
STATS 50: Mathematics of Sport Spring 2019

Week 4 – Regression to the mean

Lecturer: Maxime Cauchois

� Warning: these notes may contain factual errors

1 The James-Stein phenomenon

Intuitively, if one wants to estimate several completely independent quantities at the same time,
it does not really make sense to combine all your data to form your estimates. For instance, if we
wanted to estimate Kevin Durant’s real free throw percentage, as well as this class’s passing rate
and the number of goals scored by Leo Messi next season, it is not clear at all why we should
consider these quantities altogether.

However, it turns out that James-Stein phenomenon proves us wrong: it is better to aggregate
all your estimates!
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2 The James-Stein Estimator

Suppose that we want to estimate n different quantities µ1, ..., µn, and that we have n estimates
Z1, ..., Zn of those quantities, which all have the same variance σ2.

We can then form the following James-Stein estimate based on this:

µ̂(JS) =

(
1− (n− 2)σ2

‖Z‖22

)
Z (1)

We see that we actually shrink our estimate towards 0. Here, in our baseball case, the JS
estimate described in the seminal paper [1] by Bradley Efron actually regresses all the batting
averages towards the ”average of the averages”, as it is more likely that each player who has
performed better than the others actually regresses to a lower mean.

Indeed, in the case where you have prior information that the mean in your population popu-
lation average is likely to be around some ν, you can actually get a better estimate by shrinking
towards this value rather than towards 0, which in this case would be a somehow artificial value to
consider. The JS estimate then becomes:
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µ̂(JS)ν =

(
1− (n− 2)σ2

‖Z − ν‖22

)
(Z − ν) + ν (2)

3 Bayesian interpretation

Suppose that each player’s level (i.e. batting average, shooting percentage, speed, ...) can be
evaluated with a unique number µi, which was drawn (independently from the others) from a
normal distribution with the same mean ν and variance τ2. In other terms, one can imagine that
each µi is the measure of each player’s talent, and obviously some players are going to get more
abilities than others through hard work, good coaching and also sheer luck!

Now, if we want to estimate each player’s talent, we are usually going to observe a more or less
unbiased (but noisy) estimate Zi of his abilities: typically, it is going to be the batting average over
the first month of the season, or the shooting percentage in the last ten games... Here, we are to
assume that each Zi are drawn independently from the others with mean µi and variance σ2. In
other terms, there is some part of randomness which makes you perform better on certain moments
of the season, but your performance obviously also depends on your talent.

The interesting part is the following: we actually observe every Zi, and we can have a pretty
decent estimate of ν, which is the average talent of all the players. Now, given that we observe all
the Zi, we can prove using the Bayes formula that:

µi|Zi ∼ N
(
ν/τ2 + Zi/σ

2

1/τ2 + 1/σ2
,
τ2σ2

τ2 + σ2

)
In other terms, once you observed all the Zi, the best estimate that you can come with for µi

seems to be an actual weighted average of the all players mean and of your individual observation.
In particular, for those players which have performed better than average (Zi > ν), you will in fact
shrink your estimate towards ν!

4 Regression to the mean with unequal variances

Very often in sports, one does not get to observe as many events for each player, which results in
different variances. Indeed, a player which has attempted 100 shots will have a less noisy estimate
of the actual true ability than the one with just 10 attempts.

More generally, in the Bayesian framework described above, suppose again that the ability of
each player was drawn from some normal distribution:

µi
i.i.d∼ N (µ, τ2)

Then, we suppose that the player i made Ni independent attempts with the same mean µi of
success, resulting in an observed average Zi such that, given the player i’s true ability µi:

Zi|µi ∼ Binomial(Ni, µi)/Ni ' N (µi, σ
2
i )

where σ2i = µi(1−µi)/Ni, and where we used the Central Limit Theorem to approximate a Binomial
distribution with a Normal distribution. In other terms, the number of made shots is a normal
variable centered around the player i’s true ability µi and with a variance proportional to the inverse
of the number of shots attempted.
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By Bayes formula, we know that:

µi|Zi ∼ N
(
µ/τ2 + Zi/σ

2
i

1/τ2 + 1/σ2i
,
τ2σ2i
τ2 + σ2i

)
which implies that ideally:

µ̂i =
µ/τ2 + Zi/σ

2
i

1/τ2 + 1/σ2i

Now obviously, there are here a lot of unknown parameters, including µ, σi and τ2.
First, µ can be easily estimated with the overall average across all players, since it is just the

probability that a player chosen at random actually makes a shot:

µ̂ =

∑N
i=1NiZi∑N
i=1Ni

=
Shots made

Shots attempted

Then, assuming that all µi should be rather peaked around µ, we can estimate each σ2i :

σ̂2i =
µ̂(1− µ̂)

Ni

i.e we take σ2i to be just a linear function of 1/Ni.
The hardest parameter to estimate is τ2, but here is a method to approach its true value

accurately and rigorously: we can remark that, marginally, each Zi has the following distribution:

Zi ∼ N (µ, τ2 + σ2i )

That is, if we don’t know the player at all (or if we sample it at random), its average number of
made shots will be normal, with mean µ the overall population mean and variance τ2 + σ2i , that is
we add the variance due to inherent variability in our population (τ2) as well as the ”luck” variance
(σ2i ) specific to the player and depending on his/her number of attempts.

