

How Do Injuries in the NFL Affect the Outcome of the Game

Andy Sun
STATS 50 2014

Motivation

- NFL injury surveillance shows upward trend in both the number and severity of injuries
- Packers won 2010 Super Bowl with 15 players on injured reserve
- What is the breaking point?

Two Approaches

- Differences in Probabilities of Winning;
pre and post game
- Adjusted Games Loss

Differences in Winning Probability

- Let X = Whether or not the favored team won $\rightarrow 1$ or 0
- Let p = predicted probability of the favored team winning
- Let Y = Diff. in Winning Prob. = $X - p$

- Predicted probability of winning is based on point spread, and NFL Betting Odds.

- Ex/

Favored	Spread	Underdog
Broncos	-3.5	Chiefs

- Spread -> Probability

- The more negative the spread, the larger the probability of winning

Spread	Probability of Winning
24	4%
0	50%
-24	96%

If the value of Y is.....

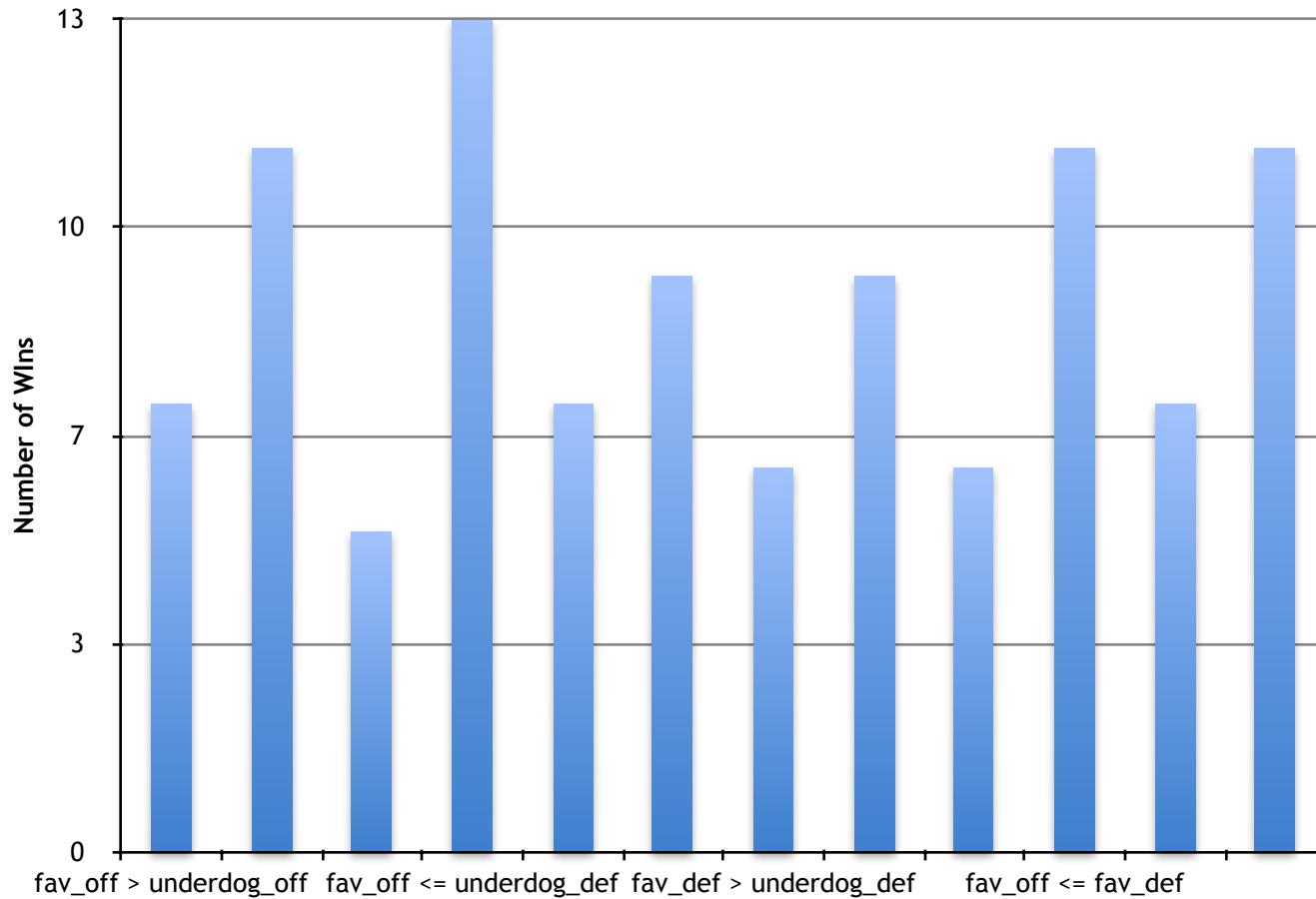
- Positive → favored team wins
 - The smaller the value of Y, the more heavily favored the team was to win
- Negative → favored team loses
 - The more negative the value of Y, the bigger the upset

