Research on Iron Age western Sicily has evolved rapidly. Thucydides’ comment\(^2\) that the Elymian people had migrated here from Troy had long fascinated historians,\(^3\) but until World War II most excavators concentrated on Greek, Phoenician, and Roman remains. Their work often generated indigenous Iron Age material too, but the first major excavation aimed specifically at the Iron Age was Vincenzo Tusa’s at the contrada Mango site at Segesta. Beginning in 1953, he uncovered a huge sixth-century Doric temple.\(^4\) In 1970 he excavated at several other inland sites, including Monte Polizzo.\(^5\) He defined a series of core questions: Did Elymian and Sican ethnicity have material markers? If so, did these markers define territories? When did these ethnic groups form, and/or where did they come from? And how did the indigenous populations become Greek?\(^6\)

Not without reason did Massimo Ganci, introducing the first major conference on west Sicilian indigenous sites at Palermo in 1989, call Vincenzo Tusa “il primo Elim."\(^7\) His questions inspired numerous further excavations, including research into Iron Age
deposits at Segesta. The three biggest inland projects begun before the 1990s were all at famous Greco-Roman sites with monuments and inscriptions, where Iron Age deposits were deeply buried or severely disturbed (the University of Zurich started work at Monte Iato in 1971, and the Scuola Normale di Pisa at Entella in 1983 and at Segesta in 1987); but all paid more attention than their predecessors to recover Iron Age material, and in 1991 Giuseppe Nenci of the Scuola Normale founded the Centro Studi e Documentazione sull’Area Elima (CESDAE). This made the Iron Age its major focus, and its Giornate internazionali di studi sull’area Elima, held every third year since 1991, have transformed the study of this region.

As often happens, the fieldwork that Vincenzo Tusa inspired produced data that raised more questions than they answered. Archaeologists did not find clear differences between Elymian and Sican material cultures: instead they observed a broad zone of similar pottery, settlement forms, and religious practices from the Salsa and Imera valleys to the western coast, while within this zone, they found considerable variation between sites. And when looking at Hellenization they found that “i modi, i tempi e le circostanze di questo prolifico processo di cambiamenti furono assai mutevoli.” New evidence called for new methods: whereas archaeologists in the 1970s-80s often defined Elymian material culture and illustrated Hellenization by just showing a few decontextualized finds, in the 1990s they moved toward detailed accounts, often quantifying their data.

This data-driven shift complemented new ideas that ancient historians and prehistoric archaeologists had independently been developing. These ideas led to two new sets of questions, which we will call the “socioeconomic” and “postcolonial” frameworks.

The first of these frameworks took shape in the 1960s-70s. Ancient historians had long suspected that Thucydides told us more about Greek ethnic categories than about native self-identifications, and the Second World War made many scholars uncomfortable discussing ethnicity and race. Particularly in Italy and Britain, historians moved away from ethnic questions and toward socioeconomic issues, influenced by Marx and Weber. In the first overall review of ancient Sicilian history produced in Britain since the 1890s, Moses Finley virtually ignored ethnicity in favor of sociology; and in Italy the Scuola Normale developed a distinguished school, emphasizing diet, demography, trade,
and social organization. Giuseppe Nenci, an epigrapher as well as a leading figure in west Sicilian archaeology, brought the historians’ ideas to west Sicily, defining the “area elima” to include all Sicily west of the Imera-Salsa rivers, and all periods through the medieval.

In the same years English-language prehistoric archaeologists also moved away from “culture history,” with its interest in labeling spatially defined material culture groups as “peoples,” toward social and economic problems, particularly human interactions with the environment and the evolution of increasingly complex social organization. Some scholars of the Greek and Italian Iron Ages found social evolution a useful framework, and made the rise of the state a central research topic. In Sicily, Bronze Age archaeologists have found this helpful, although most studies of Iron Age Sicily continue to use “lo stato” as a synonym for self-conscious ethnic groups.

In the 1980s research questions shifted again, from society and economy to identity. “Postprocessual archaeologists” challenged the New Archaeologists’ functionalism, arguing that material culture was meaningfully constituted, and manipulated by conscious actors. Postprocessual archaeologists emphasized the construction, rather than discovery, of evidence about the past, and insisted that we see archaeology as social and political action in the present. New approaches to the west Mediterranean have come out of the theoretical and methodological turmoil in Anglo-American archaeology, looking at the construction of hybrid cultures in colonial encounters through different groups’ selection and adaptation of traits, rather than the assimilation of indigenous cultures by distinct and stronger East Mediterranean cultures.

In the 1990s ancient historians also challenged essentialist models of identity. Some argued that Greekness was just one of several competing forms of collective identity, which evolved from an agglutinative model, in which new groups could claim Greekness and new criteria for Greekness were constantly added, to an oppositional model, in which a closed group defined themselves as Hellenes against the outside world. Most historians saw the wars with Persia and Carthage in 480 as the turning point in this process. To some historians, it made little sense to speak of Hellenization prior to the fifth century, because there was no unitary Greekness to be transmitted to
barbarian Others. This made distinguishing “Greek” colonies from indigenous sites seem both more difficult and less necessary. Instead of a uniform Greek culture, these historians saw myriad overlapping and shifting cultures in endless contestation, dissolving most of the boundaries that structured research in Sicilian Iron Age archaeology in the 1950s-80s.26

There is probably more interest today than ever before in the Greco-Phoenician expansion into the west Mediterranean, but less agreement about what actually happened, or even what the important questions are. The traditional framework emphasizes ethnic identity, drawing clear boundaries between populations, with the Greeks eventually swallowing up or driving off the other groups. It continues to generate important work, although the explosion of new data in the past twenty years has raised problems. A very different socioeconomic framework inspired archaeologists active in mainland Italy and ancient historians in the 1980s-90s, but had more impact on Bronze than Iron Age archaeologists in Sicily. It emphasizes demography, diet, and social hierarchy. In the late 1990s a third approach, the postcolonial framework, won popularity with Anglophone scholars. Like the traditional model, it stresses culture and identity, but sees shifting identities in archaic times, hardening in the fifth and fourth centuries into a Hellene/barbaros dichotomy.

Our research on the acropolis of Monte Polizzo is driven mainly by socioeconomic and postcolonial questions. We ask particularly how far we should see the archaic Greco-Phoenician expansion as a part of a kind of ancient globalization, linking the whole Mediterranean basin together in new ways and changing the course of social development in the western parts of the Old World. Postcolonial arguments have undermined the traditional framework’s certainties about the replacement of indigenous cultures by Greek culture in Sicily, and following in this path, we focus on the construction and negotiation of identities. But we also emphasize the material forces that drove the demographic expansion, and the material consequences that followed it. We hope to explore not only material standards of living (e.g., nutrition and housing) and social hierarchy (e.g., the centralization of power in resistance to intruders), but also the construction of new subjectivities (e.g., class and gender categories) and new forms of communal expression (e.g., in religious rituals). We highlight differential responses (i.e.,
whether all groups and communities benefited or suffered equally, whether the sixth and fifth centuries BC widened social differences or even created entirely new ones, whether different groups embraced the widening of their world or resisted it, etc.)

The logical way to answer these questions is not to excavate another Phoenician or Greek site, but to examine an indigenous site in close contact with east Mediterranean settlers. Monte Polizzo, located between Segesta (the major Iron Age indigenous center), Motya (the main Phoenician settlement in Sicily), and Selinous (one of the most powerful Greek cities) seems an ideal choice.

2. The site

Figure 1 Major sites in western Sicily mentioned in the text
Monte Polizzo lies 6 km northwest of Salemi, in Trapani province (37° 56’ N, 12° 46’ E: figure 1), and consists of an interconnected group of ridges (figure 2). The highest point is 725.9 m above sea level. Antiquarians from Salemi and Corleone have long known about the site, although there has been no permanent settlement here in 800 years. Tradition holds that the neve near the top of the hill (figure 3) was used for ice storage in the eighteenth and nineteenth centuries. In the 1950s the hill was declared a forest preserve, plowed, and planted with live oak and pine. The Forestry Service maintains dirt roads and firebreaks on Monte Polizzo, scraping the latter with bulldozers each summer. More recently, a water-pumping station was installed near the foot of Monte Polizzo, supplying Salemi, and the hill has been a favorite spot for rabbit hunters.28 The lower slopes are used for pasture, and shepherds bring flocks to the upper slopes.

Monte Polizzo was one of the main sites in Vincenzo Tusa’s 1970 campaign, but the new questions that have emerged since then call for new field methods. Since the
1990s it has become normal in Sicily to relate all finds to published stratigraphic matrices, to provide faunal and geological reports (though floral, palynological, and chemical studies remain rare), to analyze a wide range of artifacts, and to quantify data. Systematic surface surveys have also proliferated. A new project must meet these standards and go beyond them. In particular, we need (a) excavations that explore several parts of a particular settlement, recovering numerous complete house plans, entire ritual and administrative areas, and sampling widely enough to have a good sense of town planning, specialist quarters, fortifications, etc; and (b) even more detail, recording and quantifying the *entire* assemblage stratigraphically, and establishing agreed standards for data collection and publication, so we can make valid comparisons between sites.

Most archaeologists would agree; but in practice there is rarely enough time and money to meet these goals. In response to these challenges, Sebastiano Tusa, Direttore della Sezione Archeologica, Soprintendenza ai BB. CC. e AA. di Trapani and Professor of Archaeology at the University of Naples, and Kristian Kristiansen, Professor of Archaeology at the University of Gothenburg, created the Sicilian-Scandinavian Archaeological Project in 1996. They selected Monte Polizzo as the best site for new work, with initial goals of (i) understanding interactions between the indigenous population and Greek and Phoenician colonists; (ii) clarifying the formation of Elymian ethnic identity; and (iii) producing stratigraphic correlations between datable Greek pottery and local wares. They envisaged a two-way exchange, bringing international perspectives to bear on western Sicily, and using west Sicilian material to clarify debates taking place in archaeologies of other parts of the world. They began fieldwork in 1998 with a preliminary survey of the site, suggesting that it covered 15-20 hectares. Christopher Prescott of the University of Oslo excavated mid-sixth-century BC House I in 1998-2001, a deeply stratified Iron Age deposit (“the Profile”) in 1998-99, and a series of soundings on the northwest slope of the acropolis in 1999 (see figure 3 for all locations within Monte Polizzo). In 2002 Kristian Kristiansen and Christian Mühlenbock began new excavations with students from the University of Gothenburg outside House I and on “Danish Hill,” 200-300 m further west, where they exposed further Iron Age remains. Sebastiano Tusa excavated sixth-century buildings at the Portella Sant’Anna in 1999-2000, and Antonello Rizzo opened several graves in the Iron Age cemetery in 2000-2001.
Figure 3 Excavation areas, 1998-2002. Contour interval 20 m

North American teams worked alongside the Sicilian-Scandinavian Archaeological Project from the beginning. Michael Kolb of Northern Illinois University surveyed around Monte Polizzo and the Bronze Age site of Mokarta in 1998-2000, excavated a Bronze Age tomb at Pitrazzi on Montagna Grande in 2000-2002, and in
2001-2002 excavated four trenches in Salemi, finding medieval and fourth-century BC deposits.30 In 2000 Tom Boving of the University of Rhode Island dug a small trial trench at the neve, probably the settlement’s major water source.

Stanford University joined the project in 1999, and has excavated on the acropolis since 2000.31 In 2002 a team from the University of Calgary and graduate students from three Italian universities and the American Academy in Rome’s summer program joined the Stanford excavation. The Stanford team had 84 members in 2002, and in all more than 120 archaeologists conducted research at Monte Polizzo that season.

Each team is pursuing an independent research project, but the projects interlock into a larger whole. Previous work in western Sicily had shown that the highest point of a settlement was often its religious center, and the Stanford team chose to focus on the acropolis to get a better understanding of indigenous religion. However, we can only do this through systematic comparisons with other parts of the town, and by putting our data in the context of the regional settlement history. The various teams’ procedures are therefore as tightly linked as is practical. All closed deposits are dry-sieved through a 5 mm mesh, and the teams share the same macrofossil analysis, GIS digital recording system, and finds databases. The GIS and finds databases (in MS Access) are linked by the Total Station GIS point numbers generated for finds and structures. The pottery, which makes up the bulk of the finds, undergoes a two-step sorting process. All sherds are sorted by fabric type, counted and weighed. Diagnostic sherds are then recorded in more detail, and receive an artifact number. We also coordinate floral and faunal techniques with excavators at Selinunte. We hope to establish a baseline that can be used for comparisons by future field projects in western Sicily.

In 2000-2001 the acropolis excavation concentrated on zones A, B, and C. This revealed parts of five structures—curvilinear A1 and rectilinear A3, A4, B1, and C1—as well as altar A2. We concluded that A1 was a sixth-century shrine of a type known from contemporary sites. It collapsed around 500-475 and was replaced around 350 BC by the small structure A3. This was abandoned around 300 BC, and zone A was not reused until the 1970s, when rabbit hunters used shelter A4. Structure B1/2 and surrounding walls were built in the sixth century BC then renovated in the tenth century AD, when room B1/1 was added. Only a small part of sixth-century structure C1 was excavated. In 2001
we also cleared a part of a probably sixth-century staircase, and Professor Jennifer Trimble of Stanford University carried out a proton magnetometer survey around the acropolis.

In 2002, we expanded the excavation in zones A, B, and C; opened zone D, on a terrace immediately north of structure A1; and excavated a 60-meter-long “Great Trench” connecting zone B with the “Tusa House,” one of the structures excavated by Vincenzo Tusa in 1970 (figure 4).

3. Summary of results

We have identified five phases of activity on the acropolis, spanning 3500 years:

I. Bronze Age (c. 1500-800 BC). We have found fragments of more than a dozen Bronze Age vessels, spanning the Middle through Final Bronze Age. All came from Iron Age contexts. We have found no intact Bronze Age deposits.

II. Sixth century BC (figure 5). Initial study suggests that we can break phase II into three sub-phases based on the types of Greek imports:

- Phase II.a, characterized by Corinthian imports, with smaller amounts of East Greek, probably c. 575-550 BC;
- Phase II.b, characterized by East Greek imports, with smaller amounts of Corinthian, c. 550-525;
- Phase II.c, characterized by both Attic black glaze and East Greek imports, c. 525-475.

So far, the main occupation belongs to phase II.b. In zone A (see figure 8) small areas predating building A1 have been exposed, but none has yet been excavated. A1 is a round building, 6.4 m in diameter, built around 550, and (either as part of or soon after its initial construction) subdivided into three small chambers. Outside we have found a stele, at least one altar, enclosure walls, a partially paved area, and rectilinear structure A5. A5 may also belong in phase II, but we have no secure dating evidence yet. A1’s altar(s) was/were used for burned sacrifices, particularly of deer, but the meat was consumed elsewhere. The jaw and teeth
Figure 4 Excavation zones on the acropolis
from an adolescent human, aged 12-14 years, were found scattered around A1. Their original context remains unclear. A1 was abandoned around 500-475, but not in haste; before leaving, a pit filled with ash was sealed with clay, and a round clay hearth heaped with ash may also have been sealed. The mudbrick upper parts of A1’s walls decayed gradually after 475. **Zone B** saw complex activity in phases II.b and II.c (see figure 17). Wall h and associated layers in trench L108 may date to phase II.a. The ground surface northeast of wall h (trench M108) was then raised with dumped earth, and a drain was installed, emptying over wall h. A large dump of ash, storage pottery, and bones (particularly red deer antlers) covered much of zone B in phase II.b. Around 525, structure B1/2 was built over this dump. B1/2 went out of use by 500. Walls from an earlier structure (B2) have been found under medieval room B1/1. B2 probably dates to phase II, but we need to dig more to confirm that. In **zone C**, a rich destruction deposit on a paved floor in trench N/O 113/114 dates to phase II.a. Part of structure C1 wall a belongs with this deposit; the other walls post-date it. The Great Trench between zone B and the Tusa House revealed parts of another rectilinear building, C2, and surface explorations suggest that the acropolis was ringed on the west side by an enclosure wall, with thinner walls running in from it toward the top of the ridge. Trench J/K 112/113 dated this enclosure to phase II. In **zone D** we exposed parts of two rectilinear structures and dense concentrations of storage vessels, dating to phase II.c.

III. Late fourth century BC. Structure A3, perhaps a small shelter, was built on the ruins of A1. Finds include a Punic stele, 9 bronze Punic-Sicilian coins, and 5 stone dice. Zone A is the only part of the acropolis with phase III remains.

IV. Tenth through twelfth centuries AD (figure 6). The by-then 1,500-year-old ruins of B1/2 were rebuilt and reused, room B1/1 added to the northeast, and several walls built to divide external space. Iron Age structure C2 was also rebuilt, and further medieval walls (poorly preserved) were found near structure C1. Medieval debris was found under the main phase IV floors in zone B, suggesting that there
Figure 5 Phase II structures
Figure 6 Phase IV structures
are older medieval structures in the area. Zones B and C are the only parts of the acropolis with phase IV remains.

V. *Late twentieth century AD.* In the 1950s furrows for tree-planting were deep-plowed around the entire hill, and in the 1970s a stone shelter (A4) was built at the summit, severely damaging phase III structure A3.

We may need to modify these phases in the light of further work.

In the main part of this report, we present the finds from zones A through D in turn, in each case proceeding from the earliest deposits to the latest.

4. *Zone A (figure 7)*

We continued work in zone A to clarify our picture of sixth-century religious behavior.

