is a diagonal matrix with determinant

λ
k/2
2 , and so |J | depends on J only through its dimension. Furthermore, by

Exercise 3.6.4 (cf. (3.6.3)) the sum
∑
J∈Ok |J | is precisely Lk(J). Finally, re-

call that when defining the Hermite polynomials we adopted the convention
that H−1(x) ≡

√
2πex

2/2Ψ(x). Substituting all of this into (4.2.2) allows us
to rewrite it more compactly as

E {ϕ (Au)} = e−u
2/2σ2

N∑
k=0

λ
k/2
2

(2π)(k+1)/2σk
Lk(T )Hk−1

(u
σ

)
. (4.2.3)
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As we shall see later, not only is this form1 more compact, but it is the key to
understanding far more general results, once the Lk are given an appropriate
interpretation.

(The graphics and discussion in pages 293-296 of RFG would be
useful somewhere in this chapter.)

Now, however, let us look at the proof of Theorem 4.2.1, which begins by
recalling from Theorem 3.2.4 that there is a way to write ϕ(Au(f, T ) via the
number of critical points of f of various types on the various faces of T .

To write this out, we start by defining, corresponding to each sequence
ε(J) in (4.2.1), a set ε∗(J) of ±1’s, according to the rule ε∗j = 2εj − 1. Then,
with a little rewriting, it follows from Theorem 3.2.4 that

ϕ (Au(f, T )) =

N∑
k=0

∑
J∈∂kT

k∑
i=0

(−1)iµi(J), (4.2.4)

where, for i ≤ dim(J), µi(J) is the number of t ∈ J for which

f(t) ≥ u, (4.2.5)

fj(t) = 0, j ∈ σ(J) (4.2.6)

Ind
(

(−fmn(t))(m,n∈σ(J))

)
= i, (4.2.7)

ε∗jfj(t) > 0, j /∈ σ(J) (4.2.8)

and, as usual, the index of a matrix is the number of its negative eigenvalues.
In words, equations (4.2.5)-(4.2.8) indicate points t ∈ J where f(t) exceeds or
equals u, the derivatives of f(t) along the face J are zero but the derivatives
in the outward direction are positive, and the Hessian along the face has i
negative eigenvalues. (See Exercise 4.9.2 regarding the conditions needed for
applying Theorem 3.2.4 here.)

Thus we can find the mean excursion set Euler characteristic by taking
expectations of each term on the right of (4.2.4). We start with the term for
k = 0, temporarily dropping the requirement (4.2.8).

Lemma 4.2.2. Let f and T be as in Theorem 4.2.1. Set Let

µk = #{t ∈ T : f(t) ≥ u, ∇f(t) = 0, Ind(−∇2f(t)) = k}, (4.2.9)

the number of critical points of index k inside T exceeding u. Then

E

{
N∑
k=0

(−1)kµk

}
=

|T | |Λ|1/2

(2π)(N+1)/2σN
HN−1

(u
σ

)
e−u

2/2σ2

, (4.2.10)

where Λ is the N ×N matrix of all the second order spectral moments of f .

1 If you have a good memory, this should remind you of the formula for the excee-
dence probability of a cosine random field, (2.3.16). As we shall see in Chapter 5,
this is no coincidence.
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Before turning to the proof of the lemma, there are some crucial points
worth noting. The first is the rather surprising fact that the result depends
on the covariance of f only via its value and second order derivatives at zero;
viz. only through the variance and second order spectral moments. This is
somewhat surprising for two reasons.

The first is that although the definition of the µk depends quite strongly
on the fij , the distributions of which involve fourth order spectral moments,
these do not appear in the final expectation. As will become clear from the
proof, the disappearance of the fourth order spectral moments has a lot to do
with the fact that we compute the mean of the alternating sum in (4.2.10)
and do not attempt to evaluate the expectations of the individual µk. Doing
so would indeed involve fourth order spectral moments. The fact that this is
all we need is extremely fortunate, for it is actually impossible to obtain closed
expressions for any of the E{µk}.

The second point of interest is that neither (4.2.10) nor any of the results
that build on it depend in any way on the long term decay rate of the covari-
ance function of f . It is not hard to see that this is an immediate consequence
of the additive property (in the sense of (3.1.2)) of the random variables µk.

Proof. We shall prove the lemma under the additional assumption of isotropy,
so that Λ is a diagonal matrix. Moving from isotropy to general stationarity
is left to you in Exercise 4.9.4. To save on notation, we shall also assume that
σ = 1, Λ = I. The extension to general σ and Λ is simple and is Exercise ??.

Direct application of the Rice-Kac meta-theorem, Theorem 2.7.1, applied
to each µk separately, yields that

E

{
N∑
k=0

(−1)kµk

}
=

N∑
k=0

∫
T

(−1)kE
{∣∣det(∇2f(t))

∣∣1{f(t)≥u,Ind(−∇2f(t))=k}∣∣∣∇f(t) = 0
}
p∇f(t)(0)dt,

where
p∇f(t)(0) = (2π)−N/2

is the density of ∇f(t) at 0.
The fact that f is isotropic implies that the pair (f(t),∇2f(t)) is indepen-

dent of ∇f(t) (cf. Exercise 2.8.10) so we can remove the conditioning event.
This greatly simplifies the calculation.

However, the small miracle that simplifies everything enormously (without
which we would not get such a final simple answer) is the fact that

(−1)k
∣∣det(∇2f(t))

∣∣ 1{Ind(−∇2f(t))=k} = det(−∇2f(t)) 1{Ind(−∇2f(t))=k},

which implies that

N∑
k=0

(−1)k|det(∇2f(t))|1{Ind(−∇2f(t))=k} = det(−∇2f(t)).
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Applying this, along with stationarity to integrate out t, then dropping
the index t on what remains, we see that

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |E

{
det(−∇2f)1{f≥u}

}
= (2π)−N/2|T |E

{
det(−∇2f − fI + fI)1{f≥u}

}
= (2π)−N/2|T |E


N∑
j=0

fN−jdetrj(−∇2f − fI)1{f≥u}

 ,

where, as usual, detrj(A) is the sum of determinants of all j × j principle
minors of A. Here, we have used the standard expansion that, for an N ×N
matrix A,

det(A+ λI) =

N∑
j=0

λjdetrj(A).

Once again appealing to isotropy (and Exercise 2.8.10) it is simple to check
that the matrix ∇2f + fI is independent of f . Therefore,

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |

N∑
j=0

E
{
fN−j1{f≥u}

}
E
{

detrj(−∇2f − fI)
}
.

The computation of the expectation of the determinant here is left to you
as Exercise 4.9.3, and applying it we find that

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |E


bN2 c∑
j=0

(−1)jN !

(N − 2j)!j!2j
fN−2j1{f≥u}


= (2π)−N/2|T |E

{
HN (f)1{f≥u}

}
= (2π)−(N+1)/2|T |

∫ ∞
u

HN (x) e−x
2/2 dx

= (2π)−(N+1)/2|T |HN−1(u) e−u
2/2,

(4.2.11)
where the last line follows directly from the basic properties of Hermite poly-
nomials (cf. (3.3.21)). 2

Proof of Theorem 4.2.1. As in the proof of Lemma 4.2.2, we shall only give
a full proof under the additional assumptions of isotropy and σ = 1, Λ = I,
leaving the rest to you as Exercise 4.9.4.

Consider conditions (4.2.5)–(4.2.7). If we restrict f to the face J , then
Lemma 4.2.2, modified only to allow for the dimension of J , actually gives
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the expected number of points satisfying these three conditions. However, we
also have to allow for the additional constraint (4.2.8).

To do this, let µ̃i(J) denote the number of points t ∈ J satisfying (4.2.5)–
(4.2.7) while EJ(t) denotes the event (4.2.8). We need to compute

k∑
i=0

(−1)iE
{
µ̃i(J)1EJ (t)

}
,

and then sum over the faces J of T . However, once again applying isotropy (or
Exercise 2.8.10) gives us that the random variables in (4.2.8) are independent
of those in (4.2.5)–(4.2.7). Therefore, by Lemma 4.2.2, when k ≥ 1,

k∑
i=0

(−1)iE
{
µ̃i(J)1EJ (t)

}
=

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2P{EJ(t)}

=
|J |

(2π)(k+1)/2
Hk−1(u)e−u

2/2 1

2N−k
,

where the calculation of P{Ei(t)} follows from symmetry considerations.
It is easy to check from first principles, using the connection between H−1

and Ψ , that the above also holds when k = 0.
From this and (4.2.4) we finally have

E {ϕ (Au(f, T ))} =

N∑
k=0

∑
J∈∂kT

E

{
k∑
i=0

(−1)i µ̃i(J)1EJ (t)

}

=

N∑
k=0

∑
J∈∂kT

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2 1

2N−k

=

N∑
k=0

∑
J∈Ok

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2,

where we have used the fact that, for each J ∈ Ok, there are 2N−k congruent
faces of T in ∂kT .

This gives (4.2.2) (or, alternatively, (4.2.3)) and so the proof is complete
(at least for the isotropic case with σ2 = 1 and Λ = I.) 2

4.3 Non-Stationary Gaussian Fields

While the conceptual move from the stationary random fields of the previous
section to non-stationary fields is not a large one, the jump in the level of
mathematics required is substantial.
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Consider, for a moment, the crucial steps that made the proof of Theorem
4.2.1 work, as opposed to the detailed calculations that made up the bulk
of the proof. For a start, we assumed that the random field was isotropic.
This had the effect of making the random variables f and ∇f independent,
as was also true for ∇f and ∇2f and for (f,∇2f) and ∇f . Furthermore, the
correlation structure between f and ∇2f was quite simple.

This independence was crucial in terms of simplifying our computations.
However, we did not need to assume isotropy for this. Stationarity would have
sufficed2, although it would have left us with a rather complicated correlation
structure between f and ∇2f . If you completed the missing parts of the proof
by doing Exercise 4.9.4, then you already know that the way to move from
the isotropic case to the general stationary one is via a transformation, t →
Λ1/2t/σ, of the parameter space, and that this made the transformed field
locally isotropic in the sense of Section 2.4.9, in that the covariance matrix of
the first order derivatives of the transformed random field was a unit matrix.

As we noted in Section 2.4.9, there is no simple transformation to lo-
cal isotropy for general non-stationary fields, since one may need different
transformations in different parts of the parameter space, and patching them
together to make something which is globally well defined may not be easy.
In fact, it is not easy, but under the assumption of constant variance there is
a technique for doing it that works well for our needs, and this involves re-
placing the usual Euclidean inner product between vectors by an appropriate
Riemannian metric. Thus, while we do not transform the parameter space at
all, we change the way we measure things on it.

As we discussed briefly in Section 3.5, a Riemannian metric is defined on
vectors in tangent planes of a manifold, but in our current situation, where
everything is taking place in RN , it suffices to define it on unit vectors parallel
to the axes. Thus, if t ∈ T and we define the vector based at t and parallel to
the i-th axis as

∂

∂ti
(t) = t+ ei,

where, as usual, ej is the vector with 1 in the i-th position and 0 elsewhere,
then a Riemannian metric which is suited to our purposes is given by

gt

(
∂

∂ti
(t),

∂

∂tj
(t)

)
= (σ−2Λ(t))ij

∆
= σ−2 Cov

(
∂f(t)

∂ti
,
∂f(t)

∂tj

)
. (4.3.1)

We call gt the metric induced by the random field f . Note that to define this
metric we have assumed that f has constant variance σ2. However, neither
stationarity nor isotropy is needed for the definition to make sense.

In the isotropic and locally isotropic cases, the induced metric is the usual
Euclidean metric, multiplied by a factor of λ2, the second spectral moment.
In the stationary case, for tangent vectors u, v ∈ RN ,

2 In fact, constant variance for the field and its first order derivatives would have
been enough. See Section 2.4.4.
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gt(u, v) = (uσ−1Λ1/2, vσ−1Λ1/2) = (u, vσ−2Λ),

(Is it better to use angle brackets to indicate inner product?)
where the right hand inner products are the usual Euclidean one and Λ is the
usual matrix of second order spectral moments. In both the stationary and
isotropic cases gt is independent of t.

Note that the induced metric is scale independent, since if we multiply f
by a, say, then both the variance of f and the covariances of its derivatves
will change by a factor of a2. Thus g is measure of the spatial variation of f
only.

Recall now from Section 3.5 that Riemannian metrics determine notions
of length, distance, area, volume, etc. In fact, given a Riemannian metric and
a nice enough set T , it is also possible to define Lipschitz-Killing curvatures
Lj(T ) which correspond to the metric. Actually, we have already seen one such
example when looking at the cosine random field in Section 2.3.4 (cf. (2.3.14))
where we defined generalized Lipschitz-Killing curvatures for rectangles as

Lk
( N∏

1

[0, Tj ]
)

=
∑
j1...jk

k∏
i=1

λjkTjk
σ

, (4.3.2)

the sum being taken over the
(
N
k

)
distinct choices of j1, . . . , jk. (cf. (2.3.14).)

In Section 2.3.4 the λj were defined as parameters of the cosine field, but,
in general, (4.3.2) is appropriate for a random field with a matrix of second
order spectral moments of the form diag(λjj) = diag(λ2

j ).
Note that, in the notation of Theorem 4.2.1, we can rewrite (4.3.2) as

Lk
( N∏

1

[0, Tj ]
)

= σ−k
∑
J∈Ok

|J | |ΛJ |1/2, (4.3.3)

an expression that will help Theorem 4.3.1 below look more like the generali-
sation of Theorem 4.2.1 that it is.

Extending (4.3.2) or (4.3.3) to the case of non-isotropic and non-stationary
random fields is not easy. In general, a concrete expression for the Lipschitz-
Killing curvatures corresponding to a particular Riemannian metric involves
the curvature tensor of the metric and so is beyond the scope of this book.
You can find full details in RFG, with similar notation to that used here.

Ignoring for the moment the fact that, in general, these functionals are
difficult to define, we can still state the following fundamental result which
significantly generalises Theorem 4.2.1 and which we shall use heavily in the
applications to follow.

Theorem 4.3.1 (EEC for general Gaussian fields on general sets).
Let f be a centered Gaussian field on RN satisfying the conditions of Section
4.1 and with constant variance σ2. Then for nice3 parameter spaces T ⊂ RN ,

3 Technically, ‘nice’ here is defined to mean one of the locally convex Whitney
stratified manifolds we discussed in Section 3.5, where we also gave a list of
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E {ϕ(Au(f, T )} =

dimT∑
k=0

Lk(T )
Hk−1(u/σ)e−u

2/2σ2

(2π)(k+1)/2

∆
=

dimT∑
k=0

Lk(T )ρGk (u),

(4.3.4)

where the Lipschitz-Killing curvatures Lk(T ) are computed with respect to the
Riemannian metric (4.3.1).

Our reason for introducing the functions ρGj in (4.3.4) (‘G’ is for ‘Gaus-
sian’) will become clear later.

Now, however, a pertinent question might be how useful is the above result
for someone who has neither read RFG nor wants to, and is interested in
applications rather than the differential geometry of Riemannian manifolds.
After all, we have just given a result in which the right hand side of the
equation involves terms which we have not even fully defined. Beyond that,
we have hinted that, as is indeed the case, that even with a proper definition
the Lj(T ) are far from easy to compute.

However, it turns out that, in practical situations, it is actually possible
to estimate the Lj(T ) of (4.3.4) from data, even when they are essentially
impossible to calculate analytically. Some techniques for doing this will be
described in Chapter ?????. For the moment, however, you will have to either
wait patiently, or think in terms of the isotropic case, in which the Lj(T )

of (4.3.4) are, up to a factor of λ
j/2
2 , the simple, Euclidean Lipschitz-Killing

curvatures which we saw how to compute in Section 3.3.
In the case of stationary processes, the Lipschitz-Killing curvatures Lj have

a particularly simple form. In particular, if Λ is the usual matrix of second
order spectral moments (2.4.4), then

Lj(T ) = LEj
(
Λ1/2T

)
, (4.3.5)

where Λ1/2 is a square root of Λ, Λ1/2T = {Λ1/2t, t ∈ T}, and the LEj are
the standard Euclidean Lipschitz-Killing curvatures . (cf. 4.9.6.)

There is one case, however, for which (4.3.4) gives something quite simple
and useful, even if f is not stationary. Consider high levels u, a case of par-
ticular interest since then we know from the Euler characteristic heuristic (cf.
(4.0.1)) that E{ϕ(Au)} is a good approximation to an exceedence probability.
Since the Hk in (4.3.4) are polynomials, the leading term in u there comes
from the highest order polynomial. If dim(T ) = N , this gives

E{ϕ(Au(f, T )} ' LN (T )

σN−1(2π)(N+1)/2
uN−1e−u

2/2σ2

, (4.3.6)

examples of nice sets. Recall that this list incorporated sets like N -dimensional
rectangles and balls and anything that could be constructed from them either by
smooth transformations or by glueing different sets of these kinds together.
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so that, at least as far as asymptotics are concerned, we need only know
how to evaluate the highest order Lipschitz-Killing curvature corresponding
to volume. It is not hard to see (cf. RFG for details) that

LN (T ) = σ−N
∫
T

|detΛ(t)|1/2 dt, (4.3.7)

where Λ(t) is defined at (4.3.1).
It is also possible to derive a reasonable expression for LN−1(T ), in the

case in which T is a compact region in RN with C2 boundary ∂T . Then we
have

LN−1(T ) =
1

2σ(N−1)

∫
∂T

|detΛ∂T (t)|1/2HN−1(dt), (4.3.8)

where HN−1 is surface measure on ∂T . To define Λ∂T (t), let e1(t), . . . , eN−1(t)
be an orthonormal basis to the tangent space to T at t ∈ ∂T . Then, in analogy
to (4.3.1), we define

(Λ∂T (t))ij = Cov

(
∂f(t)

∂ei(t)
,
∂f(t)

∂ej(t)

)
.

Note how well (4.3.7) and (4.3.8) relate to (4.3.3), even though the types of
sets they describe are quite different.

4.4 The Gaussian Kinematic Formula, I

In the previous two sections we met two main results. Theorem 4.3.1 gave an
expression for the expected Euler characteristic of the excursion sets Au(f, T )
of stationary Gaussian fields on N -dimensional rectangles, and Theorem 4.3.1
extended this by replacing stationarity with the assumption of constant vari-
ance and by moving to fairly general parameter spaces.

In both cases we saw the dependence of the expected Euler characteristic
on T was via the Lipschitz-Killing curvatures of the parameter space, which,
at least in the first case, we saw in Section 3.3 could be defined as coefficients
in a volume of tubes expansion. In this section, we study the dependence of
the expected Euler characteristic on the threshold u. To be more specific, if
we write the excursion sets as

Au(f, T ) = {t ∈ T : f(t) ≥ u} = f−1([u,∞)),

then our aim is to replace the real-valued f by a random field taking values
in Rk and [u,∞) by a general subset of D of Rk, so that the excursion sets
become f−1(D).

We shall give a mathematical motivation for this problem later on in Sec-
tion 4.8 (where we shall also explain from where the title of this section comes)
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but now we want to give a statistical motivation, more consistent with the
applications of later chapters, and a harbinger of things to come.

Thus, consider the following rather classical statistical problem: We ob-
serve data from the linear regression model

Y (t) = Xβ(t) + ε(t),

where β(t) ∈ Rp, Xk×p is a design matrix that does not depend on t and
ε(t) = (ε1(t), . . . , εk(t))t∈T is an i.i.d. sample of size k of some real-valued,
centered, Gaussian field with constant variance σ2. The only thing that is
perhaps non-standard in this model is that we are going to let t range over
a general parameter space T ⊂ RN . However, for the moment fix a t, and
suppose that we are interested in testing the hypothesis

H0,t : β(t) = 0,

for this t ∈ T . Standard regression techniques indicate that we should reject
H0,t if the F -statistic

f(t) =
1

pσ̂2(t)
β̂(t)′(X ′X)β̂(t)

=
ε(t)′X(X ′X)−1X ′ε(t)/p

ε(t)′(I −X(X ′X)−1X ′)ε(t)/(k − p)
∆
= F (ε(t))

(4.4.1)

is larger than some threshold u, where σ̂2 and β̂ are the usual least squares
estimates of σ2(t) and β(t) for the chosen t.

If we now consider the compound hypothesis

H0 =
⋂
t∈T

H0,t,

then, as t varies over T in (4.4.1), we obtain a random field of test statistics
{f(t)}t∈T , and a reasonable test statistic for the compound hypothesis would
be supT f(t), as described in Chapter 1. To apply this we need to know, at
least for large u, how to compute the exceedence probabilities P{supT f ≥ u}.

However, the event {f(t) ≥ u}= {F (ε(t)) ≥ u} can be written as {ε(t) ∈
F−1[u,+∞)}, and so, applying the Euler characteristic heuristic (4.0.1) we
have

P
{

sup
t∈T

ft ≥ u
}
' E {ϕ(Au(f, T ))}

= E
{
ϕ(T ∩ f−1[u,+∞))

}
= E

{
ϕ(T ∩ ε−1(F−1[u,+∞)))

}
.

= E
{
ϕ
(
T ∩ ε−1D

)}
with D

∆
= F−1[u,∞).
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Thus, for random fields of test statistics constructed out of an underlying
i.i.d. sample of Gaussian random fields, which we met first as Gaussian related
random fields in Section 2.2, the expected Euler characteristic of excursion sets
has a lot to do with computing the probabilities of rejection regions.

Here then is a result that is general enough to cover the cases described
above. It is the main tool that we shall use to examine a large number of
important examples in the remainder of this chapter and, indeed, in the ap-
plications that follow later. We refer to it as the Gaussian kinematic formula
[91, 92] (GKF), a name that we shall explain in Section 4.8.

Theorem 4.4.1 (Gaussian kinematic formula: Basic form). Let ε(t) =
(ε1(t), . . . , εk(t)) be a Rk-valued Gaussian random field on RN , with indepen-
dent components each of which satisfies the conditions of Section 4.1 and has
constant unit variance. Suppose that both T ⊂ RN and D ⊂ Rk are nice (cf.
Footnote 3). Then

E
{
ϕ
(
T ∩ ε−1D

)}
=

dimT∑
j=0

Lj(T )(2π)−j/2Mγk
j (D). (4.4.2)

where γk is the law of a N(0, Ik×k) variable, the functionals Mγk
j (D) are

defined implicitly in (3.3.19), and the Lipschitz-Killing curvatures Lj are de-
fined with respect to the Riemannian metric induced by the εi, as described in
Section 4.3.

Note that, in the case of stationary processes, the Lipschitz-Killing curvatures
Lj , which, as noted, are defined with respect to the Riemannian metric
induced by the εi, have a particularly simple form. In particular, if Λ is the
usual matrix of second order spectral moments (2.4.4), then

Lj(T ) = LEj
(
Λ1/2T

)
, (4.4.3)

where Λ1/2 is a square root of Λ, Λ1/2T = {Λ1/2t, t ∈ T}, and the LEj are the
standard Euclidean Lipschitz-Killing curvatures . (cf. 4.9.6.)

While Theorem 4.4.1 is stated in somewhat wider generality than needed
for the statistical motivation that preceeded it, in this book we shall almost
always apply it when D belongs to a family of rejection regions determined by
some test statistic. This motivates us to adopt new notation and terminology,
that was already anticipated in the simplest one-dimensional case in (4.3.4).

Definition 4.4.2. Suppose F : Rk → R is such that, for each u ∈ R, the set
F−1[u,∞) is nice4. Then the ‘EC densities’ of the random field f(t) = F (ε(t))

4 Although we have already defined ‘nice’ once before in Footnote 3, we are not
going to be so rigid as to demand that ‘nice’ means the same thing every time
it appears. For example, we shall soon apply this theorem, in Section 4.5.4, to
the rejection region for an F statistic. In that case the sets F−1[u,∞) are never
locally convex, having a singularity at the origin. However, the Gaussian kinematic
formula still holds for F random fields in the sense that the terms in the expansion
(3.3.19) can still be used to compute the EC densities of an F random field.
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are defined as the functions

ρ∗j (u) = (2π)−j/2Mγk
j (F−1[u,∞)). (4.4.4)

The asterisk in the ρ∗j is usually taken to be a descriptor of the random variable
F (Z) with Z ∼ N(0, Ik×k).

With this definition, we can rewrite the general result (4.4.2) for this sit-
uation as

E {ϕ (Au(f, T ))} = E
{
ϕ
(
T ∩ ε−1

(
F−1[u,∞)

))}
=

dimT∑
j=0

Lj(T )ρ∗j (u). (4.4.5)

In the simplest of cases, in which k = 1 and F (x) = x, we are obviously back
in the purely Gaussian scenario, and so with ∗ = G (for Gaussian) it is now
clear from where we took the notation of (4.3.4). In a moment we shall see
how to retrieve (4.3.4) from the Gaussian kinematic formula.

However, before we do this, there is something that is very important
to note about the structure of (4.4.2) and (4.4.5), and this is the way that
information on the various ‘parameters’ of the problem factors in the final
answer. There are essentially three parameters: the parameter space T , the
covariance structure of the random field ε, and the transformation F . On the
one hand, as we have already seen, the first two of these parameters appear
together in the Lj(T ), describing the geometry of T as seen in a Riemannian
sense through the metric induced by ε. On the other hand, the transformation
F affects only the EC densities ρ∗j , which are unaffected by either T or the
distribution of ε.

The impact of this factorisation is very significant for computations, since
it means we can separate the geometry of T from that of D or F−1[u,∞). We
have already spent some time on the geometry of T , discussing how to compute
the Lj(T ), at least in the simple Euclidean scenarios corresponding to locally
isotropic random fields. We shall return to these calculations for some non-
isotropic, and, indeed, non-stationary examples in Section 4.6. Now, however,
we leave these considerations for a while and concentrate on the geometry of
D, via the EC densities.

4.5 Euler Characteristic Densities

The aim of this section will be to show that although the EC densities de-
scribed above actually represent quite abstract geometric quantities, they are
generally not too hard to compute. We shall show this by considering a num-
ber of examples, via a number of techniques, occasionally applying more than
one technique to a specific case. We shall not attempt to give much more
than minimal motivation for our choice of examples at this stage. Later in the
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book, when we turn to applications, you will see many of them being applied
in various scenarios.

Note that in working with EC densities the distributional properties of
the random fields that are our central concern actually play a rather minimal
rôle. We shall assume only that ε is a smooth Gaussian field from T to Rk,
with independent components, all of which have mean zero and constant unit
variance. The only parameter left is therefore the transformation F : Rk → R,
by which we define the random field f = F ◦ ε.

4.5.1 Gaussian Fields

In the simple Gaussian case k = 1 and F is the identity function. Thus, up
to a factor of 2π to a power, (Where does the factor come from?) the
EC densities are the coefficients Mγ

j ([u,∞)) in the tube formula

γ
(
Tube([u,∞), ρ)

)
=

∞∑
j=0

ρl

j!
Mγ

j ([u,∞)).

However, we already computed these coefficients as our first example of Gaus-
sian tube formulas (cf. (3.3.22)), to find that

Mγ
j ([u,∞)) =

1√
2π
Hj−1(u)e−u

2/2,

where the Hj are Hermite polynomials. Thus the EC densities for Gaussian
processes are given by

ρGj (u) =
1

(2π)(j+1)/2
Hj−1(u)e−u

2/2.

Theorem 4.3.1 is now an immediate consequence of the Gaussian kinematic
formula (4.4.2).

4.5.2 χ2
k Fields

An example that we shall meet often in later applications is the χ2
k random

field defined as

f(t) = χ2
k(t) =

k∑
j=1

ε2j (t).

Thus, the F of our transformation is the squared norm F (x) = |x|2.
To compute the EC densities for this example, we shall use the general

result (3.3.24) which, in the current case, becomes, for j ≥ 1,
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(2π)j/2ρ
χ2
k
j (u) =Mγk

j

(
F−1([u,∞))

)
(4.5.1)

=
dj

dρj
P
{
F−1([u− ρ,∞))

} ∣∣∣
ρ=0

= (−1)j
dj

dxj
P
{
χ2
k ≥ x

} ∣∣∣
x=u

= (−1)j
dj

dxj
P {χk ≥ x}

∣∣∣
x=
√
u

= (−1)j−1 d
j−1

dxj−1
pk(x)

∣∣∣
x=
√
u
,

where pk is the density of a χk random variable5. (Removed carrier re-
turn.) Elementary computations give this probability density as

pk(x) =
1

Γ (k/2)2(k−2)/2
xk−1e−x

2/2.

Direct calculations, exploiting the basic property (3.3.21) of Hermite polyno-
mials, show that

dj−1pk(x)

dxj−1
=

1

Γ (k/2)2(k−2)/2

j−1∑
i=0

(
j − 1

i

)
(−1)i

dj−1−ixk−1

dxj−1−i Hi(x)e−x
2/2

=
e−x

2/2

Γ (k/2)2(k−2)/2

j−1∑
i=0

(
j − 1

i

)
(−1)i

dj−1−ixk−1

dxj−1−i Hi(x).

The summation can be rewritten as

j−1∑
i=0

1{k≥j−i}

(
j − 1

i

)
(−1)i

(k − 1)!

(k + i− j)!
xk+i−jHi(x)

= xk−j
j−1∑
i=0

bi/2c∑
l=0

1{k≥j−i}

(
j − 1

i

)
(−1)i+l

(k − 1)!

(k + i− j)!
i!

(i− 2l)!l!2l
x2i−2l

= xk−j
b j−1

2 c∑
l=0

j−1∑
i=2l

1{k≥j−i}

(
j − 1

i

)
(−1)i+l

(k − 1)!

(k + i− j)!
i!

