
STATS 50: Mathematics of Sport Spring 2019

Week 3 – Population Variance and Statistical Significance

Lecturer: Maxime Cauchois

� Warning: these notes may contain factual errors

1 Motivation for our study

In most sports, numbers are reported in terms of average per game performance. For instance, in
the NBA, a player X will be considered a more proficient scorer than a player Y should he average
more points per game, or has a better shooting percentage.

While this statistic clearly gives an indication on a player’s true ability for scoring, it does not
tell the whole story, because it does not even take into account players’ shooting percentage.

But the truth is that those numbers may contain inherent flaws which make them unreliable,
for several reasons.

First, in the case of a player who attempted only 1 FG and made it, or actually played only one
game and score 30PTS, his shooting percentage will be no less than 100% in the first case, and his
average number of points per game will be 30! Of course, you can feel these number are not reliable
estimators of a player’s true level, and generally in its rankings, the NBA solves this problem by
only considering people with at least a fixed number of attempts. Our focus instead will be to give
a more credible prediction, and we’ll describe a method called Empirical Bayes Estimation to that
extent.

Now, suppose that we have an estimation of a player’s shooting percentage that we deem
trustworthy and accurate. It does not tell us the whole story yet, because this value may still yield
a poor prediction for the next game played. Let us consider the following (simplified) example: a
player A shoots the ball with an accuracy of 100% during half of his games, and 0% in the other
half, while a player B shoots at 50% during all his games. Then, in average, both players have
exactly the same shooting percentage, which is 50%, but their performance is hardly comparable.
This leads us to the crucial notion of consistency, which aims to answer the following question:
how much variance does a player display in this performance? Can he or she be trusted to perform
according to his or her average numbers? Much more than an average number, what a sports
statistician is really interested in is getting a confidence interval for a given parameter. If a player
shoots between 48% and 52% during 95% of his games, then this is more informative than just
knowing that the player has an average shooting percentage of 50%.

2 Empirical Bayes Approach

2.1 Prior Estimation

Suppose that one wants to estimate players’ batting averages in the MLB. This problem seems a
bit tricky for players with very few at bat: is 4 hits out of 10 really better than 300 out 1000? In
order to get a more robust estimate, here is a possible approach. First, one can try to estimate
the distribution of all the batting averages across all the MLB players, in which case one obtains a
histogram similar to the figure 1 (only considering players with a sufficient number of at bats).

This histogram gives us prior information on what we consider a player’s real batting average
to be plausible, and will be used to get more reliable estimates for players with too few at bats. We
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usually model our players’ batting average distribution as a Beta(α0, β0), where α0 and β0 are two
”hyper-parameters” inferred from our data. This family of distributions is most commonly used for
two reasons. The first one is that the batting average represents a probability and takes its values
in the interval [0, 1]. The second one is slightly more subtle, but mostly comes down to some nice
properties of the distributions, which allows easy updates to its parameters when observing new
data (in this case new batting events).

Figure 1: Batting Average and fit by a Beta(79, 225) distribution

2.2 Using the prior for individual prediction

In the Bayesian framework, here are our assumptions. Each player i has a batting average θi ∈ (0, 1)
that we are trying to estimate, and is independent of all the other players. However, this batting
average θi is itself a random variable, which was drawn independently from the others, but from
the same prior distribution: the same one we were trying to estimate in the previous section!

θi
i.i.d∼ Beta(α0, β0) (1)

In other terms, there is a prior distribution of ”raw” talent across the population, which can be
approximated by the figure 1, and when a player begins his or her career, his or her batting average
is drawn from this precise distribution. As a result, some are luckier than most and obtain a very
high ability, and vice-versa for others.

Then, each at bat event can be seen as an independent experiment during which the player i has

a probability θi of hitting the ball. That is, if X
(i)
1 , ..., X

(i)
n are {0, 1}-valued variables representing
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whether the j at bat of player i resulted in a hit, then, we model this sequence as:

X
(i)
j

i.i.d∼ Bernoulli(θi) (2)

While observing the sequence of variables X
(i)
1 , ..., X

(i)
n , our knowledge about θi gets more

and more precise. Indeed, at first, without any observation, we can’t say much more than (1),
meaning that for each individual θi, we estimate it will roughly lie between 0.20 and 0.30 with high
probability, However, as our number of observed events grows, our credible interval carrying our
belief of where θi lies gets thinner and thinner. The reason is we can compute what we call the

posterior distribution of θi given that we observed the events X
(i)
1 , ..., X

(i)
n . By a nice property of

the Beta distribution (which is why we chose it in the first place), it turns out that:

θi | X(i)
j ∼ Beta

α0 +
n∑
j=1

X
(i)
j , β0 + n−

n∑
j=1

X
(i)
j

 = Beta(α0 + Hits, β0 + Outs) (3)

Given that the mean of a Beta(α, β) is α/(α + β), it is easy to see how any hit will tend to
increase our posterior mean, whereas any out will tend to pull it down, which is somehow reassuring.