Phase II

The earliest activity detected in zone A is clay leveling fills in the uneven sandstone/pebble natural surface of the hill. Round building A1 (diameter 6.4 m) was built on this surface, probably around 550 BC. In 2001 we suggested that A1 was semicircular, but in 2002 found that it was after all round, although most of the stones from the northern part of the circular wall had been robbed in antiquity (figure 8). Walls a and b divide A1 into three small compartments. As figure 8 shows, wall b is on the same line as wall e and the possible altar west of A1; and a stone block visible in the balk between trenches M98 and M99 seems to be on the same line as wall a, suggesting that this also continued outside building A1. Three interpretations are possible:

1. Walls a, b, e, the “altar,” and the stones in the M98/99 balk belong to an early rectilinear building, and circular structure A1 was built over this.
2. All the walls are contemporary.
3. Structure A1 was built first, then replaced by a rectilinear structure comprising walls a, b, e, the “altar,” and the stones in the M98/99 balk.
There is no sequence of stratified floors inside or outside A1 to settle the issue definitively (see figure 11), but the stratigraphic evidence we do have suggests that interpretation 2 or 3 is the most likely. In favor of theory 1, we should note that the west end of the “altar” is very close to the edge of the excavated area, and there are some small stones between the structure and the balk. It remains possible that this structure is in fact just the end part of a wall continuing to the west, in which case the gap between the “altar” and A1 wall c could originally have been a doorway into a rectilinear building. Further excavation will resolve this; but overall, theory 1 seems least likely, for four reasons. First, while A1 walls b and c are not bonded, the east end of wall b (the west end is hidden under A3) was neatly built to fit against the curving inner face of wall c. It is possible that a continuous wall b-e was there first, then was partly demolished to make room for c, and finally carefully rebuilt to fit against c; but this seems very unlikely. Second, while wall b survives seven courses high, “wall” e has only one course, with a stele in situ on top of it (see figure 11). This suggests that b and e were never a continuous wall in a rectilinear building. Third, as figure 9 shows, A1 walls b and c stood 50 cm above the floor of building A1, making it highly unlikely that A1 replaced an earlier rectilinear building. Finally, there is clear stratigraphic evidence that the “altar” (whether part of an longer wall or not) postdates A1 wall c.

Theory 3 can accommodate the junction of A1 walls b and c, and also provides an economical explanation for both the robbing of the north part of A1 wall c and our failure in 2001 to detect a robber trench cutting through the clay deposit (layer 8 in figure 11b) created by the collapse of the mudbrick walls: there was no such trench, because wall c’s stones were reused in the new rectilinear building before the mudbrick collapse deposit was formed. However, figure 11b shows that this was not the case. Layer 9, the ashy abandonment deposit, postdates A1 walls a, b, and c, and layer 6, the trench produced by the removal of stones from wall c, clearly postdates 9.

The most plausible interpretation is either a version of theory 2, that A1 walls a, b, and c are contemporary, with the “altar” added later (along with the possible wall in the M98/99 balk), or a combination of theories 2 and 3, that A1 was originally consisted of wall c only, and was subsequently split into three chambers by walls a and b, perhaps at the same time that wall d, pavement e, the “altar,” and the possible wall in the M98/99
balk were built. Theory (b) postulates a general remodeling of the area, in which the old round building A1 remained in use as part of a larger complex. The combination of theories 2 and 3 seems more likely at this point, but extending the excavated area may produce further evidence.

The entrance to A1 was probably on the east side, into chamber A1/1. The bedrock was smoothed to make a floor in the south part of chamber A1/1;\(^3\) in the north part, where the rock slopes away, clay was added to make a level surface. A shallow circular clay hearth (diam. 64 cm, exactly one-tenth of A1’s diameter) was set into the floor (figure 10).

The ash layers (figure 11a layer 7 and 11b layer 9) contained bronze beads and many sherds from amphoras and cups. These deposits have not yet been quantified, but seem to contain a higher proportion of Greek material than assemblages from other parts of the site. Most fine ware sherds come from Ionic B2 cups, but there were also a few Corinthian fragments and several Attic black glaze sherds, which date A1’s abandonment c. 500-475 BC. Few or no vessels can be reconstructed from the sherds, suggesting that the pots actually used in A1/1 were removed when the building was abandoned, leaving only fragments from vases that had already been broken and discarded.

Chamber A1/2 had a roughly leveled rock floor. A pit (diam. 80-90 cm; maximum depth approximately 20 cm) had been dug into this. Like the circular clay hearth in A1/1, the pit was left heaped with multicolored deposits of ash; but the pit in A1/2 was also sealed with two layers of very hard baked clay, each about 2 cm thick. The upper layer was red and the lower one white. The hole dug for the modern shelter A4 had damaged the ash mound and its protective layers (figure 11a), but parts of the deposit were trapped intact under A4 wall c. The basin in A1/1 may have been sealed in a similar way, but if so, the sealing layers were poorly preserved. The A1/2 abandonment deposit contained fewer artifacts than that in A1/1, but otherwise the finds in the two rooms were similar.

Fourth-century A3 wall c covers most of A1/3, and we could only excavate the east end of the chamber. Its leveled-bedrock floor was very clean, with no traces of the ash that characterized A1/1 and A1/2.
Immediately east of A1, a small stele remained *in situ*, standing on pavement e, a single course of flat slabs (figure 12). The bottom of the stele was set into the bedrock. Immediately north of the stele, we found ash, charcoal, and animal bones in 2001; east of it, a large piece of red deer antler lay on pavement e (figure 13). We return to this antler in section 7 below.

In area A1/4 west of A1, we found two phases of activity. When A1 was originally built, the natural rock served as the surface in area A1/4, with patches of clay to level it. Intense burning went on, and a deposit of scorched red clay gradually built up against the southwest face of wall c, with pockets of ash and charcoal.36 Again, only fragmentary pottery was found. These included more indigenous gray ware cups than inside A1, and local and Greek amphora sherds, dating to the later-sixth century.

In the second phase, probably close to 500 BC, wall d was built, along with what might be an altar. This was a rectangular stone structure, 1.3 x 0.55 m, on the same line as wall b inside A1 (see figure 8). We interpret this structure as an open-air altar, since Burning and animal sacrifice went on in this spot before this stone structure was built, and carried on after its construction, accumulating to a depth of 10 cm against its faces. Because of this, we suggest that the structure was probably an open-air altar. In 2001, we suggested that structure A2 was an altar contemporary with or earlier than A1, and that it went out of use while A1 was still functioning.37 If this is right, the structure in A1/4 may have replaced A2 when wall d was built, marking off A1/4 as a special enclosure for sacrifices. However (as noted above) the new structure may turn out to be merely the end of a longer east-west wall. Further excavation will resolve this.

Wall d curved around the edge of an outcropping of bedrock, which dropped off to the southwest. Against the face of the pre-existing wall c, wall d was built onto the scorched red clay deposits that had accumulated in the first phase of A1’s use; further west, it was cut through these layers and into the bedrock. Southwest of d, a clay packing (trench L100 layer 21) was added, extending the area available for use. Burning continued in area A1/4 in the final phase of A1’s use, and more deposits of red clay and charcoal, including animal bones and teeth (some burned), accumulated against walls c, d, and the “altar.” The finds from the latest layers associated with the altar included
fragmentary grayware, Corinthian, East Greek, and Attic black glaze cups, and the spout of a late-sixth or early-fifth century west Greek oil lamp.

At some point, rectilinear structure A5 was dug into the clay southwest of A1 wall d. L100 layer 21 provides a *terminus post quem* for A5 in the late-sixth century, but the small part of the foundation trench excavated in 2002 contained no datable material, and excavation inside A5 has not yet reached layers that can provide a firm date. The few datable finds associated with A5 are sixth-century, so we assume that this building belongs with A1 in phase II, but this is currently only guesswork. A5 consists of at least two spaces, divided by wall b. Both are packed with several courses of flat stones. These
Figure 9 Structure A1, facing south

Figure 10 Chamber A1/1, showing the circular clay hearth (scale 50 cm)
seem to be platforms rather than paved floors, but we have no evidence yet for their functions.

In trenches M-N98 we uncovered an uneven scattering of stone slabs, probably from a poorly preserved paved surface, dating to phase II.c. The paving itself and what seems to be a leveling fill beneath it contained small Attic black glaze as well as Corinthian and East Greek sherds. Under the disturbed slabs was part of the jaw and some loose teeth of an adolescent aged 12-14 years (figure 14). Another human tooth was found in 2001 in trench M100, in the layers of sacrifices pre-dating A1 wall d. We do know yet what context the bones originally came from.

A1 was deliberately abandoned, without destruction by fire. As noted above, the pit in A1/2 and perhaps the circular clay hearth in A1/1 were carefully sealed, and apart from an iron cleaver found in 2001 (see figure 8), virtually no complete artifacts were left behind. We have found 19 beads, 12 other fragments of bronze, 27 fragments of iron, and 9 fragments of worked bone in A1’s use and abandonment layers, but all were probably discarded or accidentally lost, rather than being votive offerings.

After c. 500-475, A1’s mudbrick walls gradually decayed. The hut may have had a thatched roof, as Giuseppe Castellana suggests for hut shrine 1 at Montagnoli; but a large piece of clay roof tile from the fill under the paving slabs in M98 and several smaller fragments in other trenches suggest that A1 had a tile roof, renewed at some point before the paving was laid in M/N 98. If that is correct, then the roof was carefully dismantled and removed around 475 BC.

2002 provided no new evidence for continuous occupation between phases II and III. Many amphora sherds could date between 475 and 350, but no objects have to date to these years. It still seems that after A1 was abandoned around 475, the acropolis stood empty for more than a century. At some point after 475, most of the stones in the northern half of A1 wall c were robbed out. The robber trench presumably filled up with the same yellow-gray clay that characterized the layers either side of it, originally formed by the decay of A1’s mudbrick superstructure. We failed to detect the robber trench in 2001 against the background of the original mudbrick deposit (layers 5 and 9 in figure 11b), but in 2002 we picked up the edge of the trench on the northeast side of A1/1,
where the ashy deposit that had spilled out across the room’s floor made a sharp edge at the point that the wall stones had been robbed (figure 11b layer 6).

![Simplified stratigraphic profiles through chambers A1/1 and A1/2.](image)

Figure 11 Simplified stratigraphic profiles through chambers A1/1 and A1/2. (a) A1/2. Layer 1, cutting and fill for A4 (phase V); layer 2, topsoil (phase V); layer 3, compact earth (phase III); layer 4, compact earth (phase III); layer 5, clay from decayed mudbrick (phase II); layer 6, clay from decayed mudbrick (phase II); layer 7, mixed clay and ash from abandonment of A1/2 (phase II); layer 8, red clay sealing pit (phase II); layer 9, white clay sealing pit (phase II); layer 10, ash fill of pit (phase II). (b) A1/1. Layer 1, tree trench (phase V); layer 2, topsoil (phase V); layer 3, compact earth (phase III); layer 4, compact earth (phase III); layer 5, clay in fill of robber trench (phase III; not detected during excavation); layer 6, clay in fill of robber trench (phase III); layer 7, rubble deposit (phase II or III); layer 8, clay from decayed mudbrick (phase II); layer 9, mixed clay and ash from abandonment of A1/1 (phase II); layer 10, ash fill of basin (phase II); layer 11, clay floor matrix (phase II); layer 12, hard white surface beneath level of A1 wall c.

Just one stone was still in position in the northern part of A1/1, though the bottom course was better preserved in A1/2. The only closely datable ceramics in the robber trench are
from sixth-century Ionic B2 cups, but we suspect that the stones were removed in the fourth century and used in building A3. At this point A1’s mudbrick superstructure had presumably decayed, leaving the top of the stone foundations exposed. A3 was built over the south part of A1’s ruins, at the highest point on Monte Polizzo.

Figure 12 The stele and wall e to the east of building A1, facing south

Phase III

We found no further phase III structural remains in 2002, but did recover more material scattered in the topsoil layers around A3 (figures 15, 16), bringing the number of bronze coins to 9, and limestone dice to 5. All but one of the coins are of the familiar type with a horse and palm tree on one side and a youthful female head on the other; the ninth may be of the same type, but is badly corroded.

Drs. Donald Ariel and Baruch Brandl of the Israel Antiquities Authority have drawn our attention to similarities between the 5-pointed-star amphora stamp found in zone A in 2000 and 44 such stamps, with the symbols yrslm between the stars’ points, found mainly in Hellenistic stratum 7 of Yigal Shiloh’s excavations in Jerusalem. The
Figure 13 A fragmentary antler lying in front of the stele on A1 wall e

Figure 14 The jaw and loose teeth of an adolescent human, aged 12-14 years, found in the fill under the paved surface in trench M98 (photo D. Connolly)
Monte Polizzo stamp lacks the writing on the Jerusalem examples, and Dr. Ariel informs us that the fabric and inclusions in the Monte Polizzo example have more in common with the Thasian example that we cited. However, the dates of the Jerusalem, Thasos, and Monte Polizzo examples match closely.

Figure 15 Phase III artifacts dispersed around structure A3
5. Zone B (figure 17)

Excavation continued in zone B to clarify the sixth-century and medieval building sequences and to find out whether B1 was a free-standing structure or part of a larger complex in each period. The two balks shown in figure 17 were left in place to avoid harming the trees of the Monte Polizzo Forest Preserve. Excavation in 2002 concentrated on the areas south and west of B1.

Phase II

We have now identified four distinct episodes of sixth-century activity.

First episode (phase II.a, c. 575-550 BC). The excavated stretch of wall h, 6.32 m long, belongs to this episode. Wall h disappears to the northwest under late-sixth-century wall e, and to the southeast into the unexcavated trench M109. A door 1.08 m wide interrupts h.

Wall h was built in two different styles. The stretches north of the door and the south of it as far as the south edge of trench L108 are made of roughly hewn squared limestone blocks, built to form courses (figure 18). This was the normal style at Monte Polizzo in all phases; the hill’s natural matrix consists of alternating layers of limestone
and sandstone mixed with large, rounded boulders. The sandstone/boulder material is on the surface on the acropolis, and the wall slabs were probably quarried from a limestone outcrop 400 m northwest of the acropolis, near Portella Sant’ Anna. Typically the slabs are 5-7 cm thick in all phases, but wall h has several stones up to 25 cm thick. Just as h enters trench M108, its construction material changes to large rounded boulders. Similar boulders were used late in phase IV (twelfth century AD) to block two doorways in room B1/1 and for wall j in M108. Until we excavate M109 we cannot know whether the southern part of h was a medieval addition, though that does not seem very likely.

Figure 17 Remains in zone B. Line α–α shows the profile in figure 22

The northern end of h rested directly on bedrock. The rock slopes to the south, and we have not yet reached the bottom of h south of the door. South of the door, we have excavated 13 courses of the wall (height 1.2 m), and have not reached the bottom.
Until we expose more of Zone B, wall h’s functions remain unclear. There are no signs yet of cross-walls; possibly it marked the boundary of a special area, such as the sacred zone of the acropolis.

At the end of the season we uncovered a rough line of flat slabs running west-east through trench L108 toward the door (figure 18). These stones may have supported a clay path curving up the west slope of the acropolis and through the door in h. South of the line of stones we identified two clay surfaces, both post-dating h. On the upper clay surface (L108 layer 11) was a small, round, black deposit of extremely hard charcoal and burning, disappearing into the balk with trench L109. This was probably a hearth.

The finds from these clay surfaces are rather different from those in other parts of Monte Polizzo (see section 8a below). We found two almost complete indigenous vessels in layer 11, one a grayware dipper and the other a globular spouted pot made from an unusual orange-gray “sandwich” fabric. The clay layers in the supposed path north of
the line of stones leading up to wall h (layers 9, 13-18) included Punic amphora sherds, an Etruscan bucchero kantharos handle of around 600 BC, four Corinthian or imitation Corinthian sherds, local grayware bowls, and local bowls of a blackish “buccheroid” fabric, darker than the usual sixth-century grayware. Some of these had incised dente di lupo decoration as well as the normal simple incised bands. These layers had few Greek sherds, and no Ionic or Attic.

Second episode (phase II.a or b, c. 550 BC). Layer 9, the uppermost clay deposit in the possible path, runs from trench L108 through the doorway in h into trench M108; but after layer 9 formed the door was blocked and a thick fill was dumped east of h, raising the ground surface to the level of the top of the wall. Probably at the same time, a stone drain was built, running slightly downhill from the northeast to empty out over h. A dump of Rubble and clayey soil were dumped southwest of h to raise the ground level here (accounting for h’s excellent preservation) during episode 2 or 3. A large medieval pit disturbed part of the drain, probably removing two large stones from its southeast edge (figures 17, 19).

We cannot tell yet why the drain was installed, but it might be related to building B2 under medieval B1/1 (see figure 17), if further digging dates B2 to this episode. Wall bb’s alignment is close to the drain’s, and the few surviving stones from wall dd are perpendicular to it. The bedrock was cut back vertically immediately behind dd; we suspect that B2 was a rectilinear room associated with the drain. The fallen building blocks from B2 were dug up and reused in phase IV, and the pit that this created was partially refilled with a dump of round boulders and small limestone slabs. This pit (figure 20) contained medieval pottery and roof tiles. We need to excavate deeper to date B2 securely.

Third episode (phase II.b, c. 550-525 BC). A large deposit of gray ashy soil, more than 5.5 m across and up to 50 cm thick at the center, was dumped in zone B (figure 17), covering parts of the drain. Its contents are very like the pottery deposit excavated in 2001 in zone A trenches MN 100-101: very few fine ware sherds, but thousands of fragments of storage vessels and bones, above all deer antler (see section 8a and
Appendix 1 below). However, micromorphological analysis shows that the two deposits were formed in completely different ways. That in zone A built up slowly, probably as clay from mudbricks washed downslope and gradually covered an abandoned storage area; while the zone B deposit was swept up from the remains of numerous fires in another location, and dumped at one time (see Appendix 2 below). We suspect that the zone B deposit was dumped here from zone A. We excavated a large ashy deposit just 5 m from the mound’s edge in trench L106 in 2001, but this deposit otherwise had little in common with the ashy dump under B1/2.