(i− 2l)!l!2l
x2i−2l

= xk−j
b j−1

2 c∑
l=0

j−1−2l∑
m=0

1{k≥j−m−2l}

(
k − 1

j − 1−m− 2l

)
(−1)m+l(j − 1)!

m!l!2l
x2m+2l.

Note that as formidable as the above expression may look, it is no more than a
polynomial in x. Combining the above with the definition of the EC densities
now easily leads to

5 Of course, one has to check that condition (3.3.23) holds for this case, but you
have effectively already shown that in Exercise 3.6.13.
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Theorem 4.5.1. The EC densities of the χ2
k random field are given, for j ≥ 1

and u > 0, by

ρ
χ2
k
j (u) =

u(k−j)/2e−u/2

(2π)j/2Γ (k/2)2(k−2)/2

b j−1
2 c∑
l=0

j−1−2l∑
m=0

(4.5.2)

×1{k≥j−m−2l}

(
k − 1

j − 1−m− 2l

)
(−1)j−1+m+l(j − 1)!

m!l!2l
um+l.

Note that, when j = 0, ρ
χ2
k

0 (u) is simply P
{
χ2
k ≥ u

}
. Since this connection

between ρ0 and tail probabilities will always hold (see (4.5.1)), we shall not
mention it explicitly in dealing with the remaining examples.

There are two important lessons to take home from the above example.
The first is that although some of the formulas involved may have been long,
there was nothing at all conceptually difficult in deriving them. In fact, despite
the essentially geometric character of the ρχ

2
k , all that was involved in their

computation was simple calculus.
Before leaving this example, it is worthwhile noting that there is another

approach to obtaining the χ2
k EC densities, one that links both the χ2

k random
field and these densities to Gaussian ones. To see this, note first that we can
write

f(t) =

k∑
j=1

ε2j (t) = sup
v∈Rk: |v|=1

〈v, ε(t)〉2 ∆
= sup
v∈Rk: |v|=1

Z2(t, v), (4.5.3)

where Z is now a Gaussian random field on T × Sk−1. It is easy to see (cf.
Exercise 3.6.12) that

ϕ ({t ∈ T : f(t) ≥ u}) = 1
2ϕ
({

(t, v) ∈ T × Sk−1 : Z(t, v) ≥
√
u
})
,

the factor of 1/2 coming from the symmetry Z2(t, v) = Z2(t,−v), and so
taking expectations on both sides should yield χ2

k EC densities in terms of
Gaussian ones6.

We shall not do this now, but the computation will be implicit in the
calculations of the following example. Doing so7 would yield a somewhat more
compact form of (4.5.2) as

6 This approach, of enlarging the parameter space and then taking a supremum
over the added part, is, of course, a basic result in Banach spaces, which states
that the norm of an element x is equivalent to the supremum of 〈x, y〉 over all y
of norm one in the dual space. Within the statistical literature it is often referred
to as an application of ‘Roy’s intersection-union principle’ having been applied
by Roy [79] as a heuristic method of test construction for multiple hypotheses.

7 To prove this, you can use (4.5.16) below and (4.5.1) above. However, it would
be a good test of your understanding to try to do this using only what you know
so far. We will ask you to do it anyway in Exercise 4.9.8.
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ρ
χ2
k
j (u) =

k−1∑
l=0

Ll(Sk−1)ρGj+l(
√
u), (4.5.4)

where we calculated the Lipschitz-Killing curvatures of the unit ball Sk−1

back in Section 3.3 (cf. (3.3.7)).
Another important consequence of (4.5.3) lies in the trivial observation

that

sup
t∈T

f(t) = sup
(t,v)∈T×Sk−1

Z2(t, v) = sup
(t,v)∈T×Sk−1

(Z+(t, v))
2
, (4.5.5)

so that exceedence probabilities (at u) for the non-Gaussian f are immediately
computable from those for the Gaussian Z (at

√
u), albeit on a slightly more

complicated parameter space. We shall return to this point in Chapter 5 (cf.
Section 5.3.2) when we look at exceedence probabilities in some detail.

In general, whereas for the χ2
k process this approach seems, at the moment,

to do little more than provide a novel diversion, in the following example we
shall see that it can sometimes be the natural way to proceed.

4.5.3 χ̄2
K Fields

The simplest χ̄2
K field is of the form

f(t) =

k∑
j=1

ε2j (t)1{εj(t)≥0}.

These random fields arise in regression applications of random fields where
some coefficients are assumed to be zero under the null hypothesis and pos-
itive under the alternative hypothesis (Unclear. Should relate to dis-
cussion at the beginning of Section 4.4). The above example would
correspond to an example in which a design matrix had orthogonal columns.
More generally, a χ̄2

k random variable is determined by a k-dimensional convex
cone K and can be expressed as

χ̄2
K(Z) =

(
sup

v∈K:|v|=1

〈v, Z〉+
)2

, Z ∼ N(0, Ik×k)

where x+ indicates the positive part of x. It is well known (e.g. [88]) that
the distribution of a χ̄2

K random variable is that of a mixture of χ2
j random

variables for 0 ≤ j ≤ k, the j = 0 case corresponding to the situation in which
the supremum is negative, so the χ̄2

k χ
2
k random variable is zero. (Wouldn’t

it be easier to say 1 ≤ j ≤ k?) The tail of the distribution function,
therefore, can be written as

P
{
χ2
K(Z) ≥ u

}
=

k∑
j=1

pj(K)P
{
χ2
j ≥ u

}
(4.5.6)
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for some weights pj(K) depending on the cone K. If K is polyhedral, these
weights have a simple interpretation: they are the probability that the pro-
jection of Z ∼ N(0, Ik×k) onto K lies in a face of dimension j of K.

A natural definition of a χ̄2
K random field is therefore

f(t) =
(

sup
v∈K:|v|=1

〈v, ε(t)〉+
)2

.

There are at least two approaches for computing the EC densities of this
random field. We shall describe both of them, both to indicate the techniques
involved and then to obtain additional information that comes as a byproduct
of the Gaussian kinematic formula.

The first approach follows the lines that we adopted for the Gaussian and
χ2
k examples. As usual, the first step lies in checking that (3.3.23) holds. This

follows from Exercise 4.9.9, which shows that if we write the rejection region
for a χ̄2

k random variable field as

RK,u =
{
x ∈ Rk : sup

v∈K:|v|=1

〈v, ε(t)〉+ ≥
√
u
}

then
Tube(RK,u, ρ) = RK,(

√
u−ρ)2 .

That is, a tube around the rejection region lies in the same family of rejection
regions, and so we can use the arguments that we have used so far, based
on a Taylor expansion of the distribution function. However, it then follows
immediately from (4.5.6) that the EC densities of of χ̄2

K random fields have
the following representation in terms of those of χ2

k fields:

ρ
χ̄2
K
j (u) =

k∑
l=0

pl(K) ρ
χ2
l
j (u). (4.5.7)

This completes the first approach. Note, however, that in order to use
this result we need to know what the pl(K) are, and we have actually only
described what they are for polyhedral K.

The second approach uses the representation of χ̄2
k as a supremum, a

technique that will also appear in later examples, where it will be the most
natural approach.

Note first that if f is a χ̄2
K random field then

sup
t∈T

f(t) = sup
t∈T

(
sup

v∈K:|v|=1

〈v, ε(t)〉+
)2

= sup
(x,v)∈T×K:|v|=1

(
〈v, ε(t)〉+

)2
∆
= sup

(t,v)∈T×K:|v|=1

(
(Z(t, v))+

)2
.
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Therefore, for u ≥ 0,

sup
t∈T

f(t) ≥ u ⇐⇒ sup
(t,v)∈T×K:|v|=1

Z(t, v) ≥
√
u, (4.5.8)

linking suprema of the highly non-Gaussian f on the simple parameter space
T to the supremum of the Gaussian Z on the somewhat more complicated
space T × {v ∈ K : |v| = 1}.

This connection goes further than merely linking suprema. Applying Ex-
ercise 3.6.12 with j = 0 and noting that the Euler characteristic of the convex
K is one, we have that

ϕ
(
{t ∈ T : f(t) ≥ u}

)
= ϕ

({
(t, v) ∈ T × {v ∈ K : |v| = 1} : Z(t, v) ≥

√
u
})
,

from which it follows that the corresponding expectations are identical as well.

From the definition of the EC densities ρ
χ̄2
K
j we know that

E
{
ϕ
(
{t ∈ T : f(t) ≥ u}

)}
=

dimT∑
j=0

Lj(T )ρ
χ̄2
K
j (u), (4.5.9)

where the Lj are now computed with respect to the metric induced by ε.
On the other hand, applying Theorem 4.4.1 to the zero mean, constant

variance Gaussian process Z we have that

E
{
ϕ
({

(t, v) ∈ T × {v ∈ K : |v| = 1} : Z(t, v) ≥
√
u
}) }

(4.5.10)

=

dim(T×{v∈K: |v|=1})∑
j=0

Lj(T × {v ∈ K : |v| = 1}) ρGj (
√
u).

The ρGj are the EC densities (4.3.4) for the Gaussian case and the Lj are
computed with respect to the Riemannian metric induced on T × {v ∈ K :
|v| = 1} by the random field Z.

However, these Lipschitz-Killing curvatures can be simplified somewhat.
An additional application8 of Exercise 3.6.12 implies that

Lj(T × {v ∈ K : |v| = 1}) =

j∑
l=0

Ll(T )Lj−l ({v ∈ K : |v| = 1}) . (4.5.11)

Now, however, while the Lj(T ) are still computed with respect to the Rieman-
nian metric induced on T by ε, the remaining Lipschitz-Killing curvatures are
computed with respect to the standard Euclidean metric on the unit sphere
Sk−1.

Putting together (4.5.9)–(4.5.11) gives us the following result.

8 Note that to apply Exercise 3.6.12 we need the version for Riemannian manifolds
equipped with a product Riemannian metric. Our assumptions guarantee that
the random field Z(t, v) generates an appropriate structure.



4.5 Euler Characteristic Densities 141

Theorem 4.5.2. The EC densities of the χ̄2
K random field are given, for j ≥ 1

and u > 0, by either

ρ
χ̄2
K
j (u) =

k−1∑
l=0

Ll(K1) ρGl+j(
√
u), (4.5.12)

where K1 = {v ∈ K : |v| = 1} = K ∩ Sk−1 and the Ll(K1) are the usual,
Euclidean, Lipschitz-Killing curvatures, or by

ρ
χ̄2
K
j (u) =

k∑
l=0

pl(K) ρ
χ2
l
j (u). (4.5.13)

The two expressions in the theorem for the EC densities of the χ̄2
K random

field imply a relation between the pj(K) and the Lj(K1). In particular, some

algebra based on them and the explicit expressions for ρGj (
√
u) and ρ

χ2
l
j (u)

shows that

pj(K) =
1

2jπ
j−1
2 Γ ( j+1

2 )

b(k−j)/2c∑
m=0

(−1)m(d+ 2m)!

(4π)mm!
Lj+2m−1(K1). (4.5.14)

Thus the pj(K), which to this point were undefined, now have an explicit
representation in terms of the Lipschitz-Killing curvatures of K ∩ Sk−1.

Another interesting set of identities results from taking K = Rk, in which
case the χ̄2

K is actually χ2
k. Then (4.5.12) implies that the distribution of a χk

random variable can be written as

P {χk ≥ u} =

k−1∑
j=0

Lj(Sk−1)ρGj (u), (4.5.15)

a result that we shall need later, and also that

∂l

∂ul
P {χk ≥ u} = (−1)l

k−1∑
j=0

Lj(Sk−1)(2π)l/2ρGj+l(u) (4.5.16)

4.5.4 F Fields

We now consider perhaps the most important random field for statistical
applications, the F random field.

As in the previous sections, we observe k i.i.d. samples, εi(t), 1 ≤ i ≤ k, of
some centered, unit variance random field. In the current setting, however, we
take n,m ≥ 1 with n+m = k, and define the F random field with n degrees
of freedom in the numerator and m in the denominator as

f(t) = H(ε(t)) =

∑n
i=1 ε

2
i (t)/n∑k

i=n+1 ε
2
i (t)/m

∆
=
|U(ε(t))|2/n
|L(ε(t))|2/m (4.5.17)
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where
U(y) = (y1, . . . , yn), L(y) = (yn+1, . . . , yk),

are the upper and lower coordinates corresponding to the numerator and
denominator, respectively.

Some care must be taken to avoid points x ∈ T for which the random field
above is not defined due to a singularity of the type 0/0 [99]. However, for
this to happen, the random field ε must hit the origin in Rk. It is not hard to
see9 that if k > dim(T ) then this will happen with probability zero, and so
can be ruled out. Thus for the remainder of this section we shall assume that
k > dim(T ).

Following the lead of the last three examples, we would like to use the
Gaussian tube formula expansion in order to compute the EC densities. How-
ever, there is an intrinsic problem, for the rejection regions H−1[u,∞) of the F
field, where H is given by (4.5.17), is not ‘nice’. While we have never been ter-
ribly precise in this book about what we mean by ‘nice’, we have emphasised
that nice sets were locally convex, and this time this is not the case.

We need only consider the case n = m = 1, in which case H−1[u,∞) is the
region double cone in R2 enclosed by the lines L = ±U/

√
u. This is concave

at L = U = 0. (The triangle marked Ru in Figure 4.5.1 below is part of the
intersection of this region with the positive quadrant R2

+.)
In order to get around this problem, and so be able to start the derivation of

the EC densities, we need another way of describing tubes around H−1[u,∞),
which we develop in the following lemma.

Lemma 4.5.3. In the above notation, let Ru
∆
= H−1[u,∞) denote the rejec-

tion region of the statistic

|U(x)|2

|L(x)|2
, x ∈ Rk, k = n+m

at level u. Then,

x ∈ Tube(Ru, ρ) ⇐⇒ |U(x)| ≥ |L(x)|
√
u− ρ

√
1 + u, (4.5.18)

for all x outside{
x : |L(x)| ≤ ρ

√
u

1 + u
, |U(x)| ≤

√
u |L(x)|

}
. (4.5.19)

Furthermore, for fixed u, the exceptional set of x’s has Lebesgue measure, and
so probability, of order O(ρk).

(The statement of the Lemma is inconsistent with (4.5.17): n,m
missing, and they are not 1.)

9 See Exercise 2.8.26 for a similar result, or Lemma 11.2.10 of RFG for a full
argument.
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Proof. The main idea is captured in Figure 4.5.1, which tells the entire story
for n = m = 1, and shows a two dimensional cross-section of the story in
higher dimensions. However, we shall still give a full formal proof.

We consider two cases: x ∈ Ru and x 6∈ Ru. For x ∈ Ru it is trivial
to check that (4.5.18) holds, so we concentrate on x 6∈ Ru. We begin with
the direction (⇐). We need to check whether x ∈ Tube(Ru, ρ), that is, to
determine whether there is some point y within a distance ρ from x which
satisfies |U(y)|/|L(y)| ≥

√
u. Let

ηU (x) =
1√
U(x)

(ε1(x), . . . , εn(x), 0, . . . , 0) ,

ηL(x) =
1√
L(x)

(0, . . . , 0, εn+1(x), . . . , εk(x)) ,

be the unit direction vectors for the numerator and denominator, respectively,
and define

ηu(x) =
1√

1 + u

(
−ηU (x) +

√
u · ηL(x)

)
. (4.5.20)

Fig. 4.5.1. A cross-section of Tube(Ru, ρ) related to the F -statistic in one quadrant.
The lightly shaded region is part of the rejection region, while the other two are part
of Tube(Ru, ρ) \ Ru. The arrow represents a displacement ρ in the direction of the
vector ηu(x) (4.5.20). The small dark triangle, whose rightmost point has coordinates
(ρu/
√

1 + u, ρ
√
u/(1 + u)), represents the part of the tube excluding Ru where the

right hand side of (4.5.18) fails as a test of x ∈ Tube(Ru, ρ). The union of the dark
triangles over all possible values of U and L is the set (4.5.19) and has Lebesgue
measure, and hence probability, O(ρk).

It is not hard to check that the normalized gradient of |U(x)|2/|L(x)|2 is
just
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1√
1 + |U(x)|2/|L(x)|2

(
ηU (x)−

√
|U(x)|2
|L(x)|2

· ηL(x)

)
.

Thus the outward pointing normal vector field along the boundary of Ru is
simply ηu(x), and the tube can be written as

Tube(Ru, ρ) = {x+ r · ηu(x) : x ∈ Ru, 0 ≤ r ≤ ρ} .

In order to verify whether x ∈ Tube(Ru, ρ) we must effectively invert the
mapping (x, r) 7→ x + r · ηu(x). The key to the inversion is the observation
that, if x ∈ Tube(Ru, ρ) \Ru, then it will have left Ru along a normal vector
parallel to ηu(x).

There is some subtlety at work here. For an arbitrary set A, to determine
whether x ∈ Tube(A, ρ)\A we must find x∗ ∈ A, the closest point to x within
A (which is a function of x). The point x∗ is such that x − x∗ is parallel to
η(x∗), a unit outward normal of ∂A at x∗. If |x−x∗| < ρ, then we can conclude
that x ∈ Tube(A, ρ). In the general case, therefore, the relevant normal vector
in question is based at x∗, not x. Our observation above can be restated as
ηu(x∗) = ηu(x), meaning that we actually know which direction we must move
x to reach Ru in a normal direction.

Finally, we must move x a distance ρ along −ηu(x) and check whether
x− ρηu(x) ∈ Ru. This amounts to verifying whether or not

|U(x− ρ · ηu(x))|
|V (x− ρ · ηu(x))|

≥
√
u.

A straightforward calculation shows that, as long as x is outside the region
described by (4.5.19),

|U(x− ρ · ηu(x))| = |U(x)|+ ρ√
1 + u

,

|L(x− ρ · ηu(x))| = |L(x)| − ρ
√

u

1 + u
.

The result now follows from some simple manipulations.
As for the converse (⇒), suppose x ∈ Tube(Ru, ρ). Then, we can write

x = x∗ + δ · η(x∗) = x∗ + δ · η(x)

for some x∗ ∈ ∂Ru, 0 ≤ δ ≤ ρ with

|U(x∗)| =
√
u |L(x∗)|.

Similar calculations to those above show that this is equivalent to

|U(x)| = |L(x)|
√
u− δ

√
1 + u⇒ |U(x)| ≥ |L(x)|

√
u− ρ

√
1 + u,

and so we are done. 2
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We now return to the computation of the EC densities for an F random
field. Note firstly that in the notation of Lemma 4.5.3, the rejection region for
an F statistic is Run/m. Formally, then, the EC densities up to order k− 1 of
the F random field are coefficients of the powers of ρ in the expansion

P
{
|U(x)| ≥ |L(x)|

√
un

m
− ρ
√

1 +
un

m

}
= P

{
χn ≥ χm

√
un

m
− ρ
√

1 +
un

m

}
= E

{
P
{
χn ≥ χm

√
un

m
− ρ
√

1 +
un

m

∣∣∣∣ χm}}

= E


k−1∑
j=0

Lj(Sk−1) ρGj

(
χm

√
un

m
− ρ
√

1 +
un

m

) ,

the last equality being a consequence of (4.5.15). Now, from (4.5.1), check
that

∂l

∂xl
ρGj(x) =

∂l

∂xl
(−1)j−1 ∂

j−1

∂xj−1
((2π)−(j+1)/2)e−x

2/2

= (2π)−(j+1)/2(−1)j−1 ∂
l+j−1

∂xl+j−1
e−x

2/2

= (2π)l/2(−1)lρGj+l(x),

and use the power series expansion

ρGj(x− cρ) =

∞∑
l=0

(−1)l
(cρ)l

l!

∂l

∂xl
ρGj(x)

=

∞∑
l=0

(2π)l/2(cρ)l

l!
ρGj+l(x)

to evaluate the final expectation above to find that it is equal to

∞∑
l=0

(2π)l/2ρl

l!

(
1 +

un

m

)l/2 k−1∑
j=0

Lj(Sk−1) E
{
ρGj+l

(
χm

√
un

m

)}
.

The EC densities are therefore given by

(
1 +

un

m

)j/2 n−1∑
l=0

Ll(Sn−1) E
{
ρGl+j

(
χm

√
un

m

)}
. (4.5.21)

Evaluating the final expectation, we obtain
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Theorem 4.5.4. The EC densities of an F random field on T with n and m
degrees of freedom and n+m > dim(T ) are given, for j ≥ 1, by

ρFj (u;n,m) =
(

1 +
un

m

)j/2 n−1∑
l=0

Ll(Sn−1) E
{
ρGl+j

(
χm

√
un

m

)}
, (4.5.22)

where

E
{
ρGj

(
χm

√
un

m

)}
=

b j−1
2 c∑
l=0

(−1)l(j − 1)!Γ
(
j−1−2l+m

2

)
π(j+1)/222l+1(j − 1− 2l)!l!Γ

(
m
2

) (4.5.23)

×
(un
m

)(j−1−2l)/2 (
1 +

un

m

)−(m−1−2l+j)/2

.

Before leaving the F case, there is an important aspect of the calculations
we have made that deserves further explanation, or, to be more precise, justi-
fication. Recall that we already discussed the fact that the rejection rejection
for the F statistic is not locally convex, and so the general structure of tube
probability expansions of Section 3.3.4 cannot be used. The way we solved
this problem was to find an alternative way to evaluate tube probabilities,
although only up to a certain order of accuracy, and then treating the coeffi-
cients in an expansion of these probabilities (up to the appropriate order) as
if they were the Mj in a ‘true’ expansion.

There is no problem in doing this. The serious problem lies in whether
or not the GKF at all continues to hold in the current scenario, with these
coefficients replacing the first few coefficients from a ‘true’ expansion. This is
certainly not clear from the way that Theorem 4.4.1 is stated. However, it does
follow from the details of the proof of Theorem 4.4.1 (cf. Chapter 15 of RFG)
that all is fine. The proof does not really use the formalism of the expansions
of Section 3.3.4. Rather, it involves a direct evaluation of the Mj which is
consistent with what we have done above. The tube probability expansions
are then introduced to provide additional insight into theMj and to provide
a method for computing them in smooth cases.

If you are unhappy with the above arguments, then you can turn our
version of the original proof of Theorem 4.5.4 in [99], which we give in Section
4.5.10. The proof there is what might be called a ‘first principles’ proof, in
that it is a version of our proof of Theorem 4.2.1 for stationary Gaussian fields
on rectangles extended to stationary F fields. Whereas the proof there does
not rely on the GKF, you will find the specific computations there even more
involved than those above.

4.5.5 Student T Fields

Retaining our previous notation, and letting ε takes values in Rm+1, the Stu-
dent T field with m degrees of freedom is defined as



4.5 Euler Characteristic Densities 147

T (t) =
ε1(t)

|L(ε(t))|/
√
m
,

where L(ε(t)) = (ε2(t), . . . , εm+1(t)).
This, of course, is almost the square root of an F field, with 1 andm degrees

of freedom, modulo a sign ambiguity. Handling the ambiguity by symmetry,
it follows immediately that the corresponding EC densities are given by

ρT
j (u;m) =

1

2
ρFj (u2; 1,m) =

(
1 +

u2

m

)j/2
E
{
ρGj

(
χm

u√
m

)}
, (4.5.24)

where we have used (4.5.22) and the fact that L0(S0) = L0({−1,+1}) = 2.
The expectation here has the expansion given by (4.5.23).

4.5.6 Hotelling T 2 Fields

In order to define the Hotelling T 2 field, we first need a matrix of i.i.d., zero
mean, unit variance Gaussian fields,

ε(t) = εij(t), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let εi· denote the i-th row of ε, and let ε̄(t) be the row vector of column
means, defined by

ε̄(t) =
1

n

n∑
i=1

εi·(t).

Also, let

Wlm(t) =
1

n− 1

n∑
i=1

(εil(t)− ε̄l(t)) (εim(t)− ε̄m(t))

be the sample covariance estimator of one row of the matrix ε(t). The Hotelling
T 2 random field with n−1 degrees of freedom in p dimensions is then defined
as

H(t) = n ε̄(t)W (t)−1ε̄(t)′.

(A T 2 variable and an F variable are proportional. Are the
fields not?)

Finding the EC densities for H directly from a tube formula expansion
is not easy, since the rejection region is quite complicated. However, we can
adopt the approach that we have already used once for χ̄2

K fields, of enlarging
the parameter space somewhat to obtain a random field with a much simpler
rejection region, and applying the GKF to this. To do this, note (Not easy
to see.) that

H(t) = max supv:|v|=1T
2
v (t)

where, for any unit vector v ∈ Rp,
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T 2
v (t) =

(ε̄(t), v)2

1
n−1

∑n
i=1 ((εi·(t)− ε̄(t)) , v)

2

is the F -random field formed from the vector-valued random field (ε(t), v).
Therefore, we can consider the maximum of the T 2 random field with n−1

degrees of freedom over T as the maximum of an F random field with (1, n−1)
degrees of freedom over T × Sp−1.

However, as was the case for the χ̄2
K random field, we can go beyond this

and compare actual excursion sets. In the present case the connection is

ϕ
({

(t, v) : T 2
v (t) ≥ u

})
= 2ϕ ({t : H(t) ≥ u}) ,

the factor of 2 coming from the symmetry T 2
v (t) = T 2

−v(t). (cf. Exercise 3.6.12.)
We therefore have

E {ϕ ({t ∈ T : H(t) ≥ u})} =
1

2
E
{
ϕ
(
{(t, v) ∈ T × Sp−1 : T 2

v (t) ≥ u}
)}

=
1

2

dim(T )+p−1∑
j=0

Lj(T × Sp−1)ρFj (u; 1, n− 1)

=
1

2

dimT∑
j=0

Lj(T )

p−1∑
l=0

Lj(Sp−1)ρFj+l(u; 1, n− 1)

=

dimT∑
j=0

Lj(T )

p−1∑
l=0

Lj(Sp−1)ρTj+l(
√
u;n− 1),

the second to last equality here following from Exercise 3.6.1210 and the last
from (4.5.24).

Since the GKF also tells us that the above can also be expressed as∑
Lj(T )ρHj (t; p, n − 1) where the ρHj are the EC densities of a Hotelling T 2

field, we have derived the following result.

Theorem 4.5.5. The EC densities of the Hotelling T 2 random field with n−1
degrees of freedom in p dimensions are given, for j ≥ 1 and u > 0, by

ρHj (u; p, n− 1) =

p−1∑
l=0

Lj(Sp−1)ρTj+l(
√
u;n− 1), (4.5.25)

where the ρT are the EC densities of the Student T random field, given by
(4.5.24).

(Should we be citing theses of students who worked these
cases out?)

10 cf. Footnote 8 above, as applied to the F random field T 2
v (t).
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4.5.7 Roy’s Maximum Root Field

As I understand it, these involve approximation arguments which
would be nice to describe.

4.5.8 Conjunctions/Correlated

i think these are pretty much dead in the water in terms of ap-
plications – should we include them?

I think we should include a long list of everything that is
known to date, whether there is a GKF proof or not. This will
be most useful to applied readers.

4.5.9 Correlation Fields

quote these from [27] in current notation.

4.5.10 Another Look at the F Field

i thought in this section we might try to write some of Keith’s
original F computation in our notation – maybe use my other
derivation from first prinicples and the GKF, too. BUT, this de-
votes an awful lot of time to computing the F EC densities that
we have already done – i’m not totally sure this is worth it

4.6 Some Lipschitz-Killing Curvatures

The general Gaussian kinematic formula of Theorem 4.4.1 has, so far, been
more general than we have been able to exploit. Although, in the previous
section, we saw how to compute the Gaussian Minkowski functionalsMγk

j for
many useful examples, we have not really seen how to compute the Lipschitz-
Killing curvatures Lj in any examples beyond either locally isotropic fields or
sttaionary stationary fields over rectangles.

In this section we shall look at two such examples. The first, of time-space
random fields, is quite easy to handle. The second, of scale space fields, is not.

However, both rely heavily on the fact that in the Gaussian kinematic
formula the computation of the Lipschitz-Killing curvatures splits completely
from the the calculation of the Gaussian Minkowski functionals Mγk

j .
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4.6.1 Time-Space Fields

As we noted already in Chapter 1, there are many interesting examples of
random fields which develop in time, and so are best written as f(t, x), with
t ∈ [tl, tu] ⊂ R and x ∈ T ⊂ RN . Clearly, t as the time parameter and x is the
spatial parameter.

Of particular interest, and easiest to compute, are random fields for which
the covariance function is of product form, in that (for zero mean fields)

E {f(t1, x1)f(t2, x2)} = Ct(t1, t2)Cx(x1, x2), (4.6.1)

where both Ct and Cx are constant variance covariance functions, on R and
RN respectively.

It is an immediate consequence of (4.6.1) that the first order temporal and
spatial partial derivatives of f are uncorrelated. Furthermore, the Riemannian
metric (4.3.1) induced by such processes on the product space M = [tl, tu]×T
is also of product form, so that, by Exercise 3.6.12

Li(A×B) =

i∑
j=0

Lj(A)Li−j(B) = Li(B) + |A|Li−1(B), (4.6.2)

for an interval A ⊂ R and B ⊂ T .
Thus, for example, suppose that both Ct and Cx are stationary covariance

functions, with variances σ2
t and σ2

x respectively, and second spectral moments
λt and matrix Λx of second spectral moments. Assume furthermore that the
set T is a rectangle of the form

∏N
i=j [0, Tj ]. Then it follows simply from (4.6.2)

and the arguments of Section 4.2 that the Lipschitz-Killing curvatures of f
on M are given by

Li([tl, tu]× T
)

= σ−ix
∑
J∈Oi

|J | |ΛxJ |1/2 +
λ

1/2
t (tu − tl)
σtσ

i−1
x

∑
J∈Oi−1

|J | |ΛxJ |1/2,

where, as usual, Ok denotes the
(
N
k

)
elements of ∂kT which include the origin,

withO−1
∆
= ∅, and ΛxJ is the usual minor of Λx. (cf. Theorem 4.2.1 and (4.3.3).)