Bins based on Injuries Sustained

- Look at the difference in winning probability based on the number of injuries for that week
- Ex/ Fav_off > Udog_def
- Ex/ Fav_total > Udog_total

Take the Averages in Each Bin

Bin	Avg Diff in Winning Probability
fav_off > underdog_off	-0.117
fav_off <= underdog_off	0.594
fav_off > underdog_def	0.12
fav_off <= underdog_def	-0.079
fav_def > underdog_off	0.025
fav_def <= underdog_off	0.0195
fav_def > underdog_def	0.1197
fav_def <= underdog_def	-0.186
fav_off > fav_def	-0.1346
fav_off <= fav_def	0.05
fav_total > underdog_total	0.0676
fav_total <= underdog_total	-0.075



Favored Team Loses

Bin	Avg Diff in Winning Probability
fav_off > underdog_off	-0.117
fav_off <= underdog_def	-0.079
fav_def <= underdog_def	-0.186
fav_off > fav_def	-0.1346
fav_total <= underdog_total	-0.075

- ✓ Favored Offense has more injuries than opposing offense
- ? Favored team has less injuries overall than the underdog team

Favored Team Wins

Bin	Avg Diff in Winning Probability
fav_off <= underdog_off	0.594
fav_off > underdog_def	0.12
fav_def > underdog_off	0.025
fav_def <= underdog_off	0.0195
fav_def > underdog_def	0.1197
fav_off <= fav_def	0.05
fav_total > underdog_total	0.0676

- ✓ Favored defense has more injuries than opposing offense
- ? Favored team has more injuries overall than the underdog team

Challenges

- Data Collection
 - No readily usable data aggregated together
 - Lots of preprocessing needed
- Sample Size
 - Small sample size due to challenges in collecting data

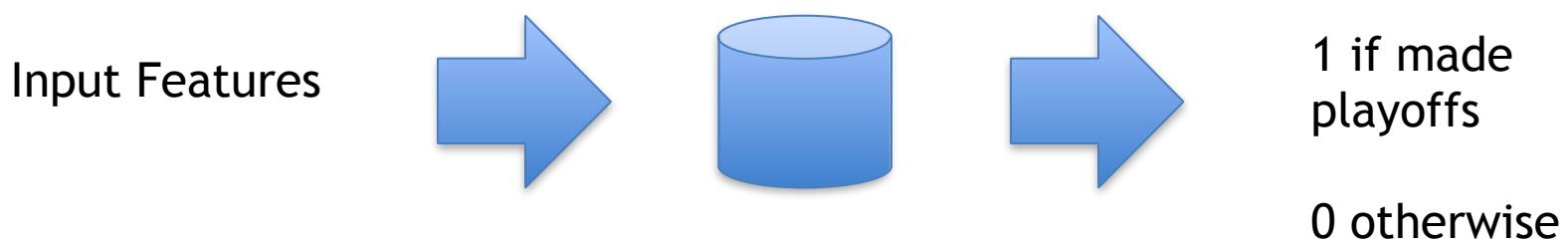
Adjusted Games Loss (AGL)