Both deposits contained small fragments of iron, bronze, and worked bone, but zone B also included a lava grindstone (figure 21), a tiny chain of bronze links, and an uneven limestone die. We have found five late-fourth-century limestone dice in zone A (see above), but the zone B die was securely stratified under the phase II.c paved floor of B1/2, and cannot be intrusive.

Fourth episode (phase II.c, c. 525-500 BC). Around 525 BC, the one-room structure B1/2 was built over the top of the dump of ash, storage sherds, and antlers. The retaining walls on the same alignment in trenches K-L 106-107 also belong to the fourth episode. We cannot be sure from the small areas excavated in 2001 whether the spaces northwest of B1/2 were open. Only medieval layers survive in M106 recovered, resting directly on bedrock. Iron Age layers survive immediately west of the balk north of B1/2 wall a, but excavations in 2002 only exposed their surface.

B1/2 had a paved floor, but only the northeast half of this survives, the rest having been lost to erosion (figure 22). Walls k-l filled much of B1/2 (internal dimensions 6.5 x 2.6 m). In 2001 we assumed that k, l, and b were three of the walls of a stone bin, with the fourth wall in the unexcavated quadrant of B1/2, and that the bin was emptied and reused in phase IV. However, but the 2002 excavation exposed the edge of a second stone structure, up to three courses high, continuing to the southwest on the same line as wall k. This may have major repercussions for the interpretation of B1/2, but we cannot say much about it yet, since it lies in the unexcavated quadrant of B1/2. It either predates the ashy dump, in which case it either belongs with the second building episode in zone
B, or was dug down into the dump. B1/2 and walls k-l may have been built to continue the earlier structure’s as yet undefined functions in more formalized ways.

B1/2 was peacefully abandoned: sherds from the abandonment deposit53 seem to be fragments rather than broken whole vessels, and there is no trace of fire. We found no decayed mudbrick like the thick clay layers found in A1. We should conclude from this either that B1/2 had all-stone walls, which the medieval occupants of zone B dug up and reused to build their own house, or that B1/2 was an open-air enclosure with low walls, rather than a roofed room.

\textit{Phase IV}

We excavated a small trench to bedrock in the western corner of B1/1 to confirm the theory that this room was a medieval addition to Iron Age B1/2. Figure 23, facing west, shows that this is indeed the case: whereas wall d (at the left of the picture) rests on bedrock, with pure Iron Age layers 16 and 24-28 providing a \textit{terminus ante quem} for its construction, wall a in B1/1 (at the right) can be fixed firmly in phase IV. In the western part of B1/1 erosion had destroyed the medieval paved floor that we excavated in 2000 in the eastern part of the room, but the same fill of medieval debris and roof tiles that lay under the floor in the eastern part of the room still survived in the west.54 The finds included a late-tenth-century carinated bowl fragment.55 Several of the vessels recovered in 2000 from B1/1’s abandonment deposit have now been reconstructed (figures 24, 25), and probably date to the twelfth century.

So far, there are no signs that B1 was part of a larger complex. North of the building, in trench M106, the poorly preserved wall aa snaked along the bedrock, almost certainly dividing exterior space rather than further rooms. To the south, B1/1 wall b rested on top of earlier (probably Iron Age) walls bb and dd, and a deep medieval pit filled trench N107 (figure 19), perhaps dug to recover Iron Age building stones.

Excavation in 2002 showed that the area south of room B1/2 has a fuller record, with three episodes of activity.
Figure 19 Deposits in M108, facing northeast. B1/2 wall b is at the left, with the ashy dump of phase II episode 3 and the earlier phase II drain visible beneath it. In the background medieval wall cc can be seen, and in the foreground the fill of the medieval pit, containing roof tiles, dug down beneath the level of the Iron Age drain.
First episode (probably eleventh century): There was an open area in trenches M-N 108. It had a clay floor with a few paving slabs in N108. B1 then collapsed, leaving a heap of broken roof tiles up to 30 cm thick on the first medieval surface (figure 26).

Second episode (eleventh or twelfth century): A large pit was cut through the earlier medieval and Iron Age layers in M108, in places (especially to the south) reaching bedrock. The pit damaged the Iron Age drain, displacing at least two large stones from its southeast face (figures 17, 19). The pit was then filled in.

Third episode (twelfth century): The space south of B1/2 was subdivided. Wall j, made of round fieldstones, was built over the pit in M108, and the rough wall cc added in N108. Wall cc’s mixed construction styles can be seen in figure 26. The area between j and B1/2 b was partly paved. A second tile deposit marked the end of this episode.

We have not yet studied the 2002 finds closely, but they seem similar to those from B1/1, suggesting occupation across the eleventh and twelfth centuries. There are no traces of fire in the medieval layers. The incorporation of so many tile fragments in the matrices of the floors of the first episode and in leveling fills in B1/1, along with finds of late-tenth-
century sherds in mixed contexts, strongly suggests that there were earlier medieval buildings nearby.

Figure 21 Grindstone in B1/2, facing north, with B1/2 wall a in background

Figure 22 Simplified profile through B1
We continued excavating in zone C to recover more of the early-sixth-century destruction in building C1 and to examine theories that sixth-century indigenous communities laid out towns on grid plans, imitating Greek practices. We carried out a magnetometer survey to assess this theory in 2001, but could not detect walls, and the slope is too steep for ground penetrating radar. We plan to try further non-invasive techniques in 2003, but before the main season in 2002, we also excavated a 57-meter long, 1-meter wide trench (the “Great Trench,” or GT) from grid square M109 to Q120, linking zone B to the Tusa House (figure 27). We divided the Great Trench into 5 sections. Sections I and II, between M109 and the 2001 trench N/O 113/114, were 8.75 m long; and sections III-V, between N/O 113/114 and the Tusa House, were 11.57 m long.
Figure 24 White-glazed medieval bowl from B1/1, excavated 2000 (restoration A. Gjefle; photo D. Connolly)

Figure 25 Green-brown glazed medieval bowl from B1/1, excavated 2000 (restoration A. Gjefle; photo D. Connolly)
Phase II
We immediately came down on sterile bedrock through most of GT section I, but at the south end exposed three courses of GT I wall a (figure 5), an Iron Age wall running northeast-southwest at a different angle from B1 and the Tusa House (see figure 47 below). In section IV we exposed building C2, on the same alignment as B1 and the Tusa House. We widened the trench to 2 m here, and excavated a slice through the building. Like B1, C2 may have been built in the sixth century BC, then reused in the eleventh and twelfth centuries AD. Parts of C2’s walls can be seen in a tree trench southwest of the Great Trench, showing that C2 was at least 7 m long. There is a third wall to the north. In section V, near the Tusa House, deep soil had washed down from the ridge, and we did not reach phase II levels.

Figure 26 Roof-tile layer 13, trench N108, facing north. Wall cc is at right; B1/2 wall b at the top left

We extended the excavation of C1 to the whole of grid square O113 (figure 28). As in 2001, we found thick rubble layers covering burned building debris (particularly charcoal and clay) and beneath that, a rich destruction deposit containing many shattered
whole vessels and much charcoal and bone. The finds included a broken lava grindstone, a bronze ring, the neck of an imitation Corinthian oinochoe, a grayware miniature amphora whole except for a handle (figure 29), fragments of two Ionic cups, and many grayware bowls, some of them decorated with incised triangles. In the center of area C1/1 was most of a smashed amphora (figure 30) and beneath it, a complete plain basin, shattered when a limestone column base or roller fell on it (figure 31). The assemblage lacks Ionic B2 cups and Attic black glaze, and probably dates to phase II.a (c. 575-550 BC), earlier than the destruction deposits from House I.

Figure 27 The “Great Trench,” looking south toward the Tusa House from M109

C1 has a complex stratigraphic sequence. The south end of wall a and the paved floor seem to be contemporary with the massive destruction layers postdating both; but as figure 32 shows, the north part of wall a goes off at a different angle from the south part, was more loosely built, and sits on top of the destruction layer. The whole excavated
stretch of wall b rests on the destruction deposits, while wall c predates them. The situation is not yet clear, but it looks as if C1 was hastily rebuilt after burning down. If the limestone cylinder shown in figure 31 is a column base rather than a roller, modification of the destruction deposit before rebuilding C1 would explain how a column drum ended up on top of a basin. It is also possible that the thick burned layers in C1 were dumped here from a different destroyed building, but that seems less likely. However, we have found no distinct floor surface belonging with the second phase of wall a and wall b.
About 25 m due west (i.e., downslope) of C1, we observed the edge of a substantial wall on the surface, running roughly northwest-southeast between tree lines. We picked up traces of this running for more than 70 m to the northwest. We opened 8 x 2 m trench J/K 112/113 to examine the most southerly stretch visible (see figure 5). This wall, a, dates to the sixth century. Three courses survive on the upslope side, and just one course on the downslope. It is 80 cm wide, which is unusually large for Monte Polizzo (house walls are typically 60 cm wide), still too thin to have had serious defensive functions. It is also roughly built, from a mixture of flat limestone blocks and round fieldstones (figure 33). Wall a may have served to mark the acropolis off from the rest of the settlement. Layer 9, the occupation deposit associated with it, contained mostly grayware but also a few Corinthian and Sikeliote sherds and many animal bones. A second wall, b, was added on top of layer 9, perpendicular to a. Only the edge of b was visible in the trench. It was made entirely from field stones. J/K 112/113 walls a and b definitely date to phase II, but we cannot be sure from such a small sample whether they belong with phase IIa or IIb.
Figure 30 C1 layer 20, facing east. At center is amphora base in situ, with column drum just visible to its right

Figure 31 C1 layer 24, showing basin shattered by fallen column drum (cf. figure 30)
Phase IV

The Great Trench also cast light on the medieval village. The phase IV wall noted in the edge of trench N/O 113/114 in 2001 proved to be poorly preserved, as did a second wall immediately to the north (walls GT II a and b in figure 28). But if structure C2 was first built in the Iron Age, it was renovated in phase IV, like B1/2. The medieval rubble included a beautiful green-glazed bowl (figure 34), with early-twelfth-century parallels from Monte Iato and Segesta. Mr. Giovanni Scimemi, who dug with Vincenzo Tusa at Monte Polizzo in 1970 as a student, tells us that the uppermost walls of the Tusa House in P/Q 120/121 were medieval. By reusing the Iron Age ruins, the medieval settlers of the west slope of the acropolis may have created a regularly laid-out village.

Figure 32 C1 wall a, facing west. Left of the scale, wall a is contemporary with the paved floor; right of the scale, wall a rests on top of the destruction layer 24, postdating the paved floor
Figure 33 J/K 112/113, facing northeast, with the enclosure wall in the foreground

Figure 34 GT IV medieval green bowl (restoration, A. Gjefle; photo D. Connolly)
Zone D (figures 4, 5, 35)

Phase II

North of M/N98 the modern surface drops 3-4 m, then a roughly level plateau stretches from grid rows 96/97 through row 92. We dug here to see whether this area was part of the ritual center around A1. We excavated 80 m², finding parts of two structures. Apart from a handful of medieval and modern artifacts from the topsoil and tree trenches, all activity here dates to phase II, and probably II.c. Although there is no stratigraphic evidence for their relative dates, we are assuming that D2 was built after D1 (and perhaps even after D1 had been abandoned), because D2/1 wall b blocked a door between D1/2 walls e and h.

Figure 35 Plan of zone D, showing walls and pottery in the abandonment deposit

The scarcity of fallen building stones and the hard clay layers above the floor deposits must mean that D1 and D2 had mudbrick upper walls on limestone foundations.
4-6 courses high. Walls d and f and the northern part of wall e are poorly preserved, but
a, b, and e contained a mixture of stone types. A tree trench damaged g, but the surviving
section is unusual in being made of large blocks of dressed sandstone (visible at the
bottom of figure 39), more like altar A2 than any house walls on the acropolis.

The floor of D1/2 had been dug down into the soft bedrock about 10 cm below the
bottom course of wall d. D1/2 measured at least 6 x 5 m. If the door in wall e was
centrally placed, D1/2 was 6 x 9.5 m. We have not excavated enough of D1/2 to say
whether it was an internal or an external space, but if it was roofed, there must be one or
more column bases in the unexcavated parts of trenches I95 and J95. The finds in the
destruction layer included an unusual tapering cylindrical limestone weight, height
approximately 20 cm, with one hole drilled down its long axis, and 4 more through its
short end. The abandonment layer contained some charcoal and fragments of burned
mudbrick, and fragmentary storage vessels dominated the finds.

![Figure 36 Collapsed pithos in room D1/1](image)

D1/1 was also a large space. Two rectangular stones placed together may have
been the base for a central pillar; if so, the room measured 7.5 x 5.2 m. Disturbed areas of
rubble at the north and east edges of the excavated part of trench K94 (the extreme east
edge of the excavated area) may belong to destroyed walls, but further excavation is required. D1/1’s floor was partly paved. A massive abandonment deposit rested on it, containing 421 kg. of storage vessel fragments (figure 35), including one large and apparently complete vessel that had collapsed on itself (figure 36). This deposit is similar to the storage area outside the east wall of House I, which contained nearly 500 kg. of pithos sherds.\(^5\) We also found three large hollow clay weights, shattered but complete, in D1/1 (figure 37).

![Clay weight from room D1/1 (restoration A. Gjefle, photo D. Connolly)](image)

Despite its size, D1/1 contained only 3 small fragments of bronze and 2 of iron, and few bones compared to other phase II deposits at Monte Polizzo. The scarce fine ware sherds included the base of a Corinthian aryballos sandwiched among pithos sherds (figure 38), a small Attic black glaze sherd, and a lamp.\(^5\) The numerous amphora fragments include Etruscan, Punic, and west Greek vessels. These cannot be dated as closely as fine wares, but some of the Punic shapes have close parallels from late-sixth- and fifth-century levels at Motya.\(^6\) The abandonment deposit also included body sherds from Punic torpedo amphoras, normally dated to the fifth and fourth centuries. One of the Etruscan amphoras may be of Py’s type 3A/B, rarely found on indigenous sites, but
normally dated 625-525 BC. D1/1 seems to be a storage space, abandoned in phase II.c. There is much less evidence for burning than in D1/2.

Room D2/1 was much smaller, at just 4.2 x 2.8 m (internal dimensions). A tree trench had destroyed its western end, reducing the area available for excavation still further. We quartered the room and excavated two of the quadrants (figure 39). Although we excavated less than 5 m², we recovered almost 100 kg. of pithos fragments, including Punic and Etruscan amphoras very like those from D1. But D2/1 differed from D1/2 in having more signs of burning, and in yielding the same number of metal fragments from a much smaller area, including the only precious metal so far found at Monte Polizzo, the end of a silver pin (figure 40). D2/1 also produced several very thin sheets of white limestone, which may be roof material.
8. Discussion

8.a) Phase II

Religion

We have only excavated 215 m\(^2\) in zone A, which is a much smaller area than has been uncovered at the comparable indigenous religious centers (see figure 45); and the discovery of structure A5 and A1 pavement e at the end of the 2002 season shows that we still have surprises in store. But the evidence already collected suggests a lot about sixth-century practices at Monte Polizzo.

First, we should clarify our terminology. We believe it is appropriate to call the activities in and around A1 “religious.” There have been two broad trends in the anthropology of religion. The first began with Weber and Durkheim, and sought to clarify a transhistorical analytical category of religion, which will allow systematic comparisons between different times and places, building toward a general theory of what religion does and how it does it. The most widely cited example is Clifford
Geertz’s proposal that “a religion is: (1) a system of symbols which acts to (2) establish powerful, pervasive, and long-lasting moods and motivations in men [sic] by (3) formulating conceptions of a general order of existence and (4) clothing these conceptions with such an aura of factuality that (5) the moods and motivations seem uniquely realistic.” Geertz unpacked this definition with care, suggesting that “In religious belief and practice a group’s ethos is rendered intellectually reasonable by being shown to represent a way of life ideally adapted to the actual state of affairs the world-view describes, while the world-view is rendered emotionally convincing by being presented as an image of an actual state of affairs peculiarly well arranged to accommodate such a way of life.” The second trend, rooted in deconstruction, saw the beliefs and symbols that the first would classify as religious as parts of larger sets of authorizing practices. In a widely read formulation, Talal Asad asserted that “there cannot be a universal definition of religion, not only because its constituent elements and relationships are historically specific, but because that definition is itself the historical product of discursive processes.” Asad’s core thesis is that western social scientists have bundled certain things together as “religious” because they are acting within a culturally specific modernist power structure, which seeks to distinguish its own intellectual system (which breaks reality apart into law, economics, politics, etc.) from older ones which lumped all these things together.
Alongside both these approaches, we might set the dominant idea among historians of religion, who accuse anthropologists of all stripes of reductionism. As many historians see it, the classic approaches seek to reduce religion to a reflection of something else, reflecting social norms back and seeking to justify them, while the deconstructivist approaches deny the reality of religion in favor of the reality of power. Both litter their analyses with quotation marks, and rarely attempt to understand religion as the reality its practitioners experienced. By eschewing broad comparisons, historians claim to reach much fuller understandings concentrating of practitioners’ actions and beliefs within their specific historical context.66

Not surprisingly, archaeologists have favored the first anthropological approach. They have even more difficulties than sociologists and historians, because they deal with mute artifacts rather than participant observation or verbal reports. The easiest way to cope with this is to set up a universal definition of religion, and to seek material correlates. In our previous report, we drew on Renfrew and Bahn’s widely used discussion of the archaeology of religion.67 This has the twin merits of emphasizing Weber’s thesis of the otherworldly core of religion, orienting humans in the here-and-now toward invisible beings, and of being something archaeologists can operationalize.68 It remains to be seen whether archaeologists can operationalize either the deconstructive anthropological approach or the historical approach to religion.