The above is a nice, and not atypical, example of how it is often possible
to compute the Lipschitz-Killing curvatures for non-stationary processes from
stationary components.

4.6.2 Scale Space Fields

The Gaussian scale space random field is a conceptually simple random field
obtained by smoothing white noise with an isotropic spatial filter over a range
of filter widths or scales. The parameter space therefore includes both scale
and location parameters [84, 100]. In essence the scale-space field is a con-
tinuous wavelet transform of white noise that is designed to be powerful at
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detecting a localised signal of unknown spatial scale as well as location. We
shall see it in action later in Section ???????. For the moment, however, we
shall treat it more abstractly.

We start with a definition. Let W be Gaussian noise on RN based on
Lebesgue measure (cf. Section 2.4.5) and let h(t) be a filter, Then the Gaussian
scale space random field with filter h is defined as

f(σ, t) = σ−N/2
∫
RN

h

(
t− u
σ

)
W (du)dB(u). (4.6.3)

(dB(u) not defined in this book.) We shall let t range over a nice subset
T of RN , and take σ = [σl, σu], for some 0 < σl < σu <∞.

Assume that the filter is normalised so that
∫
RN h

2(t) dt = 1, and that
there exists a λ > 0 such that∫

RN
(∇h(t))′∇h(t) dt = λIN×N . (4.6.4)

Two common examples are given by the standard Gaussian kernel

h(t) =
1

πN/4
e−|t|

2/2,

and the Marr or ‘Mexican hat’ wavelet

h(t) =

[
4N

(N + 2)πN/2

]1/2(
1− |t|

2

N

)
e−|t|

2/2.

It is easy to check that in the Gaussian case (4.6.4) holds with λ = 1
2 and in

the wavelet case with λ = (N + 4)/(2N).
The covariance function is easily calculated to be (cf. Section 2.4.5)

C((σ1, t1), (σ2, t2)) =
1

(σ1σ2)N/2

∫
RN

h

(
t1 − u
σ1

)
h

(
t2 − u
σ2

)
du

=
1

(σ1σ2)N/2

∫
RN

h

(
t1 − t2 − v

σ1

)
h

(
−v
σ2

)
dv.

Note that, for fixed σ, it follows from the last line above that f is stationary in
t. However, f is most definitely not stationary as a process in the pair (σ, t).

For notational convenience in what follows, we make the simple scale trans-
formation s = − lnσ, so that our random field is now denoted by f(s, t) and
has covariance function

C((s1, t1), (s2, t2)) = eN(s1+s2)/2

∫
RN

h ((t1 − u)es1)h ((t2 − u)es2) du

Our choice of normalisation gives that the variance of f is one. As for the
the matrix of second order spectral moments, we can find these, as usual (cf.
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(2.4.9)) by differentiating the covariance function. Doing so, a little calculus
gives that all first order partial derivatives of f with respect to the space
variables are uncorrelated with the first order derivative in the scale variable,
and that

κ
∆
= Var

(
∂f(s, t)

∂s

)
=

∫
RN

[〈u,∇h(u)〉+Nh(u)/2]
2
du (4.6.5)

Λs
∆
= Var (∇f(s, t)) =

∫
RN

e2s(∇h(u))′∇h(u) du, (4.6.6)

where ∇f denotes the spatial derivative of f with respect to the elements of
t only. In view of (4.6.4), we have Λs = λe2sIN×N .

For the Gaussian and Marr wavelet kernels the values of κ are 1/2 and
N/2, respectively.

Calculating the Lj

Since f is not only non-stationary, but also not locally isotropic (since the
matrix λs in (4.6.6) is dependent on s) we once again cannot use the simple
arguments of Euclidean geometry to calculate the Lj in the Gaussian kine-
matic formula.

There are two paths to overcoming this problem. The first was taken in
[84, 100] which contained the first computation of the results below. The
computation there was ‘from first principles’, in the sense that the expected
Euler characteristic of the excursion sets of scale-space fields was computed
much in the way we computed the original Gaussian result of Theorem 4.2.1,
by using Morse theory and the expectation meta-theorem of Section 2.7.

The computations of this approach were quite long and rather intricate.
On the other hand, they are quite within the mathematical level that we have
been working at so far.

The second approach is the one that we shall take below, and which has
not appeared elsewhere. It has the advantage of showing how the Gaussian
kinematic formula can be applied in situations in which there is neither sta-
tionarity nor local isotropy. On the other hand, it has the disadvantage that it
requires differential geometric arguments, which we have studiously avoided
in this book, but did treat in detail in RFG.

We include it here to show how the general argument works and to at-
tempt to motivate you to also master the material in RFG. The treatment is
therefore unfortunately no longer self contained. However, the results can be
applied without understanding the derivation, once you have read the follow-
ing material on stratification and on what we need to compute. Ultimately,
we shall write the Lipschitz-Killing curvatures for this problem, which are
essentially Riemannian in nature, in terms of the Euclidean Lipschitz-Killing
curvatures of T and the parameters κ and λ.

The derivation is purposely slow and methodical, with all the main steps
carefully signposted. Our aim is not so much to show you how the following
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calculation works, but rather to set it up as a template for other examples
that you might need to work out for yourself.

Stratifying the parameter space

We start by adopting the approach of Section 3.5 by stratifying the parameter
space into manifolds of common dimension. In the current case, this allows us
to write the (N + 1)-dimensional parameter space

M
∆
= [sl, su]× T

as the disjoint union of of four types of pieces, arranged in three strata, ac-
cording to their dimension:

∂N+1M = M◦ = (sl, su)× T ◦∆= interior,

∂NM = (sl, su)× ∂T ∪ {su} × T ◦ ∪ {sl} × T ◦
∆
= side ∪ top ∪ bottom,

∂N−1M = {sl} × ∂T ∪ {su} × ∂T.

An example is given in Figure 4.6.1, in which T is two-dimensional, and from
which our terminology of ‘top’, ‘bottom’ and ‘side’ comes. Note that while
this example is at the moment completely ‘Euclidean’, we shall soon give it
a Riemannian structure with the metric induced by the random field f . In
this case, as we shall see, one needs to think of the top as having positive
(outward) curvature, while the bottom has negative (outward) curvature.

Fig. 4.6.1. The scale space parameter set

What we need to compute

Ultimately, we need to compute the Lipschitz-Killing curvatures Li(M) of M
under the Riemannian metric induced by the random field f . Rather than
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doing this directly, we shall compute certain other curvatures, denoted by
Lαi (M) and defined via (3.3.18), specifically designed to be simpler to handle
on sets of constant curvature. (We already met these in Section 3.3.3 in dealing
with tube formulae on spheres, where they were convenient to use because of
the constant curvature of spheres. We shall soon see that M also has constant
curvature, given by −κ−1.)

There are simple relationships between the Li(M) and Lαi (M) for constant
curvature α, including the following, which is is (10.5.12) of RFG.

Li(M) =

bN+1−i
2 c∑

n=0

αn(i+ 2n)!

(4π)nn!i!
Lαi+2n(M). (4.6.7)

(The inverse relationship, which expresses the Lαj in terms of the Lj , has
already been given at (3.3.18).)

To compute the Lαi (M) themselves, we first write the decomposition

Lαi (M) =

N+1∑
j=N−1

Lαi (M ; ∂jM) (4.6.8)

according to the three strata described above, and then restrict ourselves to
the case α = −κ−1. Applying (10.7.10)11 of RFG along with the (yet to be
proven) fact that M has constant curvature −κ−1, gives that, for i ≤ j,

L−κ
−1

i (M ; ∂jM) (4.6.9)

=
1

(2π)(j−i)/2(j − i)!

∫
∂jM

E
{

TrTt∂jM (Sj−iZj,t
)1NtM (Zj,t)

}
Hj(dt).

Here, for each t ∈ ∂jM , Zj,t is a normally distributed random vector of
dimension N + 1 − j in the space Tt∂jM

⊥, the orthogonal complement of
Tt∂jM in RN+1, S is the Riemannian shape operator of M , NtM is the
normal cone to M at t, and Hj is the volume measure on ∂jM corresponding

to the Riemannian metric induced by the random field f . (What is TrTt∂jM?
Is it the trace restricted to the tangent space?)

We shall now commence computing each term in (4.6.9), leaving you to
compute the final Lipschitz-Killing curvatures by substituting into (4.6.8) and
(4.6.7). Since all the formulas – as you shall soon see – are long and unintuitive,
any explicit computation of them will involve a computer. This being the case,
breaking down the problem into smaller pieces for later self-assembly generates
no additional work at the application stage.

The induced Riemannian metric

The first step in computing the Lipschitz-Killing curvatures is, obviously, de-
termining the Riemannian metric g that the random field induces on M . In

11 There is a small, but, for us, rather significant typo in (10.7.10) of RFG, in that
there is a minus sign missing before the κ in κI2/2.
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order to describe this, however, we need first to choose a family of vector fields
generating the tangent bundle of M .

We do this sequentially, starting with the set T , ignoring for the moment
the scale component of the parameter space. For T , let η be the (Euclidean)
outward unit normal vector field on ∂T , and extend this to a full (Euclidean)
orthonormal tangent vector field X1, . . . , XN , on T , with XN = η. Enlarge
this to a vector field on all of M by adding the vector field ν = ∂/∂s, the field
of tangent vectors in the scale direction. See Figure 4.6.1.

The Riemannian metric g at points (s, t) ∈ M can now be calculated on
pairs of vectors from the above vector field using the variances (4.6.5) and
(4.6.6) and the independence discussed there. These yield

g(s,t)(Xi,(s,t), Xj,(s,t)) = λe2sδij , (4.6.10)

g(s,t)(Xi,(s,t), ν(s,t)) = 0, (4.6.11)

g(s,t)(ν(s,t), ν(s,t)) = κ, (4.6.12)

where δij is the Kronecker delta.
Note that the above three equations imply that the stucture of the normal

cones to M is well described by the initial, Euclidean, choice of vector fields.
There is, of course, no normal cone at points t ∈ ∂N+1M , the interior of M .
For the sets in ∂NM , one of the vector fields η and ν describes the normal
geometry. In particular, along the side the normal is a s-dependent multiple
of η and along the top and bottom the normals are constant multiples of ν.

Along ∂N−1 all normals are linear combinations of elements in the vector
fields η and ν.

The Levi-Civita connection

The next step towards computing the second fundamental forms in (4.6.9)

requires identifying the Levi-Civita connection ∇̃ of (M, g). For our purposes,
we need only to know how it operates on normal vectors. Furthermore, since
the Lie bracket

[Xi, ν] = 0, for all 1 ≤ i ≤ N, (4.6.13)

we need only compute ∇̃XiXj , ∇̃νXi and ∇̃νν.
To start, note that a straightforward application of Koszul’s formula12 and

(4.6.10) and (4.6.11) imply, for i, j, k = 1, . . . , N , that

g(∇̃XiXj , Xk) = λe2s〈∇XiXj , Xk〉 = g(∇XiXj , Xk),

where ∇ is the standard Euclidean connection, and

12 This is (7.3.12) of RFG, and in our case simplifies to 2g(∇XY,Z) = Xg(Y,Z) +
Y g(X,Z)− Zg(X,Y ).
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g(∇̃XiXj , ν) = −λ
2

∂

∂s
e2sδij = −λe2sδij . (4.6.14)

Now note that for any tangent vectors X,Y to T , ∇̃XY is a vector in RN+1,
and so can be written as

∑N
j=1 ajXj + bν for appropriate coefficients. This

fact, together with the last two equalities and (4.6.12) imply that for any two
vector fields X,Y on T ,

∇̃XY = ∇XY − κ−1λe2s〈X,Y 〉ν, (4.6.15)

giving us the first computation.
As far as ∇̃νν is concerned, note first that another easy consequence of

Koszul’s formula is that

g(∇̃νν, ν) =
1

2
ν(g(ν, ν)) = 0, (4.6.16)

giving us ∇̃νν ≡ 0.
All that remains is to compute ∇̃νXi. An application of the Weingarten

equation13 and (4.6.15) yield

g(∇̃νXi, Xj) = λ
2
∂
∂se

2sδij = λe2sδij = g(Xi, Xj)

and

g(∇̃νXi, ν) = 0.

Applying now the torsion freeness of connections14, along with (4.6.13) to the
above, gives

∇̃νXi = ∇̃Xiν = Xi, (4.6.17)

and we have the last of the three cases we were seeking.

The second fundamental forms and the curvature matrix

With the relevant connections determined, we can now finally turn to comput-
ing second fundamental forms and curvature matrices along the three strati-
fications of M .

1. ∂N+1M , the interior (sl, su)× T ◦:
Since the normal space in the interior is empty, there are no normals, no

second fundamental form and no curvature matrix here.

2. ∂NM : The side (sl, su)× ∂T :

13 This is (7.5.12) of RFG and states that the scalar second fundamental form is

given by Sν(X,Y ) = g(∇̃XY, ν) = −g(Y, ∇̃Xν).
14 This is (7.3.10) of RFG, and states that ∇XY −∇YX − [X,Y ] = 0.
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A convenient choice for an orthonormal (in the metric g) basis for the
tangent space at any point on the side is given by{

X1

λ1/2es
, . . . ,

XN−1

λ1/2es
,
ν

κ1/2

}
,

with outward unit normal vector η/λ1/2es.
The scalar second fundamental forms of interest are therefore

S η

λ1/2es

(
Xi

λ1/2es
,

Xj

λ1/2es

)
, S η

λ1/2es

(
Xi

λ1/2es
,
ν

κ1/2

)
, S η

λ1/2es

( ν

κ1/2
,
ν

κ1/2

)
,

all of which can be computed directly using Weingarten’s equation and
(4.6.15)–(4.6.17). We summarise them in a curvature matrix, giving(

λ−1/2e−sCt 0
0 0

)
,

where Ct is the (N − 1) × (N − 1) Euclidean curvature matrix of ∂T in the
basis {X1, . . . , Xd−1, η}. Recall for later use that, from Section 7.2 of RFG, in
the current scenario, the trace in (4.6.9) can be replaced by

(j − i)!detrj−iC, (4.6.18)

where detrj is our usual sum of determinants of j × j principal minors.

3. ∂NM , the bottom {sl} × T ◦ and the top {su} × T ◦:
Starting with the bottom {sl} × T ◦, the outward unit normal vector is

−κ−1/2ν, and a convenient orthonormal basis is given by{
X1

λ1/2es
, . . . ,

XN

λ1/2es

}
,

The curvature matrix is therefore N ×N with entries

S−κ−1/2ν

(
Xi

λ1/2es
,

Xj

λ1/2es

)
= g

(
∇̃ Xi

λ1/2es

(−κ−1/2ν),
Xj

λ1/2es

)
= κ−1/2δij ,

by Weingarten’s equation and (4.6.14).
Thus, for the bottom, the outward curvature matrix is κ−1/2IN×N while

along the top the same arguments give it as −κ−1/2IN×N .

4. ∂N−1M : The edges {sl} × ∂T and {su} × ∂T :
For the edges, we need to consider the scalar second fundamental form

itself, and not just the curvature matrix. As above, an orthonormal basis for
the tangent space is {

X1

λ1/2es
, . . . ,

XN−1

λ1/2es
,
ν

κ1/2

}
,



158 4 The Expected Euler Characteristic

but now an orthonormal basis for the normal space is {λ−1/2e−sη, κ−1/2ν}.
Applying the Weingarten equation, we need to compute

g
(
∇̃λ−1/2e−sXi

(
λ−1/2e−sXj

)
, aλ−1/2e−sη + bκ−1/2ν

)
,

for arbitrary a, b. Applying (4.6.15) gives that this is

a λ−1/2e−sCij,t + b κ−1/2δij ,

where, with a minor abuse of notation, we now use Ct to denote the (N −
1)× (N − 1) Euclidean curvature matrix of ∂M at t.

The curvature tensor

We now have all the pieces we need to compute the Lipschitz-Killing curva-

tures L−κ
−1

j , and could actually proceed to the final computation. However, in
justifying the formula (4.6.9) we used the fact that M has constant negative
curvature −κ−1. Now we shall take a moment to prove this.

Let
R(X,Y ) = ∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ]

be the curvature operator. Using our previous calculations of the connection
we have

R(Xi, ν)Xk = ∇̃Xi∇̃νXk − ∇̃ν∇̃XiXk

= ∇̃XiXk − ∇̃ν(∇XiXk − δikκ−1λe2sν)

= ∇XiXk − δikκ−1λe2sν −∇XiXk + δikκ
−1 ∂

∂s
λe2sν

= δikκ
−1λe2sν,

R(Xi, ν)ν = ∇̃Xi∇̃νν − ∇̃ν∇̃Xiν

= −∇̃νXi

= −Xi,

R(Xi, Xj)ν = ∇̃Xi∇̃Xjν − ∇̃Xj ∇̃Xiν − ∇̃[Xi,Xj ]ν

= ∇̃XiXj − ∇̃XjXi − [Xi, Xj ]

= ∇XiXj −∇XjXi − [Xi, Xj ]− κ−1λe2s(δij − δji)ν
= 0,
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R(Xi, Xj)Xk = ∇̃Xi∇̃XjXk − ∇̃Xj ∇̃XiXk − ∇̃[Xi,Xj ]Xk

= ∇̃Xi(∇XjXk − δjkκ−1λe2sν)− ∇̃Xj (∇XiXk − δikκ−1λe2sν)

−∇[Xi,Xj ]Xk + κ−1λe2s〈[Xi, Xj ], Xk〉ν
= ∇Xi∇XjXk − δjkκ−1λe2sXi − κ−1λe2s〈∇XjXk, Xi〉ν
−∇Xj∇XiXk + δikκ

−1λe2sXj − κ−1λe2s〈∇XiXk, Xj〉ν
−∇[Xi,Xj ]Xk + κ−1λe2s〈[Xi, Xj ], Xk〉ν

= ∇Xi∇XjXk −∇Xj∇XiXk −∇[Xi,Xj ]Xk

+ κ−1λe2sν
(
〈[Xi, Xj ], Xk〉 − 〈∇XjXk, Xi〉+ 〈∇XiXk, Xj〉

)
− δjkκ−1λe2sXi + δikκ

−1λe2sXj

= −δjkκ−1λe2sXi + δikκ
−1λe2sXj .

where the last equality follows from the flatness of Euclidean space and torsion
freeness.

Since the curvature tensor is given by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ),

it is now easy to use the above calculations to check cases and see that

R(X,Y, Z,W ) = −κ−1I2(X,Y, Z,W )/2,

where I is the identity form given by I(X,Y ) = g(X,Y ), and, with the usual

tensor product I2(X,Y, Z,W )
∆
= I(X,Z)I(Y,W )− I(X,W )I(Y,Z).

From this, of course, follows our claim that M is a space of constant
curvature −κ−1.

The Lipschitz-Killing curvatures L−κ−1

With all the preparation done, we can now begin the computation of the

Lipschitz-Killing curvatures L−κ
−1

j (M ; ∂kM), according to their definition in
(4.6.9). As in the discussion of second fundamental forms, we divide the com-
putation into separate sections, each corresponding to a different stratum in
the stratification of M .

Throughout the following computation we take Z1 and Z2 to be two inde-
pendent N(0, 1) random variables. We shall associate the Zj with the normal
vector fields to obtain normal vectors of the form Z1ν + Z2η.

We also adopt the notation

µk
∆
= E

{
Zkj 1Zj≥0

}
=

{
2n−1n!√

2π
if k = 2n+ 1 is odd

(2n−1)(2n−3)...
2 if k = 2n is even.

1. ∂N+1M , the interior (sl, su)× T ◦:



160 4 The Expected Euler Characteristic

Since the second fundamental form is zero in ∂N+1M , the only non-zero
Lipschitz-Killing curvature occurs when N + 1 = j = i in (4.6.9). In this case
we have

L−κ
−1

N+1 (M ; ∂N+1M) = HN+1((sl, su)× T ◦)

= κ1/2λN/2
∫ su

sl

∫
T◦
eNsdt ds

= κ1/2λN/2
eNsu − eNsl

N
LN (T ;T ◦),

where LN (T ;T ◦) is computed in the standard Euclidean sense.
In anticipation of a more general structure to follow, note that, for all

j ≥ 1, we could actually write

L−κ
−1

j (M ; ∂N+1M) = κ1/2λ(j−1)/2 e
(j−1)su − e(j−1)sl

(j − 1)
LEj−1(T ;T ◦), (4.6.19)

allowing L0(·)/0 = 0, and adding the superscript E to emphasise the Eu-
clidean nature of the Lipschitz-Killing curvatures on the right hand side. Of
course, for j ≤ N , both sides here are identically zero.

2. ∂NM : The side (sl, su)× ∂T :
For this case, all the Lipschitz-Killing curvatures need to be computed, and

we replace the trace in (4.6.9) by the determinants of the curvature matrix as
in (4.6.18). Then

L−κ
−1

j (M ; (sl, su)× ∂T ) (4.6.20)

= (2π)−(N−j)/2E
{
ZN−j2 1{Z2>0}

}
×
∫

(sl,su)×∂T
detrN−j

(
e−sCt 0

0 0

)
dHN (s, t)

= (2π)−(N−j)/2κ1/2E
{
ZN−j2 1{Z2>0}

}
×
∫ su

sl

∫
∂T

(λ−1/2e−s)N−j(λ1/2es)N−1detrN−j(Ct) dtds

= κ1/2λ(j−1)/2 e
(j−1)su − e(j−1)sl

j − 1
LEj−1(T ; ∂T ),

in a parallel notation to (4.6.19).

3. ∂NM , the bottom {sl} × T ◦ and the top {su} × T ◦:
Beginning with the bottom, {sl} × T ◦, for 0 ≤ j ≤ N we have
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L−κ
−1

j (M ; {sl} × T ◦) (4.6.21)

= (2π)−(N−j)/2E
{
ZN−j1 1{Z1>0}

}
×
∫
{sl}×T◦

detrN−j
(
κ1/2IN×N

)
dHN (t)

= (2πκ−1)−(N−j)/2µN−j

(
N

j

)
λN/2eNslLEN (T ;T ◦).

A similar result holds for the top, {su} × T ◦, viz.

L−κ
−1

j (M ; {su} × T ◦) (4.6.22)

= (−1)N−j(2πκ−1)−(N−j)/2µN−j

(
N

j

)
λN/2eNsuLEN (T ;T ◦).

4. ∂N−1M : The edges {sl} × ∂T and {su} × ∂T :
We start with the top edge, {su} × ∂T .

L−κ
−1

j (M ; {su} × ∂T )

= (2π)−(N−1−j)/2
∫
{su}×∂T

E
{

detrN−1−j(Z1κ
−1/2I − Z2λ

−1/2e−sCt)

×1{Z1>0}1{Z2>0}
}
dHN−1(s, t).

Use now the easily checked expansion that, for 0 ≤ k ≤ n,

detrk (αIn×n +An×n) =

k∑
m=0

αk−m
(
n−m
k −m

)
detrm(A),

to expand the detr term in the expectation above and see that

L−κ
−1

j (M ; {su} × ∂T ) (4.6.23)

= (2π)−(N−1−j)/2
N−1−j∑
m=0

κ−(N−1−j−m)/2

(
N − 1−m

j

)
×E
{
ZN−1−j−m

1 1{Z1>0}
}

(λ1/2esu)N−1E
{
Zm2 1{Z2>0}

}
×
∫
∂T

detrm(λ−1/2e−suCt) dHN−1(t)

= (2πκ−1)−(N−1−j)/2
N−1−j∑
m=0

(λ1/2esu)N−1−m
(
N − 1−m

j

)
κm/2

×µN−1−j−mE{Zm2 1{Z2>0}}
∫
∂T

detrm(Ct) dHN−1(t)

= κ(N−1−j)/2(λ1/2esu)N−1

N−1−j∑
m=0

(
N − 1−m

j

)
(λ−1/2e−suκ1/2)m

×µN−1−j−mLEN−1−m(T ; ∂T ).
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A similar argument also works for the bottom edge {sl} × ∂T , the only
change being that the condition 1{Z1>0} becomes 1{Z1<0}, giving the final
form

L−κ
−1

j (M ; {sl} × ∂T ) (4.6.24)

= κ(N−1−j)/2(λ1/2esl)N−1

N−1−j∑
m=0

(
N − 1−m

j

)
(λ−1/2e−slκ1/2)m

×(−1)N−1−j−mµN−1−j−mLEN−1−m(T ; ∂T ).

Collecting now (4.6.19)–(4.6.24) gives us all the L−κ
−1

i (M ; ∂jM), from
which, via (4.6.7) and (4.6.8), we can compute the Li(M), and so we are
done.

An alternative approach, built on existing results

At this point we could explain how to get the results from the
Worlsey/Siegmund or Roy papers, once we are certain that the
results are the same.

Below is Jonathan’s original cut and paste from the Roy pa-
per.

let f(s) be a filter, normalised so that
∫
f2 = 1, and scaled so that

∫
ḟ ḟ ′ =

IN×N . The Gaussian scale space random field with filter f is defined as

T (s, w) = w−N/2
∫
RN

f((s− t)/w)dB(t). (4.6.25)

Note that T (s, w) ∼ N(0, 1) and Var(∂T/∂s) = w−2NIN×N at each point s, w.
[84] and [100] show that for searching over a range of scales w ∈ [w1, w2]

E {ϕ{s, w ∈ S × [w1, w2] : T (s, w) ≥ t}} =

N∑
i=0

µi(S)ρS
i (t) (4.6.26)

where the Gaussian scale space EC density is

ρS
i (t) =

w−i1 + w−i2

2
ρG
i (t) +

w−i1 − w
−i
2

i

bi/2c∑
j=0

κ(1−2j)/2 (−1)j i!

(1− 2j)(4π)jj!(i− 2j)!
ρG
i+1−2j(t)

(4.6.27)
(we define wi/i as log(w) when i = 0).

the scale space result can be set in terms of the Lipschitz-Killing curvature
of S × [w1, w2], as in (??):

E(ϕ{s, w ∈ S× [w1, w2] : T (s, w) ≥ t}) =

N+1∑
i=0

Li(S× [w1, w2])ρG
i (t). (4.6.28)
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Equating the two expressions (4.6.26) and (4.6.28) for the expected EC implies
that L0(S × [w1, w2]) = µ0(S) and for i ≥ 1

Li(S × [w1, w2]) =
w−1

1 + w−1
2

2
µi(S) +

b(N−i+1)/2c∑
j=0

w−i−2j+1
1 − w−i−2j+1

2

i+ 2j − 1

× κ(1−2j)/2 (−1)j (i+ 2j − 1)!

(1− 2j)(4π)jj!(i− 1)!
µi+2j−1(S).

(4.6.29)

4.6.3 Rotation Space Fields

Not quite sure what to do about this. The 4-author paper does
the 2-d case for a Gaussian kernel, so it is a very special result.
Also, the final EEC is complicated enough that I cannot see off-
hand how to ‘unwind’ things to put it into the form of the GKF.
What should we do?

4.7 Mean Lipschitz-Killing Curvatures under Isotropy

Throughout this chapter, we have concentrated on finding expressions for the
mean value of the Euler characteristics of the random excursion sets T ∩ε−1D.
Theorem 4.4.1, which we called the ‘basic form’ of the Gaussian kinematic
formula gave a general expression for these expectation, and since then we
have been busy treating special cases.

However, as interesting and important as the Euler characteristic of ex-
cursion sets may be, this is only one measure of their geometric structure. One
could well ask about their size, the size of their boundaries, etc. The first of
these is actually rather trivial, for writing λN as usual for Lebesgue measure
in RN , it is immediate that

E
{
λN
(
T ∩ ε−1D

)}
= E

{∫
T

1D(ε(t)) dt

}
(4.7.1)

=

∫
T

E {1D(ε(t))} dt

=

∫
T

P {ε(t) ∈ D} dt.

If ε is stationary, Gaussian, and has mean zero and unit variance, the last
integral is trivial, and so we obtain

E
{
λN
(
T ∩ ε−1D

)}
= λN (T )γk(D).
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Regardless of the distribution of ε, stationary or not, Gaussian or not, even
smooth or not, (4.7.1) is true for every random field for which the interchange
of orders of integration and expectation is valid15.

However, volume is just one measure of the size of sets, and we spent a
good portion of our time in Chapter 3 setting up an entire family of such
measures; viz. Lipschitz-Killing curvatures. An obvious question, therefore, is
whether or not one can say as much about the mean Lipschitz-Killing curva-
tures of excursion sets as one can say about their mean Euler characeristics.
The answer to this question is positive, and to see why we start with the
simplest scenario, in which the underlying random field ε is isotropic with
unit variance and unit second spectral moment. What is special about this
case is that the Lipschitz-Killing curvatures appearing in the Gaussian kine-
matic formula are then the simple Euclidean Lipschitz-Killing curvatures of
Section 3.3 measuring the usual volume, surface area, average cross-sectional
diameter, and so forth.

Recall Crofton’s formula, from Section 3.4.3, which said that, for nice M
of dimension N ,∫

Graff(N,N−k)

Lj(M ∩ V ) dλNN−k(V ) =

[
k + j
j

]
Lk+j(M), (4.7.2)

the average being taken over the affine Grassmanian manifold (or space)
Graff(N,N − k) of all hyperplanes V of dimension N − k in RN and the
combinatorial flag coefficients are defined by (3.4.3).

