On Formative Assessment

With Student Journals

Richard J. Shavelson

Stanford University

May 15, 2001
Overview

- Framework for formative (and summative) assessment
- Formative assessment with Journals
- Framework
- Study findings
- Reprise: Journals and formative assessment—practical advice
Formative & Summative Assessment: Degree of Instructional Sensitivity

Depth of Assessment Probe

Remote: Standardized National Science Achievement Tests

Distal: Large-Scale Performance Assessment from State/National Curriculum Framework

Proximal: Same Concept/Principle--New Investigation

Close: “Embedded” Assessments -- A Slightly More Advanced Activity in Unit

Immediate: Lab Notebooks & Classroom Tests

Classroom Instruction
Focus on Formative Assessment

- **Type**
 - Formative
 - Summative

- **Purpose**
 - Learning
 - Certification
 - Accountability

- **Agency**
 - student
 - teacher
 - external tests
 - individual
 - sample surveys

Match Mismatch

Paul Black 3/98
Formative (Classroom) Assessment

• *Everyday teaching practice conceived as integral in assessment*

• Assessment used to determine *gap* between what a student knows and knowledge goal

• Teacher, *peer*, and *self* assessments comprise classroom assessment

• Feedback critical to close the gap
 – Grades?
 – Qualitative feedback useful to closing gap?
 – Both?
Classroom Assessment: Examples

- Teacher
 - Observations
 - Questions
 - Interviews
 - Journals
 - Curriculum-provided and/or teacher assessments
 - Self and Peer (Clear goals absolutely essential)
 - Review/grade each other’s work
 - Review each other’s journals
 - Reflect on learning
The Assessment Triangle

Learning/Achievement (cognition)

Assessment

Interpretation

Pellegrino, Chudowsky, & Glaser, in press
Classroom Assessment: Journals

Science Journal

Milkshakes are a solution with

Mixtures and solutions are solutions

Separating mixtures

<table>
<thead>
<tr>
<th>Color</th>
<th>Texture</th>
<th>Particle shape</th>
<th>Particle size</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Smooth</td>
<td>Round</td>
<td>Small</td>
<td>Water</td>
</tr>
<tr>
<td>Red</td>
<td>Grainy</td>
<td>Square</td>
<td>Large</td>
<td>Sugar</td>
</tr>
</tbody>
</table>
Journals: An Assessment Tool for Teachers and Students

Journals:

- Are a written account of what students do in their science class, and possibly, of what they learn.
- May provide an *unobtrusive* indicator of class experiences.
- Are seen as an *immediate* assessment -- in very close proximity to the curriculum.
- Are viewed as assessments at two levels:
 - at the *individual level* are considered a source of evidence bearing on student’s performance over a course of instruction.
 - at the *classroom level* are a source of evidence of opportunities students had to learn science.
The Assessment Triangle: Science Journals

Learning/Achievement

- Student performance
 - Scientific communication
 - Conceptual understanding
 - Procedural understanding
- Opportunities to learn
 - Instructional implementation
 - Quality of teacher feedback

Journals as Assessment Tools:

- At the individual level and at the aggregated classroom level.
- An immediate/unobtrusive assessment
The Assessment Triangle: Science Journals

Learning/Achievement

Journals as Assessment Tools

Interpretation

- Can science journals provide trustworthy and valid evidence on student performance?
- What do journals tell us about student performance?
- What do journals tell us about opportunity to learn?
A science journal is a compilation of entries that provides a partial record of the instructional experiences a student had in her classroom during a certain period of time.
Method

• Sample
 – 10 fifth grade classrooms
 – A random stratified sample from each class: 2 low, 2 middle, and 2 high

• Curriculum: Full Option Science System (FOSS)
 – Variables unit in fall
 – Mixtures unit in spring
Method

• Coding each entry into different scores:
 – Instructional implementation
 – Type of entry
 – Student performance
 – Teacher feedback

• Procedures
 – Pre-posttest design using performance assessments
 – 28 Variables and 22 Mixtures journals were coded by two coders.
Technical Characteristics of Journal Scores

Reliability

<table>
<thead>
<tr>
<th>Type of entry</th>
<th>% of Agreement</th>
<th>Intercoder Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Student performance</td>
</tr>
<tr>
<td>Variables</td>
<td>85</td>
<td>.85</td>
</tr>
<tr>
<td>Mixtures</td>
<td>85</td>
<td>.84</td>
</tr>
</tbody>
</table>

Validity

Students’ journal scores were correlated with their performance assessment scores (on average $r = .52$).
Student Performance

<table>
<thead>
<tr>
<th>Score</th>
<th>Scientific communication</th>
<th>Conceptual understanding</th>
<th>Procedural understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td>Variables in the fall</td>
</tr>
<tr>
<td>2.5</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>Variables in the fall</td>
<td>Mixtures in the spring</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Variables in the fall
- Mixtures in the spring
Opportunity to Learn: Learning Activities

- Defining: Variables - 25, Mixtures - 20
- Exemplifying: Variables - 15, Mixtures - 10
- Applying concepts: Variables - 5, Mixtures - 5

Variables:
Mixtures:
Opportunity to Learn: Learning Activities

- Predicting
- Results
- Interpreting
- Res & interpret
- Procedures
- Experiments
- Designing

[Bar chart showing percentages for variables and mixtures]
Opportunity to Learn: Teacher Feedback

• Teachers did not provide feedback despite errors or misconceptions that were evident in the students’ journals.

• Only 4 among the 10 teachers provided feedback!
Some Findings About Students’ Journals as Assessment Tools

Reliability
- Raters can consistently identify journal entries
- Students’ science journals can be reliably scored

Validity
- Inferences about implementation using journal scores were justified
- Inferences about students’ performance were also encouraging

Usefulness
- Unit implementation and teacher feedback scores helped to explain differences in the performance across classrooms
Conclusions of Classroom Assessment Study

• Science journals can be reliably scored and be used as a valid assessment tool

• Students did poorly in scientific communication and showed partial science understanding in their journals

• Most teachers did not effectively use science journals

• Teachers had very limited content knowledge. They did not know how to promote or assess student learning
Reprise: Journals & Formative Assessment

• Journals are informative to teachers:
 – Surprise: A discussion that “goes well” from teacher’s perspective may have missed its mark when viewed from students’ journals! (Alisia Alonzo, Cal)
 – Provide valid information on student learning

• But teachers …
 – Rarely give feedback to students in their journals and when they do it’s a grade or happy face …
 – Don’t give verbal feedback on journals to the whole class either
 – Give students minimally challenging activities
 – Lack subject-matter knowledge to teach inquiry science
Concluding Practical Advice

• Pick key instructional activities and give feedback in journals
• Use peer review but to do so you must make goals and criteria crystal clear
• Work intensively helping teachers develop their formative assessment practices... perhaps create cadres of teachers to help others
• Establish framework (“schema”) for journal reporting and use consistently but avoid recipes that give information to students
Practical Advice Continued

• Have students respond to “why” questions in journals to develop appropriate mental models (conceptual frameworks)
• Help improve teachers’ content knowledge underlying inquiry units
• Work with teachers on appropriate (how to improve, not grades or happy faces) feedback to students