In the Weberian sense of religion and following the criteria laid out by Renfrew and Bahn, acropolis zone A must be accounted a religious site. A1 seems designed to focus attention on the boundaries between this world and another, bringing participants together in transcendent communication. A1 occupied the highest point on Monte Polizzo, used an architectural form evoking round houses that had been normal until the eighth century but were no longer used, and (at least in its latest phase) had a special enclosure, marked off by A1 wall d. The stele still in position just east of A1 perhaps symbolized the divine, and a very large stone block found out of position in 2001 may have been another phase II stele.69 The round clay hearth in A1/1 and pit in A1/2, both heaped with ash and the latter (and perhaps also the former) sealed with baked clay when A1 was abandoned, suggest special activity; so too the evidence for animal sacrifice at the two stone platforms that we have called altars. The many fragments of wine cups
suggest that intoxication was an important part of the activities in zone A. The apparently open space more than 25 m wide between A2 and B1/2 is unusual; so too the contrast between massive concentrations of heavy-duty storage vessels around A2 and in zone D (and also in the dump under B1/2, if that did indeed come from zone A) and the preponderance of fine wares in A1. We suggest that A1 was a point of religious contact with a divine sphere, and advance some tentative theories about how this contact worked.

Hellenization and religious architecture

Hellenization, in the sense of native adoption of Greek practices, pantheon, and beliefs, has dominated discussion of Iron Age Sicilian religion. Much of this has been fueled by finds at Sabucina, where Sicans flirted with features of Greek religious architecture across the seventh and sixth centuries, combining porches and columns with traditional local round huts, as well as making remarkable models of shrines that similarly manipulate Aegean forms.

We focus here on two aspects of religion at Monte Polizzo: in this section, architectural forms, and in the next, sacrifice. In both cases, we see connections between indigenous Sicilian and Aegean practices but emphasize the local context more strongly. We conclude that proper analysis needs to be more empirically detailed and more conceptually precise than has often been the case.

There are intriguing parallels in religious architecture between those parts of the Aegean most involved in trade and colonization and western Sicily. The worship of the gods produced few archaeologically visible traces or distinctive architecture in either area before about 750 BC. Then, between 750 and 700, attention-focusing devices appeared in both regions. In the central Aegean, where apsidal houses were normal in the eighth century, larger versions of these were built for the gods, and increasingly used walls and other devices to distinguish sanctuaries from non-religious space. In western Sicily, a similar process unfolded, except that the gods’ houses were larger versions of the round huts that were normal dwellings in the eighth century. Possibly Greeks taught west Sicilians the idea of building elaborate versions of houses as homes for the gods; but given the formal differences between Aegean and west Sicilian temples, the near-certainty that the first round hut-shrines in west Sicily predate the first Greek settlements
at Himera and Selinous, and the absence of monumental temples from Greek cities in Sicily until the late seventh century, this seems implausible. Most likely, we suggest, people in the Aegean and west Sicily responded to similar problems in similar ways: as population grew in both areas and competition for resources increased, people chose to invest more heavily in worshipping the gods.

In the Aegean and west Sicily, rectilinear houses replaced curvilinear ones in the seventh century. In the Aegean, rectilinear temples with distinct Doric and Ionic architectural orders replaced apsidal temples by 600. In west Sicily, however, round “hut-shrines” were common till 500. Sixth-century shrines in Sicily thus evoked ancestral tradition in ways that contemporary Aegean temples did not. It is interesting to speculate on why indigenous Sicilian religion might have remained focused on ancestors while the emphasis in the Aegean moved toward a distinct realm of Olympian gods, but there is currently no way to ground the issues empirically.

In the Aegean, round religious buildings were rare, but did exist. Structure VIII from Lathouriza near Athens (c. 700 BC) is the earliest known example. Round shrines become more common in the late sixth century, but most date to the fourth century. Two generations ago Fernand Robert argued that Greeks sometimes used round religious buildings for chthonic cults, aimed at spirits and heroes living underground. He concluded that round buildings often had sacred pits (bothroi) rather than altars (bomoi), because pouring the blood from a sacrifice into a pit aided its passage to the dead beneath the ground, while splashing the blood onto an altar did not. He also suggested that there were special forms of chthonic sacrifice emphasizing blood, including the holokaustes, where the complete victim was burned, instead of dividing the best parts among the worshippers and only burning the inedible parts for the gods. Robert derived the circular form from the enclosure walls of Bronze Age burial mounds, and the focus on blood and pits from the need to feed the dead.

Robert’s characterization of round chthonic shrines certainly corresponds with A1’s form, the pit in A1/2, and some of its burned bones. If the human jaw found in trench M98 came from a nearby grave, that might even have been the focus of the cult. Other Sicilian hut shrines also have similarities to Robert’s model. At Colle Madore, pit 40 was either dug immediately outside hut A or against the inner face of the wall of hut
B, dated c. 550-525 BC, in which case its position as well as its date match the pit in Monte Polizzo A1/2. Pit 40 contained ash, charcoal, and animal bones. The second floors in Polizzello hut shrines A and B, probably dating to the early sixth century, also contained pits, sealed by sherds from large pots. Hut D had “una sorta di bothros” at its center. These pits contained ash, charcoal, animal bones, fragments of bronze and amber, and small vases.

But we should also be aware of differences, both between the Sicilian structures, and between the Sicilian structures as a group and the Greek examples. Clay basins and round hearths are even more prominent than pits in Sicily, though they do not feature at all in Robert’s model or most excavated tholoi in Greece. The basin in A1/1 has parallels in Montagnoli hut shrines 1 and 7, although these were larger (diameters 0.9 and 1.0-1.4 m respectively), earlier, and decorated with rings of impressed circles. Polizzello hut shrine A, dating to the later-seventh century, had an “altare circolare a piattaforme di pietrelle” at its center, and semi-circular structure C had a round clay basin, heaped with ash and small animal bones. Like A1, the first tempietto at Sabucina (De Miro’s “blue phase”), a seventh-century rectangular room with a bench, combined pits and basins, although neither of the round hut shrines that succeeded it had these features.

Within the Sicilian group, A1 has several unusual features (see figure 45): the other hut shrines are mostly larger (at 8-10 m diameter compared to A1’s 6.4 m), single-roomed with benches, earlier (going back into the late-eighth century), and have richer finds. None of the hut shrines has produced rich votives like those found in archaic Aegean sanctuaries, leading to a general conclusion that Elymian gods did not want gifts. As table 1 shows, metal and worked stone and bone finds are about twice as concentrated around A1 as in zone B, but the finds from A1 look like discards and accidental losses, not dedications. This suggests that more metal was used in A1 than in zone B, but either it was not actually given to the gods, or when A1 was abandoned people felt free to remove items. A1, then, is consistent with the theory that votives were not part of indigenous cult; however, the evidence from other sites is more complicated. The objects found in the hut shrines at Montagnoli and Sabucina also seem to have been used, rather than dedicated, although the fifth-century (“yellow phase”) shrine at Sabucina had a pit filled with votives, ash, and pigs’ jaw bones, and two pits with vases and small animal
bones (including astragals) were noted at Montagnoli. At Colle Madore too little survives from the round huts at the summit to draw a conclusion, but the *sacello* had no votives apart from Deposit A, probably a foundation deposit for the shrine, containing objects spanning the whole period 850-550 BC. The brief Polizzello report speaks of pits with metal and pottery votives, and even an enclosure for offerings. Finally, a remarkable deposit at Montagnola di Marineo contained three bronze helmets, two bronze *schinieri*, a possible bronze shield boss and iron weapons, a jug containing remains of at least two lambs or goat kids, and an ivory plaque in the shape of a ram, all dating c. 525-500.

Overall, the picture is mixed: votives were not as important as in archaic Greek religion, but did occur. Sabucina and Montagnoli, which ended in sudden destructions, had some rich finds; Monte Polizzo A1 and the Caltabellotta hut shrine, both abandoned peacefully in the early-fifth century, have the poorest finds.

We discussed A1’s unique division into three small compartments in section 4 above. At this point, the evidence suggests that A1 was originally single-roomed, and that walls b and c were added in a second phase, along with external structures d, e, the possible wall in the M98/99 balk, and the altar (if such it is) in area A1/4. If this was an open-air altar, it has few parallels on indigenous sites. Only Montagnoli has a possible open-air *altarino* from the eighth-/seventh-century phase in trench M40, and a probable small altar from the early-sixth-century phase with hut 1. However, it seems almost certain that Monte Polizzo A2 was an open-air stone structure that served as the focus for burned animal sacrifices. The leading authority on Greek religion says that the “most essential element [in a sanctuary], more essential than the cult stone, tree, and spring, [was] the altar, *bomos*, on which the fire [was] kindled.” A2 may have been a direct and important borrowing from Greek religious practice.

But if the Sicilian data are messy, the Aegean material is even more so. New excavations have shown that round cult buildings in fact had many uses, particularly as dining rooms, and Fred Cooper and Sarah Morris have criticized “morphological fallacies” like Robert’s, linking shape to a specific function. Heroes could have the same kinds of altars as Olympian gods, and the terminology of heroic and Olympian religion was less clear-cut than it seemed in Robert’s day. Even the distinction between blood sacrifices flowing into the earth and sacrifices to the gods in which smoke rose into
the sky has fragmented: an inscription from Selinous dating c. 450 specifies that a sacrifice should be performed as is normal to the gods, but then adds “Let him slaughter (the victim so that the blood flows) into the earth.”93

Aegean round buildings and pits could have chthonic associations, but did not do so uniformly. Further, if west Sicilians borrowed Greek ideas about chthonic cult, they massively reinterpreted them, regularly placing their hut shrines at the highest point available, as far from the underworld as it was possible to get.94 But perhaps most importantly, the chronology of round shrines in the Aegean and Sicily is inconsistent with the transmission of forms from the former region to the latter. The dates suggest that of round chthonic shrines with pits were transmitted from one culture to another, the most plausible direction is from Sicily to the Aegean. The most plausible scenario is that Greek settlers adopted some indigenous religious activities, including round buildings, but adopted them to their own purposes, including (but not restricted to) chthonic cult. Agrigento may have been the major point of interaction.95

Hellenization, drinking, and sacrifice

The second dimension we wish to discuss is religious consumption. Wine drinking went on at all the hut shrines. The finds from House I and zones B and zone C at Monte Polizzo show that Greek kylikes and wine amphoras were not restricted to religious settings, and surveys have found Greek wine cups even on the tiniest rural sites.96 Vessel shapes and the prominence of strainers suggest that beer, not wine, was the main drink in the tenth and ninth centuries BC. Greek cups and jugs and Phoenician and Greek amphoras suggest that wine was commonly drunk in eastern Sicily by the late eighth century, and in the west by the late seventh. At present we cannot say whether Phoenicians and Greeks reintroduced wine in the eighth and seventh century, whether Sicilians had been drinking it continuously since the Bronze Age, or whether Sicilians grew their own grapes in the Bronze Age, abandoned them in the Early Iron Age, then started cultivating them again around 700 or later. A single *vitis sylvestris* grape seed, probably wild rather than cultivated, has been found in a house of this period at Morgantina;97 the earliest definite evidence from Sicily for *vitis viniferis*, the cultivated wine grape, is a carbonized grape seed found in 2002 in the ashy dump under Monte
Polizzo B1/2 (figure 41; see Appendix 3), firmly dated c. 550-525. Even this does not guarantee that indigenous Sicilians were growing wine grapes in the sixth century, of course; there was a flourishing raisin trade in classical times, and shipwreck evidence from Tektas Burnu shows that imported amphoras could contain seeds as well as wine. But it does make sixth-century local wine production—alongside imports in Greek, Punic, and Etruscan amphoras—very likely. Interestingly, in southern France *vitis sylvestris* appears consistently on about 10 percent of Late Bronze and Early Iron Age sites, while *vitis viniferis* is completely unknown before 600 BC, but appears on 26 percent of all sixth-century sites. The combination of finds from Monte Polizzo southern France may mean that vine cultivation was established relatively suddenly across the west Mediterranean in the sixth century, presumably by Greek traders of settlers.

Figure 41 Carbonized *vitis viniferis* seed from ash dump B1/2 layer 15, c. 550-525 BC. Scale 1 cm (drawing H-P. Stika; see Appendix 3)
Tara Hnatiuk’s study of more than 30,000 bone fragments from zones A and B100 also provides important information about sacrifice and feasting. Most of the bones come from concentrations immediately north of A2, around the possible altar in A1/4, and from the dump under B1/2.101

3,649 out of 18,042 bone fragments studied from zone A were identifiable (20 percent). Table 2 shows the representation of the major species. The figure of 37.5 percent for \textit{cervus elaphus} (red deer) is most unusual. Venison may have been an important food source in ancient Sicily; roe and fallow deer bones were prominent in a first-century AD farmhouse at Montallegro, and a large deposit of fallow deer bones was found in a third-century BC shop at Morgantina.102 The Morgantina deposit, like those at Monte Polizzo, contained mostly head and foot fragments, and the excavators plausibly interpreted it as butcher’s debris. Neither of these later deposits had significant amounts of red deer; but this species is known from non-religious sixth-century sites in west Sicily. At Entella, 10 of the 241 identified bones (4.1 percent) from layers dated c. 600-450 in a feasting area at the edge of a cemetery were \textit{cervus elaphus}, and at Monte Iato three antlers have been found in the Greek courtyard house, dating around 475.103 At Monte Polizzo, a complete antler was found inside a broken storage jar at the Portella Sant’ Anna in 2000, and a large fragment in zone D in 2002; and 11-21 of the 232 identifiable fragments from the Profile in 1998 (4.8-9.1 percent) were \textit{cervus elaphus}.104

But none of these contexts begins to compare with the quantity of finds from zone A. The only deposit that does compare is the dump under B1/2, where 4,835 fragments out of 12,537 analyzed could be identified (38.6 percent). Red deer make up no less than 82.3 percent of the collection (table 3; figure 42). As noted on p. XX above, the pottery found in the deposit north of A2 and the dump under B1/2 is so similar that the latter deposit may have originally come from zone A. The micromorphology of the B1/2 dump is consistent with this (see Appendix 2 below). The quantitative pattern, and the specifics of the A2 and B1/2 bones described below, suggest that while deer were sometimes an important food source in ancient Sicily, they also had a special religious significance in the sixth century BC.

The minimum number of individual deer present is just 7, but the total number of fragments and their weight suggest that the true number is in the dozens. Although the
statistics probably overrepresent deer, because antlers (which make up 96 percent of the
deer bones) are both easily identifiable and easily fragmented, the prominence of deer
antlers in these two deposits is nevertheless highly unusual.105

The state of fusion of phalanges I and II in the antlers shows that most of the deer
in these deposits were killed around November (although the presence of two fetal tibias
suggests that some does were killed in the late spring).106 Pollen recovered from the
Profile and House I in 1998-2000 indicates that there was little forest cover around Monte
Polizzo in the sixth century, and so—probably—very few deer immediately round the
settlement.107 There were deer parks in some Greek sanctuaries, but there is no evidence
for anything like this in Sicily, and these animals were in any case normally protected by
the divinity, not sacrificed.108 The most likely scenario is that deer that hunting parties set
off from Monte Polizzo to the wooded mountains of north-central Sicily as autumn
turned to winter (the same time as the hunting season in the contemporary northern
hemisphere), killed deer, and carried the carcasses back whole to Monte Polizzo. There,
they dismembered them on altar A2, and perhaps also on the stone structure in space
A1/4. The iron cleaver found near this structure may have been used to chop up the
sacrificial victims, and the iron arrowhead found immediately west of the structure could
even have fallen from the body of a deer. People then took the meaty joints on long bones away, either to separate feasting places, or (as often happened in Greece) to their homes. But they burned some of the heads and feet on the altars, leaving the debris scattered around zone A. 6.6 percent of the bones studied to date were burned; and 84 percent of these burned bones came from around A2 and the possible altar in space A1/4. More than half these bones were burned at high temperatures, over 400° C, which is consistent with the fire damage to altar A2. 67 percent of the bones were head fragments and a further 10 percent from the feet, with just 16 percent from the axial skeleton and 7 percent from limbs.

Archaeologists have noted antlers at other sixth-century west Sicilian hit shrines. No faunal study was undertaken at Polizzello, but the brief report nevertheless mentions antlers from hut shrines A and B; Di Rosa’s analysis of the bones from pit 40 under two poorly preserved hut shrines from Colle Madore found 6 fragments of *cervus elaphus* (2.3 percent of the assemblage); and the report on bones from the Malophoros sanctuary at Selinous comments that compared to sheep, goat, and cow, “Più scarsi sono i cervidi, dei quali figurano parti del capo (corna) e degli arti.” These finds suggest that deer played a religion all across west Sicily.

The antlers received special treatment at Monte Polizzo. While the skeletal elements showed no signs of cutting, the antlers had numerous cut marks, not only from the separation of the antler from the skull, but also where the tine and beam met. A few fragments had definitely been worked; figure 43 shows an example from the dump under B1/2, in which a knife was used to carve a groove around a tine.

But if we are right that deer were important in sixth-century religion, what was their role? Several scholars have discussed the well known seventh- and sixth-century plastic handles and cordon-decorated vases from Segesta, Poggioreale, Entella, Naro, and Polizzello which seem to show people with horns. Leighton suggests that they “may cleverly combine curved and geometric motifs in such a way as to suggest faces and horned animals: perhaps an intentionally ambiguous personification of a divinity with both human and animal traits.” Figure 44 shows the most famous indigenous Sicilian vase painting, an oinochoe dating c. 600-550 BC found in a tomb at Polizzello in the 1920s. Some scholars believe that it shows a warrior in a mainland type of hat with a
wide brim, but putting it into the context of the other horned human representations and the Monte Polizzo faunal evidence, we suggest that it shows a dancing man wearing deer antlers. The cut marks on the finds are consistent with chopping antlers down to a size that could be used in this way, and the groove in figure 46 could be for attaching the antler to a headdress.