- Attempt to find more conclusive results!
- Quantifies how much teams are affected by injuries to starters and injury replacements, and by player listing status on NFL Injury Report.
- <http://www.footballoutsiders.com/stat-analysis/2014/2013-adjusted-games-lost>

“Brute Force”

- With difference in winning probability, very careful selection of data
- With AGL, took more of a brute force approach with machine learning

- 2013 - 2014 NFL Season
- Use x inputs to “predict” whether or not a certain team made it to the playoffs

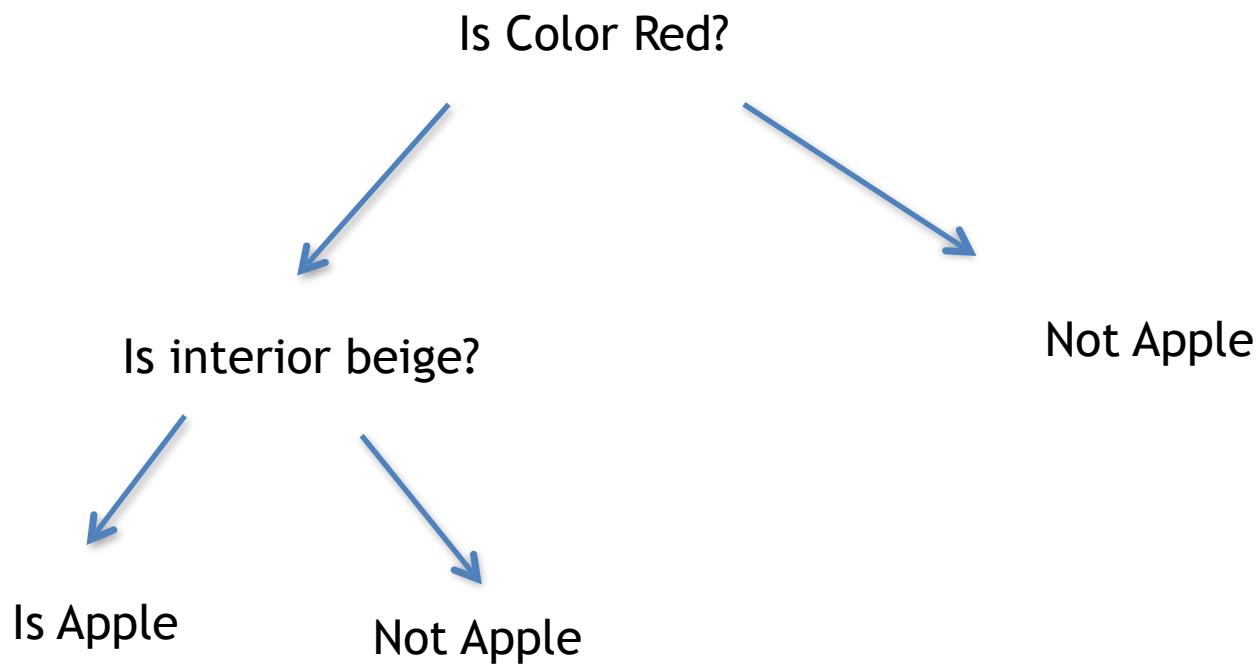


- Analyze the most important features used in prediction

Binary Classification Tree

- Analogy → Fruits
- Going to classify whether an input is an apple or not

Features	Label
<i>Red ext, beige int, medium sized, low</i>	<i>Apple</i>
<i>Red ext, purple int, small sized, med</i>	<i>Grape</i>
<i>Red ext, gray int, small sized, lost of</i>	<i>Pomegranate</i>
<i>Green ext, red int, large sized, lots of</i>	<i>Watermelon</i>

