Summary Slide

Scientific Inquiry in Education
Scientific Inquiry in Education

Report of the NRC Committee on Scientific Principles in Education Research

Richard J. Shavelson and Lisa Towne, editors

An Overview

NERPPB Meeting 11/30/01
Background

- NERPPB sponsored; began fall 2000
- Prompted by Castle bill, ongoing skepticism and debate about quality of education research
- Committee of experts authored ‘consensus’ report released yesterday
- Timeline quick by NRC standards
Goals

- Inform OERI reauthorization
- Inform ongoing push for ‘evidence-based policy & practice’ and ‘scientifically-based education research’
- Spark self-reflection in field
Committee Membership

- Richard J. Shavelson (Chair), Stanford University
- Donald I. Barfield, WestEd
- Robert F. Boruch, University of Pennsylvania
- Jere Confrey, University of Texas at Austin
- Rudolph Crew, Stupski Family Foundation
- Robert L. DeHaan, Emory University
- Margaret Eisenhart, University of Colorado at Boulder
- Jack McFarlin Fletcher, University of Texas, Houston
- Eugene E. Garcia, University of California, Berkeley
- Norman Hackerman, Robert A. Welch Foundation
- Eric Hanushek, Hoover Institution
- Robert Hauser, University of Wisconsin-Madison
- Paul W. Holland, Educational Testing Service
- Ellen Condliffe Lagemann, The Spencer Foundation and New York University
- Denis C. Phillips, Stanford University
- Carol H. Weiss, Harvard University
Charge and Approach

- To consider scientific nature of education research and how a federal agency could support high quality science
- Did not comprehensively evaluate existing research, researchers, or agency
- Approach is forward-looking, informed by history and clear about roles of stakeholders
What are the principles of scientific quality in education research?

- Science is fundamentally the same across all disciplines and fields.
- All fields are characterized by a range of legitimate methods and specialization depending on objects of inquiry and context.
- Some differences between social and natural sciences.
- As in other fields, features of education shape inquiry.
How can a federal research agency promote and protect scientific quality in the education research it supports?

- Organized around conception of scientific culture
- Focused on articulating core infrastructure (people, structures, funding, flexibility)
- Emphasizes roles of policy, practice, and research communities
Framing Questions & Key Themes (cont.)

How can research-based knowledge in education accumulate?

- Science is never finished, but improves certainty of knowledge over time
- Nature of progress common in all fields:
 - Science advances in ‘fits and starts’ as researchers debate findings through norms enforced by field of researchers
 - Progress enabled by time, money, and public support
- Research-based knowledge in education has accumulated in this way, but not to the same degree as other scientific endeavors
Scientific Inquiry in Education

Report of the NRC Committee on Scientific Principles in Education Research

Richard J. Shavelson and Lisa Towne, editors

Chapter Summaries

NERPPB Meeting 11/30/01
Chapter 1
Historical and Philosophical Context

- Scholars have debated nature of science for centuries, nature of science in education for more than 100 years
- Skepticism about education research evident since its inception
- Report takes its cue from evolved ideas regarding models of human nature, progress in science, contested nature of education, understanding about method, and conceptions of scientific rigor
Core Assumptions

- No one definition of science
- Some lines of inquiry may never pan out
- Possible to describe physical and social world
- Scientific quality one aspect of overall value of education research
- Science can uniquely contribute to understanding, and is powerful when combined with insights from other forms of inquiry
Chapter 2
Accumulation of Scientific Knowledge

- Has scientific knowledge in education accumulated? Yes, and in much the same way as other fields. Trace examples in:
 - Assessment
 - Early reading
 - Resources

- Enabling Conditions
 - Time, money, public support

- Common Characteristics
 - Advances in ‘fits and starts’
 - Contested
 - Interdependence and cyclic nature of empirical findings, methods, and theory
 - Studying humans inherently complex
Chapter 3
Guiding Principles for Scientific Inquiry

Guiding Principles
- Embody notion of ‘warrant’
- Not algorithmic
- Code of conduct enforced by norms of community
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

- **Scientific Principle 1**: Pose Significant Questions That Can Be Investigated Empirically
 - Significance
 - Empirical Nature

- **Scientific Principle 2**: Link Research to Relevant Theory
 - Conceptual framework
 - Theory-laden observations
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

Scientific Principle 3: Use Methods That Permit Direct Investigation of Question
- Wide range of legitimate methods available
- Multiple methods often strengthen inferences
- Measurement often key aspect
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

Scientific Principle 4: Provide Coherent Chain of Rigorous Reasoning

- Basic logic of inference the same for quantitative and qualitative research
- Assumptions clearly stated
- Estimates of error provided
- Consider competing explanations
 - Selection
 - History
 - Measurement error
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

- **Scientific Principle 5:** Replicate and Generalize Across Studies
 - Replication and generalization strengthen scientific theories and conjectures
 - Generalization achieved through use of statistical tools, triangulation, etc.
 - Generalization in social world affected by its rapidly changing nature
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

Scientific Principle 6: Disclose Research to Encourage Professional Scrutiny and Critique

“Open society [of researchers]” key to:
- Debating and (sometimes) incorporating individual findings into corpus of knowledge
- Enabling replication
Chapter 3
Guiding Principles for Scientific Inquiry (cont.)