Now recall the Gaussian kinematic formula (4.4.2), that

E
{
ϕ
(
T ∩ ε−1D

)}
= E

{
L0

(
T ∩ ε−1D

)}
(4.7.3)

=

dimT∑
j=0

Lj(T )(2π)−j/2Mγk
j (D).

Noting, as we just mentioned, that the Lj in (4.7.2) and (4.7.3) are
identical, and putting these two results together, with the identification
M = T ∩ ε−1D, argue as follows (taking expectation of (4.7.2) for j = 0
and then replacing j instead of k):

E
{
Lj
(
T ∩ ε−1D

)}
=

∫
Graff(N,N−j)

E
{
L0

(
T ∩ ε−1D ∩ V

)}
dλNN−j(V )

=

N−j∑
l=0

(2π)−j/2Mγk
j (D)

∫
Graff(N,N−j)

Ll(T ∩ V ) dλNN−j(V )

=

N−j∑
l=0

[
j + l
l

]
Lj+l(T )(2π)−l/2Mγk

l (D).

15 In fact, since every term in (4.7.1) is non-negative and bounded, this interchange
only breaks down in situations of non-measurability, these being situations of such
irregularity that they are of absolutely no interest in this book.
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Actually, there is no difficulty also carrying out the above argument for
a general second spectral moment, and this leads to the following formal
statement of the result.

Theorem 4.7.1 (GKF: General form, under isotropy). Retain the setup
of Theorem 4.4.1, with the added assumption that ε is isotropic with second
spectral moment λ2. Then, for every 0 ≤ j ≤ dim(T ),

(4.7.4)

E
{
Lj
(
T ∩ ε−1D

)}
=

dim(T )−j∑
l=0

[
j + l
l

]
λ

(j+l)/2
2 Lj+l(T )(2π)−l/2Mγk

l (D),

where the Lj, on both sides of the equation, are computed with respect to the
standard Euclidean metric on RN .

By now, you should recognise the terms λ
(j)/2
2 Lj(T ) in the right hand side

of (4.7.4) as the Lipschitz-Killing curvatures of T , measured with respect to
the Riemannian metric induced on T by the components of ε. This indicates
that a more general version of Theorem 4.7.1 should also be true, and we shall
meet it in a moment in the following section.

In the meantime, however, you should note that whereas Theorem 4.7.1
respresents a substantial improvement (in the isotropic case) over Theorem
4.4.1, which treated only mean Euler characteristics, there is nothing on the
right hand side of (4.7.4) that we have not met before. All of these terms have
already been studied in detail, when we looked at the mean Euler character-
istic result.

4.8 The Gaussian Kinematic Formula, II

We have now finally arrived at a point where we can formulate the most
general version of the Gaussian kinematic formula. The full proof is far from
simple, and takes up a couple of chapters in RFG. Nevertheless, given all
that has been done so far in this chapter, the result should by now at least
be understandable and believable, even if you decide to bypass the natural
temptation to turn to RFG to see how the proof goes.

The result is as follows:

Theorem 4.8.1 (Gaussian kinematic formula: General form). Retain
the setup of Theorem 4.4.1, Then, for every 0 ≤ j ≤ dim(T ),

E
{
Lj
(
T ∩ ε−1D

)}
=

dim(T )−j∑
l=0

[
j + l
l

]
Lj+l(T )(2π)−l/2Mγk

l (D), (4.8.1)

where the Lj, on both sides of the equation, are computed with respect to the
Riemannian metric on RN induced by the components of ε.
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The time has finally come to explain from where the term “Gaussian kine-
matic formula” comes.

Absorbing all the constants in (4.7.4) into constants Cjl, and writing the
expectation as an integral, the equation can be rewritten as∫

Ω

Lj
(
T ∩ (ε(ω))−1D

)
dP(ω) =

dim(T )−j∑
l=0

CjlLj+l(T )Mγk
l (D), (4.8.2)

while the classical, Euclidean, kinematic formula (3.4.2) can be written as∫
GN

Li (T ∩ gND) dνN (gN ) =

dim(T )−i∑
j=0

C ′jlLj+l(T )LN−j(D), (4.8.3)

for some (related) constants C ′lj .
Written this way, it is clear that the Gaussian kinematic formula and the

kinematic fundamental formula must somehow be related, an observation that
is very true. In fact, the full, and most elegant proof of the GKF uses the KFF.
However, the GKF is not a simple consequence of the KFF. The proof is long
and involved. Furthermore, the GKF actually opens up a completely new
class of results in Riemannian geometry. However, these are results in ‘pure’
mathematics, and this is a book about applications, so we shall say no more
about these here.

Before we leave it, there is one more, rather important, aspect to the GKF
that deserves noting, and is easily missed at first reading. Recall that ε is
a (random) mapping of a N -dimensional parameter set into a k-dimensional
parameter space. We have never said much about the dimension of the set D,
and there is no need for it to be of full dimension in Rk. If dim(D) = d, then,
since ε is smooth,

dim
(
T ∩ ε−1D

)
= N + k − d.

If d 6= k, then T ∩ ε−1D will be a submanifold of RN , and so the information
given by its Lipschitz-Killing curvatures is of particular interest.

For example, consider the real valued case in which k = 1, and D is
a semi-infinite interval [u,∞). Then the GKF gives information about the
mean geometry of the excursion set. However, the GKF can also be applied
directly to the boundary ∂D rather than D itself, giving information about
the boundary of the excursion set. This kind of problem has been studied
in some detail by Wschebor and others (cf. [101]) with techniques somewhat
different to those used to study the excursion sets themselves. The GKF,
however, includes all these scenarios in a single, unified, result.

In this spirit, we therefore conclude this chapter by noting, once again,
that although Theorem 4.8.1 goes far beyond the results on the mean Euler
characteristic, there are no terms in the final formula that we have not met
earlier in that simpler case. Consequently, no additional work needs to be
done in order to apply it.
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4.9 Exercises

Exercise 4.9.1. Derive Rice’s formula (2.8.4) as an immediate corollary of
Theorem 4.2.1.

Exercise 4.9.2. Show that a Gaussian random field f satisfying the condi-
tions of Section 4.1 also satisfies, with probability one, conditions (i) and (ii)
of Theorem 3.2.4.
(In fact, it will also satisfy condition (iii) there, but this is somewhat harder
to show, and so you should only try this if you are very keen.)

Exercise 4.9.3. Suppose f is a centered, isotropic Gaussian random field on
RN with unit variance and Var(∇f(t)) = I. Using Wick’s formula (cf. Exercise
2.8.3) show that

E
{

detrj(−∇2f − fI)
}

=

{
0 j is odd,

(−1)mN !
(N−2m)!m! 2m j = 2m is even.

Hint: Use the results of parts (iii) and (iv) of Exercise 2.8.10.

Exercise 4.9.4. Prove the general formula (4.2.2) without the assumption
σ = 1,Λ = I, but using the fact that the result holds for this case.
Hint: Show first that

E {ϕ (Au(f, T ))} =

N∑
j=0

Lj(T̃ )
Hj−1(u/σ)e−u

2/2σ2

(2π)(j+1)/2
,

where T̃ is the paralellogram

T̃ =
{
Λ1/2t/σ : t ∈ T

}
and Λ1/2 is any square root of Λ. Then apply Exercise 3.6.4 (iii) to complete
the proof.

Exercise 4.9.5. Use Hadwiger’s theorem, Theorem 3.3.2, to show that the
expected Lipschitz-Killing curvatures of the excursion set of an isotropic ran-
dom field (not necessarily Gaussian) over a parameter set T ∈ RN must be
expressible as a linear combination of the Lipschitz-Killing curvatures of T .

Exercise 4.9.6. Prove the claim that, for stationary processes, the Lipschitz-
Killing curvatures Lj appearing in the Gaussian kinematic formula have the
form given by (4.4.3).

Exercise 4.9.7. Consider the non-central χ2
k random field

f(t) = |ε(t) + α|2, (4.9.1)
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with non-centrality parameter α ∈ Rk. Compute the EC densities of this
random field.
Hint: Use the fact that the density pλ,k of the square root of a non-central χ2

k

random variable can be written as

pλ,k(x) =

∞∑
j=0

e−α
2/2 α

j

2jj!
pk(x),

where pk is the density of a square root of a standard χ2
k random variable.

Exercise 4.9.8. Carry out the suggestion of Footnote 7.

Exercise 4.9.9. For any subset A ⊂ Sk−1 of the unit sphere in Rk and z > 0,
define

RA,z =

{
y ∈ Rk : sup

x∈A
〈x, y〉+ ≥ z

}
.

Show that, for 0 < ρ < u

Tube(RA,z, ρ) = RA,z−ρ.

Exercise 4.9.10. Show that the F EC densities (4.5.21) can be written in
terms of the Student T EC densities as

ρF
d (u;n,m) =

n−1∑
j=0

Lj(Sn−1) ρT
d (
√
un;m).

Exercise 4.9.11. There is an interesting result in Chapter 13 of RFG that we
called a Gaussian Crofton formula. It is a version of the standard Crofton for-
mula in which averages over intersecting hyperplanes are replaced by Gaussian
averages over certain random submanifolds.

To state it, let M be a nice set, ε : M → Rk as throughout the chapter,
and Z ∼ N(0, Ik×k) independent of ε. Furthermore, for u ∈ Rk define the
(random) submanifold

Du = {t ∈M : ε(t) = u} .

Then, for 0 ≤ j ≤ dim(M)− k,

E {Lj(M ∩DZ)} = (2π)−k/2
[k + j]!

[j]!
Lk+j(M), (4.9.2)

where the Lj on both sides of the equation are computed with respect to the
Riemannian metric induced on M by the components of ε and [j]! is defined
at (3.4.3). (Note that the expectation here is actually a double expectation,
over both ε and Z.)

Use this result to prove the full form of the Gaussian kinematic formula,
Theorem 4.8.1, from the basic version, Theorem 4.4.1.

Need more exercises here. Could include as exercises some of
the EC densities that we quote but do not derive, or are these
too hard?
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Exceedence Probabilities

In the previous chapter we spent a lot of time developing precise formulae for
the mean values of various geometric characteristics of the excursion sets

Au = Au(f, T ) = {t ∈ T : f(t) ≥ u} = T ∩ f−1[u,+∞),

of real valued Gaussian random fields. We also considered the extensions of
these results to vector valued Gaussian fields, looking at excursion sets of the
form

AD = AD(f, T ) = {t ∈ T : f(t) ∈ D} = T ∩ f−1(D).

The corresponding result, the Gaussian kinematic formula of Sections 4.4 and
4.8, allowed us to also treat a wide variety of non-Gaussian fields.

These formulae are at the core of many applications of random field the-
ory, primarily because, aside from a handful of special case results, they are
essentially the only closed form expressions holding in broad generality in the
subject, an important fact that it is hard to over-emphasise.

In this and the following chapter we plan to tackle a number of other
objects of interest, among them the exceedence probabilities

P
{

sup
t∈T

f(t) ≥ u
}

(5.0.1)

and the mean number of local maxima E {Mu}, where

Mu = Mu(f, T ) = #{t ∈ T : t is a local maximum of f}. (5.0.2)

What we shall see in both these cases is that, for large u, and smooth, real
valued, centered Gaussian fields f , both of the above are very, very close to
the mean Euler characteristic of Au. To explain the extra “very’ consider the
exceedence probability (5.0.1). We shall see below, in Theorem 5.3.1, that∣∣∣∣P{ sup

t∈T
f(t) ≥ u

}
− E {ϕ (Au(f, T ))}

∣∣∣∣ < O
(
e−αu

2/2σ2
)
, (5.0.3)
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where σ2 is the variance of f (assumed constant) and α > 1 is a constant that
we shall often be able to identify. The explicit expressions for E {ϕ (Au(f, T ))}
developed in Chapter 4 show us that we can rewrite (5.0.3) as

(5.0.4)

P
{

sup
t∈M

f(t) ≥ u
}

= C0Ψ
(u
σ

)
+ e−u

2/2σ2
N∑
j=1

Cju
N−j + o

(
e−αu

2/2σ2
)
,

where the Cj are constants depending on the parameters of f and the geometry
of T , and N = dim(T ).

The final term in this expression is quite remarkable, for, if we think of
the right hand side as an expansion of the form

C0Ψ
(u
σ

)
+ e−u

2/2σ2
N∑
j=1

Cju
N−j + error, (5.0.5)

it would be natural to expect that the error term here would be the ‘next’ term
of what seems like the beginning of an infinite expansion for the exceedence
probability, and so of order u−1e−u

2/2σ2

. However (5.0.5) indicates that this
is not the case. Since α > 1, the error is actually exponentially smaller than
this. Hence the “very, very close” above.

Remarkably, and far from coincidentally, an almost identical result to
(5.0.3) holds when the exceedence probability is replaced by E{Mu}.

There is a long history of formulae like (5.0.5), with an excellent treatment
of the results and techniques in Piterbarg’s monograph [75] and a more recent
treatment in [13]. However, what is common to almost all of this history is
the direction of proof, which aims to establish a formula like (5.0.5) directly,
without linking the object of study to the mean Euler characteristic, the only
expectation for which, we re-emphasise, a closed form, explicit expression is
known.

Despite our intention to rely on excursion set techniques, we would be
at the very least doing the reader a disservice, and at worst bordering on
the misleading, if we did not emphasise now that excursion set techniques
will only work when the underlying random fields are smooth enough for this
theory to hold. In particular, as we demanded throughout Chapter 4, f must
be at least C2. Since these are the random fields of most interest to us, we
can replace all other techniques with those based on excursion sets. However,
since not all random fields are C2, and you may occassionally run across one
or two, we shall briefly discuss some the other main techniques for computing
exceedence probabilities at the end of the chapter.

Until then, however, we return to the main aim of this chapter, which is to
present a number of approximations, all linked, in one way or another, to the
mean Euler characteristic of excursion sets and to show, generally not in full
detail, why the approximations work. It is important to note, however, that
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while we shall not give all the details, there is no reason (other than tedium)
why they cannot be given1. On the other hand, in the third part of this book
we shall move from mathematically justifiable approximations to heuristic
approximations, justified only on the basis that in real world applications one
sometimes has to cut corners in order to develop procedures which seem to
work most of the time.

We shall start by looking at the mean numbers of various types of critical
points of Gaussian random fields.

5.1 The Mean Number of Maxima

Much of what we shall investigate in this chapter is related to the critical
points of real valued random fields, viz. those points t in the parameter space
T for which

∇f(t) = 0. (5.1.1)

Among these, local maxima are characterised by the fact that the Hessian
matrix ∇2f(t) is negative definite, while for local minima ∇2f(t) is positive
definite2.

It is not hard to write out an expression for the expected number of critical
points C = C(T ) of f , assuming that appropriate regularity conditions apply.
(cf. Exercise 5.6.1.) In fact, Theorem 2.7.1 easily gives us that

E{C(T )} =

∫
T

E
{∣∣det∇2f(t)

∣∣ ∣∣∣∇f(t) = 0
}
p∇f(t)(0) dt. (5.1.2)

where p∇f(t)(0) = (2π)−N/2 is the density of ∇f(t) at 0.
If you read the details when we derived an expression for the mean value of

the Euler characteristic of excursion sets back in Section 4.2, then the above
expectation should look rather familiar. However, unlike that case, here it
turns out to be effectively impossible to compute the expectation within the
integral. The problem lies in the seemingly innocuous absolute value sign on
the determinant of the Hessian. In the Euler characteristic case there was an
alternating sum over different types of critical points (cf. (4.2.4)) that allowed
us to drop the absolute value sign. Here we have no such luck.

Considering local maxima rather than critical points is no simpler, for
writing M = M(T ) (= M−∞(T ) in the notation of (5.0.2)) (5.1.2) becomes

1 For example, for a full proof of (5.0.3), at the level of generality at which T is a
stratified manifold, see Chapter 14 of RFG. However, be prepared for 30 pages of
detailed technical arguments.

2 Of course, f will generally also have local maxima and minima on the boundary
of T , which will not be critical points in the sense of (5.1.1). We shall treat these
later, restricting ourselves for the moment to those local maxima and minima
which are in the interior of T and so critical points in the sense of (5.1.1).
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E{M(T )} = −
∫
T

E
{

det∇2f(t)1N (∇2f(t))
∣∣∣∇f(t) = 0

}
p∇f(t)(0) dt,(5.1.3)

where N is the set of negative definite matrices. While we have now removed
the absolute value sign, we have restricted the expectation in a way that makes
it virtually impossible to compute.

Nevertheless, there is one case for which it is in fact possible to compute
E{M(T )}, which goes back to Longuet-Higgins 3 [60]. The case is that of
centered, stationary, Gaussian f over nice, two-dimensional domains T . We
shall describe the result here, without attempting to prove it. A proof can
be found in the original paper of Longuet-Higgins or, in a notation closer to
ours, in [3]. In both cases the derivation, while not hard in principle, is a lot
of work in practice, and amounts to a brute force computation of the right
hand side of (5.1.3). The fact that this computation has, to the best of our
knowledge, never been completed for any dimension greater than two should
give an indication of its complexity, as should the actual form of the result.

To state the result, we need some notation. With Λ be the usual matrix of
of second order spectral moments, we let V be the covariance matrix of the
three distinct elements of ∇2f , in the form

V =

v40 v31 v22

v31 v22 v13

v22 v13 v04

 .

where the vij are the fourth order spectral moments
∫
R2 λ

i
1λ
j
2 ν(dλ). (cf.

(2.4.9).) Next, let A be the matrix given by

T =

 0 0 1
2

0 −1 0
1
2 0 0

 .

and let d1 > 0 > d2 ≥ d3 be the eigenvalues of V T , also given by the roots of
(Why roots is you are giving them as explicit expressions?)

di = H1/2 cos θi,

where θ1, θ2, θ3 are the roots of

cos 3θ =
detV

H3/2

and

H =
(
v40v04 − 4v31v13 + 3v2

22

)
/3.

3 Starting in the 1950’s, Longuet-Higgins began a long and important series of
papers on the modelling of sea waves as random fields which, still today, are a
great place to search for specific formulae like (5.1.4). However, like (5.1.4), they
are almost always limited to the stationary, two-dimensional case.
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Now let E and F denote the Legendre elliptic integrals of the first and
second kind, so that

E(k, θ) =

∫ θ

0

(1− k2 sin2 α)1/2dα, F (k, θ) =

∫ θ

0

(1− k2 sin2 α)−1/2dα.

Finally, define the function

G(α) = [α(1− α)]1/2

[(
1 + α

α

)1/2

E(α′, 1
2π)−

(
α

1 + α

)1/2

F (α′, 1
2π)

]
,

where

(α′)2 =
1− 2α

1− α2
, 0 < α ≤ 1

2 .

Then

E{M(T )} = |T | d1

2π2|Λ|1/2
G

(
−d2

d1

)
. (5.1.4)

If f is also isotropic, then (5.1.4) simplifies considerably to

E{M(T )} = |T | 1

6π
√

3

ν4

λ2
, (5.1.5)

where λ2 and ν2 = vii are, respectively, the variances of any of the first and
second order partial derivatives of f .

Note that we did not make any assumptions about the mean and variance
of f (other than being constant by stationarity) in formulating the above
results, since they do not, in any way, impact on the total number of local
maxima (they do not appear in (5.1.4)). They will, however, impact on Mu(T ),
the number of local maxima above the level u.

It is easy to see, and it is Exercise 5.6.2 that, in both cases, (Which both
cases?) the mean number of minima is equal to the mean number of maxima,
while the mean numbers of saddle points and critical points are, respectively,
two and four times this.

Carrying the arguments that give (5.1.4) and (5.1.5) over to higher dimen-
sions has, to the best of our knowledge, never been fully successful, despite
many valiant attempts. The three dimensional case is, however, amenable to
some calculations, and some advance on computing E{M(T )} and E{Mu(T )}
in this case been made in the astrophysics literature. The final answer is rather
involved, and ultimately requires numerical integrations and approximations
of integrands in order to get actual numbers. Details can be found, for exam-
ple, in [15, 29], which also look at other expectations in the three dimensional,
Gaussian setting.

Rather than describe further what the astrophysicists have done, we shall
now begin to introduce our own approximations. These are somewhat simpler,
describe better what is actually going on, yield approximations which are at
least as good, and work equally well in all dimensions.
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5.2 The Mean Number of Maxima and the Mean Euler
Characteristic

A more interesting random variable than the total number of local maxima of
a random field is the number of local maxima above a fixed level u. Regarding
this, we have the following theorem.

Theorem 5.2.1. Let f be a centered Gaussian field on RN satisfying the con-
ditions of Section 4.1 and with constant variance σ2, and let T be a nice4 sub-
set of RN . Let Mu(T ) denote the number of local maxima, in T , of f above
the level u, be they critical points in the interior of T or local maxima on
the boundary. Then there are constants α > 1, depending on the covariance
function of f , and C, depending on the covariance and the geometry of T ,
such that, for large enough u,

|E {Mu(T )} − E {ϕ(Au(T )}| ≤ Ce−αu
2/2σ2

. (5.2.1)

Before proving this result, there are a number of remarks that are worth
making. The first is that we shall not attempt to say anything about the
magnitudes of the constants C and α. If you are interested, then you can find
more information in Chapter 6 of Azäıs and Wschebor [13], where you can
also find information of on the related distribution of supT f , something about
which we shall have more to say in Section 5.3. Not surprisingly, in order to
be more explicit about the constants, one needs to make more assumptions
on the random field f .

The second remark is merely to reiterate the opening comments of this
chapter about how small is the difference in (5.2.1); viz. super-exponentially
small.

The third and final remark is to give a heuristic argument as to why (5.2.1)
might be true. Given a high enough level, u, it is, of course, unlikely that f
will exceed it anywhere within T . If it nevertheless does manage to do so, it is
even more unlikely that it will do so in two or more separate regions. In fact,
if we think of excursions as rare events, divide T into two disjoint regions T1

and T2, then, to a first order approximation, we should have

P
{

sup
T1

f ≥ u, sup
T2

f ≥ u
}
' P

{
sup
T1

f ≥ u
}

P
{

sup
T2

f ≥ u
}

(5.2.2)

= O
((

P
{

sup
T
f ≥ u

})2)
.

In Section 5.4.2 we shall discuss making this approximation rigorous and in-
dicate how it can be properly exploited, but, for the moment, we shall merely

4 We use the same notion of ‘nice’ here that we did when computing the expected
Euler characteristic of excursion sets in Theorem 4.3.1. See Footnote 3 of Chapter
4. In particular, we remind you that T must be locally convex.
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apply the basic argument to bolster our claim that if there is an exceedence
of f above u, it is likely to be localised in T .

Furthermore, such an exceedence will tend to have a rather simple shape, a
point that we shall prove when discussing Slepian models in Section 6.2. This
shape will be approximately parabolic, which will have two consequences:

(i) There will only be one local maximum over the excursion set, and there
will be no other critical points.

(ii) The base of this parabolic excursion, which is the excursion set itself, will
be a simple, convex, set, of Euler characteristic one.

Hence, for large u, with high probability, we have one of the two scenarios,

sup
t∈T

f(t) < u⇒ Mu(T ) = 0 = ϕ(Au(T ),

sup
t∈T

f(t) ≥ u⇒ Mu(T ) = 1 = ϕ(Au(T ),

giving us, with much hand waving, that E{Mu(T )} and E{ϕ(Au(T )} should
be close.

To prove that this is indeed the case, and that E{Mu(T )} and E{ϕ(Au(T )}
are as close as (5.2.1) indicates, requires some work, which we now start with
an important technical lemma.

Lemma 5.2.2. Let V be an k × k symmetric matrix and let Y the vector of
length K = k(k+ 1)/2 formed by placing the successive columns on and above
the main diagonal of V under one another. Let Λ be a diagonal matrix with
positive entries on the diagonal and let Dx be the region in RK defined by

Y ∈ Dx ⇐⇒ V − xΛ is negative definite.

Then there exists a finite C dependent only on Λ, such that, for each 0 ≤ r <
Cx, Dx contains BK(r), the ball of radius r in RK .

Proof. Let P be an orthogonal matrix such that P ′ΛP = I, (No such P
exists in general, so the proof is wrong as it is. However, the
lemma is only applied later with Λ = λ2I. If the statement of the
lemma is changed to Λ of the form λI then the proof works with
P = λ−1/2I, but then it can further simplified. Otherwise, I can
offer an alternative proof for general diagonal Λ, but it seems
unnecessary.) and Q an orthonormal matrix reducing P ′V P to diagonal
form, i.e.

Q′(P ′V P )Q = diag(d1, . . . , dk).

Then
(PQ)′(V − xΛ)(PQ) = diag(d1 − x, . . . , dk − x).
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Since the expression on the left-hand side will be a negative definite matrix if
and only if V −xΛ is , it follows that V −xΛ will be negative definite provided
x > maxj dj .

Since Q is orthonormal, it is now easy to check that there exists a constant
c, dependent only the elements of P , and so only on Λ, such that, for all
1 ≤ i ≤ N ,

|di| ≤ c sup
m,n
|vmn|.

Thus, if x > rc and Y ∈ B(r), we have that u > maxj di, implying that
V − xΛ is negative definite, which, with C = c−1, proves the lemma. 2

Proof of Theorem 5.2.1. In order to keep the proof simple, we shall make
two sets of of additional assumptions. The first set require that f is stationary
and isotropic, with zero mean, constant unit variance, and second spectral
moment λ2. The second is that the parameter space T is a rectangle in RN .
If you read through the proofs of the previous chapter you will already know
how to lift these assumptions to obtain a more general proof. If you have not
(yet) read those proofs, then you should. In either case, the restrictions are
of no significant consequence, since we are not going to try to identify the
constants in the bound (5.2.1).

In this restricted setting, and recalling the results of Section 4.2, in par-
ticular (4.2.4), we can write ϕ (Au(f, T )) as the alternating sum of numbers
µi(J) of different types of critical points over the faces J of T . In particular,

ϕ (Au(f, T )) =

N∑
k=0

∑
J∈∂kT

k∑
i=0

(−1)iµi(J), (5.2.3)

where all terms are defined in (4.2.5)–(4.2.8).
An important fact, that we did not emphasise in Section 4.2, is that

µdim J(J) is always the number of local maxima of f in J above the level
u. That is,

{k = dim(J)} ⇒ {µk(J) = Mu(J)},

for all faces J of T . Consequently, if we separate the k-th term in the inner
sum in (5.2.3), then the second term is bounded above by Mu(T ) and so

|ϕ(Au(T ))−Mu(T )| ≤
N∑
k=0

∑
J∈∂kT

k−1∑
i=0

µi(J).

The inner sum here is just the number of critical points of f|J , above the
level u, which are not local maxima, and so if we can prove that this has
expectation of order e−αu

2/2 for some α > 1 we will be done. But this is quite
easy.
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For the remainder of the argument fix a J , with dim(J) = k. For notational
convenience, renumber, if necessary, the free variables in J as t1 . . . , tk. It then
follows immediately from Theorem 2.7.1 that, up to a multiplicative factor of
|J |, the expectation we seek is equal to

E
{∣∣det∇2f|J

∣∣ 1N ck
(
∇2f|J

) ∣∣∣∇f|J = 0
}

(5.2.4)

=

∫ ∞
u

dx

∫
N ck
|det∇2fJ |p(x, 0, y) dy,

where, in the first expression, Nk is the collection of k × k negative definite
matrices, so that the indicator is over the complement of this set. Similarly, in
the second expression, we let Y be the random vector of length K = k(k+1)/2
made from the distinct elements of ∇2f|J , and then we interpret Nk to be the
region of y ∈ RK for which the corresponding matrix is negative definite. The
density p is then the joint density of (f,∇f, Y ).

To bound the integral, recall our simplifying assumption of isotropy, which
makes the elements of ∇f uncorrelated and of common variance λ2. Then
Exercise 2.8.10 and, in particular, (2.8.1), give that f and Y are independent
of ∇f , and that the conditional mean of an fij of ∇2f given f = x is −λ2x.
Consequently, making the change of variables

f̂ij = fij + δijλ2,

where δij is the Kronecker delta, we can rewrite the integral in (5.2.4) as∫ ∞
u

p1(x)dx

∫ c

Dcx

det
(
∇2f̂|J − xλ2I

)
p2(ŷ) dŷ, (5.2.5)

where Ŷ bears the same relation to f̂ that Y does to f , and Dx is the region
of ŷ’s over which ∇2f̂ − xλ2I is negative definite. Furthermore, p1 is a stan-
dard Gaussian density and p2 a multivariate Gaussian density of zero mean
variables with variances that depend on fourth order spectral moments but
which are unimportant for this proof. Note, from Lemma 5.2.2, that for some
C dependent only on λ2, the region Dc

x lies outside a ball of radius Cx.
Now expand the determinant in (5.2.5) in powers of x, so that the inner

integral can be bounded by a sum of terms of the form

xiλi2

∫
BcK(Cx)

ŷj1 . . . ŷjk−ip2(ŷ) dŷ.

It is now a simple exercise in Gaussian integrals to see that each such integral
is bounded by an expression of the form xβe−γx

2

, where β ≤ 2k and γ > 0
(and is dependent on the fourth order spectral moments).

Substituting this into (5.2.5) and carrying out the remaining x integration
completes the proof. 2
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We noted during the above proof that the bounds we obtained depended
on fourth order spectral moments – the variances of the second order partial
derivates of f – despite the fact that we neglected to follow the details of this
dependence. Doing so would have lead us closer to the results described above
of [13], in which constants similar to those of Theorem 5.2.1 are identified.

In the next section we shall rely on some results from RFG to identify
constants in a related, and actually more important, problem.