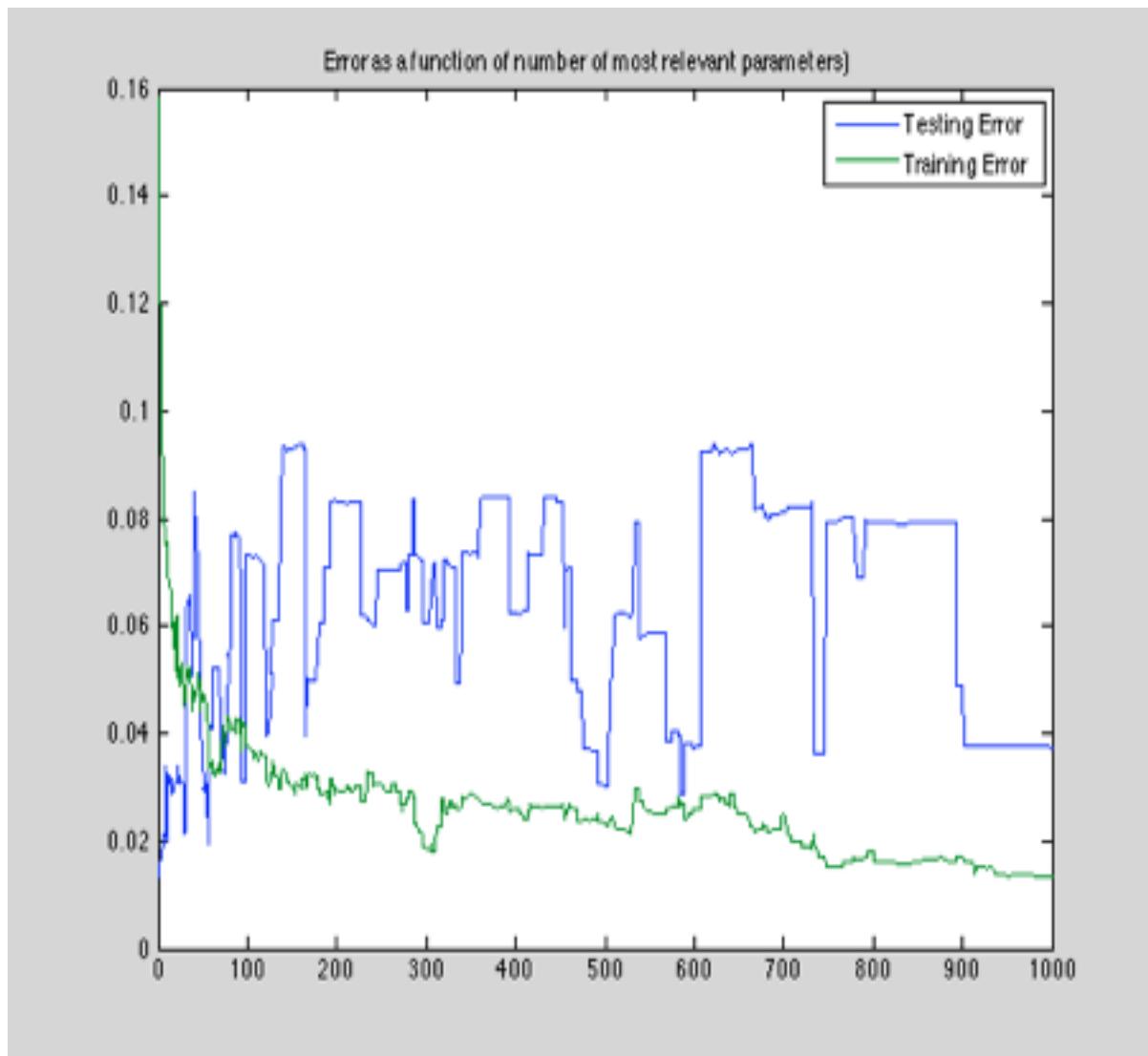


Notice how we never have to ask about size or the Number of seeds.

Back to football

- Create feature vector for each NFL team
- Create corresponding label indicating whether or not that team made the play offs
- Feature Selection: How important of a feature is AGL? How high up in the tree structure is it?

The Predictive Model



How important is AGL as a Feature?

- Not very important
- This may also be due to human error in deciding which features to use
- Chose this approach so that I could look at lots of data, but same problem as before: not enough quickly usable injury databases

Inconclusive

- Need to do gather and format more data

Thank You!