
Stats 50
Week 6: Rasch models

1 Introduction

The Rasch model is just like the Bradley-Terry model, but the difference is that the adversaries do not
appear on both sides of the matchup. In the Bradley-Terry model, each adversary is sometimes the
home team and sometimes the away team. But in the Rasch model, each adversary is only ever on
offense or only ever on defense. Whereas the Bradley-Terry model is more appropriate for making team
rankings, the Rasch model is more appropriate for separately estimating the offensive and defensive
skills of individual players.

2 The (regularized) normal Rasch model

Example: Offensive-Defensive Plus-Minus for NBA player evaluation

The following model is very close to the (non-SportVU) state of the art, ESPN’s Real
Plus-Minus, for evaluating the contributions of NBA players to their teams’ chances of winning.
For each possession over the course of the nba season, we observe the five offensive players on the
floor, the five defensive players on the floor and whether the offensive team is the home team, as
well as the number of points scored on the possession (typically 0, 1, 2 or 3).

Note that this is a special version of the Rasch model that includes five offensive adversaries and
five defensive adversaries for each matchup, instead of just one each.

2.1 Data

For possession i = 1, ..., n:

• For j = 1, ..., 5:

· Oij = identity of jth offensive player on ith possession

· Dij = identity of jth defensive player on ith possession

• Hi = indicator of whether offense is home team on ith possession

• Pi = number of points scored on ith possession

Throughout Section 2 we will use p to denote the number of unique players in our dataset, and we will
assume that each player appears on both offense and defense.

2.2 Model

E[Pi] = α+
5∑
j=1

βOij +
5∑
j=1

δDij + θHi
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Example: Offensive-Defensive Plus-Minus for NBA player evaluation

The Golden State Warriors have the ball on the road against the Portland Trail Blazers.
The players on the floor and the relevant coefficients are:

α = 1.00 θ = +.03
βStephen Curry = +.04 δDamian Lillard = −.03
βKlay Thompson = +.02 δC.J. McCollum = −.02
βHarrison Barnes = +.03 δAl-Farouq Aminu = −.01
βDraymond Green = +.02 δMaurice Harkless = −.01
βAndrew Bogut = −.01 δMason Plumlee = +.02

The expected number of points per possession in this situation is

1.00 + .04 + .02 + .03 + .02− .01− .03− .02− .01− .01 + .02 = 1.05 .

The β’s represent the offensive skills of the players, with larger being better. The δ’s represent the
defensive skills of the players, with smaller (i.e. more negative) being better.

In matrix notation:

X =



Offense︷ ︸︸ ︷
X11 ... X1p

Defense︷ ︸︸ ︷
X1(p+1) ... X1(2p) H1

X21 ... X2p X2(p+1) ... X2(2p) H2

X31 ... X3p X3(p+1) ... X3(2p) H3

... ... ... ... ... ... ...
X(n−1)1 ... X(n−1)p X(n−1)(p+1) ... X(n−1)(2p) Hn−1

Xn1 ... Xnp Xn(p+1) ... Xn(2p) Hn


n×(2p+1)

where for j = 1, ..., p:

Xij =

{
1 if player j is on offense on possession i
0 otherwise

and for j = p+ 1, ..., 2p:

Xij =

{
1 if player j − p is on defense on possession i
0 otherwise

y =



P1

P2

P3

...
Pn−1

Pn


n×1

β =



β1

...
βp
δ1

...
δp
θ


p×1

2.3 Solution

(α̂, β̂λ) = arg min
{
||y − (α1n + Xβ)||2 + λ||β||2

}
(1)
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2.4 Prediction

ŷλ = α̂1n + Xβ̂λ

2.5 R

As with the (regularized) normal Bradley-Terry model, we will fit the (regularized) normal Rash model
in R by using the cv.glmnet() function from the R package glmnet. Unlike the B-T model, we will
allow glmnet to fit its own intercept, which it does by default. This means we will NOT specify
intercept = FALSE.