Before doing so, however, it is worth pointing out that a wide class of other
results also follow from the above arguments and, in particular, from Lemma
5.2.2. The application of Lemma 5.2.2 in the above proof was, in essence, to
establish the fact that if, at a point t, we had f(t) > u for a large u, then,
with high probability, the Hessian ∇2f(t) would be negative definite. In other
words, at high levels the function f will tend to be concave. Exercise 5.6.3
gives a simple example of this. A natural consequence of this concavity is that
the individual connected components of the excursion sets Au will tend to
be convex, for which Exercise 5.6.4 provides a simple example. All of this,
however, will be made more precise in Section 6.2.

5.3 Expected Euler Characteristic Heuristic

The term “EEC (expected Euler characteristic) heuristic” is, nowadays, and
at least as far as constant variance Gaussian fields are concerned, somewhat
of a misnomer.

Originally, the EEC heuristic followed the lines of our heuristic explanation
of Theorem 5.2.1 in the previous section, and was used to argue that, at
least for Gaussian random fields, the EEC of excursion sets Au was close
to the exceedence probability P{sup f ≥ u}. Theorem 5.3.1, which is proven
in Chapter 14 of RFG, shows that what was once the result of a heuristic
argument is now a fully fledged theorem.

Nevertheless, we shall retain the terminology “EEC heuristic”, since later
in the book we shall claim that a similar result must hold also for a wide
range of non-Gaussian, despite the lack of a detailed proof. Outside the purely
Gaussian scenario, however, the bound of Theorem 5.3.1 will look somewhat
difference. See, for example, Section 5.3.2, where we shall look at χ2 random
fields, where we can, once again, say something precise and rigorous.

Here is the main Gaussian result, which, although it is stated for random
fields on RN , actually holds in wider generality.

Theorem 5.3.1. As in Theorem 5.2.1, let f be a centered Gaussian field on
RN satisfying the conditions of Section 4.1 and with constant variance which,
for convenience, we take to be one. Let T again be a nice subset of RN . Then
there exists a constant σ2

c > 0, dependent on the distribution of f and the
geometry of T , such that



5.3 Expected Euler Characteristic Heuristic 179

(5.3.1)

lim inf
u→∞

−u−2 log

∣∣∣∣E {ϕ (Au(f,M))} − P
{

sup
t∈M

f(t) ≥ u
}∣∣∣∣ ≥ 1

2

(
1 +

1

σ2
c

)
.

Equation (5.3.1) is a little more formal that its analogue (5.2.1) in Theorem
5.2.1, but it is trivial to unravel it to the same (weaker) form, which states
that there exist constants C and α > 1 such that, for large enough u,∣∣∣∣E {ϕ (Au(f,M))} − P

{
sup
t∈M

f(t) ≥ u
}∣∣∣∣ ≤ Ce−αu2/2.

The parameter σ2
c of (5.3.1) actually has a generic characterisation, which

we shall allude to below when we shall have something to say about the proof
of Theorem 5.3.1. For details you will have to turn to RFG. Nevertheless,
there are many examples given there for which it is easy to determine σ2

c in
terms of the spectral moments of f .

For example, if f is a centered, unit variance C2 stationary Gaussian
process on [0, T ] satisfying the conditions of the theorem and such that
Var(ḟ(t)) = −ρ̈(0) = 1. Then, for all T > 0,

σ2
c = sup

0≤t≤T

1− C2(t)− Ċ2(t) + (max(Ċ(t), 0))2

(1− C(t))2
, (5.3.2)

where C is the covariance (and correlation) function of f .
While this is a reasonably simple expression to compute, it simplifies con-

siderably if we are prepared to assume that C is monotone over [0, T ]. In that
case the max term disappears in (5.3.2) and the supremum is achieved at
t = 0.

Jonathan: Can you see an easy way to prove this claim in the
current restricted setting? The proof in the book is horrid and
too general.

Actually computing the ratio at t = 0 requires four applications of
l’Hôpital’s rule, which give

σ2
c = Var

(
d2f(t)

dt2

∣∣∣f(t)

)
=

d4C(t)

dt4

∣∣∣
t=0
− 1. (5.3.3)

In fact, a similar result holds if f is an isotropic field on RN , with unit
variance and second spectral moments and covariance decreasing monotonely
feom from the origin, and the derivatives on the right hand side of (5.3.3) are
replaced with partial derivatives in any of the N directions, viz.

σ2
c = Var

(
∂2f(t)

∂t21

∣∣∣f(t)

)
=

∂4ρ(t)

∂t41

∣∣∣
t=0
− 1. (5.3.4)

For other examples see RFG and Exercise 5.6.5.
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5.3.1 About the proof

The full proof of Theorem 5.3.1 is long and technical, but it is worthwhile
seeing how to at least start it, since the basic idea is a little surprising.

In fact, the basic idea is to turn the exceedence probability into an event
involving a specific point process, and then use the Rice-Kac expectation
meta-theorem of Section 2.7 to compute the mean number of points involved.

To start, with C the covariance (and correlation) function of f assume
that C(s, t) is strictly less than one for all s 6= t and, for all t ∈ T define the
random field f t on T by setting

f t(s)
∆
=

{
f(s)−C(s,t)f(t)

1−C(s,t) s 6= t,

f(s) s = t.

The motivation for defining this field is that, for each t ∈ T , f(t) and f t(s) are
independent for all s 6= t. Then note that points t ∈ T will be local maximers
of f above the level u if, and only if, they satisfy the following three conditions:

(i) f(t) ≥ u.
(ii) ∇f(t) ∈ Nt, where Nt is the normal cone to T at t. Thus t is an extended

outward critical point of f . (cf.(??))
(iii) f(t) ≥ sups∈T\{t} f

t(s).

If t is the maximizer of f , then the necessity of conditions (i) and (ii) is
obvious. As for the final condition, since t is a maximizer we have f(s) < f(t)
for all s 6= t, and since it is also true that and C(s, t) < 1, it follows that

f t(s) =
f(s)− C(s, t)f(t)

1− C(s, t)
< f(t).

The reverse implication, that (i)–(iii) imply t is a maximiser, is no harder and
is left to you.

Assume now that f has at most one5 global maximum in T above the
level u. Then the expected number of points satisfying conditions (i)–(iii) is
precisely the probability that sup f ≥ u, and so we have reduced the excee-
dence probability computation to one involving the mean number of points of
a point process, viz.

P {sup f(t) ≥ u} = E {# {t ∈ T : (i)–(iii) are satisfied for t.}} .

In principle, this expectation can now be computed using the Rice-Kac meta-
theorem. In practice, this is not so easy and approximations need to be made
along the way.

5 It is not hard to show that this must happen, with probability one, under the
conditions that we are assuming. The argument is not dissimilar to that you
would have used for Exercise 2.8.26.
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The details of the argument rely on two main phenomena. The first is
an application of arguments using facts like Lemma 5.2.2 (Do you mean
Theorem 5.2.1?) which help link mean critical point counts to mean Euler
characteristics.

The second uses the easily checked fact already mentioned that, for each
t ∈ T , f(t) and f t(s) are independent for all s 6= t. Hence the random variables
f(t) and sups∈T\{t} f

t(s) in (iii) are also independent, and bounds on the tail
of the second of these follow from the Borell-TIS inequality of Section 2.6.1.

The details (including why, despite the above promising start, f t is actually
not a good process with which to work) which are unfortunately long and
tedious, can be found in RFG.

5.3.2 χ2 and χ̄2
K Fields

As one might guess from even the sketchy proof given above, it is not easy to
prove results like Theorem 5.3.1 for general, non-Gaussian random fields.

However, there are two classes of Gaussian related fields for which it is
possible to derive a rigorous parallel, these being the χ2 fields of Section
4.5.2 and the χ̄2

K fields of Section 4.5.3. Recall that, in developing an explicit
formula for the mean Euler characteristics of their excursion sets, we linked
each of them to Gaussian processes. Rewriting (4.5.5) and (4.5.8) in an obvious
notation, we showed the existence of Gaussian fields Z1 and Z2 for which

sup
t∈M

χ2(t) ≥ u ⇐⇒ sup
(t,v)∈M×Sk−1

Z1(t, v) ≥
√
u, (5.3.5)

and

sup
t∈M

χ̄2
K(t) ≥ u ⇐⇒ sup

(t,v)∈M×K:|v|=1

Z2(t, v) ≥
√
u. (5.3.6)

These two equivalences and Theorem 5.3.1 immediately imply that for χ2
k and

χ̄2
K random fields there exists α > 1 (dependent on the underlying Gaussian

fields, k, K and M) such that∣∣∣∣E {ϕ (Au(f,M))} − P
{

sup
t∈M

f(t) ≥ u
}∣∣∣∣ ≤ e−αu/2, (5.3.7)

where an analogous, more rigorous, formulation as in (5.3.1) is, obviously, also
possible.

Thus, for these random fields, as for Gaussian ones, the Euler characteristic
heuristic is expressible as a rigorous theorem. Unfortunately, however, this is
not the case for other random fields, for which the heuristic, for the moment
at least, remains precisely that.
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5.3.3 Numerical Examples

Should we do some numerical examples here? Keith, I think you
once said that you had done some simulations. I think it would
be worthwhile, both for general knowledge and since there are
some simulations in Azais-Wschebor [12, 13], based on work by
Mercadier [63]. These do not show up the EC heuristic in a proper
light, since they compare estimates based on my old DT charac-
teristic which we now know is not as good.

It would seem odd to have simulations davka here when every-
thing so far has been theoretical.

5.4 Alternative Approaches to Exceedence Probabilities

So far in this chapter we have concentrated on the close relationships between
numbers of critical points, exceedence probabilities, and the Euler character-
istic of excursion sets. However, the theory, and heuristics, that we have pre-
sented are far from the whole story, and there are a number of other techniques
that you should know about, particularly if you are interested in exceedence
probabilities.

The first of these is known as the volume of tubes approach, and, as we
shall see, works only for constant variance Gaussian fields. Furthermore, it
turns out to yield estimates of exceedence probabilties that are identical to
those that come from the Euler characteristic results of the previous section.
Nevertheless, it is a powerful technique and worth knowing about. It also
helps explain why the Lipschitz-Killing curvatures , which are essentially ge-
ometric quantities, mysteriously appear in seemingly unrelated results about
exceedence probabilities.

5.4.1 Volume of Tubes and Gaussian Exceedence Probabilities

The tube method, which dates back to papers by Hotelling [42] and Weyl [96]
in 1939, is a geometric technique for computing Gaussian exceedence proba-
bilities. In the setting in which we shall apply it, it was developed primarily
in [44, 50, 87] and starts by replacing (almost) all Gaussian random fields, on
(almost) all parameter spaces, by a very special process defined over a subset
of a unit sphere.

To this end, as in Section 2.3.5, we express f via an expansion of the form

f(t) =

l∑
j=1

ξjϕj(t) = 〈ξ, ϕ(t), 〉Rl , (5.4.1)

where ξ = (ξ1, . . . , ξl) is a vector of standard Gaussian variables and ϕ =
(ϕ1, . . . , ϕl) a vector of functions on the parameter space M .
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Note that there is an important assumption inherent in (5.4.1), that f has
a finite expansion, something which is not in general the case6.

Assuming that f has constant unit variance, (5.4.1) immediately implies

|ϕ(t)|2 =

l∑
j=1

ϕ2
j (t) = 1, (5.4.2)

for all t, so that ϕ(t) is also in S(Rl). (Has this been defined? In the no-
tation of Section 2.4.8 it would be called it Sl−1. Check notation
hereafter.)

This being the case, we can define a map ϕ : t → (ϕ1(t), . . . , ϕl(t)), an

embedding of M in S(Rl). More significantly, we can define a random field f̃
on ϕ(M) ∈ S(Rl) ϕ(M) ⊂ S(Rl) by setting

f̃(x)
∆
= f

(
ϕ−1(x)

)
, (5.4.3)

for all x ∈ ψ(M) x ∈ ϕ(M). Note that f̃ has the simple covariance function

C(x, y) = E
{
f̃(x)f̃(y)

}
= 〈x, y〉, (5.4.4)

and thus there is no problem taking a version of it on all of S(Rl) with
this covariance function. This process is known as the canonical (isotropic)
Gausssian field on S(Rl) (cf. Exercise 2.8.15), and it has the simple expansion

f̃(x) = 〈ξ, x〉 =

l∑
j=1

ξjxj , x ∈ S(Rl), (5.4.5)

where ξ ∼ N(0, Il×l), which corresponds to the covariance function (5.4.4).
Since it is trivial that

sup
t∈M

f(t) ≡ sup
x∈ϕ(M)

f̃(x), (5.4.6)

it is clear that in computing exceedence probabilities for unit variance, finite
expansion fields, we lose no generality by treating only the canonical process
over subsets of S(Rl). Thus we shall do so, from now on letting f denote this
process, (Is there a need to make this change of notation for only
one page?) with the representation (5.4.5) taking M ∈ S(Rl) M ⊂ S(Rl).
Then we can argue as follows, writing P|ξ| for the distribution of |ξ|:
6 For example, isotropic random fields on RN can never have a finite expansion. cf.

Exercise 2.8.13.
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P
{

sup
t∈M

ft ≥ u
}

=

∫ ∞
0

P
{

sup
t∈M

ft ≥ u
∣∣∣∣|ξ| = r

}
P|ξ|(dr)

=

∫ ∞
0

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣∣∣|ξ| = r

}
P|ξ|(dr)

=

∫ ∞
u

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣∣∣|ξ| = r

}
P|ξ|(dr)

=

∫ ∞
u

P
{

sup
t∈M
〈ξ/r, t〉 ≥ u/r

∣∣∣∣|ξ| = r

}
P|ξ|(dr).

(5.4.7)

Consider the integrand here. Since ξ is multivariate Gaussian, it is standard
fare that the vector ξ/|ξ| is uniformly distributed on S(Rl), independently of
|ξ|, which is distributed as the square root of a χ2

l random variable. If we
now write ηl to denote the uniform measure over S(Rl), we can rewrite the
integrand as a simple volume computation, once we take a moment to consider
tubes on spheres.

Extending our definition of tubes from the simple Euclidean setting of
Section 3.3 to spheres, we take the standard geodesic metric on S(Rl) given
by

τ(x, y) = cos−1 (〈x, y〉) ,

and define a tube of radius ρ around a closed set M ∈ S(Rl) as

Tube(M,ρ) =
{
t ∈ S(Rl) : τ(t,M) ≤ ρ

}
=
{
t ∈ S(Rl) : ∃ s ∈M such that 〈s, t〉 ≥ cos(ρ)

}
=

{
t ∈ S(Rl) : sup

s∈M
〈s, t〉 ≥ cos(ρ)

}
.

(5.4.8)

With this behind us, (Was it that awful?) we can now continue the
development of (5.4.9) (5.4.8) to obtain

P
{

sup
t∈M

ft ≥ u
}

=

∫ ∞
u

ηl
(
Tube(M, cos−1(u/r))

)
P|ξ|(dr) (5.4.9)

Thus, the exceedence probability that we seek is weighted average of the
volume of tubes around M of varying radii, and if we could to compute

ηl (Tube(M,ρ))

we would, basically, be done, since the averaging, over the square root of a χ2
l

random variable is, in principle, straightforward.
Not surprisingly, there are analogues of Steiner’s formula (3.3.3) for sub-

sets of spheres, with the Lipschitz-Killing curvatures appearing there replaced
by their sperical counterparts. Thus, we have seen, without ever mentioning
the Euler characteristic and without any heuristic arguments that exceedence



5.4 Alternative Approaches to Exceedence Probabilities 185

probabilities should be related to the Lipschitz-Killing curvatures of the pa-
rameter space, at least for the canonical isotropic process on the sphere.

However, this observation is, in fact, true in general, since if M is not a
subset of the sphere, and the process f is quite general (but with a finite ex-
pansion) it follows from (5.4.6) that the exceedence probabilities for f should
be related to the Lipschitz-Killing curvatures of ϕ(M) which is a subset of a
sphere. Exactly how these Lipschitz-Killing curvatures relate to those of M
itself is a rather long story in Reimannian geometry, and you can find some
of the details, en passant, in RFG.

Now, however, we need to explain why, if everything is so simple, is there
a need for the Euler characteristic, or any, approximation to Gaussian excee-
dence probabilities.

There are two intrinsic problems with (5.4.9). The first is that it is not
generally easy to evaluate tube volumes on spheres7. The second is that the
tube formula for evaluating ηl(Tube(M,ρ) breaks down for large ρ (close to
1) or, equivalently, for large r in (5.4.9) (cf. Exercise 5.6.7.).

Of course, large r in (5.4.9) does not cause to much of a problem, since
this is in the tail of a χ2

l variable, and approximations can be made. The
devil is in the details, but what is interesting is that when one does this
properly the approximation that results is identical to the Euler characteristic
approximation, a result proven in wide generality by Takemura and Kuriki in
[89]. We shall not, however, go into the details.

Which approach, then, is to be preferred? As far as Gaussian processes are
concerned, it may be a matter of taste. We believe that the Euler character-
istic approach is easier to implement, mainly due to the existence of a closed
form expression for the mean Euler characteristic of excursion sets8. The ma-
jor advantage of the Euler characteristic approach, however, lies in that the
volume of tube approach works only for Gaussian processes, and there is no
obvious way to extend it, even heuristically, to non-Gaussian ones. This, as
we have already seen, is not a limitation of the Euler characteristic approach,
where the EC heuristic both makes sense and seems to work in practice.

5.4.2 The Double Sum Method

There is a technique that dates back at least to Pickands in the 1960’s
[71, 72, 73] for approximating Gaussian extremal probabilities which has come

7 To be fair, we should point out there are people who feel that this is easier than
playing with the computations surrounding the Euler characteristic approach. In
some sense, both sets of computations are parallel, and, as we shall see below,
generally lead to equivalent results, but only for Gaussian fields.

8 Admittedly, one may have to do some work to compute the Lipschitz-Killing
curvatures if the random field is non-stationary or the parameter space is com-
plicated. Recall how hard we had to work for the scale space fields of Section
4.6.2.
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to be known as the ‘double sum method’ and is extremely powerful9. In par-
ticular, whereas the Euler characteristic heuristic and rigorous results such as
Theorem 5.3.1 can handle only smooth random fields, the double sum method
also works for non-smooth fields10.

The basic idea behind this technque is to break up the parameter space T
into a finite union of small sets Tk, where the size of the Tk generally depends
on the exceedence level u. The Tk need not be disjoint, although any overlap
should be small in relation to their sizes. While initially there is no need to
assume any particular structure for T , this usually is needed for the most
precise results.

It is then elementary that∑
k

P
{

sup
t∈Tk

f(t) ≥ u
}
≥ P

{
sup
t∈T

f(t) ≥ u
}

≥
∑
k

P
{

sup
t∈Tk

f(t) ≥ u
}

(5.4.10)

−
∑∑

j 6=k
P

{
sup
t∈Tj

f(t) ≥ u, sup
t∈Tk

f(t) ≥ u

}

The summands in the single summations are treated by choosing a point
tk ∈ Tk, and then writing, in an obvious notation,

P
{

sup
t∈Tk

f(t) ≥ u
}

=

∫ ∞
−∞

P
{

sup
t∈Tk

f(t) ≥ u
∣∣f(tk) = x

}
ptk(x) dx

=

∫ 0

−∞
+

∫ u−ε

0

+

∫ ∞
u−ε

. . .

All of this, of course, holds regardless of the distribution of the random field
f . If, however, f is Gaussian, then the first term two integrals can be shown
to be of smaller order than the third, via careful applications of the Borel-CIS
inequality of Theorem 2.6.1. The third term is clearly bounded by Ψ(u − ε),
assuming constant unit variance for f . Optimizing ε against the number of
sets Tk, not unlike what we did in proving Theorem 2.6.2, one gets a good
bound for the single sums in (5.4.10). The details, as one would expect, are
considerably more complicated than this one-paragraph summary.

9 See also [51] which has a detailed treatment of Gaussian and other extrema in
the one dimensional case and [75], which has the most powerful applications of
this technique and which also treats random fields in considerable detail.

10 Of course, there is a price to pay for a more general technique. In this case the
price is that for non-smooth fields only the first term of expansions such as (5.0.5)
can usually be computed. There are expections to this, as, for example, in [41]
and [76], where, for some very specific fields, one can also say something about
the second term.
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The crux of the double sum method, however, lies in showing that the
remaining double sum in (5.4.10) is of lower order than the single sum and,
where possible, estimating its size.

If one could write the joint probabilities in (5.4.10) as the product

P

{
sup
t∈Tj

f(t) ≥ u, sup
t∈Tk

f(t) ≥ u

}
= P

{
sup
t∈Tj

f(t) ≥ u

}
P
{

sup
t∈Tk

f(t) ≥ u
}
,

then we would be basically done, since then the double sum term would then
easily be seen to be of lower order than the single sum. Such independence ob-
viously does not hold (although we have already argued for it back at (5.2.2))
but if we could choose the sizes of the Tk in such a fashion that a ‘typical com-
ponent’ of an excursion set is considerably smaller than this size, and manage
to show that high extrema are independent of one another, then we would be
well on the way to a proof.

The details, which are heavy, are all in Piterbarg [75]. Piterbarg’s mono-
graph is also an excellent source of worked examples, and includes a number
of rigorous computations of exceedence probabilities for many interesting ex-
amples of processes and fields. (How about Piterbarg’s approximation
to the distribution of the supremum? Does it come from here?)

5.4.3 Double sums of moments

Another technique, closely related to the double sum approach above, involves
looking at moments of critical points. Again, for details we send you to Piter-
barg’s book [75] as well as the more recent monograph by Azäıs and Wschebor
[13], but the basic inequality is simple enough to present here11.

An example of this result is given in the following theorem, a more general
version of which can be found in RFG.

Theorem 5.4.1. Let f be a Gaussian field on RN satisfying the conditions
of Section 4.1 and with constant variance which, for convenience, we take
to be one. Let T be a N -dimensional rectangle, and let µk be the number of
extended outward critical points of f , at which f ≥ u, on the interior of the
k-dimensional face ∂kT of T . In terms of the µk(J) of (5.2.3) and (4.2.5)–
(4.2.8),

µk =
∑
J∈∂kT

µk(J).

11 In [13] this approach is considerably developed in terms of what are known as
Rice series. The two series providing bounds for the exceedence probability in
(5.4.1) are examples of the first and second terms of such a series, the n-th term
involving a factorial moment of µk of order n. Azäıs and Wschebor also develop
this approach to obtain bounds on the density of the supremum, a topic that we
have not touched on at all. See also [12] for further information.
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Furthermore, assume that the random variables µk have finite second moments
for all k and given u. Then

N∑
k=0

E {µk} ≥ P
{

sup
t∈T

ft ≥ u
}
≥

N∑
k=0

[
E {µk} − 1

2E {µk(µk − 1)}
]
. (5.4.1)

Proof. Since the notion of extended outward maxima includes the 0-
dimensional sets ∂0T (i.e. the ‘corners’ of T ) it is not hard to see that that, if
supt∈T ft ≥ u, then f must have at least one extended outward maximum on
T above the level u, and vice versa. Consequently, writing µ(T ) for the total
number of extended maxima above the level u, we have

P
{

sup
t∈T

ft ≥ u
}

= P {µ(T ) ≥ 1} ≤
N∑
k=0

P {µk ≥ 1} ≤
N∑
k=0

E {µk} .

This gives the upper bound of (5.4.1).
For the lower bound, note firstly that{

sup
t∈T

ft ≥ u
}
⇐⇒ {µN ≥ 1, µ̂N−1 = 0} ∪ {µ̂N−1 ≥ 1} , (5.4.2)

where µ̂k
∆
=
∑k
j=0 µj . Since f , as a function on an N -dimensional rectangle

T , does not have any critical points on ∂T (cf. Corollary 2.7.2) we can write

{µN ≥ 1, µ̂N−1 = 0} = {µN = 1, µ̂N−1 = 0} ∪ {µN ≥ 2, µ̂N−1 = 0} .

To compute the probabilities of the above two events, set

pk = P {µN = k} ,

and note that

E {µN} = P {µN = 1}+

∞∑
k=2

kpk,

so that

P {µN ≥ 1, µ̂N−1 = 0} = P {µN = 1} − P {µ̂N−1 = 1, µ̂N−1 ≥ 1}

= E {µN} −
∞∑
k=2

kpk − P {µ̂N = 1, µ̂N−1 ≥ 1} .

(Unclear, some subindeces may be wrong in the equation above
and the equation below.) In a similar vein,

P {µ̂N−1 ≥ 2, µ̂N−1 = 0} =

∞∑
k=2

pk − P {µN ≥ 2, µ̂N−1 ≥ 1} .
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Putting the last two equalities together and substituting into (5.4.2) gives us
that

P
{

sup
t∈T

ft ≥ u
}

= E {µN} −
∞∑
k=2

(k − 1)pk − P {µN ≥ 1, µ̂N−1 ≥ 1}+ P {µ̂N−1 ≥ 1}

≥ E
{
ME
u (M◦)

}
− 1

2E
{
ME
u (M◦)[ME

u (M◦)− 1]
}

+ P {µ̂N−1 ≥ 1} ,

on noting that k− 1 < k(k− 1)/2 for k ≥ 2. Apply the same argument to the
final term here, and iterate to complete the proof. 2

If you read the proof, you will have noticed that we actually never used
the fact that f was Gaussian. In fact, it is not needed, and the only reason for
adding the Gaussian assumption was so that we could avoid a long list of con-
ditions under which the Theorem might hold in general. You can easily build
these conditions yourself by applying the conditions of the (non-Gaussian) ex-
pectation meta-theorem 2.7.1 to the setting of Theorem 5.4.1. Consequently,
this result offers a level of generality far beyond the Gaussian theory we have
treated so far.

It also makes sense that it would be quite a general phenomenon that the
negative terms in (5.4.1) will be of smaller order that the others. After all, for
ME
u (∂kM)[ME

u (∂kM)−1] to be non-zero, there must be at least two extended
outward maxima of f |∂kM above the level u on ∂kM , and this is unlikely to
occur if u is large.

Thus Theorem 5.4.1 seems to hold a lot of promise for approximating
extremal probabilities in general, assuming that we could actually compute
explicit expressions for the expectations in (5.4.1), perhaps just bounding
product term. Unfortunately, as we have already seen in the Gaussian case, in
Section 5.2, the best we can usually do is to approximate these expectations,
as a result of which we are back to essentially the same results given by the
Euler characteristic approach.

5.5 Aproximately Gaussian Random Fields

Here I think something should be said about all the new results
on approximately Gaussian fields. Jonathan? Keith?

5.6 Exercises

Exercise 5.6.1. Apply Theorem 2.7.1 to determine under which conditions
the mean number of critical points is given by (5.1.2).

How do the conditions simplify in the Gaussian case?
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Exercise 5.6.2. Let f satisfy all the conditions of Theorem 4.2.1. Let ϕ(Au(T ))
be the usual Euler characteristic of an excursion set, M(T ) the number of lo-
cal maxima of f over T , m(T ) the number of local minima, C(T ) the number
of critical points and S(T ) the number of saddle points. Show:

(i) E{ϕ(A0(T ))} = 0 for all rectangles T .
(ii)E{M(T )} = E{m(T )} = 1

2E{S(T )} = 1
4E{C(T )}.

Hint: Use the Morse theoretic characterisation of Theorem 3.2.4 to see how
ϕ(Au(T )) relates to the other variables. Then apply (i) and symmetries to
large (why?) rectangles to prove (ii).

Exercise 5.6.3. Suppose that f satisfies the conditions of Theorem 5.2.1, and
let Lu(T ) denote the Lebesgue of Au(T ) and M−u (T ) the Lebesgue measure
of the portion of Au over which ∇2f is negative definite. Using Lemma 5.2.2,
or otherwise, show that

E{M−u }
E{Mu}

→ 1, as u→∞.

Exercise 5.6.4. Suppose that f satisfies the conditions of Theorem 5.2.1 with
the parameter space a subset of R2.

On the level curves of f (i.e. the boundary ∂Au of the excursion set Au)
define the curvature function

κ =
−(f2

2 f11 − 2f1f2f12 + f2
1 f22)

(f2
1 + f2

2 )3/2
,

where subscripts refer to the usual derivatives. When κ(t) > 0 at a point
t ∈ ∂Au then Au will be locally convex at that point.

Let Lu denote the arc length of ∂Au and write L+
u for the arc length of

these segments of ∂Au which have positive curvature.
Use Crofton’s formula (add number reference) and Lemma 5.2.2, show

that

E{L+
u }

E{Lu}
→ 1 as u→∞.

Exercise 5.6.5. Consider the cosine random field f of (2.3.11), with all λk ≡
1 and with defined over the rectangle [0, T ]N . Show that

Var

(
∂2f(t)

∂t2j

∣∣∣f(t)

)
= N − 1.

Although f is not isotropic (why?) the result (5.3.4), which gave the pa-
rameter for the EEC heuristic of Theorem 5.3.1, can be shown to hold for the
cosine field as well.

How does this relate to the results of Sections 2.3.3 and 2.3.4 relating to
exceedence probabilities for cosine processes and fields?
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Exercise 5.6.6. (Label was repeated so changed it (see Latex file))
Let f be the cosine process ξ cos t + ξ′ sin t of (2.3.3) on the interval M =
[0, 2π].

Show that the mapping ϕ of (5.4.3) maps M to a great circle in S(R2)
(Check notation with text here and next exercise.).

Exercise 5.6.7. (i) Let M ⊂ RN be a locally convex set, in the sense of
Section 3.5. (The left hand example in Figure 3.5.1, or a simple pertuba-
tion of it, will suffice for this exercise.) Show that even if a tube volume
formula holds for tubes Tube(M,ρ) for small enough ρ, (which it does,
see Chapter 10 of RFG), it cannot be expected to hold for all ρ unless M
is convex.

