Symbolic Systems and Its Cognate Disciplines

Todd Davies
Symsys 130
April 1, 2013
What is Sym Sys about?

Cognition  —  Computation

HCI
AI
Cog Sci
Some theoretical questions

Can computers think?
Is language innate?
Are humans rational?
Is information technology prosocial?
Is the brain symbolic?
Does language shape thought?
Do animals use language?
Some practical questions

How can you design a voice interface that will work well for people?

How can you design an ontology for events in a calendar program?

How can you design an experiment to see whether an interface change will improve usability?

How can you design a computational model that will predict human responses on a task?

How can you design a program that will correctly parse a sentence?

How can you design software that will enhance democracy?
Core methods and their markers

Philosophical – definitions, claims, arguments, analysis

Formal – definitions, axioms, theorems, proofs, syntax, semantics, models

Computational – data structures, algorithms, programs, frameworks, complexity

Observational – independent and dependent variables, qualitative and quantitative measures, hypotheses, data, analysis

Experimental – conditions, subjects, hypotheses, data, analysis
Characteristics of the Symbolic Systems Program

Interdisciplinarity

Problem/question-based, not methods-based

Application-oriented
  • computation<->cognition
  • theory to practice
The Sym Sys trajectory
1980s

cognitive science

\[ \text{v} \]

- - > symbolic systems <--

\[ \text{v} \]

artificial intelligence human-computer interaction
The Sym Sys trajectory 2010s

cognitive science

A

--- symbolic systems ----

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>artificial intelligence</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>human-computer interaction</td>
</tr>
</tbody>
</table>
What is a symbolic system?

formal logic?
language?
Turing machine?
computer program?
person?
mind?
brain?
society?
Other related fields

Informatics and Information Science
Applied Cognition
Computational Linguistics and Natural Language Processing
Computational Neuroscience
Behavioral Economics and Neuroeconomics
Computational Social Science and Social Computing
About the course...
What is the most cited academic paper of all time?

Lowry, OH; Rosebrough, NJ; Farr, AL; Randall, RJ (1951). "Protein measurement with the Folin phenol reagent". *Journal of Biological Chemistry* **193** (1): 265–75

>245,000 Google Scholar citations

Why?
What is this course about?

Research methods

A *process* course

“Research thinking”
Examples of Research Thinking
Ex 1. Inferring from Data

Albert Einstein
Institute of Advanced Studies, Princeton
Physics
No verified email

<table>
<thead>
<tr>
<th>Citation indices</th>
<th>All</th>
<th>Since 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citations</td>
<td>69937</td>
<td>21678</td>
</tr>
<tr>
<td>h-index</td>
<td>97</td>
<td>58</td>
</tr>
<tr>
<td>i10-index</td>
<td>336</td>
<td>181</td>
</tr>
</tbody>
</table>

Citations to my articles
Ex 2. Approaching an Empirical Question

“There was a recent UC study showing that approximately 1/3 of all downtown San Francisco traffic is from vehicles circling looking for a parking place.” [7x7SF, 11/4/2011]

How could this be discovered?
Ex 3. Designing a Sound Process

In the “Symbol of the Year” vote for 2013, anyone could change their vote up until the deadline. All votes were posted and visible as soon as they were received and tabulated.

Q: Does this system give an advantage to someone who votes at the end?
A theorem?

Claim: There can't be a generic advantage to voting at the end.

Proof by contradiction. Imagine there were such an advantage. Then everyone would wait until the end. But then everyone would be voting at the same time. Therefore there can't be an advantage to voting at the end.
Ex 4. Inferring from Behavior
Practical advice

Get to know faculty – find an advisor
Do some research and/or independent study
Plan ahead
Don't take too many courses
Read your SSP email
Go to the forum, other lectures, and dinners
Attend SSP social events
View courses and lectures as being about skill development
Practical advice (continued)

Practice reading and listening – learning is a skill!
Think of yourself as the young version of whatever you want to become
Talk to people about what you are studying
Watch to see what excites you
Don't get too caught up in how much you like instructors
Learn time management