Reconstruction of ritual and belief from archaeological data is always a hazardous process, but bringing the various strands of evidence together, we suggest that the iconography celebrated an important moment in west Sicilian rituals, in which the boundaries between animals, men, and gods broke down. After butchering the deer carcasses, perhaps feasting on their meat nearby, burning the skulls and feet on the altars, and drinking wine, that the highpoint of the rituals may have come when some or all of the celebrants stepped into liminal positions between this and other worlds, at which point they literally walked with the god(s).

If we are correct in our interpretation of the rites at Monte Polizzo, religious practice here was quite different from mainstream Greek behavior. The only Greek cults
that seem to have any connection at all are those of Apollo and particularly Artemis, both deities associated with hunting. In the *Iliad* Artemis was *potnia theron*, “mistress of the animals,” and in the *Odyssey*

Artemis with her arrows striding down
from a high peak—Taygetos’ towering ridge or Erymanthos—
thrilled to race with the wild boar or bounding deer,
and nymphs of the hill race with her,
daughters of Zeus whose shield is storm and thunder,
ranging the hills in sport, and Leto’s heart exults
as head and shoulders over the rest her daughter shines,
unmistakable—she outshines them all, though all are lovely.

Figurines and other representations of deer are common in eighth- and seventh-century Greek sanctuaries, and 14 late archaic and classical offerings are known depicting deer with females, 10 of them from known sanctuaries of Artemis. Sixth- and fifth-century Athenian vase paintings used the bow and deer as visual cues for Artemis, and by the third century the pursuit of deer was her main association. A poem in the *Palatine Anthology* describes Lykormas hanging a deer’s hide and horns in a sanctuary of Artemis. Pausanias says that in Roman times, deer and gazelles (along with other animals) were thrown onto Artemis Laphria’s sacrificial bonfire at Patras, and most scholars assume that the Roman-era custom of offering her cakes shaped like deer was a substitution for offering real deer. But the most famous story goes back at least to the fifth century BC: after Agamemnon killed a stag in Artemis’ sacred grove at Aulis, the goddess demanded that he sacrifice his daughter Iphigenia before he could obtain favorable winds to sail to Troy, only to relent at the last moment and allow him to kill a doe in her place.

But despite the strength of the Greek literary tradition identifying Artemis with deer, deer-hunting, and deer-sacrifice, the archaeological evidence for this translating into the sacrifice of deer is very thin. The remains of two deer and a gazelle were found in Artemis’ sanctuary at Ephesus, and antlers (along with boars’ tusks) at Kalydon and
Lousoi. Red deer are more prominent in the sanctuary of Artemis and Apollo at Kalapodi, which has a remarkable record spanning nearly 2,000 years, beginning c. 1150 BC. Here red deer fluctuated between 9.0 percent of the total assemblage of identified mammal bones (c. 1050-950 BC) and 2.9 percent (c. 900-700). Red deer were always the most common wild animals. As table 4 shows, their prominence in the total mammal assemblage was primarily a function of the prominence of wild animals as a group, which sharply declined after 900 BC. Survey data and pollen diagrams suggest between 1150 and 900 BC population densities fell lower in mainland Greece than at any time since the early third millennium BC. The inverse relationship between wild animals and human population density, and the steady decline in the representation of red deer within the wild animal group as human population rose, suggests that the history of deer sacrifice at Kalapodi may have been driven as much by patterns in human demography as by ritual considerations. We badly need long-term patterns from other sanctuaries to compare with Kalapodi. Traces of deer have been found at the sanctuaries of Athena at Lindos and Tegea, Hera at Perachora, and Demeter at Knossos, also suggesting that in practice the link between deer and Artemis was not as strong as the literary sources imply.

None of the Artemis sanctuaries has such prominent deer remains as Monte Polizzo, and evidence for special emphasis on antlers is even less common. At Kalapodi, only 39 of the 757 red deer bones were antlers (5.2 percent). The excavators at Ephesus found a kind of goat-horn altar, paralleling literary accounts of such an altar to Artemis’ brother Apollo on Delos; and another horn altar was found in the seventh-century temple of an unidentified deity at Dreros. Tuchelt and Hägg suggest that characteristic parts of sacrificed animals, such as goat horn and deer antler, were preserved in sanctuaries as a kind of monument to piety, but all the excavated evidence in Greece comes from goat rather than deer.

The Monte Polizzo finds have certain similarities with Greek round cult buildings, and perhaps also with the worship of Artemis. But in both cases, the evidence for Greek practices is messier than the normative statements in the literary sources, and the clearest Greek evidence dates after the sixth century. Most discussions of Hellenization have gone on within what, in section 1, we called the traditional framework. This posited discrete, bounded, material cultures, directly linked to Elymian, Greek, or Sican identity.
But the evidence from the Aegean shows a wide range of behavior. There were central
tendencies, which allowed Greeks to identify themselves as distinct from Egyptians or
Persians, and to tell a cult of Artemis from one of Zeus, but these were constantly
recreated and renegotiated in practice. This has two consequences for archaeological
analysis. First, we must work from precise statistical summaries of the observed evidence
in different regions and times, not from sweeping normative generalizations based on late
literary sources. Without precision, it is hard to know what could possibly falsify any
particular theory about the transmission of Greek culture. Second, we must think about
contacts between Phoenician or Greek settlers and native Sicilians in terms of give-and-
take, with different individuals and groups trying to make sense of the situation, and in so
doing, sometimes creating wholly new situations:

whatever associations of place and culture may exist must be taken as problems for
anthropological research rather than the given ground one takes as the point of
departure; cultural generalizations (like ethnic and national ones) must be understood
as complex and contingent results of ongoing historical and political processes. It is
these processes, rather than pregiven cultural-territorial identities, that require
anthropological study.131

In our specific case, we know that Greek explorers and scholars liked to fit the peoples
they encountered in the west into their own mythological and genealogical systems.132
Sometimes Greek narratives had some basis in their subjects’ own stories of origins;
other times, not. They might also produce multiple tales, which could only be reconciled
through mythological gymnastics, as in the competing stories of Evander and Aeneas as
founders of Rome.133 The Roman evidence also shows that while some individuals and
groups in the western Mediterranean ignored what Greeks said about them, others found
it useful to locate themselves within broader intellectual frameworks generated by a
richer, more powerful people. In western Sicily, by the mid-fifth century Greeks probably
already generally agreed that the Elymians descended from Trojans.134 Whatever the west
Sicilians’ own ethnic categories might have been, a place in Hellenic genealogies could
appeal in some circumstances. By 262, the Segestans were comfortable enough with
Aeneas as an ancestor to cite shared kinship in treaty negotiations with Rome.135 We cannot know whether Segestans exploited Aeneas and Troy in forging alliances with Athens and Carthage in the late-fifth century, but it is certainly possible.

If superficial similarities between the rites at Monte Polizzo and the attributes that (from the late-sixth century on) Greek authors associated with Artemis and Apollo catch our attention, they surely had the same effect on archaic and classical Greeks who visited western Sicily. Given the chronological difficulties, the clear roots of the hut shrines in local housing traditions, and the difference between the Monte Polizzo bones and those from Aegean sanctuaries, we can safely conclude that west Sicilians did not simply copy Greek practices and ideas. But on the other hand, if—as de la Genière has argued for Segesta—female divinities were prominent in west Sicily,136 then visitors from the Aegean who saw natives drinking, sacrificing deer, emphasizing nature, and blurring the boundaries between humans, animals, and the divine, could easily have assumed that they must be worshipping Artemis, after their own colorful local fashion.137 And if Sicilians sometimes found it useful to agree with Greek genealogies, it might have been equally helpful to correlate their divinities with the Greeks’, and sometimes even to modify their rituals to accentuate this. It is at least a remarkable coincidence that when Cicero described how Rome returned various stolen treasures to Segesta after they sacked Carthage in 146 BC, the most prominent item was an ancient bronze statue of Diana, the Roman version of Artemis, which, he said, the Segestans revered above all else.138 Several scholars have argued from his description of the statue and images on Republican coins that it was cast around 500-480 BC.139 Perhaps by this time, just the moment when Monte Polizzo A1 went out of use, some of the worshippers may even have come to believe that their goddess was more or less the same as the Greeks’ Artemis.

\textit{Hellenization and state formation}

As figure 45 shows, Montagnoli and Polizzello had especially elaborate sanctuaries, which may have served as political centers or meeting-places for scattered communities. The “sedile di rappresentanze” in Montagnoli hut 7 is particularly suggestive, and Castellana sees Montagnoli “come luogo politico e religioso di un gruppo elitario appartenente a quelle popolazioni locali che vivevano in questa zona della basso bacino...
Figure 45 Plans of hut shrines, drawn to the same scale: (a) Polizzello, c. 650-500 BC (after De Miro 1999, plate 28.2); (b) Montagnoli, c. 750-500 BC (after Castellana 2000, plate 35); (c) Sabucina, c. 650-500 BC (fifth-century buildings omitted; after De Miro 1999, plate 42); (d) Caltabellotta, c. 550-500 BC (later buildings omitted; after Panvini 1988/1989, figure 5); (e) Colle Madore, c. 550-500 BC (restored, after Vassallo 1999c, figure 40); (d) Monte Polizzo, c. 550-475 BC (restored)
The main difference between these sites and humbler ones like Colle Madore and Monte Polizzo was the number of hut shrines, rather than their size or elaboration. If we are right to argue that sixth-century west Sicilians believed that the gods wanted shrines like the houses of the ancestors, then this would make it difficult to build very large versions. 10 m may have been the biggest diameter that was practical. But just as Monte Polizzo A1 was set up, around 550, people at some of the larger indigenous towns started erecting rectangular temples in styles that would have seemed strikingly familiar to Greek observers. The earliest securely dated example, an oikos-type example at Monte Iato (c. 550 BC), was just twice the size of the largest hut shrines. By 500 rectangular sacelli of this size or somewhat smaller (like the Caltabellotta example in figure 45d) were becoming common in interior Sicily. Most were small, like the 70 m² sacello C at Sabucina, but the vastly bigger contrada Mango temple at Segesta directly competed with the greatest temples at Selinous, Akragas, and Himera. In our previous report we suggested that the shift to Greek temple styles was part of the emergence of a wealthy ruling elite. Paying for these temples required resources far beyond what it took to build four hut shrines at Polizzello.

To get a sense of the disparity, let us return to the estimate that we made in our previous report (using figures recently proposed for the economics of Greek temples) that the contrada Mango temple cost about 100 talents, expressed in late-fifth century Athenian values. Even if we make a high estimate of Segesta’s population at 10,000, the cost per capita was about 60 drachmas. We know less about the cost of building houses in Greece than temples, but typical fourth-century houses with ground plans averaging about 240 m² and second floors may have cost about 3,000 drachmas. The Polizzello hut shrines were much simpler, but even guessing that they cost 1,000 drachmas each gives a total expenditure of the equivalent of two-thirds of a talent for the buildings on the Polizzello acropolis. This was far lower than the per capita cost of the contrada Mango temple; the only way to erase the difference between the two sites would be to imagine that Polizzello had a population of just 65-70, which is far too low. We can reduce the difference if we assume that the contrada Mango temple took much longer to build that the Polizzello hut shrines, but there is no way to avoid the conclusion that whoever organized the Segesta building program (and whether they paid
for it through indirect taxes on trade, direct taxes on land, or contributions of labor and materials in-kind) got more people to contribute more heavily than those who built even the grandest of the hut-shrine sanctuaries. If we assume that the population of Monte Polizzo was about 1,500, and the cost of A1 also about 1,000 drachmas, the per capita cost was merely two-thirds of a drachma (4 obols)—less than what it would take to feed a family of 4 for a day.

All the figures we proposed in the last paragraph are guesses, and probably none of them is accurate. But they are all in the right range, and by making high estimates for Segesta’s population and the cost of the hut shrines, if anything we understate the vast gulf that separated Segestan spending from the more traditional practices at Monte Polizzo. Any plausible estimates mean that the Segesta’s ability to spend on religion and compete with the tyrants of Selinous leapt by an order of magnitude in the late-sixth century. We cannot quantify the balance between higher extraction and a larger population base, but both probably came together in synoikism of the rural population. This would simultaneously explain both Segesta’s great spending power and another major phenomenon in Iron Age Sicily, the collapse of inland rural settlement in the fifth century.

In a very important paper, Stefano Vassallo identified the fall in numbers of sites after c. 475 as a turning point in Elymian and Sican history. He suggested that the battle of Himera destroyed a delicate balance between Greek, Phoenician, and Elymian power, triggering a demographic and economic crisis in the hilly interior. Noting that (a) the decline in inland sites begins c. 525 rather than c. 475, (b) such a massive population decline (the number of sites falls by 62 percent) seems implausible in fifth-century west Sicily, and (c) that far from declining, Segesta, Erice, Entella, and Halikyai were powerful cities in the fifth century, we suggested in our previous report that processes of synoikism rather like those occurring in eastern Sicily in the 480s and later lay behind this fall in site numbers. Relocation to a few larger centers may have reduced the total population, the area under cultivation, and aggregate economic output, but they would also have enormously increased the financial power of the indigenous ruling elites. This, we suggest, is why the Elymians could resist Greek power through the fifth century even though the battle of Himera left them without allies. In 416, Segesta’s reputation
for wealth convinced Athens to intervene; and in 410, its strategic location did the same for Carthage.152

The obvious test for this theory is whether archaeological evidence indicates population growth or decline after 475 in the major centers of Segesta, Entella, Erice, and Halikyai. Unfortunately, these settlements are poorly known. The fine medieval town at Erice largely destroyed or buried the Iron Age layers, and centuries of occupation at Entella had similar results. If Halikyai is at Salemi,153 the same may be true there. Northern Illinois University’s excavations since 2001 have found medieval deposits down to bedrock in most trenches. Only in one case did a substantial fourth-century BC level survive, with residual traces of sixth- or fifth-century activity.154 At Segesta, Monte Barbaro was probably the main settlement, but some parts are buried under 3 m+ of overburden, while later activity has destroyed others. The fortifications were built 500-450 BC,155 and the limited evidence available does suggest that the first substantial occupation was in the sixth century and continued through the fifth. However, much work remains to be done.

If we are right, there is a great irony here. Segesta’s elites embraced certain elements of Greek culture, and acted on the international scene with sufficient skill to hoodwink Athens and get the better of Selinous; but concentrating enough power to make this possible meant emptying most Elymian villages, which must have contributed to the simultaneous decline of indigenous material culture traditions and religious practices. Trapped between Segesta and (probably) Halikyai, communities like Monte Polizzo paid the price for this dramatic expansion of monumental display and piety. We might say that Segesta destroyed native culture to save it.

\textit{Pottery}

If the excavated part of the cult center in zone A would have looked quite old-fashioned by the early-fifth century,156 so too—as we noted in last season’s report—did the pottery in use. Only 10 percent of the fineware sherds from the phase II.c floor of B1/2 were Greek, and 16 percent of the fine vessels from phase II.b House I,157 as compared to 20-30 percent from houses at Monte Maranfusa contemporary with our phase II.b and 20-40 percent from a feasting deposit at Entella.158 We have only one black figure sherd out of
the hundreds of thousands of fineware fragments, and even that had been cut into a
gaming piece. All other published inland sites have yielded far more figured fragments.
The inhabitants of Monte Polizzo had access to a wide range of imported wines, and the
quantity of storage vessels suggests a wealthy town. We have to assume that lack of
desire, rather than isolation or poverty, caused the scarcity of imported finewares.

The indigenous wares also seem conservative. While the commonest finewares on
other inland sixth-century sites are matt-painted, which sometimes almost completely
replace incised and impressed pottery, at Monte Polizzo incised pots are commoner,
particularly standardized grayware jugs and bowls incised with 3 plain lines on the lip.
However, there are also significant variations between parts of the site. Building A1
seems to have unusually high concentrations of Greek cups, as do the phase II.c deposits
in L108, where 7 out of 13 identifiable vases are Greek imports, and an eighth is a
grayware imitation of an Ionic B1 cup. L108 also provides examples of very fine-walled
grayware carinated bowls without handles. These have a black slip, were made on a fast
wheel, and were decorated with highly standardized incised lines that create the effect of
ribbing (figure 46). These intrasite variations suggest that comparisons between small
samples from different sites may be problematic.

Figure 46 Art. 1732. “Buccheroid” bowl from trench L108, layer 7 (drawing K. Olsson)

One of the most interesting finds from Monte Polizzo, a *capeduncola* bowl from
House I with an anthropomorphic handle and suspension holes in the rim (figure 47),
may be another example of conservatism. Vessels of this type have rarely been found in
stratified contexts, but are conventionally dated on stylistic grounds to the ninth and
eighth centuries. This *capeduncola* was found outside House I, and its stratigraphic relationship to the house’s abandonment deposit (c. 550-525) is not completely clear. It may belong to an earlier phase, or a foundation deposit like Colle Madore Deposit A (see n. 86 above), but there is no positive evidence that it does. Most likely it is either an heirloom or an example of old ceramic styles staying in use at Monte Polizzo after they were abandoned elsewhere.

![Figure 47 House I *capeduncola* (after Mühlenbock and Prescott 2001, figure 6)](image)

The use of space

As we noted in our previous report, the Monte Polizzo houses are rectilinear, but other than that, have no particular resemblance to the varied house styles in the archaic Aegean or in Greek colonies in Sicily. But some archaeologists have suggested that sixth-century Sicilians started copying Greek-style orthogonal town plans. But comparing Aegean and Sicilian town planning raises the same kind of comparative problems as discussing house design: just as in the Aegean the courtyard house was intimately linked to powerful gender ideologies, Greek town planning was part of a larger bundle of ideas about egalitarianism. Further, as with pottery design or religious worship, there was no single Greek model in the sixth century: there was a trend toward uniform courtyard houses in grid plans, but variety between and within sites was high until the fifth century. Even if we determine that west Sicilians did adopt town planning in the sixth century, there will still be room for debate about its significance.
The complex topography at Monte Polizzo ruled out a single, town-wide grid plan, but it remains possible that smaller areas like zones B-C, D, and Portella Sant’ Anna had their own grids. Alternatively, individual house builders may have worked with the land in the specific spot they lived, with the result that houses on the slopes of the ridges ended up with the same orientation.

