Scientific Research in Education

Report of the National Research Council Committee on Scientific Principles in Education Research

Richard J. Shavelson, Michael J. Feuer, Ellen Condliffe Lagemann, Robert L. DeHaan, Margaret Eisenhart, & Carol H. Weiss

AERA Annual Meeting 4/2/02
Background

- Sponsored by National Educational Research Policy and Priorities Board
- Prompted by Castle bill, evidence-based education, ongoing debate about quality of education research
- Committee of experts authored consensus report released 11/29/01
- Timeline quick by NRC standards (began fall 2000)
Goals

- Inform OERI reauthorization
- Inform ongoing push for ‘evidence-based policy & practice’ and ‘scientifically-based education research’
- Spark self-reflection in field
Committee Membership

- Richard J. Shavelson (Chair), Stanford University
- Donald I. Barfield, WestEd
- Robert F. Boruch, University of Pennsylvania
- Jere Confrey, University of Texas at Austin
- Rudolph Crew, Stupski Family Foundation
- Robert L. DeHaan, Emory University
- Margaret Eisenhart, University of Colorado at Boulder
- Jack McFarlin Fletcher, University of Texas, Houston
- Eugene E. Garcia, University of California, Berkeley
- Norman Hackerman, Robert A. Welch Foundation
- Eric Hanushek, Hoover Institution
- Robert Hauser, University of Wisconsin-Madison
- Paul W. Holland, Educational Testing Service
- Ellen Condliffe Lagemann, The Spencer Foundation and New York University
- Denis C. Phillips, Stanford University
- Carol H. Weiss, Harvard University
Committee Staff

- Lisa Towne, Study Director
- Tina Winters, Research Assistant
- Linda DePugh, Senior Project Assistant
Charge and Approach

- To consider scientific nature of education research and how a federal agency could support high quality science
- Did not comprehensively evaluate existing research, researchers, or agency
- Approach is forward-looking, informed by history and clear about roles of stakeholders
Framing Questions & Key Themes

- What are the principles of scientific quality in education research?
 - Science is fundamentally the same across all disciplines and fields
 - All fields are characterized by a range of legitimate methods and specialization depending on objects of inquiry and context
 - Some differences between social and natural sciences
 - As in other fields, features of education shape inquiry
How can a federal research agency promote and protect scientific quality in the education research it supports?

- Organized around conception of scientific culture
- Focused on articulating core infrastructure (people, structures, funding, flexibility)
- Emphasizes roles of policy, practice, and research communities
Framing Questions & Key Themes (cont.)

How can research-based knowledge in education accumulate?

- Science is never finished, but improves warrants for knowledge over time
- Nature of progress common in all fields:
 - Science advances in ‘fits and starts’ as researchers debate findings through norms enforced by field of researchers
 - Progress enabled by time, money, and public support
- Research-based knowledge in education has accumulated in this way, but not to the same degree as other scientific endeavors
Table of Contents

Chapter 1: Introduction

- Historical and Philosophical Context
- Public and Professional Interest in Education Research
- Committee Charge and Approach
 - Assumptions
 - Structure of Report
Chapter 2: Accumulation of Scientific Knowledge

- Illustrations of Knowledge Accumulation
- Conditions for and Characteristics of Scientific Knowledge Accumulation
 - Enabling Conditions
 - Common Characteristics
Chapter 3: Guiding Principles for Scientific Inquiry

- Pose Significant Questions That Can Be Investigated Empirically
- Link Research to Relevant Theory
- Use Methods that Permit Direct Investigation of Question
- Provide Coherent, Explicit Chain of Reasoning
- Replicate and Generalize Across Studies
- Disclose Research to Encourage Professional Scrutiny and Critique
Chapter 4: Features of Education and Education Research

- Features of Education
 - Values and Politics
 - Human Volition
 - Variability in Educational Programs
 - Organization of Education
 - Diversity

- Features of Education Research
 - Multiple Disciplinary Perspectives
 - Ethical Considerations
 - Relationships
Chapter 5: Designs for the Conduct of Scientific Education Research

- What Is Happening?
 - Estimates of Population Characteristics
 - Simple Relationships
 - Descriptions of Localized Educational Settings
- Is There A Systematic Effect?
 - Causal Relationships When Randomization Is Feasible
 - Causal Relationships When Randomization Is Not Feasible
- How Or Why Is It Happening?
 - Mechanism When Theory Is Fairly Well-Established
 - Mechanism When Theory Is Weak
Table of Contents (cont.)

Chapter 6: Design Principles for Fostering Science in a Federal Education Research Agency

- Leadership and Staffing
- Structures
- Political Insulation
- Research Portfolio
- Funding
- Infrastructure