Application of Principles

- No one set of criteria can clearly distinguish science from nonscience and high-quality science from low-quality science
- Principles can help distinguish
- Examples
Chapter 4
Features of Education and Education Research

- Differences in social and physical/natural phenomena distinguish inquiry in these domains
 - Researcher control more limited in social sciences
 - Researcher objectivity vis-à-vis bias
 - Uses of theory
 - Level of certainty
Chapter 4
Features of Education and Education Research (cont.)

Features of education that shape research
- Values and Politics
- Human Volition
- Variability of Educational Programs
- Organization of Education
- Diversity
Chapter 4
Features of Education and Education Research (cont.)

- Features of Education Research
 - Multiple Disciplinary Perspectives
 - Ethical Considerations
 - Relationships
Chapter 5
Designs for the Conduct of Scientific Education Research

- Designs/methods judged only in terms of relevance to question posed
- Studies are ‘scientific’ when meet principles of science & attend to features of object of inquiry

Types of Questions
- Descriptive (What is happening?)
- Causal (Is there a systematic effect?)
- Mechanism (How or why is it happening?)
Chapter 5
Designs for the Conduct of Scientific Education Research (cont.)

- Descriptive Questions
 - Estimates of Population Characteristics
 - Simple Relationships
 - Descriptions of Localized Settings
Causal Questions

- Causal Relationships When Randomization is Feasible
 - Random assignment best way to ensure equivalence in groups for comparison
 - Frequently used in many disciplines & applied fields
 - Not frequently used in education but many examples demonstrate feasibility
Chapter 5
Designs for the Conduct of Scientific Education Research (cont.)

- Causal Questions (cont.)
 - Causal Relationships When Randomization is Not Feasible
 - In social settings randomization is sometimes infeasible
 - ‘Quasi-experiments’ rely on untestable assumptions and subject to selection bias
 - Quasi-experiments can sometimes be preferable to experiments (e.g., external validity)
Chapter 5
Designs for the Conduct of Scientific Education Research (cont.)

Mechanism Questions

- When Theory is Well-Established
- When Theory is Weak
 - Ethnographies
 - Design Studies/Teaching Experiments
Chapter 5
Designs for the Conduct of Scientific Education Research (cont.)

• Conclusions about state of education research and areas to target
 • Theoretical understanding weak
 • Knowledge of causal relationships weak; in particular, urge expanded use of random assignment
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency

Approach

- Did not evaluate OERI
- Forward-looking, focused on ‘first principles’ with suggested supporting mechanisms
- Informed by history of education research agency (NIE & OERI) & comparisons to other agencies (NICHD, NIA, NSF EHR & NSF SBE)

Dilemmas

- Education research grounded in practical problems but close relationship has downside
- Diversity of education research community
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency (cont.)

- **Design Principle 1**: Staff the Agency with People Skilled in Science, Management and Leadership
 - Flexibility to hire permanent & temporary staff
 - Engage in interagency collaborations
 - Depends heavily on related issues (funding, reputation)
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency (cont.)

Design Principle 2: Create Structures to Guide Agenda, Inform Funding Decisions, & Monitor Work

- Governing board with agenda-setting committee
- Standing peer review panels
 - Many structures can work
 - Key is good peers
 - Not perfect, highly dependent on strong field, and tricky in education because field is eclectic
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency (cont.)

Design Principle 3: Insulate the agency from political interference

- Avoid micromanagement of decision-making, distortion of agenda to be solely short-run, use of agency to promote political positions
- Politics play proper role and agenda should reflect policy concerns
- Budgetary discretion particularly key
- Research be organizationally separate but intellectually linked to improvement mission
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency (cont.)

Design Principle 4: Develop Focused and Balanced Portfolio of Research that Addresses Short-, Medium-, and Long-term Issues of Importance to Policy and Practice

- Create based on state of development of field
- Organized in programs of studies
- Incorporate syntheses of bodies of work
Design Principle 5: Adequately fund the agency

- Resources must align with scope of agenda
- Given assumption that agenda will be roughly comparable to OERI’s today and knowledge of current appropriation levels, funding must increase
Chapter 6
Design Principles for Fostering Science in a Federal Education Research Agency (cont.)

Design Principle 6: Invest in research infrastructure

- Community of researchers (human resources)
- Data development, sharing & access
 - Housing of common constructs
 - Facilitating ethical access to research subjects
- Link to Practice and Policy Communities