But this precisely means that (Zi − µ)2 − σ2i is an unbiased estimator of τ2, for any i! In
particular, any estimator of the form:

τ̂2w =

N∑
i=1

wi((Zi − µ)2 − σ2i )

will be unbiased for τ2 as long as
∑N

i=1wi = 1.
The last question that remains lies in the choice of w. At first sight, it could make sense to just

use wi = 1/N for any i, that is grant equal weight to each player for estimating τ2. However, a
normal variable X ∼ N (µ, σ2) verifies the following identity:

Var((X − µ)2) = 2σ4

Therefore the variance of τ̂2w can be computed as follows:

Var(τ̂2w) = E((τ̂2w − τ2)2)

= 2
N∑
i=1

w2
i Var((Zi − µ)2)

= 2

N∑
i=1

w2
i (τ

2 + σ2i )
2
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Because we want τ̂2w to be as close as possible to τ , we want to minimize its variance. It turns
out that the latter expression is minimal for:

wi ∝
1

(τ2 + σ2i )
2

Therefore, our estimate of τ2 should be:

τ̂2 =

{
N∑
i=1

(Zi − µ)2 − σ2i
1/(τ2 + σ2i )

2

}
/

{
N∑
i=1

1/(τ2 + σ2i )
2

}

But, if you look at it very carefully, you’ll notice that our estimator τ̂2 depends itself on µ and
σ2i . This is not a problem since those two quantities have been previously estimated and can be

replaced by their respective estimators. More annoyingly, our ˆtau
2

intricately depends on τ2, which
is precisely the parameter it is trying to estimate!

For this reason, we use an iterative method and find τ̂2 that solves:

τ̂2 =

{
N∑
i=1

(Zi − µ̂)2 − σ̂2i
1/(τ̂2 + σ̂2i )

2

}
/

{
N∑
i=1

1/(τ̂2 + σ̂2i )
2

}
(3)

This τ2 is precisely the one we computed during the R session using an iterative approach where
we would update recursively τ̂ until it satisfies (3).
Remark In the case of equally sampled players (where each one attempted the same number
of shots), all wi can be taken equal to 1/N

5 Some examples drawn from sports

5.1 Computing the JS Estimate in the Baseball case

In the baseball example drawn by Efron, we first µ by µ̄ = 1
n

∑n
i=1 Zi: if there are enough players,

the law of large numbers will ensure that µ̄ is close to µ. It is around .265 in our case, and we call
it the Grand Average.

Then we see that we are to estimate each real batting average by:

µ̂
(JS)
i = µ̄+ c(Zi − µ̄)

where 0 < c ' .212 < 1 is a number which depends on all our data (and determines the level of
shrinkage).

5.2 Estimating real 3pt percentage

After a month into the regular season, we have access to each player 3PT percentage so far, and
our goal is to estimate the 3PT percentage for the whole regular season. Here, we assume that all
players have attempted a similar number of shots.

Note that in our James-Stein estimator (2), there are two unknown parameters: ν and σ2. In
order to give accurate predictions, we will have to find decent estimates of those two quantities.

We know that we can replace σ2 by the following sample variance σ̂2:

σ̂2 = µ̄(1− µ̄)/N
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where N is the number of attempts for each player. This is simply due to the fact that, given a
player’s ability µi, its number of made shots will be a Binomial variable with parameters N and
µi: each shot will be a 0− 1 variable, equal to 1 with probability µi.

As for ν, we know that it should be close to a reasonable season average value for all players:
we choose to use 42%, which can seem a bit arbitrary but can be thought as an estimation gained
from prior information over the past seasons. We could also have chosen to use the average of all
players during the first month of the season.

In this example, the JS estimate actually overperforms the naive estimate by a factor of 17 in
terms of mean squared error! In the figure 1, we displayed both the James-Stein estimator described
above, but also the linear regression curve. Of course, the latter gives a more accurate prediction
of the real 3PT percentage, but note that it was allowed to look at the data to compute the fit! On
the other hand, our JS estimate only uses our values from the first month of the season and yields
predictions for the entire season, from these observations only.

Figure 1: James-Stein Estimator for prediction of NBA real 3PT percentage.
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6 The winner’s curse

The underlying reason why these estimates are better than naive ones is the following: suppose
that all players have more or less the same level. Then it means that those who performed better
during the first month were actually just lucky: you expect them to perform worse in the next part
of the season and to regress to the mean, which is the reason why you’d better predict a lower
estimate for the rest of the season.

For instance, if one player had made say 50 3-pointers in the first 10 games of the season, and
you want to predict the number of shots he will make in total during the regular season, you are
probably not going to say 410, even though this would be the ”unbiased”estimate (at 5 3 pointers
per game). Obviously there can be some outliers: those are players who are actually more talented
than others!

Figure 2: Number of 3 pointers in function of the number of games played

The winner’s curse can be explained very easily mathematically speaking. Suppose that we are

given Zi
i.i.d.∼ N (0, 1). A priori, all the Zi come from the same distribution, but consider the player

who has achieved maxj Zj , and you can very easily verify that:

E
(

max
j∈[n]

Zj

)
> 0 = max

j
E(Zj)

i.e. you expect that the player who comes first actually performed better than his/her level! Because

7



he was the first among all (during the competition or the first month or whatever), you actually
expect him/her to have exceeded the expectations!

It also means that for the next game or the next competition, you actually expect this same
player to show poorer performance, because he or she just got lucky this time!

We call this kind of phenomenon selection bias, and it is very much studied in statistics
nowadays.
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