STATS 50: Mathematics of Sport Spring 2019

Week 6 — Game to Game Consistency

Lecturer: Maxime Cauchois

@ Warning: these notes may contain factual errors

1 The limits of mean reporting

In a wide variety of sports, performance is generally acknowledged and reported in two different
ways. On the one hand, crowds tend to favour raw numbers as a measure of greatness, ranking a
player with more ”scoring events” (goals, baskets, touchdowns, winners, hits...) over players whose
work for the team may be more obscure and hidden. In some way, there is nothing really wrong
with this approach insofar as those players are also the ones allowing a team to enlarge its fanbase
and attract more people to the stadium, eventually yielding more money for the franchise. At the
same time, in terms of pure sport performance (i.e if one is only interested in winning), we have
previously discussed to what extent these numbers are not sufficiently representative of a player’s
impact on the floor, and how other more accurate measures can be derived.

In the lectures concerning Regression to the mean or Bayesian estimation, we extensively focused
on the problem of estimating the population mean for each player based on roughly three main
pieces of information: the number of attempts, the number of successes and some prior information
about the population of players. However, no matter how accurate our estimation may be, we
are still summarizing a player’s game with a single number. We saw when discussing variance
estimation how the mean can sometimes yield little to none information about the player’s real
abilities, in particular how it fails to account for any kind of consistency (see figure 1). Without
going as far as trying the predict whether or not the next attempt will be a success, which seems
unrealistic, we’d like to offer a more precise description of a player’s performance in a specific
domain (shooting, passing, ...), especially from one game to another.

In most of our previous studies, we had this very strong assumption that all the attempts in every
were not only independent, but had the same probability of success equal to the player’s real success
percentage. However, in practice, players arguably don’t show the same level of performance and
consistency at every game. For instance, in basketball, analysts agree on the existence of ”good”
and "bad” shooting nights. While these fluctuations might also be explained with sheer luck, a
quick statistical analysis would reject the hypothesis of ”uniform” level during each game. In other
terms, if one wanted for any player to test whether or not the observed performance is compatible
with our (too) strong prior assumption, this hypothesis would much likely end up being rejected.
While this forces us to come up with a new model to account for this new variability, it also gives
us more freedom and potentially more accuracy in describing a player’s game.

2 Evaluating game to game variability

For simplicity, we will assume here that we consider a player whose number of attempts N is
constant across each game. Typically, one would have N around 10 in basketball, or 3 in baseball,
and so on... This assumption can be relaxed to the case of unequally weighted games, but it will
make our analysis more readable for now.

The most simple model assumed that during each game i € {1,...,n}, the player had a number
of successes X; ~ Binomial(N, p) where p is the real success percentage for the player. In other
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Figure 1. Histogram of players’ shooting percentage during each game, assuming that both of them
attempted 20 shots at each game

terms, at each game, the number of successes follows the same distribution, where every attempt
is independent from the others and made with probability p.

Now, we are considering instead that at each game 7, the player has a probability p; € (0,1) of
making each attempt, where the probabilities, p; are now allowed to vary between each game. To
be precise, within each game, all the attempts are still realized independently, but the probabilities
of success are allowed to vary from one game to another.

In summary, we are allowed to observed a set of independent variables Xj,..., X,, such that:
representing the number of successes at each game, such that for each i € {1,...,n}:

X, ~ Binomial(NV, p;).

Our model now becomes very flexible, because one could potentially the player’s ability each
game with a different number p;. However, remember that we are only allowed to observe N
different attempts, where NN is potentially as small as 3, so it is completely hopeless to estimate
well each p; individually. Indeed, remember that if p; = 0.5 and N = 10, then one still has a
non-zero probability (around 18%) of observing only 3 successes or less, so with large probability,
one would estimate p; < 0.3. In short, the number of attempts during each game is way too small
to mitigate the variance due to pure luck.

