
STATS 50: Mathematics of Sport Spring 2019

Week 4 – Regularized Linear Regression

Lecturer: Maxime Cauchois

� Warning: these notes may contain factual errors

1 Regularization in statistics

Figure 1: Regularization in statistics and machine learning

In a wide variety of problems, we are given a set of data (xi, yi)i∈[n], where x ∈ Rd represent

all the potential predictors of our response y. Our goal is then to learn from our data a function f̂
which maps x to y. In a lot of cases, we will restrict f to be linear or polynomial, and estimate its
value f̂ via least-squares, or more generally by solving an optimization problem.

However, we will sometimes observe at first that our model is overfitting to the dataset used to
yield an estimate f̂ : we say that our model does not generalize well, because it performs poorly on
newly came instances, and over-reliant to the instances at hand. For instance, suppose that we set
our goal to predict the outcome of the next NBA playoffs, but obviously we can only rely on the
regular season games or/and the previous NBA playoffs to build our predictions. Not only might
the teams not display an homogeneous performance during those different periods of the season
(because of several factors, such as motivation, etc) but each game itself contains some inherent
noise which perturbs a potential prediction. To sum up, we have to take into account the fact that
we want our model to perform well not on the data it has seen, but on data that it has not.

In figure 1, one can observe the two extreme cases that a data scientist tries to avoid when
developing a new model. If the model is too simplistic for our data, we will not even be able to
fit our current dataset, in which case we probably have to refine our set of possible functions f̂ ,
allowing more sophisticated models. On the contrary, if the model is too ”high variance”, meaning
that the function f̂ is not smooth enough, we might want to add some more regularization (or
penalization) to our problem (3).

This standard phenomenon in data science and statistics is called bias-variance trade-off, and
implies that one has to find the right balance when choosing our model complexity: increasing it
will reduce the bias but may induce higher variance loss.
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In the standard setting (x, y)
i.i.d∼ P, we want to find the function f? which minimizes:

minimize
f∈F

E(L(y, f(x))) (1)

where F is a set of functions (e.g. the set of linear functions from X to Y), and L is a loss function
characterizing the quality of the prediction f(x) for y. A typical example of loss function is the
square loss: L(f(x), y) = (y − f(x))2.

In a perfect world, if we were to know the distribution P, that is if we knew the exact link
between x and y, as well as how x is distributed in our population of interest, we would simply
consider f? ∈ F minimizing (1), because it is by definition the best approximation of y by a function
of x in our model. Of course, we dispose only of a finite number of instances, so (1) can just be
approximated by an empirical version.

If we finally obtain an estimate f̂ of a function, f̂ is itself a random function depending on the
samples (xi, yi)i∈[n] we observed. Now, if we are given a new example x ∈ X to predict (fixed here),
we can estimate the level of suboptimality of our estimator when L is the squared loss by:

E
[
(f(x)− f̂(x))2

]
=

Bias︷ ︸︸ ︷
E
[
(f(x)− E(f̂(x)))2

]
+

Variance︷ ︸︸ ︷
Var(f̂(x)) (2)

If f̂ is too noisy, the variance part will be large, which will hurt our prediction. On the other
hand, if f̂ is chosen among a set too small to account for the complexity of the true model, the
bias term will tend to increase. To find the correct balance, we often penalize models which are
too ”complicated”, because generalization to new data is the our main desiderata. In other
terms, we usually solve the following problem:

minimize
f̂∈F̂

1

n

n∑
i=1

L(yi, f̂(xi)) +R(f̂) (3)

where F̂ is a set of ”acceptable” functions, L stands for the loss function which characterizes the
distance between our estimate f̂(xi) and yi in order to make it as small as possible (and fit our
data), and R(f̂) represents our penalization term, which will basically grow large when f̂ becomes
too ”noisy” and overfits our data.

By performing the minimization written in (3), we can see that we are making a trade-off
between two antagonist forces. On the one hand, we would like to constrain all the f̂(xi) to be
equal to yi so as to cancel the first term of our loss. On the other hand, the second terms prevents
f̂ from being too erratic and encourages us to find smoother functions to represent our problem.
To draw a parallel with the figure 1, the first term of our loss pushes f̂ towards the left, while the
second terms pulls f̂ on the left. The ”art” of machine learning is then to find the correct trade-off
between both so as to end up in the middle.

2 Regularization in linear regression

We now come back to the more narrow setting of linear regression, where we assume that the
function f̂ mapping x to y is linear, parameterized by some θ ∈ Rd such that:

f̂θ(x) = θTx
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We previously studied the simple least-squares scenario, where we only try to minimize over all θ:

1

n

n∑
i=1

(yi − θTxi)2 =
1

n
‖Y −Xθ‖22 (4)

where X = (xT1 , ..., x
T
n ) and Y = (y1, ..., yn) are concatenated versions of our data.