> model = cv.glmnet(X, y, alpha = 0, standardize = FALSE)

To extract the estimated regression coefficients from the model, use the coef() function:

> beta = coef(model, s = ‘lambda.min’)[, 1]

To use the model to predict points per possession, use the predict() function:

> pred = predict(model, X, s = ‘lambda.min’)

3 The (regularized) binomial Rasch model

Example: Batting average based on batter-pitcher matchup in baseball

3.1 Data

For at bat i = 1, ..., n:

• Bi = identity of batter in ith at bat

• Pi = identity of pitcher in ith at bat

• yi = indicator of whether ith at bat results in hit

3.2 Model

P (yi = 1) = pi =
eα+βBi

+δPi

1 + eα+βBi
+δPi

Example: Batting average based on batter-pitcher matchup in baseball

Mike Trout bats against Clayton Kershaw. The relevant regression coefficients are:

α = −1.10 βMike Trout = +0.25 δClayton Kershaw = −0.30

Trout’s expected batting average against Kershaw is

e−1.10+0.25−0.30

1 + e−1.10+0.25−0.30
=

e−1.15

1 + e−1.15
= .240 .
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3.3 Solution

β̂λ = arg min

−
n∑
i=1

(yi log pi + (1− yi) log(1− pi)) + λ

∑
j

β2
j +

∑
j

δ2
j


3.4 R

In R, we use the same function (cv.glmnet()) to fit the model, but we specify family = ‘binomial’:

> model = cv.glmnet(X, y, alpha = 0, standardize = FALSE, family = ‘binomial’)

To extract β̂, again use coef():

> beta = coef(model, s = ‘lambda.min’)[, 1]

Predictions are obtained similarly, but we specify type = ‘response’ to get probabilities:

> pred = predict(model, X, s = ‘lambda.min’, type = ‘response’)

3.5 Extending the model

The model could be extended to account for such factors as ballpark, home-field advantage and whether
the batter and pitcher have opposite handedness:

• Si = identity of stadium in ith at bat

• Hi = indicator of whether batter’s team is home in ith at bat

• Oi = indicator of whether batter, pitcher have opposite handedness in ith at bat

Model:

pi =
eηi

1 + eηi
where ηi = α+ βBi + δPi + τSi + θHi + ζOi

4 Sparse matrix representation

As we move from modelling game results to modelling the outcomes of matchups between individual
players, we can expect to be dealing with larger datasets. For both the examples presented in these
notes, if we were to fit the model to a whole season’s worth of data, we can expect hundreds of
thousands of matchups featuring close to one thousand unique players. This presents a computational
challenge.

Our matrix X will have over one hundred million entries, but 99% or more of those entries are
zero, with the rest being one. We say that X is “sparse”. In R, we can leverage this fact to make the
computations much faster, using the sparseMatrix() function in the package Matrix. This function
takes two arguments, i and j which are vectors of the same length, and builds a sparse matrix filled
with zero everywhere, except the entries specificied by the pairs (i, j). From here, X can be used in
cv.glmnet() just like a matrix that had been constructed without sparse representation.
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Example: Batting average based on batter-pitcher matchup in baseball

Suppose we observe the following matchups between batters and pitchers:

Batter Pitcher
Andrew McCutchen Dallas Keuchel

Nelson Cruz Dallas Keuchel
Buser Posey Dallas Keuchel
Jose Altuve Gerritt Cole
Nelson Cruz Gerritt Cole
Buster Posey Gerritt Cole
Jose Altuve Felix Hernandez

Andrew McCutchen Felix Hernandez
Buster Posey Felix Hernandez
Jose Altuve Madison Bumgarner

Andrew McCutchen Madison Bumgarner
Nelson Cruz Madison Bumgarner

Then our matrix

X =

JA AM NC BP DK GC FH MB
0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1

can be constructed as a sparse matrix with

> i = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

> j = c(2, 3, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8)

> X = sparseMatrix(i, j)

Because the pairs (1, 2), (2, 3), (3, 4), (4, 1), ..., (12, 8) represent the nonzero entries of X.
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