The good news is we do not actually want to estimate each p; individually: we are much more
interested in computing their distribution altogether, or if you prefer how they are scattered in the
[0, 1] interval. Indeed, in figure 1, we have two extreme cases with one player whose all p; are equal
to 0.5, and on whose half of them are equal to 0 and half of them to 1. In a more realistic setting,
you would expect the p; to be grouped around the overall mean (the p € [0, 1] we previously wanted
to estimate) with more or less variance depending on the player consistency. For instance, if one
assumes that at each game, p; is drawn itself from a Beta(6,9) (to get 40% accuracy), figure 2 gives
a plausible histogram for the distribution of p;.
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Figure 2: Simulated histogram of real p; drawn from a Beta(6,9) distribution

The main question is now to estimate this histogram as accurately as possible. Indeed, at first
view, one would think that the histogram of X;/N should be a good estimator for the p; but some
examples should convince you that it is actually a very poor representative. First, in the case where
all the p; are equal to 0.5, we know that the histogram of the X;/N yet won’t be peaked on 0.5
and will have a much wider standard deviation (see figure 1). However, one could still think that
this case is somehow too specific and that if the p; are more scattered, then it should be the case
that the empirical distribution of the X; approaches the one of the p;. As the figure 3 shows, this
is not the case for several reasons. First, X; only takes on discrete values (1,...,N), where N is
much smaller than n, which explains why both histograms look so different. Then, the X;/N are
often much more scattered on the whole interval [0, 1] that the p;, mostly because we actually add
noise when we simulate each X; based on p;, increasing the variability within our data. For these
reasons, it is unlikely that our histogram of X; yields a good estimate of the distribution of p;.

3 Hints about the method of moments

We want to estimate the distribution of the p;. There exists a nice mathematical result which states
that the vector (p1,...,pn) is uniquely determined up to its order when all its "moments” «4 are
fixed, where:

In other terms, for any sequence oy, ..., ay,, there is only a single vector (p1, ..., pn) able to generate
those moments. Now, because the sum of pf is a sort of averaging, it turns out these quantities
can be estimated pretty well!
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Figure 3. Simulated histogram of real p; drawn from a Beta(6,9) distribution, along with the
realized X;/N

More specifically for any k € {1,..., N}:

E(Br) = a (1)

where:

Br =

AR

n (X
S ®
= ()
and with high probability £ and «f, are close to each other. Because all 8 are entirely dependent
on observed quantities, this implies that we are able to accurately recover all the moments of order
k up to k= N.

All that we are ”left” to do to estimate the p; is to find a distribution p; that matches these
computed moments as well as possible, which can be done through a Convex Problem described
more extensively in [1].

4 Basketball estimation

In [1], they also apply their algorithm to the case of two different NBA players, Stephen Curry
and Danny Green, and compare their findings. As one would expect, one player shows much more
consistency across all of his games than the other. The findings are shown in figure 4: one is very
consistent almost every night, while the other alternates more between on and off shooting nights.

Eventually, how can this form of results be applied? There is a very nice Bayesian interpretation
to this problem. Suppose that we found an accurate distribution p; representative of a player’s
talent, or even that somehow we have an oracle who gave us the distribution from which the p; are
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(a) Estimated CDF of Curry’s game- (b) Estimated CDF of Green’s game-
to-game shooting percentage (blue), to-game shooting percentage (blue),
empirical CDF (red), n=457 games. empirical CDF (red), n=524 games.

Figure 4: Consistency comparison between two NBA players

drawn. Now, on any given night, a specific p; is drawn from this distribution, but I don’t get to
observe it. As a coach, I can however observe how the game is going and obtain new information
based on the first attempts. More precisely, suppose that the player I am interested in missed the
first 4 attempts. If the player in question is Steph Curry, it appears that almost every night, his
probability is close to 43% (because he is really consistent), so I can just attribute these misses to
bad luck and I would argue that he should continue shooting even then. If the player is Danny
Green, the situation is different because I know his performances are very volatile, and the fact
he missed his first four attempts gives me strong indication that he currently is in a bad shooting
night, where he is likely to shoot between 20 and 30%. In this case, there might be other players
on the floor to shoot the ball better...
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