We can observe that the standard least-squares problem adds no regularization term to our
problem. However, in many scenarios, such as Bradley-Terry or Rasch models which will be studied
in the next few weeks, we are going to add penalization terms and solve the following problem:

minimize
θ

1

n

n∑
i=1

(yi − θTxi)2 +Rλ(θ) (5)

where Rλ is a regularization term which essentially takes large values when θ itself is large. Its
magnitude is often parameterized by some λ > 0, which allows to mitigate the effects of regular-
ization and control the bias-variance trade-off that we make: as λ grows, we penalize large values
of θ even more so that we drag the value of θ towards 0, whereas if λ → 0, we effectively remove
any regularization term and allow θ to be close to its initial least-squares solution.

Adding a regularization term has essentially two practical main reasons:

• We avoid any identifiability issue, in other terms we ensure that there is a single solution θ
to our problem (5). Indeed, in (4), there are several cases in which two different values of θ
achieve the same mean squared error, in which case it is not obvious at first sight which one
we should choose. We will see in the next lectures that this case can appear more often than
not, and is strongly connected with the underlying model we have decided to apply to our
data.

• We sometimes just want to encourage small values of θ, as in the case of regression to the
mean! Indeed, suppose that each θj represents some kind of deviation from the average
for the player j, then we previously saw that shrinking every estimate towards 0 was often
quantitatively preferable to the more naive estimate: the same phenomenon appears here.

3 Ridge Regression

There are two main types of regularization used in linear regression: the Lasso or l1 penalty (see [1]),
and the ridge or l2 penalty (see [2]). Here, we will rather focus on the latter, despite the growing
trend in machine learning in favor of the former.

Ridge regression uses the l2 norm of θ as a penalization term, solving the following problem:

minimize
θ

{
1

n
‖Y −Xθ‖22 + λ ‖θ‖22

}
=

1

n

n∑
i=1

(yi − θTxi)2 + λ

d∑
j=1

θ2j (6)

For each λ > 0, we get an estimate θ̂λ of our parameter, which can be computed using the
following closed formula:

θ̂λ = argmin
θ

1

n

{
‖Y −Xθ‖22 + λ ‖θ‖22

}
= (XTX/n+ λI)−1XTY
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We see that the expression we get is quite close to the least-squares expression, which should
not be so surprising if we consider that we actually also solved a least-squares problem. Indeed,
solving (6) comes down to artificially adding d data points (x̃i, ỹi)1≤i≤d with x̃ij =

√
λ if i = j

and 0 otherwise, and ỹi = 0. In other terms, when we replace a linear regression model by a ridge
regression one, it implies that we do not necessarily trust our model too much, and we prefer adding
some ”false” data points so as not to rely too much on our n data points.

One final discussion remains open nonetheless. It is almost immediate to see that the amount
of confidence we put in our linear model is inversely proportional to the magnitude of λ, leading to
the following question: how should we choose λ?

4 Cross Validation

Ideally, we would like to choose λ so as to end up with a model which generalizes as well as possible
on future data. However, we also know that any information that we would get using already
processed data would be biased, so we have to come up with a scheme which allows us to evaluate
our model on some ”uncontaminated” data. Here is an algorithm which allows us to do that, and
is called K-fold cross validation.

Data: (X,Y ) where X ∈ Rn×d and Y ∈ Rn
Result: λopt
Randomly split your data (X,Y ) into K equal parts (X(1), Y (1)), ...(X(K), Y (K)).
for k = 1, ...,K do

• Solve (6) and obtain θ̂
(k)
λ for several values of λ, using all but the k-fold of your data

• Use each θ̂
(k)
λ to make predictions on the k-fold of your data (previously retained from the

training part), ie compute X(k)θ̂
(k)
λ for all possible values of λ

• Get a mean squared error on the k-fold for each value of λ, comparing your predictions to
the actual values Y (k)

For each λ, compute the average mean-squared error over all K-folds, and return λ with
the lowest one.

end
Algorithm 1: K-fold cross-validation

The value of λ returned by the K-fold CV algorithm is the one more susceptible of generalizing
best, and should therefore be the one we eventually use for prediction purposes.

5 Regularized Linear Regression in R

In R, there are some built-in packages which can run cross validation for us! To fit a regularized
linear regression model in R, you will need to have installed (the first time) and loaded (every
time) the glmnet package. To fit the model with cross validation to choose , use the cv.glmnet()

function:

> mod_ridge = cv.glmnet(X, y, alpha = 0, intercept = FALSE , standardize = FALSE)

To use the model to predict score differentials, use the predict() function:

> pred = predict(mod_ridge , X, s = ’lambda.min’)

4



To extract the estimated θ̂ from the model, it is easiest to again use the predict() function (and
the fact that if X = I, then the prediction is ŷ = Iθ̂ = θ̂):

> theta = predict(mod_ridge , diag(ncol(X)), s = ’lambda.min’)

The cv.glmnet() function takes care of cross validation. The one thing you want to check is that
the default range of λ values is sufficient. To view a diagnostic plot, use the plot() function:

> plot(mod_ridge)
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