Figure 48 Orientations of buildings in zones B and C. (a) GT wall a (30°); (b) C1 wall b (42°); (c) B1 wall a (61°); (d) Tusa House (63°); (e) C2 wall a (64°); (f) J/K 112/113 wall a (138°)

The Great Trench has not produced decisive results. Structure C2 is aligned closely with B1/2 and the Tusa House, but B2, C1, the short stretch of Iron Age wall a in
GT section I, and the enclosure wall and perpendicular wall in J/K 112/113 are not (figure 48). However, since (i) C1 apparently burned down in phase II.a, before B1/2 and the Tusa House were built, (ii) we do not have enough evidence to date C2 or GT I wall within phase II, (iii) cannot yet be sure that B2 dates to phase II at all, and (iv) do not understand the relationship between the enclosure wall and the houses, it is hard to evaluate these results. As noted above, surface observations suggest that the enclosure wall continues for at least 70 m to the northwest, and there may have been axial walls running from it toward the top of the ridge (although, as figure 48 shows, none of the house walls is perpendicular to J/K 112/113 wall a). Documenting the enclosure and axial walls is a high priority for 2003, although we probably will not be able to tell without excavation whether the walls are Iron Age or medieval.

8.b) Phase III
The finds in 2002 added only a few details to our picture of fourth-century Monte Polizzo. The Punic stele found in 2001167 might mean that A3 was a shrine, but such stelai usually occur in large groups, and we have found no further examples. The rest of the phase III assemblage is consistent with finds that excavators at other sites have interpreted as Carthaginian lookout posts. Some archaeologists view the prominence of transport amphoras in these deposits as indicating a change in the Sicilian economy, toward supplying urban markets. As we noted in our previous report, the amphora sherds jump from 22 to 31 percent of the zone A assemblage between phases II and III.168 Dr. Pierfrancesco Vecchio’s initial study of this material suggests that the amphoras had very varied sources.

The discovery of nine bronze coins stands in sharp contrast to the phase II deposits. That the users of a single rural shelter would have dropped so many coins in a fifty-year period suggests a high level of monetization, perhaps appropriate if they were mercenary soldiers habitually buying food in markets. The five dice from phase III levels might mean that A3’s occupants whiled away some of their time gambling, which may, of course, be related to the coins.

8.c) Phase IV
We have consistently found medieval deposits south of row 106 on our grid, and only a few scattered sherds north of 106. This suggests that the medieval settlement was much smaller than the Iron Age town, and was confined to Monte Polizzo’s southernmost ridge.

We are not yet sure of the complete plan of medieval building B1. Walls aa and cc (figure 17) show that there were open areas north and south of B1/2, but we do not know whether B1 was a simple two-room structure measuring 16.4 x 4.1 m (external dimensions), or whether there were further rooms on the crest of the ridge to the south, perhaps around a courtyard. The quality of the finds (figures 24, 25, 34) does, though, suggest that our initial interpretation of B1/1 as an animal shelter was mistaken.169

The most interesting feature of the medieval settlement is the reuse of Iron Age walls and plans in B1/2, C2, and probably the Tusa House. The medieval reuse of Roman sarcophagi and architectural elements from Greco-Roman monuments has attracted some attention,170 but we know of no discussion of the systematic rebuilding of ancient houses.

9. Conclusion

Occupation at Monte Polizzo spanned three and a half millennia. Phase I (Bronze Age) remains obscure, but a few sherds have turned up in every excavated area. In phase II (c. 575-475 BC) Monte Polizzo flourished, with probably 1,500-2,000 residents. The 2002 season produced important new evidence about indigenous religion, and strengthened the picture of Monte Polizzo as more resistant to Greek culture and practices than its neighbors (particularly Segesta). The latest results also underscore the need for quantified and fully published data from several parts of the same site, and for more sophisticated sociological frameworks than either the old Hellenization model or the recent postcolonial challenges. They also show that we need a broad regional approach, setting Monte Polizzo into the context of nearby ninth-/eighth-century settlements, like Monte Finestrelle, and particularly of Segesta, which went from being a regional to a Mediterranean power in the fifth century.

In phase III (c. 350-300 BC) the only known occupation was a tiny shelter at the top of the hill. Phase IV (c. AD 950-1200) saw a new village established on the southern
ridge, most likely by Moslem immigrants from North Africa. This was much smaller than the phase II settlement. Finally, in phase V (c. AD 1950-2002) the site was reused seasonally (for forestry, rabbit hunting, and archaeology), but not permanently resettled.

Seen in the long-term, Monte Polizzo was a second-rank location in the landscape of western Sicily. In periods when population was high and hilltop residence favored (e.g., sixth century BC, tenth through twelfth century AD), it was settled. In periods when population was high but lowland sites were preferred (e.g., most of the Roman Empire, nineteenth—twentieth century AD), or when upland sites were preferred but population was low (e.g., late medieval), it was not permanently settled. Whether because of problems with water supply, access to good land, or strategic considerations, Monte Polizzo has been a less desirable location than Segesta or Salemi, which have been occupied across much more of the last 3500 years.

The excavation will continue in 2003, focusing on zone A.
Appendix 1
Preliminary faunal report on the acropolis of Monte Polizzo, 2002
Tara Hnatiuk

The faunal assemblage is drawn from the layers associated with the sixth-century BC occupation of the acropolis. This report focuses on the animal bones retrieved during the 2001 and 2002 excavations in zones A and B. The bone for this report was hand-collected, with occupation layers dry-sieved through a 5-mm mesh.

The faunal assemblage was identified in the field using the author’s own portfolio and a small reference collection. Those bones that could not be identified in the field were identified in the lab with the help of the University of Southampton reference collection. Ovis and capra distinctions were made when possible using Boessneck and Rowley-Conway. Tooth wear and fusion tables developed by Silver, Habermehl, and Prude were used in establishing age at death. Where possible all bones were measured according to the definitions outlined by von den Driesch, except in the cases where Payne and Bull or Rowley-Conwy define alternative measurements. Elements were identified to genus, family, or size classes when appropriate. Ribs, vertebrae, and temporal skull pieces were identified down to size class only. Each element was recorded following Serjeantson along with the type and location of cut marks and burning. A five-point zone system was developed following Serjeantson for the recording of antler fragments. Zone 1 is defined as base and skull attachment area. Zone 2 is defined by the presence of a tine attached to a section of beam. Zone 3 is defined as a mid shaft section of a beam. Zone 4 is a mid-shaft section of tine. Zone 5 is the presence of a tip of tine. In order for a zone to be marked as present 50 percent or more must be present. Figure 52 illustrates the location of the zones as defined above.

Recording of the assemblage was done straight into a Microsoft Access 2000 database. The database is stored on a zip disk with the author. Stanford University also holds a copy of the database on a CD-ROM.

The faunal assemblage studied so far consists of 30,579 fragments of bone. 8,486 fragments of bone were identified as belonging to domestic mammals (bos, ovis/capra, and sus), wild mammals (cervus elaphus, felis, lepus, lupus, and vulpes), rodents, aves
Domestic mammals represent 15.4 percent of the fragments identified in the assemblage. Wild mammals are the most common fragments found, at 51 percent. Aves, chondrichthyes and osteichthyes, rodent, and testudindiae account for less than 1 percent of the identified fragments. Fragments attributed only to size class account for the remaining 24.5 percent.

Evidence of burning appears in 2,089 fragments of bone, with 248 fragments identifiable down to element. Six color categories were observed on the burnt bone: white, blue-white, black, blue-black, black, black-brown, and brown. The first four color categories indicate that the bone was exposed to temperatures over 400° C and exposed to direct flame. Most of the identifiable elements showed only slight burning, indicating a correlation between the degree of burning and identification. The color categories of white, and blue-white account for just 17 identifiable fragments out of 1,072, while the categories of black-brown and brown account for 76 identifiable out of 176. The most common elements identified were antler, teeth, and long bones. Antler accounts for 137 fragments of the identifiable bone. The color categories indicate that antler and teeth were exposed to direct fire or coals. Antler was burnt to the color category black 50 percent of the time, with tooth dentine also burnt to varying degrees of black. Among the burnt teeth three tooth buds of a fetal sus were identified, burnt to a blue white color.

Bos

The bos identified in the assemblage is domestic and matches best with the bos taurus found in the reference collection at the University of Southampton. 213 fragments were identified as belong to bos (MNI = 3; 2 adults and 1 calf). Most of the teeth identified were loose and could not be used to establish an age profile. Fusion tables indicate that most of the bos survived into adult life. The presence of juvenile and or newborn calves indicates that young bos were present on site either because of trade or were being raised as part of a herd.
Ovis/capra
Due to the extreme difficulty in determining ovis from capra morphologically, ovis and capra will be considered as one category. Capra was identified in 9 elements, but the exact ratio of capra to ovis cannot be known. 508 fragments were identified as ovis/capra (MNI = 6; 5 adults, 1 kid). Teeth could not be used to establish an age profile because most of the teeth found were loose. The fusion tables indicate that most of the ovis/capra survived their first year of life.

Sus
The measurements of the sus bones all fall within the middle range of the domestic sus used by Payne and Bull (1988). All sus will therefore be considered domestic. 260 fragments were identified (MNI = 4). The tooth-wear ages and fusion tables indicate that most did not survive until 17 months of age. This suggests that most sus were raised on site for food. Recent faunal reports from Greek sites indicate that young pigs were used in sacrifice.178

Cervus elaphus
Cervus elaphus was identified through antler remains and comparison with the University of Southampton reference collection. 5,347 fragments were identified (MNI = 7). Antler is the most common element identified, with 5,141 fragments. Chop marks found around the antler/skull attachment area and the fusion ages for phalanx I and II indicates that the majority of the hunting occurred during the autumn.179

Equus
The equus found on site is the size of the donkey in the University of Southampton reference collection. 14 fragments were identified (MNI = 2; 1 adult and 1 foal).

Trends in the data
Zone A was used for religious purposes and zone B probably for both domestic and religious purposes (see above). Thus it is hard to draw any conclusions from the age
profiles of the domestic animals about husbandry practice and domestic food consumption. The anatomical units of the foot and head dominate the assemblages so far uncovered in zone A and B. The lower and upper limb bones are under-represented.

Burning occurred in Zone A and appears to be confined to the trenches that contain altars and ash pits. The bone that has emerged from these contexts is highly fragmented, and burned to a high degree of calcification. The elements that have been identified with burning are associated with the head and foot. Some fragments of long bone have also been identified, but due to the high degree of fragmentation from burning it is not possible to determine which long bones are represented. This suggests that most of the bones were exposed to direct fire and that elements with less meat were burnt on the altars.

Antler appears to be concentrated in four different trenches of the site: M/N101, N100, B1/2, and M108. B1/2 contains 67 percent of all antler found on the site. 83 antler fragments contain chop and or cut marks. The chop marks are confined to the base/skull attachment area and the beam sections of antler. The cut marks are mostly found at the end of fragments of tine. This suggests that the antler was attached to the skull of the deer and not picked up off the ground. Most of the cut marks found at the edge of the fragments of the smaller sections of the antler, i.e., the tine, suggesting that the antler may have been worked into objects. Antler was among the burnt elements identified in from the altars in zone A. This may indicate that antler had been worked, and had a religious function.
Appendix 2

Pilot study and report on the micromorphology of sediments from Monte Polizzo, NW Sicily.

Wendy Matthews, Department of Archaeology, University of Reading

Two small block samples of sediment from Monte Polizzo were impregnated with resin and manufactured in the Postgraduate Research Institute for Sedimentology, The University of Reading, in order to test the preparation method and sediment response, and to conduct a pilot study on the nature and preservation of micromorphological features. These samples were selected as representative examples of the widest variation in sediments sampled at the site, comprising sediment rich samples close to the surface (Sample 3, Trench N100, north of altar A2), and ashy deposits, more deeply buried (Sample 11, B1/2, layer 15).

A new and effective method for thin-section preparation was developed in the PRIS geological thin-section laboratory for impregnation of unconsolidated samples, using araldite resin introduced under vacuum. The thin sections are 10 x 7 cm in size. The remaining 11 samples will be manufactured following either this method, or trials that are currently underway at Royal Holloway.

Sample 3, Microstratigraphic Profile 3. Trench N100, TS 74390, north of A2.

This sample was collected to establish whether the pottery layer and interstitial sediments were derived from destruction debris, or whether they had been dumped and re-deposited in this locality. The sample was collected from an extant east-facing stratigraphic profile, less than one meter north of the altar. The pottery sherds were so dense that it was only just possible to extract a small block of sediment 9 x 6 cm from between several abutting sherds. Many, but not all, of the sherds were lying parallel to the surface.

Origin
The sediments comprise a dark brown silty clay with:
- abundant sand-size quartz (<0.3-0.5mm) (figure 50)
- a range of sedimentary carbonate rock types (figure 50), including rocks with abundant fossilized foraminiferae
- sparse shell fragments, often <1mm (figure 50)
- sparse non-burnt bone <2mm

There are virtually no microscopic charred plant remains, phytoliths, ashes, burnt aggregates, or any other anthropogenic debris, suggesting that these deposits include little occupation debris, other than pottery sherds.

Figure 50 Sample 3 (N100): Brown silty clay with abundant sand-size quartz (pale gray), some carbonate rock fragments (gray sparkly), and sparse shell (linear). Cross-polarized light (XPL) x25. Height of field of view = 4.6 mm (photo W. Matthews)
Deposition
The sediments and inclusions are unoriented and randomly distributed, with no discernible bedding/layering. This may in part be due to post-depositional reworking.

Post-depositional alterations
These sediments lie close to the surface of the ground, and have been subject to bioturbation and reworking. Post-depositional alterations include abundant channels and chambers, some of which have traces of modern root fragments.

Interpretation
Although there are no obvious building material aggregates, these sediments are almost entirely mineral in origin and may derive from eroded and reworked mortar/mud brick. In order to establish their origin, more securely, these sediments will be compared to other samples from mortar, natural sediments and building infill.

This intact sample of ash was collected in order to investigate whether the pottery, antler, and bone fragments had been deposited as secondary refuse, and to study the range of plant remains present in an ash-rich sample.

Origin
In thin-section the deposits comprise irregular heterogeneous aggregates < c. 2 cm in size of:
• calcitic plant ash (figures 51 and 52), charred plant remains, including oak
• burnt aggregates of sediment (figure 53)
• non-burnt sediments, some of which may be from mortar/mud brick, pending comparative analysis (figure 53)
• swept and rounded aggregates of anthropogenic debris, including a pot sliver embedded in yellowish ashes
• carbonate rock fragments
• sparse fragments of shell
• moderately burnt and non-burnt bone
• sparse pottery fragments, less than 2 mm. One fragment (figure 51) has mineral coatings on the finished surface. The outer, brown coating, may have formed during use, rather than after deposition, as it is not present on the broken surfaces of this fragment. This and two other coatings prized from the surface of two pottery sherds by the conservator, will be examined using SEM EDX in order to establish their morphology and elemental composition. These indurate coatings have posed considerable problems during conservation as they are difficult to remove.

Figure 51 Sample 11 (B1/2, layer 15): layer of calcitic plant ash (pale gray and pale brown) and melted plant silica (translucent), which includes a small pottery sherd fragment (brown) with mineral coatings on surface (yellow and brown). PPL x200. Width of field of view = 0.55 mm (photo W. Matthews)

The abundance of charred plant remains in the irregular aggregates and “pockets”/areas of ash and plant remains varies. Some aggregates or pockets have abundant charred plant remains, present as a) deciduous wood fragments, some of which is oak and up to 16 mm
in size in thin-section, or b) more finely dispersed and fragmented remains in dark ashes. In these instances, where charred plant remains are abundant, original burning temperatures are likely to have been \(<400^\circ\) C.\(^{180}\)

Other aggregates and “pockets” have few charred plant remains, and almost entirely comprise pale gray calcitic ashes, burnt at higher temperatures in more oxidizing conditions.\(^{181}\) The presence of melted plant silica in some pockets (figure 51) suggests burning temperatures at the point of origin in some areas, exceeded 800\(^\circ\) C.\(^{182}\) The preservation of some delicate plant structures and articulated cells, including plant parenchyma (figure 52), suggests these deposits have not been subject to extensive disturbance, and were probably only re-deposited once after rake-out. Plant parenchyma often lacks diagnostic characters, and is difficult to identify. The remarkable preservation of this and other ash remains, however, suggests that it will be possible to identify plant parts with more diagnostic characters in other samples.

Figure 52 Sample 11 (B1/2, layer 15): well preserved plant parenchyma as calcitic ashes (gray-grayish brown) and siliceous remains of cell walls. PPL x200. Width of field of view = 0.55 mm (photo W. Matthews)
Within any single *in situ* fire and burning cycle, there may be a range of burning horizons and variations in temperature, oxidation, and moisture, which will produce different residues and types of burnt deposits, similar to those observed here.\(^{183}\)

The contrasting presence of burnt and non-burnt aggregates (figure 53), and sediment and plant rich aggregates, suggests that these deposits derive from a range of different sources. The burnt and non-burnt mineral rich aggregates will be compared to samples of natural sediment, mortar, and building infill, to aid determination of source. None of these aggregates include characteristic impressions of chaff and straw, from vegetal remains added as stabilizes to mud brick.\(^{184}\) The presence and abundance of chaff and straw in building materials may vary according to economic status or ecological practice,\(^ {185}\) and availability, as these plant materials are also traditionally used for animal fodder and fuel. Abundant chaff and straw was present in the fired ceramic tiles of medieval building B1.