(ii) Let M ⊂ S(Rl) be convex, with non-empty interior. Defining Tube(M,ρ)
for all ρ as in (5.4.8), explain why a tube volume formula cannot hold for
Tube(M,ρ) for all ρ, and, in fact, can be expected to break down as ρ
grows towards 1. (Note that this is quite different to the Euclidean case,
in which the tube formula holds for all ρ if M is convex.)

(iii) Argue that if M is either a great circle in S(Rl), or a segment of a great
circle which wraps at least half way around the sphere (Why?), then a
tube formula cannot hold for all ρ > 1. (In view of the preceeding exercise,
this implies that the tube formula approach to exceedence probabilities of
Section 5.4.1 should give an exact result for the cosine process, as, in fact,
both it and the Euler characteristic approach do, when the parameter
space is restricted to [0, T ] for T < π. (cf. (2.3.9).)) (Unclear)
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The Structure of Excursion Sets

In the preceeding Chapter 5 we met some intruiging properties of the extrema
and excursions of Gaussian random fields: The mean number of local maxima
(or, indeed of all critical points) above a high level was very close to the mean
Euler characteristic for the excursion set for that level. Furthermore, both
of these were close to the corresponding exceedence probability. We gave a
number of heuristic explanations as to why these results should be true, all
boiling down to the idea that, at high levels, Gaussian random fields tended to
take on very simple shapes. In the current chapter we shall make mathematics
out of this idea, which will put the heuristic ideas of Chapter 5 on a firmer
footing.

However, the results of this chapter have significant interest and appli-
cation in their own right. After we have set a little preliminary background
by describing Palm measures, we shall show how to describe the structure of
a random field conditional on the occurrence of some special event, such as
a local maximum, or level crossing of a particular kind, occurring at a cho-
sen point. These conditional models are generally known as Slepian models,
or Slepian processes after their discoverer, David Slepian. (cf. [46, 85]) for
Gaussian processes on R and Lindgren [56] for Gaussian fields.)

We shall then apply the Slepian models, which are exact conditional mod-
els, to develop precise statements about the local structure of Gaussian fields
in the neighborhood of high level maxima. For example, suppose that f is a
stationary, centered, Gaussian field on RN with variance σ2 and matrix Λ of
second spectral moments. Then, conditional on f having a local maximum of
height u at the point t = 0, with probability approaching one as u → ∞, it
has the following representation in a neighborhood of the origin:

f(t) = u − u

2σ
tΛt′ + O (1) .

In other words, f is approximately parabolic. Interestingly, in turns out that
while, for Gaussian related fields it is hard to develop analogues of the exact
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conditional Gaussian results, it is possible to find rigorous analogues of many
of the high level results, and so we shall also describe these.

With this rigorous mathematics behind us, we shall turn to what David
Aldous has called the Poisson clumping heuristic to begin making a large
number of quite varied heuristically based claims about the structure of high
level excursions, for both Gaussian and non-Gaussian fields, attempting not
only to describe their mean shapes but also making claims about the full
distributions of some of their geometric characteristics. In doing so, by the
end of the chapter, you may find it necessary to somewhat sever yourself from
the usual demands of mathematical rigor and submit rather to the demands
of applications, where approximate answers are considered acceptable if they
are all that it is available.

6.1 Palm Distributions and Conditioning

It is well known that one needs to be careful when talking about random events
for stochastic processes, as unexpected biases can easily affect computations.
Even the simplest of continuous time processes, the constant rate Poisson
process on the line, has its biased sampling theorem1. Much in the same way
that one needs to be careful in describing a ‘typical’ interval of constancy in
a Poisson process, one needs to be careful about describing the behavior of a
random field in the neighborhood of a ‘typical’ local maximum.

The first thing to note is that the notion of ‘typical’ only makes sense when
talking about random fields that satisfy a condition of stationarity or, at least
ergodicity. Otherwise, ‘typical’ requires a qualification, so that we would have
to talk about ‘typical for a specific part of the parameter space’. Since we
do not want to do this, we shall, for the rest of this section and most of the
chapter, assume that we are dealing only with stationary random fields on
RN .

To begin to formalise things, define a point process N on RN to be a non-
negative, integer valued, random measure on the bounded Borel sets of RN .
The point process is called simple if

P
{
N({t}) ≤ 1 for all t ∈ RN

}
= 1,

and its intensity measure is given by µ(B) = E{N(B)}.
The point processes that we shall be most concerned with are those for

which N(B) is the number of local maxima, or other special points, of a

1 To recall, it is well known that the times in between jumps of a unit rate Poisson
process are mean one exponential variables. On the other hand, if t > 0 is some
fixed time, then the size of the interval of constancy containing t is stochasti-
cally larger than exponential, since it is made up of the time from t to the next
jump, which by Markovianess is mean one exponential, plus the time between the
preceeding jump and t.
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random field f in the set B. Since we are assuming that f is stationary, this
will also be true of the pair (f,N), where by stationarity for such a pair we
mean that, for each τ ∈ RN ,

θτ (f,N)
∆
= (θτf, θτN)

L
= (f,N), (6.1.1)

where θτf(t)
∆
= f(t+ τ) and θtN(B)

∆
= N(B + τ).

In general, if a random field f and a point process N are jointly stationary
on RN , we can define the Palm distribution, or Palm measure, Pf,N of (f,N)
with respect to N via the corresponding expectation

Ef,N {F (f,N)} ∆
=

E
{∫
B
F (θτ (f,N))N(dτ)

}
E{N(B)}

, (6.1.2)

where F ≥ 0 is any measurable function on the product of the spaces of sample
paths of f and of non-negative measures. The set B can be any bounded
Borel set in RN with finite µ measure, and the definition can be shown to be
independent of B2.

Rewriting this in terms of finite dimensional distributions, what (6.1.2)
says is that if t̄ = (t1, . . . , tn) is a collection of points in RN , then the Palm

measure describes a new random field, f̃ , for which, for any x̄ = (x1, . . . , xn) ∈
Rn,

Ft̄(x̄)
∆
= P

{
f̃(t1) ≤ x1, . . . , f̃(tn) ≤ xn

}
(6.1.3)

=
E {#{sj ∈ B : f(sj + tk) ≤ xk, k = 1, . . . , n}}

E{#{sj ∈ B}}
,

where the sj are the atoms, or points, of N .
To see why Palm measures are interesting, we can exploit the fact that,

as already mentioned, their definition, in the stationary case of interest, is
independent of the set B. Consider two special, and extreme, cases, both
based on taking B to be BNλ , the N -ball of radius λ.

Assume that f is ergodic, which, for Gaussian fields, occurs if the spectral
distribution function (2.4.3) is continuous (cf. [36, 61]). Then, taking B =
BNλ in (6.1.3) and sending λ → ∞, both expectations can be replaced with
averages, so that

Ft̄(x̄) = lim
λ→∞

#{sj ∈ BNλ : f(sj + tk) ≤ xk, k = 1, . . . , n}
#{sj ∈ BNλ }

. (6.1.4)

The importance of this limit is the meaning it gives to the (Palm) distri-

butions of the random field f̃ , which now has a frequency interpretation as
the random field f , conditioned on N having an atom at the origin.

2 For this fact, and other details on point processes and Palm measures, see either
of Kallenberg’s books, [47, 48].
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For the second case, we again take B = BNλ in (6.1.3), but now consider
the limit λ→ 0. In that case it can be shown (e.g. Theorem 11.5 of [48]) that

lim
λ→0

P{N(BNλ ) = 1}
P{N(BNλ ) > 0}

= lim
λ→0

P{N(BNλ ) = 1}
E{N(BNλ )}

= 1.

Applying a similar result to the numerator in (6.1.3) and taking the limit we
can rewrite3 it as

Ft̄(x̄) = P
{
f(tk) ≤ xk, k = 1, . . . , n

∣∣N has an atom at 0
}
. (6.1.5)

This conditional probability coincides with the frequency interpretation of
Palm distributions given above from the λ → ∞ limit. It does not, however,
require ergodicity, and so is more intrinsic than the frequency interpretation.

Having defined the conditional probability (6.1.5), there are two important
things that you should always remember about it. The first is that there is
a convenient, but potentially misleading notational transgression inherent in
the equation, for although we have used the usual symbol | for conditioning,
this is not the usual conditioning event. For example, as we shall see soon,
while, under the usual conditioning on f(0) = u, ∇f(0) = v, the elements of
∇2f(0) have a multivariate Gaussian distribution (cf. Exercise 2.8.10) this is
not true under the Palm distribution. The difference is due to a phenomenon
not unrelated to the sample bias of the intervals of a Poisson process mentioned
above.

The second thing to remember is something that (6.1.5) makes quite clear,
and that is that we are conditioning on an event of probability zero. This, of
course, is the event that a simple point process has an atom at particular
point. From the technical point of view, it is this that forced us to be careful
about how conditional probabilities were defined.

We can now turn to applying this tool to a point process of interest to us.

6.2 The Local Structure of Gaussian Maxima

In this section we shall study the structure of a Gaussian field f conditional on
there being a local maximum of height u at some fixed point, which, without
loss of generality, we take to be the origin of RN . Throughout, f will be
assumed to be centered and satisfying the regularity conditions of Section

3 This actually requires some work, since substituting into (6.1.3) for fixed λ > 0
actually approximates probabilities of the form

P
{
f(s+ tk) ≤ xk, k = 1, . . . , n

∣∣N has an atom at s ∈ BNλ
}
,

which does not immediately give (6.1.5) in the limit. For details which are relevant
to the uses that we shall make of Palm distributions, see, for example, [56].
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4.1. In addition, we assume that it is stationary, with covariance function C
and, for convenience, variance C(0) = 1.

We shall proceed in two stages. At first, we shall develop a model that
gives precise information regardless of the level u of the local maximum. In
the second stage we shall see what this has to say about the behaviour of f
at high local maxima, where the sample functions of the random field take on
a particularly simple structure, subject to small, stochastic perturbations.

6.2.1 The Exact Slepian Model

Rather than tackle the problem of maxima at a given level directly, we shall
start by looking at f conditioned on a local maximum at the origin, above
the level u (rather than at the level u). In terms of the Palm distributions of
the previous section4, the corresponding point process of interest, N , counts
the number of local maxima of f above the level u and so the the conditional
finite dimensional distributions of f are given by the ratios

E
{

#{t ∈ B : ∇f(t) = 0,∇2f(t) ∈ N , f(t) ≥ u, f(t+ tk) ≤ xk, k = 1, . . . , n}
}

E
{

#{t ∈ B : ∇f(t) = 0, ∇2f(t) ∈ N , f(t) ≥ u}
} ,

for all choices of n ≥ 1, tk ∈ RN , xk ∈ R and where, as usual, N is the set
of negative definite matrices. Since the ratio is independent of B, we assume
that it is a set of N -dimensional volume one.

In then follows immediately from Theorem 2.7.1 (cf. also (5.1.2)) that the
denominator above is given by

(−1)Np∇f (0)E
{

det∇2f 1{∇2f∈N} 1{f≥u}
∣∣∣∇f = 0

}
,

where p∇f is the density of ∇f .
Similarly, the numerator in (6.1.3) is easily seen to be

4 In much of the literature, the conditional distributions that we are about to study
are described as arising from horizontal window conditioning. This conditioning
arises from we want to condition conditioning on an event of probability zero, the
event that a local maximim occurs at the origin. There are two natural ways to
approximate this event. Ignoring the positive probability event that ∇2f(0) ∈ N ,
one way is to require that ∇f is in small ball around the origin and let the
radius of this ball tend to zero. This is known as vertical window conditioning
and in the limit, is equivalent to the usual conditioning. The other approach
is to condition on the event that ∇f(t) = 0 for t in some small ball around the
origin, and then let the radius of this ball tend to zero. This is known as horizontal
window conditioning. (Think of the one dimensional case, when this ball is simply
a horizontal interval, or ‘window’.) The limits of these two types of conditioning
are quite different, and it is only the second that gives the Palm distributions
with which we are working. See Exercise 6.7.1 for an example of the differences.
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(−1)Np∇f (0)E

{
det∇2f 1{∇2f∈N} 1{f≥u}

n∏
k=1

1{f(tk)≤xk}

∣∣∣∇f = 0

}
,

We need to write out these expectations in full, and so let p(f, f
′
, f ′′)

denote the joint density of f(0) and the elements of the vector ∇f(0) and
the matrix ∇2f(0). As before, writing t̄ = (t1, . . . , tn), x̄ = (x1, . . . , xn),let
pt̄(f, f

′
, f ′′, v) be the joint density of these variables along with f(tk), k =

1, . . . , n. Then it follows from the above that the Palm conditional distribu-
tions of f given a local maximum at t = 0 above the level u have the form

Ft̄(x̄) =

∫ x1

−∞ · · ·
∫ xn
−∞

∫∞
f=u

∫
N det(−f ′′) pt̄(f, 0, f ′′, x) dfdf ′′dx∫∞

f=u

∫
N det(−f ′′) p(f, 0, f ′′) df ′′df

. (6.2.1)

We now turn to conditioning on the maximum at the origin occurring at
exactly the level u, a zero probability event.

Note that if in (6.3.22)(Double label) we were to restrict the integration
over f to the range (u, u+ δ) rather than (u,∞) the same argument that lead
to (6.3.22) would show that the resulting ratio would give the conditional
distributions for the random field f conditioned on having a local maximum
at the origin of height that lies in the interval (u, u+ δ).

Sending δ → 0, therefore, turns the conditional distributions into those
of f conditioned to have a local maximum at the origin which is precisely at
the level u. Taking this limit in (6.3.22), and moving to conditional densities
rather than conditional distribution functions, establishes the following result.

Lemma 6.2.1. With the conditions and notation given above the conditional
(Palm) densities of f(t1), . . . , f(tn), given that f has a local maximum at 0
with height u, are given by

ϕut̄ (x) =

∫
N det(−f ′′) pt̄(u, 0, f ′′, x) df ′′∫
N det(−f ′′) p(u, 0, xf ′′) df ′′

. (6.2.2)

Before continuing with investigating the implications of this lemma, we
note for later use that nowhere in its derivation did we actually use the fact
that f was assumed Gaussian, other than to appeal to existing results which
gave us simple conditions for all the arguments to work. In fact, (6.2.2) will
hold for any random field for which all the integrals are well defined, and for
which all the limits that we took along the way are justified. We shall return
to this point later, when considering non-Gaussian fields in Section 6.4.

Now, however, we begin to investigate (6.2.2) a little more closely, looking
for a structure that might be more informative. As a first step we rewrite it
as

ϕut̄ (x) =

∫
P
ψu(f ′′) pt̄(v|u, 0, f ′′) df ′′, (6.2.3)
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(Where is x? What’s v? Did the order of the arguments in p
change? Revise notation hereafter.) where P denotes the collection
of positive definite matrices and

ψu(f ′′)
∆
=

{
detf ′′ p(f ′′|u,0)∫

P detf ′′ p(f ′′|u,0)df ′′
if f ′′ ∈ P,

0 otherwise,
(6.2.4)

In other words, we can rewrite the joint density ϕut̄ (x) as a mixture of Gaussian
densities (i.e. the pt̄(v|u, 0, f ′′)) on the matrix-valued variable f ′′ which has
the density ψu. From this it follows that the conditional random field is also
a mixture of Gaussian fields in an appropriate sense. Note that the effect of
the Palm measure has been to replace the ‘natural’ Gaussian distribution of
f ′′, which started out as the Hessian ∇2f(0), with something quite different
and quite far from Gaussian. (cf. Exercise 6.7.1.)

Continuing along these lines, we need to know more about the densities
appearing in (6.2.3), and for this we require some new notation and a reminder
about existing notation. As far as the latter is concerned, recall that we are
are not only writing f ′′ to denote the matrix ∇2f , but we also want to be able
to consider it as vector of its elements, rearranged by first taking the fii and
then the fij , i = 1, . . . , N , j = i + 1, . . . , N , subscripts representing partial
derivatives. Then, slightly rewriting what you already derived in Exercise
2.8.10, and making the simplifying assumption that f has unit variance, the
covariance matrix of the 1 +N +N(N + 1)/2 vector (f, f

′
, f ′′) can be written

in the form  1 0 µ02

0 Λ 0
µ20 0 µ22

 ,

where Λ is the usual matrix of second-order spectral moments, µ22 is made
up of fourth-order spectral moments, and µ02 = µ′20 contains second-order
spectral moments. If we now introduce the two new vectors

µ1(t) = (−C1(t), . . . ,−CN (t))

µ2(t) = (Cii(t), i = 1, . . . , N ; Cij(t), i = 1, . . . , N, j = i+ 1, . . . , N) ,

where C, as usual, is the covariance function of f , then the 1 + N + N(N +
1)/2+n variates f(0),∇f(0),∇2f(0), f(t1), . . . , f(tn) have a joint normal dis-
tribution with zero mean and covariance matrix

1 0 µ02 C(t1) . . . C(tn)
0 Λ 0 µ′1(t1) . . . µ′1(tn)
µ20 0 µ22 µ′2(t1) µ′2(tn)
C(t1) µ1(t1) µ2(t1) 1 C(tn − t1)

...
...

...
...

...
C(tn) µ1(tn) µ2(tn) C(t1 − tn) 1
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Next, we need the real-valued functions α(t), γ(s, t), and the vector-valued
function β(t) = (βii(t), i = 1, . . . , N ;βij(t), i = 1, . . . , N , j = i + 1, . . . , N ,
defined by

(α(t), β(t)) =
(
C(t), µ2(t)

)( 1 µ02

µ20 µ22

)−1

(6.2.5)

γ(s, t) = C(s− t) (6.2.6)

−
(
C(s), µ2(s)

)( 1 µ02

µ20 µ22

)−1(
C(t)
µ′2(t)

)
− µ1(s)Λ−1µ′1(t).

It is now a simple matter to check that pt̄(x|u, 0,−f ′′) is a normal density
with means u(α(ti) + f ′′ · (β(ti))

′ and covariances γ(ti, tj). The density ψu
comes out similarly: p(f ′′|u, 0) is normal with mean

(u, 0)

(
1 0
0 Λ

)−1(
µ02

0

)
(6.2.7)

and covariance matrix

µ2·0
∆
= µ22 − (µ20, 0)

(
1 0
0 Λ

)−1(
µ02

0

)
= µ22 − µ20µ02. (6.2.8)

Thus, for f ′′ ∈ N , we have

ψu(f ′′) = k−1
u detf ′′ exp[− 1

2 (f ′′ + uµ20)µ−1
2·0(f ′′ + uµ20)′}], (6.2.9)

where ku is the obvious normalizing constant.
Fortunately, this is all the notation we need, and with it we can compute

the characteristic function of the density ϕut̄ of (6.2.2) as

ϕ̂ut̄ (θ) =

∫ N

R
ei〈θ,x〉ϕut̄ (x) dx

=

∫
N
ψu(f ′′)

[∫
Rn
ei〈θ,x〉pt̄(x|u, 0, f ′′) dx

]
df ′′.

Using the above information about the densities ψu and pt̄ we obtain, on
writing A for the n vector with the j-th element α(tj), B for theN(N+1)/2×n
matrix whose j-th column contains the vector β′(tj), and Γ for the n×nmatrix
with elements γ(ti, tj), that

ϕ̂ut̄ (θ) =

∫
N
ψu(f ′′) eu〈θ,A〉−〈θ,f

′′B〉− 1
2 θΓθ

′
df ′′

= eu〈θ,A〉−
1
2 θΓθ

′
∫
N
e−〈θ,f

′′B〉 ψu (f ′′) df ′′.

The first factor here is simply the characteristic function of an n dimen-
sional Gaussian variable with means uA(ti) and covariances Γ (ti, tj). The
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second factor is only marginally more complicated, being the characteristic
function of the n dimensional random variable f ′′B, where f ′′ has the density
ψu. The matrix B, of course, is non-random. Since characteristic functions
determine distributions and finite dimensional distributions determine a pro-
cess, we have proven the following important result, which gives the promised
Slepian model for f in the neighborhood of local maxima.

Theorem 6.2.2. Let f be a mean zero, unit variance, stationary, ergodic,
Gaussian field satisfying the regularity conditions of Section 4.1. Then, given
that f has a local maximum with height u at 0, the conditional field has the
same finite dimensional distributions as the field {fu(t), t ∈ RN} defined by

fu(t) = uα(t)− Zuβ′(t) + g(t), (6.2.10)

where g is a non-homogeneous, zero-mean, Gaussian field with the covariance
function γ given by (6.2.6) and Zu is an N(N + 1)/2 dimensional random
variable, independent of g and with the density ψu given by (6.2.9).

In order to understand what the Slepian model has to say about the con-
ditioned process, it is instructive to consider three regions, one for t close to
the origin, one for t far from it, and the intermediate case. For the second of
these, assume that the covariance function C, along with those of its partial
derivatives of up to second order, tend to zero as |t| → ∞. Then it imme-
diately follows that both α(t) → 0 and β(t) → 0 as |t| → ∞ so that, well
away from the conditioning event at the origin, fu behaves much the same
as g behaves. However, although g is a non-stationary random field, it is im-
mediate from (6.2.6) and the above assumptions on the decay of C and its
derivatives, that its covariance function converges to that of the unconditional
field f well away from the origin. In other words, well away from the origin
the conditioned process has basically the same distributional properties as the
unconditioned process, hardly a suprising result.

What happens when t is small is far more informative, and actually quite
simple, particularly when u is large. We shall look at that case in the following
subsection.

What happens for intermediate t is somewhat harder than the other cases.
In this situation the complicated forms of the functions α and β, along with
the rather non-standard distribution that we have for Zu, compounded by
the non-stationarity of g makes it hard to carry out computations. In gen-
eral, therefore, numerical work is the order of the day, and there have been
significant advances in this direction, leading to the development of computer
packages for computing the distributions of variables of interest, such as the
position of the nearest maximum to that at the origin.

We shall have more to say about this in Chapter 11, when we discuss
appllications of these models to oceanography. Now, however, we turn the
case of small t and large u.
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6.2.2 Excursions Above High Levels

We start by rewriting the Slepian model (6.2.10) a little, noting that by (6.2.5)
it is equivalent to

fu(t) = uC(t)−Wuβ
′(t) + g(t), (6.2.11)

where Wu
∆
= Zu + uµ02.

Since the distribution of g is independent of u, it is clear that, as u→∞,
the random field g exerts little influence on fu(t), whereas the first term of
(6.2.11) is extremely important. The rôle played by the term Wuβ

′ is unclear.
To clarify this, we prove the following lemma.

Lemma 6.2.3. As u→∞ the vector Wu of (6.2.11) converges in distribution
to an N(N + 1)/2 dimensional Gaussian random variable, independent of the
field g, having zero mean and covariance matrix µ2·0 of (6.2.8).

Proof. The vector Wu has the density ψ∗u(w) = ψu(w − uµ20). Think of the
vectors w and Wu also as symmetric matrices, formed from the vectors with
the inverse of the operation we used to go from the matrix f ′′ to its vector
version. Then the vector w − uµ02 is equivalent, in this sense, to the matrix
w − uΛ. Thus it follows from (6.2.9) that,

u−N(N+1)/2kuψ
∗
u(w) = u−N(N+1)/2det(w − uΛ) exp(− 1

2wµ
−1
2·0w

′)

for w − uΛ negative definite, where on the right hand side we first interpret
w as a vector and then as a matrix. Clearly, as u → ∞, the right-hand side
tends pointwise and with dominated convergence to

det(Λ) exp(− 1
2wµ

−1
2·0w

′),

while the region over which w − uΛ is negative definite tends to the whole of
RN(N+1)/2. Thus it follows that there exists a finite k∞ = limu→∞ u−N(N+1)/2ku,
from which it follows that

ψ∗u(w)→ k−1
∞ exp(− 1

2wµ
−1
2·0w)

with dominated convergence, which is the content of the lemma. 2

This lemma motivates one to expand the right hand side of (6.2.11) as a
power series in t, and so, for small |t| and large u to claim that

fu(t) = u− u

2
tΛt′ + o(t2) +OP (1), (6.2.12)

where, by OP (1), we mean terms which, with high probability, take bounded
values. In other words, in the neighborhood of a high maximum, Gaussian
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fields look much like a paraboloid the shape of which is a multiple of that
of their covariance functions. More formally, in Exercise 6.7.5 you are asked
to show that the following is true, where the convergence is for the finite
dimensional distributions of both sides:

lim
u→∞

u

(
fu

(
t

u

)
− u
)
L
=− 1

2 tΛt
′. (6.2.13)

One can go beyond the convergence of finite dimensional distributions,
and extend this convergence to full weak convergence, and even almost sure,
uniform convergence over compacts. For details see [56, 57].

With the stronger theorems, it becomes quite easy to obtain additional
results. For example, it is not surprising that near a high maximum f will not
have any more critical points, of any kind. The formal statement, a proof of
which is given in [56], goes as follows:

Let M be a compact subset of RN , and set Mε = M ∩ {t ∈ RN : |t|≤ε}.
Suppose that, for all ε > 0,

inf
t∈Mε

max
i
|Ci(t)| > 0.

Then, as u→∞,

P {∇fu = 0 for some t ∈M, t 6= 0} → 0.

That is, fu only has critical points when C(t) does.
It should be clear by now that the existence of a Slepian process opens a

Pandora’s box of other results about the sample paths of Gaussian random
fields, and that these seem to be of a particularly simple form when talking
about high level excursions.

Soon we shall investigate this approach further, including the non-Gaussian
scenario. While this is not quite as easy, a surprising amount of rigorous re-
sults exist, all of which can be put together with approximations to obtain
results that can be very useful in practice. Firstly, however, we shall look at
some more results for Gaussian fields.

6.3 More on the Local Structure of Gaussian Fields

The Palm distribution of the previous section can be used to obtain further
interesting and useful information on the structure of Gaussian random fields,
conditioned on various kinds of behavior. Here are some examples.

Once again, f will be assumed to be centered and satisfying the regularity
conditions of Section 4.1. In addition, we assume that it is stationary and
ergodic, with covariance function C and unit variance.
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6.3.1 Low Maxima and High Minima

In the preceeding section, we developed a model for the behavior of a Gaussian
field given that it had a local maximum, of height u, at the origin. This was
Theorem 6.2.2. We then used this to show that if u → ∞ the behavior of f
in a small neighborhood of the origin was essentially deterministic.

If, however, we condition on the occurence of a local minimum, rather than
local maximum, at a high level then the Palm distributions are quite different.
To see this, we start by looking at low maxima. The basic Slepian model still
holds, and the density of the random vector Zu there is still given by (6.2.3).
What does change, however, are limiting distributions, and the first one is
that the random vector Z = limu→−∞ |u|Zu, has the density

p(z) =

{
k det(z) e−µ02µ

−1
2.0z

′
if z ∈ P,

0 otherwise,
(6.3.14)

for an appropriate normalising constant k. (If Z is a vector, how can it
have a determinant and its density be defined over P?)

Whereas (6.3.14) is quite easy to show (cf. Exercise 6.7.4) its consequence
for the corresponding Slepian model is somewhat more complicated. Never-
theless, mimicking the arguments that led to (6.2.13), and requiring extra
smoothness5 on the covariance function one can show, in the notation of The-
orem 6.2.2, that

lim
u→−∞

|u|3
(
fu

(
t

u

)
− u
)
L
= − 1

4!

∑
ijkl

titjtktl
∂4α(t)

∂ti∂tj∂tk∂tl

∣∣∣
t=0

(6.3.15)

+
1

3!

∑
ijk

titjtk
∂3g(t)

∂ti∂tj∂tk

∣∣∣
t=0
− 1

2
tZt′,

(Again, here Z must be a matrix, not a vector.) where, once again,
the equivalence in law is that of all finite dimensional distributions and can
be lifted to almost sure convergence on compacts.

This, of course, is quite different to the limiting model for high maxima,
since it involves random terms, through g and Z. Furthermore, the structure
of the limit is that of a fourth order polynomial, rather than a quadratic one.
For further details, see [56].

Turning from asymptotically low maxima back to asymptotically high min-
ima is now an easy exercise due to the symmetry of Gaussian processes. In
fact, if fu is the Slepian model process for a f given a local minimum of height
u at the origin, then it is immediate from (6.3.16) that

5 For the argument to work in the case, it is necessary to assume that C has contin-
uous partial derivatives of up to order six, or two more than we usually require.
Given the quartic nature of the final limit in (6.3.16) the extra assumptions are
not surprising.
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lim
u→∞

u3

(
fu
(
t

u

)
− u
)

(6.3.16)

has the same distribution as minus one times the right hand side of (6.3.16).
Thus, high level maxima, and high level minima, behave quite differently.

6.3.2 High Excursions

While in Section 6.2 we concentrated on conditioning on the local maxima of
random fields, there are many other conditioning events that we could have
chosen. For example, in [97] a Slepian model was built for a f : RN → R
conditioned on the following events:

f(0) = u,
∂f

∂ti
(0) = 0, i = 1, . . . , N − 1,

∂f

∂tN
(0) > 0. (6.3.17)

These are the points we first met in Chapter 3 when we began computing Euler
characteristics of excursion sets. They are the points marked with arrows in
Figure 3.1.1, if one thinks of the sets there as being excursion sets of f .

When N = 1 the conditioning event reduces to the very simple event that
f have an upcrossing at the origin, the case with which the theory of Slepian
processes first began in [46, 85]. Motivated by this case, and for lack of a
better terminology, we shall say that f has an upcrossing at the origin of the
level u, in the N -th direction, if f satisfies (6.3.17).