Now, for a player with 4 hits out of 10, the estimate of the batting average will be:

4 + α0

10 + α0 + β0
= 0.264

On the other hand, for a player with 300 hits out of 1000 Plate Appearances:

300 + α0

1000 + α0 + β0
= 0.29

and the estimate of the batting average will be higher.
This may seem counter-intuitive at first, but is actually very well explained. In the first scenario,

our model considers it did not observe enough hits to confidently conclude that the player is well
above average (that above 30%), so it will roughly output an slightly above average prediction. On
the other hand, in the second scenario, such observed consistency actually means that, with high
probability, the θi drawn for this specific player lies on the right tail of the distribution in 1, which
is why the prediction is very close to the actual sample mean.

In the limit where the number of trials goes to ∞, our estimator would of course converge
towards the sample mean (as well as the real θi in this model).

The interested reader will have a look at [2], where this model is studied in more details and
made more elaborate.

3 Estimating Population Variance

A wide number of statistics based player evaluations look at a game under both a large sample
assumption and a sort of ”mean-field” assumption. As studied in the previous section, the large
sample assumption can be slightly lessened if the model allows us to leverage prior information,
and somehow pretend that the sample size is larger than it really is.

On the other hand, all our statistical estimators aim at evaluating a parameter which reflects a
player or a team performance in average. While this is highly desirable in many scenarios, it can
also fail to accurately describe a phenomenon in others. A first very natural case is the well-studied
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notion of ”clutchness” or ability to perform very well under pressure and at crucial moments of
a game. This concept is closely related to estimating conditional probability, since it mostly asks
how a player performs under specific conditions. For instance, if two basketball players shoot at
an overall 50%, but one of them does it uniformly across all periods of the game (including fourth
quarters) when the other has an average percentage of only 40% ”under pressure”, then you would
probably deem that the first player is more ”clutch” than the second.

In this section, we are interesting in evaluating consistency, which has to be to do with estimation
of variance, or dispersion. The underlying question is the following: once I have an evaluation of a
player, how confident can I be that in the next game, he/she is going to perform close to his/her
average level?

In the following, suppose that we get to observe a quantity of interest X (e.g. the batting
average, the shooting percentage, the average yards per pass or else a goalkeeper percentage of
saved shots on goal), during N different games, where N is usually typically around a few dozens,
or a couple hundred.

We therefore have a sample (X1, ..., XN ) of observations, and what we did so far was to compute
the sample average µ̂:

µ̂ =
1

N

N∑
i=1

Xi

We know, from the law of large numbers, that when N grows large, µ̂ should be close to the real
population mean µ = E(X).

Several questions remain open. First, if N is not so large, we previously saw how considering
prior information on µ could lead to dramatically better estimators than just the sample mean.
It would thus seem natural to not only compute µ̂, but also to mention how many samples are
sufficient to ensure that µ̂ is indeed a good estimator of µ. This is answered by a famous theorem
called the central limit theorem, illustrated in figure 3. It tells us that, when N →∞ (or at least
grows large), we know the distribution of µ̂, more precisely:

µ̂
·∼ N (µ,Var(X)/N)

where N (µ, σ2) stands for the normal distribution with mean µ and variance σ2. Roughly, µ̂ and µ
are close up to a 1/

√
N term, and the magnitude of this term is proportional to a second quantity

of interest depending on the distribution of X, its variance.
In practice, one does not have access to the population variance of X (for the same reason as

why µ is unknown), so one can only try to estimate it with:

σ̂2 =
1

N − 1

N∑
i=1

(Xi − µ̂)2 (4)

The sample variance (4) can be used in two different settings.
First, when estimating the population mean, one can use the central limit theorem to conclude

that with probability 95%, the true population mean µ lies between µ̂ − cασ̂√
N

and µ̂ + cασ̂√
N

, where

cα depends on the amount of confidence we want (typically for 95%, cα = 1.96).
It turns out that σ̂ can also be very informative even if the value of µ were known. Indeed, if

an oracle tells us that a player has an average ability of µ in his field, how much do you really know
about this player?

Let us consider a standard case of two players: one is shooting at 50% during each game, when
the other alternates between 0% during half of the games and 100% during the other half. Both
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Figure 2. Convergence in Distribution: when N grows, the histogram looks more and more like a
Gaussian distribution, centered around µ, and with variance σ2/N

have the same average of 50%, and yet their performance is hardly comparable. In this case, you
expect the first player to have a sample variance much lower than the second one, which might
intuitively explain what the sample variance tells you about individual performance. Indeed, in
both cases, you would predict the player to have a 50% shooting average during the next game,
but if you expect your error to be close to 0 in the first case, it can’t be less than 50% in the
second! This is illustrated in figure In other terms, the sample variance gives an idea of how much
variability there is in your data, and how concentrated your variable of interest is.

Figure 3. Histogram of players’ shooting percentage during each game, assuming that both of them
attempted 20 shots at each game
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