![Figure 53](image)

Figure 53 Sample 11 (B1/2, layer 15): burnt (brown) and non-burnt (yellow) mineral aggregates. PPL x25. Width of field of view = 4.6 mm (photo W. Matthews)
Deposition
The heterogeneous aggregates and interstitial “pockets” of ash and sediment rich deposits are unoriented and randomly distributed, suggesting these deposits have been dumped/discarded from elsewhere.

Post-depositional alterations include some modern roots and channels and chambers from bioturbation, and secondary development of crystalline pedofeatures (?sparite/micrite), which will be investigated further, and will have implications for post-burial environment and taphonomic processes.

Interpretation
These deposits derive from a variety of burnt and non-burnt materials, and include aggregates of well-preserved ash; charred plant remains, including oak; and sediment-rich materials. Some aggregates are rounded from sweeping. Fragments of pottery and bone, are present at both micro- and macro-scales of observation. Some of the bone has been moderately burnt. The unoriented random distribution of all components suggest these deposits have been dumped/discarded from elsewhere, although the preservation of some of the plant structures within the ash, suggest it may have been discarded from the place of burning, with minimal disturbance, suggesting an origin not far away.

Discussion
Samples 3 and 11 are both from deposits with abundant large sherds of pottery. The origin of the interstitial sediment, however, is markedly different. Deposits next to altar A2 in trench N100 are almost entirely mineral in origin. Deposits under B1/2 include a mixture of aggregates and deposits rich in either ash, charred plant remains, or sediment.

Neither sample has many plant phytoliths from grasses/reeds, nor calcareous spherulites from dung. This absence may be due to the predominantly mineral origin of deposits in Sample 3, and the comparatively high burning temperatures represented by some of the deposits in Sample 11, which will have altered these materials. If they are absent in all samples, we will investigate whether this may relate to ecological practices or to taphonomic processes.
Appendix 3186

Preliminary report on the first analysis of macrobotanical remains from Monte Polizzo
Hans-Peter Stika, Institute of Botany, University of Hohenheim, D-70593, Stuttgart
stika@uni-hohenheim.de

Introduction
In Sicily, archaeobotanical research is in its infancy. There is a real paucity of excavations that have implemented new techniques for recovering macrobotanical remains. Indirect evidence for food production has given only a partial picture of past plant use. For example, in the Iron Age, lava grindstones were traded widely and new implements were introduced that resemble hoes and pruning hooks. The scant archaeobotanical evidence is available, mostly of grain impressions on baked clay. Barley is documented in the early colonial periods and seems to have been cultivated widely in the Late Bronze and Iron Ages. Evidence for cultivation of grapes and olives is scarce. At present drinking and storage vessels still give an incomplete view of the production of these items. Wine and probably olive oil were quickly becoming important commodities at this time. From written sources we get some information on Greek agriculture, but this information is not very specific. We know even less of the agriculture of the indigenous population in western Sicily.

The excavated site
Monte Polizzo is surrounded by a landscape with deep and fertile soils and some springs at its foot. Today fields of wheat and barley and vineyards dominate the rural scenery. While the summers are hot and dry, during winter precipitation is extensive, especially in these high mountain slopes, the most westerly ones in Sicily. The Iron Age deposits at Monte Polizzo are covered with sediments and no architectural remains can be seen without excavations.

The archaeobotanical samples
During the first campaign on Monte Polizzo in 1998, Kristina Kelertas-Boving (University of Rhode Island) began archaeobotanical work, developing a sampling
strategy for macroremains, building a flotation machine, and taking the first samples. Hans-Peter Stika continued the archaeobotanical research since 1999. Kari Loe Hjelle (University of Bergen) and Chad Heizel (Northern Illinois University) carried out palynological investigations. These projects will be published separately.

Due to the inaccessibility of Monte Polizzo, technical conditions for macroremain investigations are difficult. There is no water supply and no driveable road directly to the excavation. All the heavy sediment samples have to be carried down the steep slope by hand. As the excavation takes place in summertime, water runs short even in the town of Salemi, where the excavation camp is set up. In 2000 and 2001 a local fountain supplied the flotation machine, but in the drought of 2002 this was no longer available. With the help of Professors Sebastiano Tusa and Dieter Mertens we found another solution and got permission to use a permanent spring in the Demeter Malophoros sanctuary in the Archaeological Park of Selinunte.

So far, more than 100 samples have been floated from the Scandinavian excavations at House 1 and the Profile, and 5 samples from the Italian excavation at Portella Sant’Anna. During the Stanford excavation campaigns in 2001 and 2002 more than 100 samples were collected. For further investigations only the light fractions were taken to the laboratory at Hohenheim University in Stuttgart, Germany. The archaeological finds in the heavy fractions were sorted during the flotation work and found their way back to the artifact analyses in the Salemi archaeological laboratory.

The light fractions consist mainly of modern plant material (mainly roots) and zoological remains, but also contain carbonized plant remains deriving from the archaeological layers themselves. The charred material was sorted under a binocular microscope (10-50x magnification). With the help of reference collections and taxonomic literature determined the botanical macroremains. Depending on the stage of preservation and the quality of diagnostics, we can even arrive at the level of plant species. These results are compared to recent vegetation data and information on archaeobotanical finds from other excavations.
First results

For the preliminary report 24 samples from the acropolis area were analyzed. Table 6 shows the results. The find density in all four areas is very low, ranging from 0.1 to 0.4 finds of macroremains (seeds/fruits/chaff) per liter of analysed sediment. The list displays samples according to the area they are derived from. Only very few grains of cereals were found, among which barley (*Hordeum vulgare*) was identified. Unsymmetrical grains covered with glumes indicate a six-rowed hulled barley form. One grain from a free-threshing wheat species (*Triticum aestivum* s.l. or *T. durum* / *T. turgidum*) has a rather globular form, which might indicate club wheat (*Triticum compactum*), a close relative to common wheat (*Triticum aestivum* s. str.). Most of the grains and grain fragments are badly preserved and they are listed as “Cerealia Indeterminata.” Additionally, remains of other cultivated plants were found on the acropolis. One seed attributed to undeterminable cultivated pulses (*Fabaceae cultae Indeterminata*) was sorted out as well as seeds and a fruit stalk of fig (*Ficus carica*) and a grape seed (*Vitis vinifera*).

Without glumes and rachis bases, separate grains of oat (*Avena* sp.) cannot be determined to the level of species. Hints for cultivated oat in archaeological contexts are rare and occur in later periods. Oat started as weedy types that infested wheat and barley cultivation and later became a secondary crop.\(^{188}\) Particularly since the Middle Ages, common oats have been an important crop in humid areas. It is not likely that oats were cultivated on sixth-century Mediterranean sites.\(^{189}\) In the Monte Polizzo samples, oats were probably weeds in crop fields or wild plants from habitats other than arable land. Other grasses as *Aegilops*, *Bromus*, *Lolium cf. temulentum*, *Lolium cf. remotum* and *Phalaris* were probably weeds too. The other wild plants like *Scorpiurus muricatus*, *Sherardia arvensis*, *Centaurea*, *Malva*, *Plantago*, and *Rumex* are also mainly of rural or vegetal origin, growing in fields or in settlements. Most of the weeds seem to have been dragged into the sampled layers together with harvested crops, but some wild plants may have grown inside the settlement.

The plant list also includes five samples from the Profile on the northern slope excavated by the Scandinavian teams on the northern slope of the acropolis (see figure 3). The find density in the thick garbage layers is much higher than in the layers around the ancient houses. Barley is dominant, and free-threshing wheat (common, club, or hard
wheat) is subdominant, as well as emmer (*Triticum dicoccum*), a hulled wheat species. These species are represented not only by grain but also by chaff remains. The chaff residues (glume bases and rachis fragments) show additional diagnostics for determination. The rachis fragments from free-threshing wheat display characteristics of common and club wheat (*Triticum aestivum* s.l.). The chaff is additional evidence for hulled barley and emmer. In the Profile horse bean (*Vicia faba*) and linseed (*Linum usitatissimum*) were found. An entire carbonized fruit stone was found, puffed and deformed. It might be a sort of cherry (*Cerasus* sp.) or another *Prunus* species.

The wild plant remains from the midden layer are mainly identified as grains from the weedy grasses of *Phalaris* (220 grains) and *Lolium cf. temulentum* (56 grains).

The acropolis samples as well as the Profile deposits contain plant remains which might have derived from crop processing. After harvesting the crops, the grains had to be separated from chaff and cleaned from weeds before consumption. So far, no storage samples have been found at Monte Polizzo. At the moment there is too little information to decide if there are statistical differences in the composition of finds in different layers, and excavated areas. The few finds of cereal chaff, linseed capsule fragments, and weeds growing in crop fields give hints that crop processing took place within the Elymian town, which points to a rural component.

Prospects

The number of unanalysed samples and forthcoming campaigns in different areas of Monte Polizzo promise to increase our archaeobotanical information. We surely will enlarge the list of plant species. With more samples, chronological and spatial analyses will be possible. Charcoal analyses are planned to compare the altar area on top of the mountain with living areas on the slopes. Was there any difference in common and sacrificial use of firewood and timberwork? What results come from botanical macroremains in comparison to palynological information?

As mentioned above barley was common in Sicily and southern Italy, but there are few investigated sites. The first results of Monte Polizzo show that free-threshing wheat (probably common- and/or club wheat) and emmer were important as well as barley. It will be interesting to learn if this is a common tendency in Sicily or
characteristic of Elymian agriculture. We have not yet worked out the full spectrum of plants cultivated and gathered in sixth-century Monte Polizzo. Pulses in particular are underrepresented, as well as other cultivated crops besides cereals. So far finds of grapevine and fig are rare, and olive stones (Olea europaea) are totally absent.

The importance of the Mediterranean fruit-tree cultivation in archaic Greece is well known. For example, the Kalabaktepe excavation at Miletus produced far more fig, olive, and grape remains than cereals and pulses.\(^{191}\) In Miletus, almond (Amygdalus communis) and pomegranate (Punica granatum) were also found. There the fruit trees provided a huge contribution to the human food supply, whereas at Monte Polizzo cereals seem to be of higher importance.

To reconstruct the land use systems of different societies in Sicily we need much more information. Fortunately, in Selinunte excavations are going on in the sixth- and fifth-century levels in the Manuzza area. In this quarter, houses with altars and wells are being sampled for archaeobotanical investigations. The analysis of botanical macroremains at Selinunte and Monte Polizzo are closely connected, using the same flotation machine in Selinunte Archaeological Park, and are comparing finds from both sites during the joint laboratory work in Germany. The first results from a few samples from Selinunte display the same cereals: hulled six-rowed barley (Hordeum vulgare), emmer (Triticum dicoccum), and free-threshing wheat (Triticum aestivum s.l./durum s.l.).\(^{192}\) Pulses are represented to the present state of investigations in Selinunte only by bitter vetch (Vicia ervilia). Beside grape seeds (Vitis vinifera), fragments of olive stones (Olea europaea) have been found. Weed remains of Avena, Lolium cf. temulentum and Phalaris are the same as in the Monte Polizzo samples, but other finds, like Chrysanthemum cf. segetum and Medicago species, are missing from Monte Polizzo so far. A very exceptional find was made in Selinunte in the head of a terra-cotta figurine (unpubl. data), which was filled with well preserved carbonized grains of free-threshing wheat (Triticum aestivum / durum). Comparing the final archaeobotanical results from both sites will be particularly interesting.
Table 1. Non-ceramic small finds per 10 m², phase II only

<table>
<thead>
<tr>
<th></th>
<th>Bronze</th>
<th>Iron</th>
<th>Worked Bone</th>
<th>Worked Stone</th>
<th>Glass</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 area¹</td>
<td>2.6</td>
<td>2.7</td>
<td>1.1</td>
<td>0.6</td>
<td>0.1</td>
<td>71</td>
</tr>
<tr>
<td>Zone B²</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>C1³</td>
<td>2.5</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Zone D</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

¹ Defined as trenches L-N 99-100, but excluding structure A5, which is not securely dated.
² Trenches L106-108, M108, L/M109, and B1/2. Only a very small area of phase II accumulations was found under B1/1 (east end of trench M107), and there are no intact layers of phase II in N-O 105-106. We have not reached intact phase II deposits yet in the west part of M106-107 or N107-108.
³ N/O113/114 and O113.

Table 2 Zone A bones (3,649 identifiable fragments)

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>157</td>
<td>248</td>
<td>415</td>
<td>4.3-11.8</td>
</tr>
<tr>
<td>Sheep/goat</td>
<td>441</td>
<td>1053</td>
<td>1494</td>
<td>11.3-42.5</td>
</tr>
<tr>
<td>Pig</td>
<td>208</td>
<td>0</td>
<td>208</td>
<td>6.0</td>
</tr>
<tr>
<td>Red deer</td>
<td>1367</td>
<td>0</td>
<td>1367</td>
<td>39.7</td>
</tr>
<tr>
<td>Total</td>
<td>2143</td>
<td>1301</td>
<td>2143-3444</td>
<td>58.8-100.0</td>
</tr>
</tbody>
</table>

Table 3 Zone B bones (4,835 identifiable fragments)

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>56</td>
<td>256</td>
<td>312</td>
<td>1.2-6.6</td>
</tr>
<tr>
<td>Sheep/goat</td>
<td>98</td>
<td>274</td>
<td>372</td>
<td>2.0-7.9</td>
</tr>
<tr>
<td>Pig</td>
<td>52</td>
<td>0</td>
<td>52</td>
<td>1.1</td>
</tr>
<tr>
<td>Red deer</td>
<td>3980</td>
<td>0</td>
<td>3980</td>
<td>84.4</td>
</tr>
<tr>
<td>Total</td>
<td>4186</td>
<td>530</td>
<td>4186-4716</td>
<td>88.7-99.9</td>
</tr>
</tbody>
</table>
Table 4 Red deer bones from Kalapodi

<table>
<thead>
<tr>
<th></th>
<th>c. 1150-1050 BC</th>
<th>c. 1050-900 BC</th>
<th>c. 900-700 BC</th>
<th>c. 700-300 BC</th>
<th>c. 300 BC-AD1450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red deer</td>
<td>443</td>
<td>65</td>
<td>25</td>
<td>88</td>
<td>38</td>
</tr>
<tr>
<td>Total wild</td>
<td>547</td>
<td>80</td>
<td>33</td>
<td>139</td>
<td>99</td>
</tr>
<tr>
<td>Total mammals</td>
<td>6506</td>
<td>723</td>
<td>851</td>
<td>2228</td>
<td>1202</td>
</tr>
<tr>
<td>Wild as percentage of total mammals</td>
<td>8.4</td>
<td>11.1</td>
<td>3.9</td>
<td>6.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Deer as percentage of total mammals</td>
<td>6.8</td>
<td>9.0</td>
<td>2.9</td>
<td>3.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Deer as percentage of wild mammals</td>
<td>82.8</td>
<td>83.3</td>
<td>75.8</td>
<td>64.2</td>
<td>55.1</td>
</tr>
</tbody>
</table>

Source: Stanzel 1991, Tables 1-3, 34

Table 5 Identified species and minimum number of individuals, zones A and B

<table>
<thead>
<tr>
<th>NISP</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Mammals</td>
<td>981</td>
</tr>
<tr>
<td>Bos</td>
<td>213</td>
</tr>
<tr>
<td>Ovis/Capra</td>
<td>508</td>
</tr>
<tr>
<td>Sus</td>
<td>260</td>
</tr>
<tr>
<td>Wild Mammals</td>
<td>5402</td>
</tr>
<tr>
<td>Cervus elaphus</td>
<td>5347</td>
</tr>
<tr>
<td>Equus</td>
<td>14</td>
</tr>
<tr>
<td>Felis</td>
<td>12</td>
</tr>
<tr>
<td>Small dog or Fox</td>
<td>15</td>
</tr>
<tr>
<td>Lepus</td>
<td>10</td>
</tr>
<tr>
<td>Lupus</td>
<td>4</td>
</tr>
<tr>
<td>Aves</td>
<td>11</td>
</tr>
<tr>
<td>Chondrichthyes</td>
<td>1</td>
</tr>
<tr>
<td>Osteichthyes</td>
<td>1</td>
</tr>
<tr>
<td>Rodent</td>
<td>2</td>
</tr>
<tr>
<td>Testudindiae</td>
<td>1</td>
</tr>
<tr>
<td>Size Class</td>
<td>2102</td>
</tr>
<tr>
<td>Cow Size</td>
<td>504</td>
</tr>
<tr>
<td>Sheep Size</td>
<td>1329</td>
</tr>
<tr>
<td>Small mammal size</td>
<td>269</td>
</tr>
</tbody>
</table>
Preliminary Results

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Total</th>
<th>Acropolis</th>
<th>Acropolis</th>
<th>Acropolis</th>
<th>Acropolis</th>
<th>Acropolis</th>
<th>Midden layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of samples</td>
<td>29</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Vol. (l)</td>
<td>299</td>
<td>67</td>
<td>121</td>
<td>10</td>
<td>29</td>
<td>22</td>
<td>50</td>
</tr>
</tbody>
</table>

Cereals

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Column</th>
<th>Acropolis</th>
<th>Midden layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordeum vulgare</td>
<td>grain</td>
<td>61</td>
<td>58</td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>grain frag.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>rachis frag.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Triticum aestivum/durum</td>
<td>grain</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>T. aestivum/durum, aestivum-type</td>
<td>rachis frag.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Triticum dicoccum</td>
<td>grain</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Triticum dicoccum</td>
<td>chaff</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>T. monoc. / dicoccum</td>
<td>grain</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Triticum sp.</td>
<td>grain</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Cerealia Indet.</td>
<td>grain</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Cerealia Indet.</td>
<td>grain frag.</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Other cultivated plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>Column</th>
<th>Acropolis</th>
<th>Midden layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficus carica</td>
<td>seed</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>min.</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Linum usitatissimum</td>
<td>seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Linum usitatissimum</td>
<td>caps. frag.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Vicia faba</td>
<td>seed</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Vicia faba</td>
<td>seed frag.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>seed</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Stone-fruits, possibly cherry</td>
<td>fruit</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Wild Plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>Column</th>
<th>Acropolis</th>
<th>Midden layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species/Group</td>
<td>Type</td>
<td>Count</td>
<td>1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>cf. Aegilops sp.</td>
<td>grain</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ajuga sp. / Teucrium sp.</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Avena sp.</td>
<td>grain</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Brassicaceae Indet.</td>
<td>fruit/seed</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bromus sp.</td>
<td>grain</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carex sp. bicarpellat</td>
<td>fruit/seed</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carex muricata-type</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Centaurea sp.</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cyperaceae Indet.</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fabaceae Indet.</td>
<td>fruit/seed</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Lamiaceae Indet.</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lolium cf. temulentum</td>
<td>grain</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>Lolium cf. remotum</td>
<td>grain</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Malva sp.</td>
<td>fruit/seed</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Phalaris sp.</td>
<td>grain</td>
<td>224</td>
<td>1</td>
</tr>
<tr>
<td>Plantago sp.</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Poaceae Indet.</td>
<td>grain</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Poaceae Indet.</td>
<td>grain</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Poaceae Indet.</td>
<td>awn frag.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rumex sp.</td>
<td>fruit/seed</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Scorpiurus muricatus</td>
<td>fruit/seed</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sherardia arvensis</td>
<td>fruit/seed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cereals, total</td>
<td></td>
<td>329</td>
<td>2</td>
</tr>
<tr>
<td>Other cultivated plants, total</td>
<td></td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Wild plants, total</td>
<td></td>
<td>347</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>709</td>
<td>10</td>
</tr>
<tr>
<td>Find-density (remains per litre)</td>
<td></td>
<td>2.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
REFERENCES

Boardman, J., et al., eds., *Lexicon Iconographicum Mythologiae Classicae* (Zurich and Munich 1981-).