We shall let you turn to [97] for the details of the full model describing
such upcrossings, recalling here just one of the high level results. This result
describes the position of a the nearest local maximum to a level crossing,
something which is of intrinsic applied interest when data comes in the form
of level manifolds (contour lines when N = 2) and it is necessary to make
inference about the unseen part of the field.

Thus, let f↑u be the process f conditioned, in the Palm sense, to have an
upcrossing of u in the N -th direction at the origin. Then

lim
u→∞

u

(
f↑u

(
t

u

)
− u
)
L
= ηtN − 1

2 tΛt
′, (6.3.18)

where the convergence is, as usual, weak convergence that can be lifted to
almost sure convergence over compacts. The positive random variable η has
Raleigh density

p(η) = ηe−η
2/2, η ≥ 0.

An interesting and practically useful result that comes out of this model
describes the distribution of the closest local maximum of f to the origin, for
which both its position and height can be deduced from this (although, for a
fully rigorous proof, you will need the full Slepian model). Letting τu denote
this maximum, we have
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lim
u→∞

(
uτu, u

(
f↑u(τu)− u

)) L
=
(
η
(
−Λ̄λ̄′, 1

)
, η2/2

)
, (6.3.19)

where Λ̄ and λ̄ come from partitioning the matrix Λ as

Λ =

(
Λ̄ λ̄′

λ̄ λNN

)
.

The second of the random variables in (6.3.19) is called the normalised
overshoot of f , being the additional height the random field goes beyond
u in the neighborhood of the conditioning point. Note that the normalised
overshoot has an asymptotic exponential distribution. We shall return to this
in a moment, in Section 6.3.3, and show how to derive overshoot distributions
without recourse to a full Slepian model.

As you might guess, there are many other ways to condition a random
field, and each will generate and appropriate Slepian model, from which, when
appropriate, some simplified asymptotic model arises. Although the Slepian
models are not always easily tractable, there are often shortcuts to the asymp-
totics. Nosko [66, 67], building on early and important work of Belyaev and
his school (e.g. [16, 17, 18]) showed that if f satisfies

f(0) = u, ∇f(0) = v, (6.3.20)

then, in the usual sense,

lim
u→∞

u

(
fu

(
t

u

)
− u− tv′

)
L
= − 1

2 tΛt
′. (6.3.21)

Comparing (6.3.20) to (6.2.13) for the case v = 0, we obtain precisely
the same limiting model. In other words, at high levels, f behaves the same
conditioned on having a critical point of any kind as it does conditioned
on having a local maximum. However, this should not be surprising, for we
already saw in Section 5.2 that, with high probablility, the only critical points
above high levels are local maxima.

6.3.3 Overshoot Distributions

We now want to return to the asymptotic overshoot distribution of (6.3.19),
phrase the conditioning event slightly differently, and see how to obtain the
distribution without formal recourse to a full Slepian model. The value of
this approach will become clear in Section 6.4 when we look at non-Gaussian
fields.

Suppose we observe that f(0) ≥ u. Then we know that the origin belongs to
a component of the excursion set of f and that somewhere over this component
f must have a local maximum. What can be said about the (conditional)
distribution of this maximum, if we require no information about its position?
Clearly (Why?) this distribution is equivalent to the conditional distribution
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of the height of a local maximum at the origin, given that such a maximum
occurred and exceeded u.

Write Ou = f(0) − u for the overshoot of a local maximum of f at the
origin. Then the Palm distribution arguments of Section 6.1 imply that (the
tail of) such a distribution must be

P
{
f(0) ≥ u+v

∣∣ f has a local maximum at 0 of height at least u
}

= P
{
Ou ≥ v

∣∣Ou ≥ 0
}

=
E{Mu+v}
E{Mu}

,

(The event {Ou ≥ v} needs to be defined more carefully. As it is
now, it reads as {f(0)− u ≥ v}, but this is clearly wrong because
the latter is Gaussian while the former is not.) where Mu is the
number of local maxima of f above the level u in some fixed, but unimportant,
region, which for convenience we take to be [0, 1]N .

The problem now is that we have already seen, back in Chapter 5, that
computing the above expectations is an essentially impossible task. On the
other hand, in Theorem 5.2.1, we saw that, for large u, they are well approx-
imated by the mean Euler characteristic of excursion sets, with an explicit
bound on the error of the approximation (cf. (5.2.1)). Substituting this bound
into the above, and preparing for a limit, we have that

lim
u→∞

P
{
uOu ≥ v

∣∣Ou ≥ 0
}

= lim
u→∞

E{ϕ(Au+v/u(f, [0, 1]N )}
E{ϕ(Au(f, [0, 1]N ))}

. (6.3.22)

However, we have an explicit form of the expected Euler characteristic of
excursion sets in Theorem 4.2.1, and substituting this into the above gives

lim
u→∞

P
{
uOu ≥ v

∣∣Ou ≥ 0
}

= lim
u→∞

exp(−(u+ v/u)2/2)

exp(−u2/2)
(6.3.23)

= e−v,

recovering the exponential tail of (6.3.19), as promised.
This time, however, we did not require the full Slepian model in order to

obtain the normalised overshoot distribution. In fact, we hardly even needed
the fact that f was Gaussian. Equation (6.3.22) required nothing distribu-
tional, beyond regularity conditions that ensure that the terms are well de-
fined and finite along with stationarity and ergodicity, the latter so that Palm
arguments are appropriate. Only in the last stage of the argument, leading
to (6.3.23)(6.3.22) did we require Gaussianity. (Because Theorem 5.2.1
required Gaussianity.) This was to justify the claim that the mean num-
ber of maxima above a high level u and the mean Euler characteristic of the
corresponding excursion set were asymptotically the same, and then to com-
pute the latter. In Section 6.4 we shall exploit these observations to treat
non-Gaussian fields.
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Similar arguments, using (6.3.23) above and (6.2.13) which describes the
stucture of high maxima allow one to say even more about high level excur-
sions, but we shall posptone this until Section 6.5.

6.3.4 Numerical Approaches

So far, our discussion of Palm conditioning and Slepian models has taken two
related, but slightly different paths. In the first, we described specific, detailed
and explicit Slepian models such as that of Theorem 6.2.2 for random fields
given a local maximum at the origin of height u. Then either using the Slepian
process or bypassing it, we obtained asymptotic results related to high levels.

Whereas it is true that what is of most interest to us is the high level
behavior of random fields, there are many instances and areas of application
in which moderate levels are also important. In those situations, as in high
level problems, the explicit Slepian model is, in fact, just a first step towards
a useful result.

The problem with a model such as that for local maxima is that its com-
ponents are rather complicated. In particular, the non-homogeneous random
field g appearing in (6.2.10) has a complicated covariance function, and there
is not much that one can say about its behavior. Consequently, there is not
much that one can say about the behavior of the Slepian model for moderate
levels u.

The only way to handle this difficulty is computationally, whether this be
the numerical computation of distributions or simulation. We shall have more
to say about this later in Chapters 10 and 11, but for the moment briefly
describe a couple of approaches.

In the astrophysics literature, there is considerable interest in random
variables such as the distribution of curvatures at the points of local maxima
of two and three dimensional random fields. Since curvatures are functions of
the eigenvalues of the Hessian ∇2f , the starting point for these calculations
is the (Palm) conditional density ψu(f ′′) of (6.2.4)6, that is,

ψu(f ′′)
∆
=

{
detf ′′ p(f ′′|u,0)∫

P detf ′′ p(f ′′|u,0)df ′′
if f ′′ ∈ P,

0 otherwise.
(6.3.24)

This is actually a rather complicated density. Its support P of positive definite
matrices is not a simple subset of RN(N+1)/2, and consequently the normal-
ising constant in the denominator cannot be explicitly evaluated. (Are you
sure? Not even for isotropic fields?)

Nevertheless, in papers such as [15, 29], written for the astrophysics com-
munity, you will find a number of useful approximate formulas for distributions
of curvatures and other variables, formulas which, not surprisingly, involve

6 Actually, since we have not yet proven that this is the meaning of ψu, you should
prove it as Exercise 6.7.6.
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heavy numerical integrations. Also not surprisingly, in view of what we have
been doing in this section, these formulas simplify considerably when the level
u becomes large. We shall have more to say about this in Section 10.1.

Another computational approach to Slepian and other Palm distributions
has been undertaken by a large group of researchers based in Lund, motivated
by applications in oceanography. Their interest lies in random variables such as
wave period and crest-trough wave height, and they have developed a toolbox
of Matlab routines for the statistical analysis and simulation of random waves
and random loads. This software, known as WAFO, for Wave Analysis for
Fatigue and Oceanography is freely distributed, and can handle the statistical
modelling, calculation and analysis of random waves and wave characteristics
and their statistical distributions. A description of this software can be found
in [24], with the theoretical background, which has much in common with our
current chapter, in [43, 58].

We shall return to WAFO, in more detail, in Section 11.4

6.4 The Local Structure of Some Non-Gaussian Fields

We now turn our attention to a number of non-Gaussian, but Gaussian related,
random fields for which much of the analysis we have undertaken so far can,
to a large extent, be replicated.

In principle, all that we have done for the Gaussian case is doable for non-
Gaussian random fields as well. As we pointed out, there is nothing intrin-
sically Gaussian in the definition of Palm distributions themselves, and even
basic objects such as the density ψu of (6.2.4) and (6.3.24) are not Gaussian.
Gaussianity only entered when we began the specifics and the asymptotics,
and then exploited the simple form of the multivariate Gaussian distribution.

In principle, therefore, we should be able to do the same thing again, as
long as we are prepared to work hard enough. In practice, however, doing this
we quickly encounter intractable algebra and calculus, and so it is hard to
develop, for example, useful Slepian models. Asymptotic results, however, are
accessible.

In this section we shall show in some detail how to do this for χ2 random
fields, and then give a listing of results for some other Gaussian related ex-
amples. The first results of these kinds for non-Gaussian random processes
and two dimensional surfaces were in [9, 10, 11], but these were expanded in
considerable detail in the McGill PhD thesis of Jin Cao [25] whose results
form the basis of this section. (See also [26].)

6.4.1 χ2
k fields

The χ2
k random field, which we have met previously, is defined as
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f(t) = χ2
k(t) =

k∑
j=1

ε2j (t),

where the εj are all independent, identically distributed Gaussian random
fields. We shall assume that the εj satisfy the assumptions we required above
for the Gaussian case. Thus they are mean zero, unit variance, stationary and
ergodic, and satisfy the regularity conditions of Section 4.1.

In order to replicate the Gaussian arguments, the first thing we need to
understand is the joint distribution of f , ∇f and ∇2f . This is not as simple as
in the Gaussian case, when all such multivariate distributions were Gaussian,
and all one had to do was to sort out the covariances, and t. The following
lemma, due in its original form to Worsley [99], is the key tool in sorting this
out.

Lemma 6.4.1. If f is a χ2
k random field as above, then we can express the

joint distribution of ∇f(t) and ∇2f(t) as follows:

f
L
= U, (6.4.1)

∇f L= 2U1/2z, (6.4.2)

∇2f
L
= 2
(
P + (zz′)z′z − UΛ+ U1/2H

)
, (6.4.3)

where Λ is the usual N × N matrix of second order spectral moments of the
εj’s, U ∼ χ2

k, z ∼ N(0, Λ), P ∼ WishartN (k − 1, Λ)7. With some abuse of
notation, write H ∼ N(0, E(Λ)), indicating that the elements of the matrix H
are jointly normal with covariances

Eij,kl = E {fij(t)fkl(t)} = E(i, j, k, l)− λijλkl (6.4.4)

where E is symmetric in its arguments.
Furthermore, U , z P , and H are all independent of one another.

Proof. (The entire proof is inconsistent in the use of row vs.
column vectors, leading to incorrect results. I can fix it if you
tell me if ∇f should be a row or column vector. Fix a t ∈ RN .

7 Recall that the WishartN(n,Σ) distribution is defined as the distribution of a
N × N matrix W with elements of the form Wij =

∑n
m=1XmiXmj , where the

n vectors Xm = (Xm1, . . . , XmN ) are independent, each distributed as N(0, Σ).
The density function is given by

|det(W )|(N−n−1)/2

2nN/2|detΣ|n/2ΓN (n/2)
e−Tr(Σ−1W ),

for W ∈ P, and 0 otherwise, where ΓN (n/2) = πN(N−1)/4∏N
j=1 Γ [(n+ 1− j)/2].
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Writing ε for the vector of the εj defining f , set U = f(t) = ε(t)ε′(t). Note

that ∂f/∂ti = 2
∑k
l=1 εl∂εl/∂ti. Condition on ε so that we can write

∇f = 2(∇ε)ε′ ∼ N(0, 4UΛ).

Since this depends on ε only through U , it is also the conditional distribution
when conditioning on U alone. Setting z′ = U−1/2(∇ε)ε′ then gives (6.4.2).

As for (6.4.3), we start by noting that

∂2f

∂ti∂tj
= 2

k∑
l=1

∂εl
∂ti

∂εl
∂tj

+ 2

k∑
l=1

εl
∂2εl
∂ti∂tj

Condition now on both ε and ∇ε, and use the result of Exercise 2.8.10 (ii) and
(iii), applied to each εj , to see that, conditionally, the above equality implies

∇2f ∼ N
(
2(∇ε)′(∇ε)− UΛ), 4UE(Λ)

)
,

where E(Λ) is given by (6.4.4). Consequently, still conditioning on both ε and
∇ε, we can write

∇2f = 2
(
(∇ε)′(∇ε)− UΛ+ U1/2H

)
, (6.4.5)

with H as in the statement of the lemma.
With the conditioning still in play, and writing I for the k × k identity

matrix, set

A = I − U−1ε′ε, P = (∇ε)A(∇ε)′.

Since z = U−1/2ε(∇ε)′, we can rewrite (6.4.5) as

∇2f = 2
(
P + z′z − UΛ+ U1/2H

)
,

where H is independent of everything else. This is the claim (6.4.3) of the
lemma, although we still need to establish the distribution of P and the in-
dependence of P , z and U .

Fix now only ε. Then A is also fixed and of rank k − 1 and so P ∼
Wishart(k− 1, Λ). NEED A REFERENCE FOR THIS. (I can check once
I fix the proof and understand what P is.)

Regarding independence, recall first that if M1 and M2 are orthogonal
matrices, in the sense that M ′1M2 = 0, and x and y are any two Gaussian
vectors, then the vectors M1x and M2y are independent. Take M1 = A = A′

and let M2 be the matrix with U−1/2ε′ in the first row and zeros elsewhere.
Then, since Aε′ = 0, we also have M ′1M2 = 0. Now take x and y to be any
two rows of ∇ε. Then M1x is a column of A(∇ε)′ and M2y is a column vector
all of whose elements are zero bar one, which is one of the zi. Since the rows
we started with were arbitrary, this implies that, conditional on ε, we have
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independence between z and A(∇ε)′. Noting that A2 = A it follows that since
P is a quadratic form in A(∇ε)′ it is also conditionally independent of z.

Finally, since the distributions of P and z depend neither on ε nor U , they
are also independent unconditionally, and the proof is complete. 2

There are some very useful results that follow straightforwardly from
Lemma 6.4.1 which we shall now describe, along with a sketch of how to
prove them. Details can be found in [25].

For a start, consider the Palm distribution of the Hessian matrix f ′′ = ∇2f
given the occurrence of a local maximum at the origin. Going through the
Palm arguments of Sections 6.1 and 6.2 it is straightforward to see that this
is given by

ψ(f ′′) = µu|detf ′′|ψ
(
f ′′
∣∣∇f = 0, f = u

)
(6.4.6)

for f ′′ ∈ N and zero otherwise. The factor µu includes information on the joint
density of ∇f and f as well as the mean number of local maxima of f above
the level u, but it is best now to think of it purely as a normalisation constant
and concentrate on how the conditional density ψ behaves as u changes.

Firstly, consider u−1∇2f . By Lemma 6.4.1 its distribution, given that
∇f = 0 and f = u is the same as that of the random matrix

2u−1
(
P − uΛ+ u1/2H

)
.

As u → ∞ this random matrix converges in distribution to the constant
matrix −2Λ, and applying this to (6.4.6) gives us that the Palm distribution
of u−1∇2f at high local maxima converges (in law) to the matrix −2Λ.

Note that in order to carry out this limit we did not need to know very
much about the explicit form of the density ψ. The structure provided by
Lemma 6.4.1 sufficed.

On the other hand, now send u → 0 (Did you mean u → −∞?) in
(6.4.6), assuming a low minimum at the origin. (Of course, the domain of the
density has to be changed to f ′′ ∈ P and the absolute value signs around the
determinant can be dropped.) In this case, there is no need to normalise ∇2f ,
and the same argument gives us that the limiting density of ∇2f/2 is, in this
case, proportional to

detf ′′ψ(f ′′).

However, given than ψ here is a WishartN (k − 1, Λ) density, and given the
form of this density (cf. Footnote 7) it follows that, as u → 0, ∇2f → 2 ×
WishartN (k + 1, Λ).

While the above arguments describe the structure of the matrix ∇2f at
high maxima and low minima, it was the behavior of the entire process in a
neighborhood of the origin that has been of more interest to us. Developing a
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full Slepian model is not a useful way to proceed, but the same ideas, along
with asymptotics, give useful results quite quickly.

The first step involves an approximation for the vector valued random field
ε, given the values of the vector ε, the k ×N matrix ∇ε and the k ×N ×N
array ∇2ε at the origin. Note that at this point we are interested not in Palm
conditioning, but in usual conditioning of some variables on others. The next
step is to note the simplifying fact that since the εj were assumed independent,
it suffices to work with one εj at a time. Since everything is jointly Gaussian,
it is not too hard8 to show that the conditional random fields εj have, up to
o(|t|2), the same finite dimensional distributions as the fields

εj(0) + t∇εj(0) + 1
2 t(∇

2εj(0))t′.

Consequently, under the same conditioning event, the χ2
k field f , scaled in

space, can be written as

f

(
t√
u

)
'

k∑
j=1

[
εj(0) +

1√
u
t∇εj(0) +

1

2u
t(∇2εj(0))t′

]2

' f(0) +
1

u
t∇ε(0)(∇ε(0))′t′ +

2√
u
tε(0)(∇ε(0))′

+
1

u

k∑
j=1

εj(0)t(∇2εj(0))t′

L
= f(0) +

1√
u
t∇f(0) +

1

2u
t∇2f(0)t′.

where by ' we mean ‘up to o(|t|2/u), in an appropriate sense, in law’.
Given this structure, now condition, in the Palm sense, on a local maximum

of f at height u at the origin. Then f(0) = u, ∇f(0) = 0 and, as u→∞, we
established above that u−1∇2f(0)→ −2Λ, giving us that

f

(
t√
u

)
− u → −tΛt′

as u→∞. A similar argument for low minima also works, and we summarise
all the results of this section in the following theorem, which we state far more
carefully than is justified given the rather detail challenged tone of the section
so far. The theorem also includes a result about overshoots, which you should
prove for yourself in Exercise 6.7.7.

Theorem 6.4.2. Let f =
∑k
j=1 ε

2
j be a χ2

k random field on RN , for which
the Gaussian component processes εj are zero mean, unit variance, stationary

8 The argument involves writing out the full covariance matrix of all variables, and
then expanding the various covariance terms as functions of t. In principle, this
is not hard. In practice, it takes a while. The details are in [25] where you will
also find a more serious and honest treatment of the error term.
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and ergodic, and satisfy the regularity conditions of Section 4.1. As usual, Λ
denotes the matrix of second order spectral moments of the εj.

Then, conditioning, in the Palm sense, on a local maxima of f of height
u at the origin, we have, as u→∞,

∇2f(0) → −2Λ (6.4.7)

f

(
t√
u

)
− u→ −tΛt′, (6.4.8)

where, in both cases, the convergence is in distribution, and in (6.4.8) can also
be taken to be almost sure convergence over compacts. Furthermore,

P
{
f(0)− u ≥ v

∣∣maximum of height ≥ u at 0
}
→ e−v/2, v ≥ 0. (6.4.9)

Similarly, conditioning on a local minimum of height u at the origin, and
letting u→ 0, we have

∇2f(0) → 2×WishartN (k + 1, Λ) (6.4.10)

f
(√
ut
)
/u→ 1 + tBt′, (6.4.11)

where B ∼WishartN (k + 1, Λ) and

P
{
u− f(0) ≥ uv

∣∣minimum of height ≤ u at 0
}
→ (1− v)(k−N)/2, (6.4.12)

for 0 < v < 1 and k > N .

This is (almost) all we shall have to say about the extrema of χ2
k random

fields, and so now we turn to turn other examples of Gaussian related fields.

6.4.2 Student T fields

In this and the following subsection we are going to state some results without
any attempt at proofs. The proofs all follow the style of proof of the previous
subsection, differing in detail and being somewhat more complicated in their
preliminary stages.

Recall that the first stage of the previous derivation relied on finding a
representation for the (non-Palm) distribution of f , ∇f and ∇2f . We shall
give these, which are due to Worsley [99], and then follow them with results
analagous to those of Theorem 6.4.2, these being due to Cao [25, 26]. This
should enable you to attempt proofs by yourself.

Throughout this and the following subsection we shall assume that the
conditions of Theorem 6.4.2 hold for the random fields εj on RN .

The first result is that if

f(t) =
ε1(t)

m−1/2
(∑m+1

j=2 ε2j (t)
)1/2
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is a Student’s T field with m degrees of freedom, then the joint distribution
of f(t), ∇f(t) and ∇2f(t) can be written as follows.

f
L
= T,

∇f L= m1/2
(
1 + T 2/m

)
S−1/2z1,

∇2f
L
= m1/2

(
1 + T 2/m

)
S−1/2

×
[
−m−1/2T (Q− 2z′1z1)− z′1z2 − z′2z1 + S1/2H

]
where T has a T distribution with m degrees of freedom, S ∼ χ2

m+1,
z1, z2 ∼ N(0, Λ), Q ∼WishartN (m− 1, Λ) and H ∼ N(0, E(Λ)), as in (6.4.4).
Furthermore, all the random variables are independent of one another.

Conditioning, in the Palm sense, on a local maxima of f of height u at the
origin, the following holds as u→∞.

u−1
(
1 + u2/m

)
∇2f(0)→ −A−1B

u−1f

(
t

u

)
→
(

mA

mA+ tBt′

)1/2

where, A ∼ χ2
m+1−N , B ∼WishartN (m+1, Λ) are independent. Furthermore,

P
{
f(0) ≥ u√

1− v
∣∣maximum of height ≥ u at 0

}
→ (1− v)(m−N)/2,

for 0 < v < 1 and m > N .

6.4.3 F fields

Analgous results hold for F fields, with n and m degrees of freedom, given by

f(t) =

∑n
i=1 ε

2
i (t)/n∑k

i=n+1 ε
2
i (t)/m

.

The joint distribution of f(t), ∇f(t) and ∇2f(t) can be written as follows.

f
L
= (n/m)G,

∇f L= 2G1/2(1 +G)W−1/2z1

∇2f
L
= 2(1 +G)

[
W−1/2

(
P −GQ+ (1 + 3G)z′1z1 −G1/2 (z′1z1 + z′2z2)

)
+G1/2W−1/2H

]
,

where G ∼ (n/m)Fn,m, W ∼ χ2
m+n, z1, z2 ∼ N(0, Λ), P ∼ WishartN (n −

1, Λ), Q ∼ WishartN (m − 1, Λ), and H ∼ N(0, E(Λ)), as in (6.4.4). Further-
more, all the random variables are independent of one another.
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Conditioning, in the Palm sense, on a local maxima of f of height u at the
origin, the following holds as u→∞.

u−2∇2f(0) → −2n

m
A−1B

u−1f

(
t√
u

)
→
(

mA

mA+ ntBt′

)1/2

,

where A ∼ χ2
m+n−N , B ∼WishartN (m+1, Λ) are independent. Furthermore,

P
{
f(0) ≥ u

1− v
∣∣maximum of height ≥ u at 0

}
→ (1− v)(m−N)/2,

for 0 < v < 1 and m > N .
The close connection between the results for T and F random fields comes,

of course, from the fact that a T field with m degrees of freedom is equivalent
to the square root of a F field with 1 and m degrees of freedom.

There are also results about low level minima, which, since they are of
less importance for later chapters, we have not cited. They can be found in
[25, 26].

6.4.4 On Computing the Mean Euler Characteristic

It is worthwhile breaking the flow for a moment to make a comment that is
both of historical and practical interest. (This section is really out of
place here.)

Recall the calculations of the formulas for the expected Euler characteristic
of Chapter 4. We gave there a quite full derivation for the Gaussian case, and
then resorted to the Gaussian kinematic formula for the case of Gaussian-
related random fields, a result which we have not proven in this book.

Historically, however, this is not how things happenned. The Gaussian
case was proven first, with the earliest results due to Adler in the 1970’s (e.g.
[1, 2, 3, 4]). Some non-Gaussian results then started appearing, and in 1994
Worsley [99] developed a new approach based on the representations appearing
above for f(0), ∇f(0) and ∇2f(0). The idea was simple: Looking back at the
derivation of E{ϕ(Au)} in Section 4.2 for the Gaussian case, all that one needs
to compute are expectations involving these three sets of random variables.
Hence, having useful representations for their joint distribution is a major help
in carrying out the computations. In fact, you might like to try (in Exercise
6.7.9) doing things this way for the χ2 case, which is the easiest of the non-
Gaussian ones.

As for the comment of practical interest, there is the question of how to
derive an expected Euler characteristic formula for a random field which we
have not treated in this book. Our best advice to you is to turn to learn how
to use the Gaussian kinematic formula, turning to RFG if needed. As we have
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seen for the example of the scale space field of Section 4.6.2 this is not always
easy. However, once you have made the investment you will be well equipped
to handle as many Gaussian-related fields as you are likely to encounter. On
the other hand, if, against our best advice, you prefer to avoid the investment,
then adopting Worsley’s approach is generally the best second choice. It will,
however, almost definitely involve you in heavier calculus.

6.5 The Size of an Excursion Set Component

We already know quite a lot about excursion sets of Gaussian and Gaussian
related related random fields, the main result being the Gaussian kinematic
formulas of Theorems 4.4.1 and 4.8.1, which gave us expressions for the mean
values of all their Lipschitz-Killing curvatures. Among these was an expres-
sion for the mean value of their volume, a result which hardly needed such
powerful techniques since, with | · | as usual indicating Lebesgue measure in
the appropriate dimension.

E
{∣∣Au(f, T )

∣∣} = E
{∫

T

1[u,∞)(f(t)) dt
}

=

∫
T

P{f(t) ≥ u} dt, (6.5.1)

with the integral simplifying to |T |P{f(0) ≥ u} in the stationary case.
However, none of these results gave us information about individual con-

nected components of Au, something which we wish to look at now.
This seems to be an almost impossible task, for individual components

cannot be studied by any of the techniques that we have developed so far.
Indeed, despite close to half a century of interest, there has been no real
progress in computing either the mean number of components or the mean
size of a specific component. (In view of the easy result (6.5.1) these are closely
related problems.)

Nevertheless, if we are prepared to consider only high level excursion sets,
then there are results that follow rather easily from the asymptotic Palm based
models that have made up the bulk of this chapter so far. The basic idea is that
since we know from these results that random fields take on specific shapes
in the neighborhood of high maxima, and this implies something about the
shape of that component of the excursion set under them. We start with the
Gaussian case.

6.5.1 The Gaussian Case

We now take f to be Gaussian, and, at least for a while, argue heuristically.
Suppose that at f(0) > u, so that we know that the origin is part of the
excursion set Au. If u is large, then somewhere, not too far from the origin,
there is, with high probability, a local maximum of f , a claim justified by
results such as (6.3.18). We know that this maximum has height greater than
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u, and, by (6.3.23), the additional, overshoot, is distributed as u−1 times an
exponential variable, X say. The picture is as follows:

Put a figure here

From (6.2.12) we know that, in the neighborhood of this local maximum,
which for convenience we move to the origin, and which is now of height
u+ u−1X, the random field behaves like

u+ u−1X − u+ u−1X

2
tΛt′,

where X ∼ exp(1). If we look only at this function above the level u, we have
that it is given by

u−1X − u+ u−1X

2
tΛt′.

To compute the size of the excursion set of this function above zero, which
is what we are looking for, note firstly the easily checked fact that the excursion
set above the zero level of the elliptic paraboloid

f(t) = u− tΛt′ (6.5.2)

on RN is an ellipsoid with N -dimensional Lebesgue measure

uN/2ωN (detΛ)−1/2, (6.5.3)

where, as usual, ωN is the volume of the unit ball in RN .
If we now write

Su
∆
=
∣∣ {t : f(t) ≥ u, t and 0 in same connected component of Au}

∣∣,
applying (6.5.3) to the random field suggests that

Su ' (u−1X)N/2ωN

(
u+ u−1X

2

)−N/2
(detΛ)−1/2 (6.5.4)

' u−NXN/22N/2ωN (detΛ)−1/2,

and we have an approximate distribution for the size of a single connected
component of the excursion set Au.

The above argument can actually be made completely rigorous, with the
main technical tool being the fact, noted at the end of Section 6.2.2, that
the high level convergence of the Slepian model to a quadratic function can
be shown to be almost sure over compact sets. We do not want to get into
these detailed arguments in this book9 but shall suffice by stating a properly
formulated theorem in a moment.
9 We should point out, however, that these arguments are not conceptually difficult,

and amount to little more than dotting the i’s and crossing the t’s (or introducing
appropriate δ’s and ε’s) in the heuristic arguments that we have relied on.
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Before this, however, it is time for a reality check, to see if (6.5.4) makes
sense in terms of other things we know, and to also get a feel for how good the
approximation might be. To this end, note first that since E{Xα} = Γ (1+α),

E {Su} ' u−NΓ (1 +N/2)2N/2ωN (detΛ)−1/2

= u−N (2π)N/2(detΛ)−1/2.

Note also that the expected volume of the excursion set over some set T
is, by (6.5.1),

E {|Au(T )|} = |T |Ψ(u) ' |T |
u
√

2π
e−u

2/2,

the approximation coming from (2.2.2), and being correct up to o(u−1e−u
2/2).

Finally, consider the mean Euler characteristic of Au(T ) (e.g. Theorem
4.2.1), taking only the highest order term in u, to see that

E {ϕ(Au(T )} ' e−u
2/2|T | |Λ|1/2(2π)−(N+1)/2HN−1(u)

' e−u
2/2|T | |Λ|1/2(2π)−(N+1)/2uN−1,

where, once again, the approximation is correct up to o(u−1e−u
2/2).

Combining the last three approximations immediately yields that

E {|Au(T )|} ' E {ϕ(Au(T ))}E{Size of one component of Au}, (6.5.5)

to a degree of accuracy of o(u−1e−u
2/2).

The approximation (6.5.5) would actually be an equality, and require no
proof, if, for example, we knew a priori, that

• Each connected component of Au was also simply connected, with Euler
characteristic of one. In this case ϕ(Au) would simply count the number
of such components.

• The number of connected components and their sizes were independent
random variables.

Neither of these conditions is actually holds, but we have often claimed
that they should be satisfied in some approximate sense, at least for large u.
The approximation (6.5.5) gives further justification to these claims, and will
form the basis of the heuristic techniques of the following section.

Note, however, that the arguments we have given above yield much more
that is available from (6.5.5), which only deals with expectations, since they
also yield the actual (asymptotic) distribution of the size of a connected com-
ponent of the excursion set.

Returning to more rigorous mathematics, here is the promised theorem10,
summarising the above discussion.

10 The first version of this theorem, for two-dimensional random fields, is due to
Nosko [66, 67].
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Theorem 6.5.1. Let f be a mean zero, unit variance, stationary, ergodic,
Gaussian field satisfying the regularity conditions of Section 4.1. Let Su denote
the N -dimensional Lebesgue measure of the component of the excursion set
Au(RN ) containing the origin. Then, given that11 Su > 0 the conditional Palm
distributions converge to an exponential limit, in that

lim
u→∞

P
{
uN2−N/2(ωN )−1(detΛ)1/2Su ≥ v

∣∣Su > 0
}

= e−v
2/N

, v > 0.(6.5.6)

6.5.2 The Non-Gaussian Case

Actually, if you look back over the Gaussian case, you will find that there
was not very much in the main argument that had to do with the Gaussian
assumption. Gaussianess only entered when we turned to the specific structure
of the high level Slepian model. However, we already developed such models
for a number of non-Gaussian random fields in Section 6.4, and all that one
needs do now is substitute these models into the arguments of the previous
subsection to obtain the following results (cf. Exercise 6.7.10). All hold only
under stationarity and ergodicity.

If f is a χ2
k random field on RN , as in Section 6.4.1, and Su the size of the

connected component of Au(f,RN ) containing the origin, then, conditional
on Su > 0,

uN/2Su ⇒ ωN (detΛ)−1/2XN/2, (6.5.7)

where X has an exponential distribution with mean 2 and the convergence is
weak convergence of (conditional, Palm) distributions.

Similarly, if f is a Student T random field on RN with m > N degrees of
freedom, as in Section 6.4.2, then, conditional on Su > 0,

uNSu ⇒ ωN (detΛ)−1/2mN/2XN/2Y N/2(detA)−1/2, (6.5.8)

where X ∼ Beta(1, (m−N)/2)), Y ∼ χ2
m+1−N and A ∼WishartN (I,m+ 1),

independently of one another.
If f is a F random field on RN , with m > N and n degrees of freedom as

in Section 6.4.3, then, conditional on Su > 0,

uN/2Su ⇒ ωN (detΛ)−1/2n−N/2mN/2XN/2ZN/2(detA)−1/2, (6.5.9)

where X and A are as in (6.5.8) and Z ∼ χ2
m+n−N , with all variables inde-

pendent of one another.
With these results, and some computation, you can now verify that the

relationship (6.5.5) holds for these non-Gaussian random fields as well. An ex-
planation for this, as a general phenomenon, comes from the Poisson clumping
heuristic.

11 Note that Su > 0 ⇐⇒ f(0) ≥ u.
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6.6 The Poisson Clumping Heuristic and Excursions

Two decades ago, David Aldous wrote a superb monograph [6] which he called
Probability Approximations via the Poisson Clumping Heuristic. The title was
a terrible misnomer, since the word “heuristic” gives the misguided impression
that “Poisson clumping” is a rough and ready way for illegitimately guessing
answers that sometimes works and sometimes does not. Rather than “heuris-
tic”, the choice “principle” would have been more appropriate, since the idea
of Poisson clumping manages to distill the essence of a large number of related
problems to identify a common underlying principle, which almost always12

works.
The philosophy behind the Poisson clumping heuristic (which we shall ab-

breviate to PC heuristic) is the approximate modelling of random sets (such
as excursion sets) as ‘mosaic processes’. Mosaic processes13 have two com-
ponents: a random subset, or ‘clump’ B ⊂ RN , and a Poisson point process
on RN with mean measure µ. TheA mosaic process, A, is then determined
by choosing a sequence B1, B2 . . . , of i.i.d. copies of the random set, and a
numbering x1, x2, . . . , of the points of the Poisson process, and defining the
random set

A =
⋃
k

(xk ⊕Bk) , (6.6.1)

where x⊕B = {y ∈ RN : y = x+z, for some z ∈ B}. As a consequence of the
independence of the increments of Poisson processes, and the independence of
the clumps Bk many properties of mosaic processes are quite easy to study.

For example, suppose that the random sets Bj , are small enough, or the
points of the Poisson process sparse enough, that the Bj rarely, if ever, overlap.
Writing, as usual, | · | for Lebesgue measure, we then have that for the random
mosaic A and any compact subset T of RN

E{|A ∩ T |} ' µ(T )E{|B|}. (6.6.2)

(Haven’t defined µ(T ). I suppose it is the number of expected
points of the Poisson process, equal to the rate of the process
times |T |.) In essence, this approximation, when treated as an equality, is the
heuristic. It assumes sparce, Poisson points, small random clumps, and lots
of independence.

However, we have seen results like (6.6.2) already, when the point pro-
cess was the process of local maxima of a random field above a high level,
the clumps were connected components of the excursion set, and the mosaic
process was the excursion set, Au(T ), considered as a function of T . The
corresponding result was (6.5.5), viz.

12 Of course, “almost always” here depends on the measure one places on spaces of
problems.

13 For further details on mosaic processes see Hall [39].
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E {|Au(T )|} ' E {ϕ(Au(T ))}E{Size of one component of Au}. (6.6.3)

Arguing now backwards from this ‘coincidence’ leads to the conjecture that
the random mosaic model does give an appropriate description of the structure
of high level excursion sets, a fact which actually has a strong theoretical
background.

In has been known for some time that the number of high level maxima of
stationary Gaussian fields Mu haves an asymptotic Poisson limit, in the sense
that, for all Borel T ⊂ RN ,

Mu

(
f, µ−1

u T
)
⇒ N(T ), (6.6.4)

(Define notation.)as u→∞, where N is a Poisson process on RN (On T
perhaps?) with constant, unit intensity measure,

µu = E
{
ϕ
(
Au(f, [0, 1]N

)}
' E

{
Mu

(
f, [0, 1]N

)}
,

and the convergence is in distribution. The formal theory is due to Piter-
barg14, and the only condition needed, beyond those which we have required
throughout this chapter, is that

lim
|t|→∞

C(t) log(t) = 0

It is to be presumed that similar Poisson limit theorems hold for the Gaus-
sian related random fields that we studied in Sections 6.4 and 6.5, although,
to the best of our knowledge, they have never been proven. However, we have
seen that for these random fields (6.6.3) does hold, so it seems reasonable
to proceed in general as if the excursion sets of these random fields are also
described by a mosaic process.

In fact, for the remainder of this chapter we shall adopt the PC heuristic as
always holding, and not just for the random fields for which we have already
seen that (6.6.3). This will extend the range of application of the next two
subsections far beyond the Gaussian, χ2

k, Student’s T and F cases that we
have treated so far.

Here are two examples of what can be done with such an assumption.

6.6.1 Exceedence Probabilities, Again

All me assume for this application is that we are dealing with a stationary
random field f on RN for which

(i) We believe the excursion set Au is well modelled by a mosaic process of
simply connected clumps positioned on the points of a Poisson process, of
local maxima, with uniform intensity measure

14 See [74, 75] for this result and [51] for the general theory of Poisson limits of this
kind.
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µu(T ) = E{Mu(f, T )} = |T |E{Mu(f, [0, 1]N )}.

This is generally a reasonable assumption if u is large and the dependence
structure of f decays fast enough. (Recall that in the Gaussian case we
require only C(t) log t→ 0 as |t| → ∞, which is a very mild condition.)

(ii) We have an easy way to compute, or at least approximate µu as a function
of u. The approximation will generally be via the mean Euler characteristic
of Au, which is what we shall use in the following.

Then, for a fixed set T , and large u (so that µu is small)

P
{

sup
t∈T

f(t) ≥ u
}

= 1 − P {Au(T ) = ∅}

= 1 − P{no excursion clumps in T}
' 1 − e−µu(T )

' µu(T )

' E{ϕ (Au(f, T ))},

and so we have re-established the EEC heuristic of Section 5.3, but without
any assumption of Gaussianity.

Of course, there are prices to pay for not assuming Gaussianity. One is
that the above argument gives little indication of the level of accuracy of the
EEC approximation, which we did have from the purely Gaussian approach.
The other is that the underlying assumption that the PC heuristic can be
applied is essentially uncheckable.

On the other hand, it does indicate that the EEC heuristic should hold
for a wide class of random fields.

6.6.2 The Largest Component of an Excursion Set

A random variable of considerable interest in recent applications of excursion
theory to fMRI imaging is the size of the largest connected component of a
medium to high level excursion set. We shall discuss the application itself in
Chapter 9 and now just look at the theory.

Given an excursion set Au, made up of a number N = Nu of connected
components, let Su1 , . . . , S

u
N denote the sizes of the various components and

Sumax = max1≤i≤Nu S
u
i the largest of them. Assume that we know, or can

at least approximate, the distributions of the Suj , typically via the high level
Slepian models of Section 6.5. Furthermore, assuming that we know how to
compute E{ϕ(Au)}, so that we can use the version (6.6.3) of the PC heuristic
to compute E{Nu}.

Then, using the assumed mosaic structure of the excursion set, we have
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P
{
Sumax ≤ v

∣∣Nu ≥ 1
}

(6.6.5)

=

∞∑
n=1

P
{
Sui ≤ v, 1 ≤ i ≤ n, Nu = n

∣∣ Nu ≥ 1
}

=

∞∑
n=1

P
{
Nu = n

∣∣ Nu ≥ 1
}
P
{
Sui ≤ v, 1 ≤ i ≤ n,

∣∣ Nu = n
}

' 1

P{Nu ≥ 1}

∞∑
n=1

(E{Nu})n

n!
e−E{Nu} (P {Su ≤ v})n

=
e
−E{Nu}P{Su≤>v}

− e−E{Nu}

1− e−E{Nu}
,

where Su is the size of a generic component of Au and the PC heuristic has
been applied at the penultimate line.

This gives an approximation to the distribution of the size of the largest
component, as required, in terms of quantities which are themselves estimable.

There has been a lot of approximation going on here, so a natural question
to ask is whether or not what comes out in the end is reliable. We would argue
that since these approximations have been heavily used in a number of areas
over the last 30 years or so as if they were exact results, they have been proven,
by democratic vote, to be as reliable as one can hope for in practice. After
all, this is what is important. Nevertheless, it is always useful to see some
numbers as well.

6.6.3 Numerical Experiments

(If there is going to be a chapter on simulations, this section
should move there.)

As part of her thesis work, Jin Cao carried out a variety of simulations to
check the accuracy of the approximations of the preceeding sections, for both
Gaussian and non-Gaussian random fields on R2. These were reported on in
[26] and we bring them here with minor only editorial changes15.

The random variables studied were the number of connected components
N of an excursion set, the sizes S of the components and Smax, the size of
the largest component, where we have dropped the “u” from these variables
indicating the level involved. Simulations of χ2, T and F fields were obtained,
in principle, by first generating the component Gaussian fields ε as moving
averages of the form

εj(t) =

∫
R2

e−|t−x|
2/2σ2

W (dx), (6.6.6)

where W is Gaussian white noise and σ = 3.9, and then combining these in
the obvious way to obtain the non-Gaussian fields.

15 That is, this subsection represents plagiarism in its purest form.
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Of course, (6.6.6) is an idealization of what was actually done on 256 ×
256 lattice, and repeated to give 5,000 realizations of each random field. For
each realization an excursion set was obtained by thresholding the field at
a prescribed level, and then recording the values of N , S, and Smax. From
these the empirical probabilities P{N = n}, P{S = s} and P{Smax > s} were
computed, and then compared to the (asymptotic) theory of the previous
sections. The results are summarised in the following four figures.

Fig. 6.6.1. Simulation of the size of connected components of the excursion set
above threshold u = 4.75 for a Student’s T field with 7 degrees of freedom. (a) num-
ber of components N ; (b) size of one component S, (c) size of the largest component
Smax. — empirical; · · · theoretical, - - -, Gaussianized.

Figure 6.6.1 shows the simulation result for a T field with m = 7 and
threshold u = 4.75. Figures 6.6.2 and 6.6.3 are for a χ2

7 field and thresholds
u = 22.04 and u = 0.7945, respectively, and Figure 6.6.4 is for an F field with
n = 4 and m = 5 degrees of freedom, and threshold u = 21.05. The thresholds
were chosen so that the tail probabilities of the corresponding distributions
are 0.001 for the T field and 0.025 for the rest. In all the figures, the solid
lines are empirical estimates and the dotted lines are theoretical results.

There is an extra graph in Figure 6.6.1, respresenting what happens if one
adopts the trivial Gaussianization of (1.4.8), viz. replacing the T field f by

Φ−1 (F (f(t)) ,

where F is the distribution function of a T random variable with 7 degrees
of freedom. As we warned you back in Chapter 1, while this transformation
generates a random field with one-dimensional marginal distributions which
are standard normal, the random field generated this way is generally quite far
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Fig. 6.6.2. Simulation of the size of connected components of the excursion set
above the threshold u = 22.04 for a χ2

7 field. (a) number of components N ; (b)
size of one component S; (c) size of the largest component Smax. — empirical; · · ·
theoretical.

Fig. 6.6.3. Simulation of the size of connected components of the excursion set
below the threshold u = 0.7945 for a χ2

7 field. (a) number of components N ; (b)
size of one component S; (c) size of the largest component Smax. — empirical; · · ·
theoretical.

from Gaussian. The dashed line in Figure 6.6.1 comes from this procedure,
and it is clear that it gives a result both qualitatively and quantitatively
inconsistent with the data. However, this was to be expected given the warning
you were given in Section 1.4.2 not to adopt such a procedure.
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Fig. 6.6.4. Simulation of the size of connected components of the excursion set
above threshold u = 21.05 for an F field with n = 4 and m = 5 degrees of freedom.
(a) number of components N ; (b) size of one component S; (c) size of the largest
component Smax. — empirical; · · · theoretical.

As far as the other graphs are concerned, they give a level of accuracy
far better than the rough and ready approximations of this chapter seem to
deserve.

6.7 Exercises

(This section obviously needs work.)

Exercise 6.7.1. Something about how non-Palm conditioning would leave
f Gaussian. Perhaps in one dimension. Is this written up in LL&R? If not,
should be easy.

See the next two exercises.

Exercise 6.7.2. Write out the Slepian model for maxima in one dimension
and compare this to the vertical window conditioning.

Exercise 6.7.3. Write out the Slepian model for level crossings in one dimen-
sion and compare this to the vertical window conditioning.

Exercise 6.7.4. Prove (6.3.14) and also the asymptotic Slepian model (??)
Refer [56].

Exercise 6.7.5. Prove (6.2.13).
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Exercise 6.7.6. Show that the density ψu(f ′′) of (6.2.4) gives the distribution
of the elements of ∇2f , conditioned, in the Palm sense, on f having a local
maximum of height u.

Exercise 6.7.7. Prove (6.4.9) and (6.4.9).
Hint. Note first that there are (at least) two ways to prove the results. Consider
first (6.4.9), and start by showing that

P
{
f(0)− u ≥ v

∣∣maximum of height ≥ u at 0
}

=
E {Mu+v}
E {Mu}

, (6.7.7)

where Mu is the number of local maxima of f above the level u in some region.
The problem is that even in the Gaussian case we did not know how to

explicitly compute E {Mu}, and so it should be no surprise that the same is
true in the χ2

k case. Thus, two routes are open to you. One is to obtain an
asymptotic formula for this expectation, which can then be substituted into
(6.7.7) and the limit computed. The other is to behave like a true believer
in the Euler characteristic heuristic, and simply assume (correctly) that one
can replace E {Mu} by E {ϕ(Au)} in (6.7.7), using the results of Chapter 4,
and especially Theorem 4.5.1, to compute the Euler characteristic expecta-
tions. The advantage of this approach is that, once you join the community
of believers, you can use the same argument for other random fields as well.

The proof of (6.4.9) follows similar lines, but you will have to think a little
about how to use the Euler characteristic heuristic in this case.

Exercise 6.7.8. An example to show how to compute EEC from the repre-
sentations of the distributions of f , ∇f and ∇2f , as in Keith’s original proofs.
Also add a reference in EC chapter to this exercise, and thereby maybe kill
the “additional F” section.

?????????????????????

Exercise 6.7.9. Compute the EEC for the chi2 case using the representations
(6.4.1)–(6.4.3) for f(0), ∇f(0) and ∇2f(0) and the equations (which ones???)
of Section 4.2

Exercise 6.7.10. Prove (6.5.7)–(6.5.9), results originally due to Jin Cao [25,
26].
Warning: The algebra gets harder as you go from example to example!

Exercise 6.7.11. Maybe another example? Prove the result, due originally
to [66, 67], that (this is in 2-d only as stated)

lim
u→∞

P
{
γu2Su > v

∣∣Su > 0
}

= lim
u→∞

P
{(

2γu3Vu
)1/2

> v
∣∣Vu > 0

}
= lim

u→∞
P
{
uOu > v

∣∣Ou > 0
}

= e−v, (6.7.8)

where γ = (det(Λ))1/2/2π.
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Simulating Random Fields

7.1 Fields on Euclidean Spaces

7.2 Fields on Spheres

7.3 Fields on Manifolds
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Discrete approximation

8.1 Estimating Intrinsic Volumes

Four methods at least

1. By estimating the covariance function
2. Worsley-Taylor JASA method
3. Sam-Kevin method
4. Methods from integral geometry, eg via Crofton and tube formulae.

(Isotropic case only?)

8.2 Data on a Lattice/Triangulated Surface

8.3 Computing the Euler Characteristic

8.4 Continuity Correction for Supremum Distribution

8.5 Improved Bonferroni Inequality





Part IV

Applications
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Neuroimaging

9.1 Functional Data

9.1.1 Functional Magnetic Resonance Imaging (fMRI)

9.1.2 Positron Emission Tomography (PET)

9.2 Anatomical data

9.2.1 Gray Matter Density

9.2.2 Deformation Fields

9.2.3 Cortical Thickness
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Astrophysics

10.1 Approximations

10.2 COBE Data

For the moment, we note that typical papers in the area are [93, 95], and a
popular account of the subject can be found in the book [86] by George Smoot,
who, together with John Mather, received the 2006 Nobel Prize in physics for
their discovery of the black body form and anisotropy of the cosmic microwave
background radiation.

10.3 Galaxy Density

10.4 Discrete Models?
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Oceanography

11.1 The Problem

11.2 Speckles

Longuet-Higgins [59, 60] and others

11.3 Space/time Modelling

11.4 WAFO

In a random wave model, like that for Gaussian or transformed Gaussian
waves, the distribution of wave characteristics such as wave period and crest-
trough wave height can be calculated by high accuracy for almost any spectral
type. WAFO is a third- generation package of Matlab routines for handling sta-
tistical modelling, calculation and analysis of random waves and wave charac-
teristics and their statistical distributions. The package also contains routines
for cycle counting and computation in ran- dom load models, in particular the
rain ow counting often used in fatigue life prediction. Random wave distribu-
tions are notoriously di cult to ob- tain in explicit form from a random wave
model, but numeri- cal algorithms, based on the so-called regression approx-
imation, work well. This method to calculate wave distributions is the only
known method that gives correct answers valid for general spectra. The the-
oretical background is reviewed in Lindgren and Rychlik (1991)LIND-RYCH
and computational aspects and algorithms in Rychlik and Lindgren (1993).
[43, 58] The algorithms are based on a speci cation of the random waves by
means of their (uni-directional or directional) spec- trum, and on the under-
lying assumption of linear wave theory and Gaussian distribution. However,
a transformation of sea el- evation data can be made to obtain a desired
(horizontal) asym- metric marginal distribution.
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(Wave Analysis for Fatigue and Oceanography [24]
WAFO is a toolbox of Matlab routines for statistical analysis and sim-

ulation of random waves and random loads. WAFO is freely redistributable
software,
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Miscellaneous

12.1 Random Polynomials

12.2 Eigenvalues of random matrices

Start with Jonathan’s and Kuriki/Takemura’s papers.

12.3 Chemical Reactions

12.4 Knots in Random Fields

12.5 Quantum Chaos

12.6 Condition numbers of random matrices





Notation Index

h
(N−1)
ml Spherical harmonics, 54

(N, d) Vector valued random field, 23
CNB Class of basic complexes, 90
StM Support cone at t, 96
detrj(A) Sum of determinants of principle minors, 102
dim(A) Dimension of A, 100
L
= Equivalence in distribution, 29
γk Gauss measure in Rk, 107
Graff(n, k) Affine Grassmanian, 111
HN Hausdorff measure, 106
∇2f|∂M Boundary Hessian, 94
λ2 Second spectral moment, 44
ΛJ Matrix of spectral moments, 123
λN Lebesgue measure in RN , 100
λi1...iN Spectral moments, 42
Lj Intrinsic volumes, Lipschitz-Killing curvatures, 99
Lκj Intrinsic volumes, Lipschitz-Killing curvatures, for spaces of curvature

κ, 106
Mj Minkowski functional, 102
Mγk

j Gaussian Minkowski functionals, 107
Ind Index of a matrix, 95
ωf Modulus of continuity, 64
ωn Volume of unit ball in Rn, 100
ϕ Gaussian density, 26
Φ Gaussian distribution function, 26
φ Gaussian characteristic function, 26
Ψ Gaussian tail function, 26
σ2
T Supremal variance, 71
' Asymptotic equivalence, 16[
n
k

]
Flag coefficients, 110
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Tube(A, ρ) Tube around A of radius ρ, 100
‖ · ‖ General non-Euclidean norm, 26
| · | Determinant, Euclidean norm, Lebesgue measure, 102
‖f‖ Supremum of f , 71
BNλ Ball of radius λ in RN , 53
Bd(t, ε) Ball in the canonical metric, 62
C(s, t) Covariance function, 28
d(s, t) Canonical metric, 62
gt Induced Riemannian metric, 128
Gn,λ Group of isometries on a sphere, 110
H(T, d, ε) Log entropy function, 63
Hn(x) Hermite polynomial, 108
Jm Bessel function, 53
M Manifold, 23
m(t) Mean function, 28
Mu,Mu(f, T ) Number of local maxima, 169
N(T, d, ε) Metric entropy function, 63
Nd(m,C), Nd(m,Σ) Normal distribution, 26
Nt Normal cone, 97
NtM Normal cone at t, 96
Nu Upcrossings of the level u, 33
SN−1 Sphere of radius 1 in RN , 53
SN−1
λ Sphere of radius λ in RN , 57
sN Surface area of unit ball in RN , 54
T Parameter space, 23
Wishart(n,Σ) Wishart distribution, 210



Subject Index

Basic
complex, 88
set, 88

Bessel function, 53
Bonferroni correction, 13
Borel-CIS inequality, 71
Brownian

motion, 83
sheet, 83

Bubble topology, 7, 9, 12

Caliper diameter, 11, 108
Canonical

Gaussian field, 183
metric, 61

Canonincal
Gaussian field, 57

Caveat emptor, 60
Comparison inequalities, 73
Continuity

conditions for, 63, 65, 66
in probability, 61
mean square, 61
modulus of, 63
sample path, 61

Cosine
field, 34, 84, 123, 129
process, 32, 85

Covariance
function, 28, 40
matrix, 26

Critical point, 91
non-degenerate, 92

of a random field, 171
Crofton formula, 109, 163

Gaussian, 167
Curvature matrix, 92

Derivatives
mean square, 42

Differentiability
conditions for, 67

Double sum method, 185

EEC heuristic, 178, 220
Euler characteristic, 6, 88

heuristic, 122
Exceedence probabilities, 69

cosine field, 35
cosine process, 33

Exceedence probability, 15
Excursion set, 2
Extended outward

critical points, 94
directions, 94

Face
of a rectangle, 95

Finite-dimensional distributions, 25
Flag coefficients, 107

Gaussian
Crofton formula, 167
field, 27
kinematic formula, 132, 165
Minkowski functionals, 105
multivariate, 26
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noise, 45
process, 27
random variable, 25

Gaussian related fields, 29, 132
Grassmanian

affine, 109

Hadwiger formula, 109
Hermite polynomials, 105
Homogeneity, 30
Horizontal window conditioning, 195

Increments
independent, 45

Index
of a critical point, 92
of a matrix, 92

Intersection-union principle, 137
Intrinsic volumes, 97
Isotropy, 24, 30

local, 58, 62, 128

Karhunen-Loève expansion, 38
Kinematic fundamental formula (KFF),

107
on RN , 107
on spheres, 108

Kolmogorov consistency theorem, 25

Lipschitz-Killing curvatures, 112
Local maxima, 186
Log-entropy, 63

Majorising measures, 64
Manifold

stratified, 111
Maxima

mean number of, 85
Meatball topology, 7, 9, 12
Mercer’s Theorem, 38
Meta-theorem

Euclidean, 78
Metric entropy, 63
Minkowski

functionals, 99
Minkowski functionals

Gaussian, 105
Modulus of continuity, 78
Morse

theorem
for C2 domains, 93
for excursion sets on C2 domains,

96
for excursion sets on rectangles, 96

Morse functions, 93
Moving average, 47

Nodal domains, 2, 29
Noise

complex, 47
Gaussian, 45

Non-negative definite
function, 26
matrix, 26

Non-negative definiteness
Complex case, 40

Normal cone, 94
of a cube, 94

Orthogonal expansions, 37
Karhunen-Loève, 38

Overshoot, 203

Palm distribution, 192
PC heuristic, 218
Point process, 192
Poisson clumping heuristic, 192, 218
Positive definite

function, 26
matrix, 26

Random
polynomials, 31

Random field, 2, 23
(N, d), 3, 23
F , 141, 212, 218
χ̄2
K , 137
χ2
k, 135, 207, 217, 225

Conjunction, 148
Correlation, 148
Gaussian, 3
Gaussian related, 3
Hotelling T , 146
Rotation space, 162
Roy’s maximum root, 148
Scale space, 150
Student T , 146, 211, 217

Regular
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value, 96
Reproducing kernel Hilbert space, 37
Rice formula, 77, 85
Rice series, 186
Rice-Kac formula, 77, 78
Riemannian

manifold, 110
metric, 110, 128

induced, 128
Rigor mortis, 60
RKHS, 37
Rotation space, 162

Scale space, 150
Simplicial complex, 102
Skeleton, 95
Slepian

inequality, 73, 84
model, 175, 191, 198

Spectral
density function, 41
distribution function, 41
distribution theorem, 41

under isotropy, 52
via RKHS, 51

measure, 41
moments, 42, 82

second order, 44
representation theorem, 48

real form, 49
under isotropy, 55

via RKHS, 51
Spherical harmonics, 54
Sponge topology, 7, 9, 12
Stationarity, 24, 30, 40

weak, second order, 31
Steiner’s formula, 97
Stochastic process, see Random field, 23
Sudakov-Fernique inequality, 76
Support cone, 94
Supremum of a Gaussian field

distribution, 71, 73
double sum approach, 185
expectation, 63, 71, 76

Thresholding, 8
Tube, 97

spherical, 183
Volume of, 182

Tube formula, 98, 100
Euclidean examples, 113

Upcrossing of a random field, 203
Upcrossings, 33, 85

Variogram, 58
Vertical window conditioning, 195
Volume of tubes approach, 182

WAFO, 206, 239
White noise, 45
Wick product formula, 81
Wishart distribution, 208
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Notes in Math., 861:93–120, 1981.

56. G. Lindgren. Local maxima of Gaussian fields. Ark. Mat., 10:195–218, 1972.
57. G. Lindgren. Extreme values and crossings for the χ2-process and other func-

tions of multidimensional Gaussian processes, with reliability applications.
Adv. in Appl. Probab., 12(3):746–774, 1980.

58. G. Lindgren and I. Rychlik. Slepian models and regression approximations in
crossing and extreme value theory. International Statistical Review, 59:195–
225, 1991.

59. M.S. Longuet-Higgins. On the statistical distribution of the heights of sea
waves. J. Marine Res., 11:245–266, 1952.



254 References

60. M.S. Longuet-Higgins. The statistical analysis of a random moving surface.
Phil. Trans. Roy. Soc., A249:321–387, 1957.

61. G. Maruyama. The harmonic analysis of stationary stochastic processes. Mem.
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