———, “L’organizzazione abitativa e dello spazio nei centri indigeni delle valli del Salso e del Platani,” in *Magna Grecia e Sicilia: stato degli studi e prospettive di

Dougherty, C., and L. Kurke, eds., The Cultures Within Greek Culture (New York, forthcoming).

———, *Hellenicity: Between Ethnicity and Culture* (Chicago 2002).

Lang, F., Archaische Siedlungen in Griechenland (Munich 1996).

Leach, E., Culture and Communication (Cambridge 1976).

Lenz, H. O., Botanik der alten Griechen und Römer (Wiesbaden 1859; reprint 1966).

Lyons, C., and J. Papadopoulos, eds., The Archaeology of Colonialism (Malibu, Calif., 2002).

Marconi, P., Agrigento arcaica: il santuario delle divinità chtonie e il tempio detto Vulcano (Rome 1933).

———, *From Rulers’ Dwellings to Temples* (Jonsered 1997). *Studies in Mediterranean Archaeology* 121.

———, *Archaeology as Cultural History: Words and Things in Iron Age Greece* (Oxford 2000).

———, “Mediterraneanization,” in *Mediterranean Paradigms*, ed. I. Malkin (Tel Aviv, forthcoming [special volume of Mediterranean Historical Review]).

Smith, D. G., “How the West was One: The Formation of Greek Cultural Identity in Italy and Sicily,” (Ph.D. diss., Stanford University, 2003).

Vernant, J-P., Myth and Society in Ancient Greece (Brighton, UK, 1980).

Wilson, R., Sicily Under the Roman Empire (Warminster 1990).

1 The Monte Polizzo Acropolis excavation was made possible by the generous support of the Superintendency of Archaeology for Trapani province, the City of Salemi, and Stanford University. We wish to thank our many friends in Salemi—particularly Dr. Nicòlo Spagnolo, Mr. Baldassare Terranova, Mr. Antonino Bascone, Mr. Giovanni Scimemi, Mayor Luigi Crimi, and Commissario Rizzo—for their generosity and hospitality. The project is funded by Stanford University’s Tressider and Hoskins Funds in the Department of Classics and the Office of the Vice-Provost for Undergraduate Education, through the Undergraduate Research Program. The American Academy in Rome sponsors the project.

We would like to thank the directors of the other teams involved in archaeological research around Salemi—Michael Kolb (Northern Illinois University), Kristian Kristiansen (University of Göteborg), Christopher Prescott (University of Oslo), and Franco De Angelis (University of Calgary)—for their help and advice, and the members of the Stanford excavation team (Samara Abrams, Reed Adam, Francesca Agrò [Agrigento], Mandi Alexander, Mark Alonge, Rosa Amoroso [Napoli], Chris Andrews, Maria Bartolich, Rob Boyle, Luke Bridgwater [Calgary], Meg Butler, Giulia Cacciato [Palermo], Shanna Carter [Calgary], David Connolly [Princeton], Alessandra Contugno [Napoli], Jeanette Cooper [Buffalo], Corinne Crawford [Berkeley], Chiara Daniele [Palermo], Jackie Dolan [Florida], Mark Dominik, Alisa Eagleston, Katherine Elliott [Calgary], Erinn Evans, Anne Haabu [Oslo], Nick Gresens [Indiana], Erica Grijalva, Melissa Haynes [Harvard], Tom Hennessy, Eli Hernandez, Ben Hindes, Tara Hnatiuk [Southampton], John Huetter, Alicia Jiménez [Madrid], Phil Kiernan [Cincinnati], Kathryn Lafrenz [Southern Florida], Brenden Lane, Allison Lewis, Jane Lilly, Mauro LoCastro [Viterbo], Rita Lomio, Roberta Lotta [Napoli], Eric Lowe, Anna Lucignano [Napoli], Molly Madox [Duke], Jacqui Martin, Wendy Matthews [Reading], Giuseppe Minuto [Agrigento], Jessica Nager [Berkeley], Marden Nichols, Milo Nikolic [Calgary], Allio O’Sullivan, Karin Olsson [Tierra, Inc.], Ivan Perotta [Napoli], David Platt, Adam
Reichert, Alessandro Russell [Agrigento], Sirio Salamanca [Agrigento], Josh Samuels, Stephanie Selover, Chris Sevara [Tierra, Inc.], Jon Shih, David Smith, Hans-Peter Stika [Hohenheim], Jeff Streed [Episcopal High School], Stew Tanner, Eric Thu, Russ Valdez, Pierfrancesco Vecchio, Amanda Vinson, Lela Urquhart [UNC], Kate Waffle, Marie Wange-Connolly [Princeton], Pamela Warren [Calgary], Alex Watts-Tobin [Temple], Tim Webmoor, Bengt Westergaard [Swedish Archaeological Service], Lauren Willard, Chris Witmore, and Mantha Zarmakoupi [Harvard]) for their energy and enthusiasm.

Mauro LoCastro provided invaluable help on site, and Pierfrancesco Vecchio with the pottery analysis. Karin Olsson drew some of the artifacts and was assistant director of the lab. Ian Morris was project director. Trinity Jackman was assistant director responsible for the excavation, Emma Blake for artifact analysis, and Brien Garnand for management. Anne Haabu oversaw artifact conservation, Bengt Westergaard and Chris Sevara, digital recording; Wendy Matthews, micromorphology; Tara Hnatiuk, faunal analysis; Hans-Peter Stika, flotation and macrofossils; and David Connolly, photography. Meg Butler supervised excavations in zone A; Trinity Jackman, in zone B; David Platt, in zone C; and Chris Witmore, in zone D. Professor Richard Klein gave advice on the human remains, and Professor Michael Jameson on all aspects of Greek religion and the interpretation of zone A. Tony Corbeill and Mac Bell read an earlier version of the text and gave much helpful advice.

Throughout the footnotes, we use the following abbreviations for our previous reports:

MP 2000: Morris et al. 2001
MP 2001: Morris et al. 2002

2 Thuc. 6.2.3.
5 V. Tusa 1972; 1972/1973, 445; Nenci and Vallet 1977-, vol. 10, 435. We thank Mr. Giovanni Scimemi for discussing the 1970 Monte Polizzo excavations, in which he participated as a student.

6 V. Tusa 1988/1989, with references to earlier studies.

9 See, most recently, Nenci et al., 1995 (Segesta), Fantasia et al., 1999 (Entella), Isler 2000 (Monte Iato), with excellent bibliographies.

12 Vassallo 1999a, 3.

14 “[D]al nome Elymoi poco possiamo ricavare, poiché forse non è un nome indigeno”—Costanzi 1909/1910, 471.

15 Finley 1968. The work of Giuseppe Nenci, Luigi Gallo, and Carmine Ampolo is particularly well known. The Italian journal Opus became the leading venue for ancient economic history in the 1980s, and focused particularly on Italian debates with Finley.

17 Binford 1972 is the best account.

20 See Anello 1997.

21 Johnson 1999 gives a succinct overview. Hodder (2001) and Meskell and Preucel (forthcoming) contain essays summarizing recent trends, and Meskell (1999) on the sociopolitics of Mediterranean archaeology. Mike Pearson and Michael Shanks (2001, 28-32) and Cornelius Holtorf (2002) have brought some of these concerns to bear on Monte Polizzo. We do not share all their conclusions.
22 E.g., Dietler 1997; Lyons and Papadopoulos 2002. The trends in west Mediterranean research can be paralleled in other parts of the world, and have a shared theoretical background in postcolonial anthropology (Herzfeld 2001; Gosden 2000).
24 E. Hall 1989 is the classic treatment of the Greeks and Persia; Smith 2003 treats the Greeks and Carthage.
25 E.g., Osborne 1998.
26 E.g., Dougherty and Kurke, forthcoming.
27 See Morris, forthcoming.
28 Shelter A4 attests to their presence. As well as with shotgun cartridges, coins dated 1979 and 1980, and fragments of Heineken bottles, 7 rabbit bones were recovered from the topsoil around A4; none have been found in other contexts (Hnatiuk 2002, 49-50).
30 Kolb and Tusa 2001; http://www3.niu.edu/acad/anthro/programelymi.htm.
32 See MP 2001, figure 6, for locations.
33 See MP 2001, figure 8, for locations.
34 MP 2001, 160-162.
35 Wall a was dug into the soft bedrock, while wall b ran up over an outcropping of rock in the southwest corner of A1/1.
38 Professor Richard Klein suggests that figure 14 shows a mandibular symphysis with incisor sockets, an isolated incisor, and a left hemi-mandible with M2 and M3 in place. The symphysis and the mandible look like they may attach.
40 MP 2001, 162, figure 16.
41 10 bronze, 6 bone, 2 glass paste, and 1 carnelian.
After the 2000 season, when we had exposed only a small area of the surface of this ashy dump in Sounding C, we interpreted it as the remains of the original occupation of B1/2, destroyed by fire (MP 2000, 265-266). It is now clear that the ashy soil predates the Iron Age walls of B1/2.

The zone A dice all come from open deposits, including residual phase II.c sherds as well as fourth-century and modern artifacts, so it is possible that the zone A dice were in fact made in the sixth century, and that the pit dug during the construction of A4 d brought them up to the surface. If the zone B dump of ash and antlers originally came from zone A, all six dice could conceivably have come from the same late-sixth-century context. However, there are good fourth-/third-century parallels from Morgantina and Monte Iato for the zone A dice (see MP 2001, 166, n. 20, with references, and dice from Morgantina on display in Aidone Museum). Although it is a problematic conclusion, the stratigraphy requires us to accept that we have found dice (which are otherwise rare on Iron Age settlements) in two different contexts, 200 years apart, on the acropolis of Monte Polizzo.

Lamp: cf. AA.VV. 1998, 146, 337, cat. no. 1, c. 525-475 BC.

Cf. Toti 2002, 281-283, types 6-9. The fabric is an unusual purple-gray color, however, and has no parallels at Mozia (Pamela Toti, pers. comm.).

Albanese-Procelli 2001, 298-299.

There are many examples; Blanton 1966 and Robertson 1970 collect classic essays.

Geertz 1966, 4, 3.

Asad 1993, 29.

Ernest Gellner (1988) made a particularly clear exposition of this contrast, though arguing the opposite view from Asad’s.

Gregory 1999, 8-15, gives a particularly clear critique.

MP 2001, 165.

See Leighton 1999, 261-263.

Religious practices in the archaic Aegean were highly varied (Morris 1998). Archaeologists working in Sicily are sometimes too eager to imagine a unified “Greek” system which can then be mapped onto Sicilian practices.

See particularly Mazarakis Ainian 1997.

The earliest dating evidence we have is a single C14 date of 751-723 BC from Montagnoli shrine 7 (Castellana 2000, 263). Given the flatness of the calibration curve between 800 and 400 we should not put too much weight on this date, although the Protocorinthian pottery at Polizzello is consistent with a late-eighth-century date for the start of the tradition.

For the Aegean, see Morris 2000, 260-268; for Sicily, the best evidence comes from Scirinda (Castellana 1992, 192-195, with a C14 date of 764-679 BC for phase VI) and the lower city at Polizzello (De Miro 1999, 188-189).
James Whitley (2002) has rightly criticized the loose way prehistorians evoke ancestors to explain varied phenomena, but in this case it would be hypercritical to ignore the similarities between sixth-century hut shrines and house traditions stretching from the Middle Bronze Age through the seventh century (see Castellana [1988/1989; 1992] in particular).

Lauter 1985; Seiler 1986, 6-7; Mazarakis Ainian 1994. The site was excavated in 1939 but never published. Lauter and Seiler conducted new studies, while Mazarakis Ainian drew on the original notebooks. Lathouriza has a unique combination of architectural forms.

Seiler 1986.

Robert 1939.

Vassallo 1999c, 24-29.

Castellana 1988/1989, 327; 2000, 265. Several round clay basins were also found in and around Hut 4 (Castellana 1992, 196).

De Miro 1988/1989, 27, 31. Spatafora (2000, 907) also notes a round clay piatto-focolare in the remarkable shrine at Montagnola di Marineo discussed below, and stresses the importance of these features in indigenous religion.

The sample from building C1 is too small to be meaningful at this point.

Castellana 1992, 196; 2000, 263.

Burkert 1985, 87.

Cooper and Morris 1990, 81.

Ekroth 1998.

Lathouriza structure VIII, the earliest round religious building in the Iron Age Aegean, is also on a hilltop, but Mazarakis Ainian (1994, 69) suggests that it honored a goddess with chthonic associations, such as Demeter, Artemis, or Athena, rather than a hero. He derived its shape from the round grain silos of the ninth and eighth centuries, rather than from the Bronze Age mounds favored by Robert.

As Pirro Marconi (1933, 15) suggested in his publication of the round altars and bothroi north and west of the so-called temple of the Dioscuri at Agrigento, and the Iron Age pit that preceded them. On other probably chthonic cults at Agrigento, see De Waele 1980; Siracusano 1983; Zoppi 2001.

Johns 1992, 412: “tutti questi insediamenti, anche i più poveri, hanno restituito almeno qualche frammento di ceramica greca importata.”

Leighton 1999, 244.

To be published shortly in the American Journal of Archaeology.

Marnival 2000, Table 1.

Hnatiuk 2002, and Appendix 1 below.

These deposits (in trenches M100, M/N101, B1/2, and M108) produced 5202 fragments of deer; all other trenches combined (including those within A1 itself) produced just 162 (data from Hnatiuk 2002, 44, Chart 4.9).

Entella, Bedini 1997, table 1; Monte Iato, Isler 2001, 18-19 (with Kistler 1997). Isler suggests that there the courtyard house included a workshop for making tools from antlers.

Johansson 2001, Table 1. No faunal report is available yet from House I.

The bones from zones C and D have not been studied in detail yet, but give every indication of being more typical Iron Age deposits, with a much lower percentage of deer and more long bones relative to head and feet (Tara Hnatiuk, pers. comm.).

Hnatiuk 2002, 46-47.

Hjelle 2001. Jeremy Johns (1992, 417) suggests that most lowland forests had been cleared by 900 BC.
108 Bevan 1986, 101-102. On the exceptional hunts in the deer park at Skillous during the festival of Artemis, see Xenophon, *Anabasis* 5.3.9-10.
109 See figure 8 above, and MP 2001, 162, figure 16.
113 Hnatiuk 2002, 47.
116 This sort of liminality is a common feature of rituals (e.g., Leach 1976). Jean-Pierre Vernant’s (1980, 130-167) analysis of Greek sacrifice as locating mankind between the beasts and the gods is a particularly valuable study.
117 *Iliad* 21.470. Many archaeologists see Greek notions of the Mistress of the Animals as being adapted from Bronze Age Near Eastern sources (e.g., Blome 1982, 65-76).
119 Bevan 1986, 389-393.
121 *Palatine Anthology* 6.111. Diodorus (4.22.3) tells another story of a hunter from Poseidonia who would hang the feet and heads of animals he killed in trees in honor of Artemis, only to be killed when a boar’s head that he had kept for himself fell on him while he slept.
122 Pausanias 7.18.7; Athenaeus 646E.
124 Bammer et al. 1978, 108; Dyggve and Poulsen 1948, 344; Rouse 1902, 50.
125 Deer make up much less than 1 percent of the eleventh-century BC assemblage at Tiryns, but this part of the Argive plain was probably deforested. The only Greek
settlement on which deer make up even 1 percent of the animal bones is the remote Kassope in Epirus (Legouilloux 2000).

126 Lindos, Blinkenberg 1931, 12, 183; Tegea, Dyggve and Poulsen 1948, 344; Perachora, Dunbabin 1962, 477; Knossos, Jarman 1973, 178. Knossos is the only site with quantified data; here deer make up just 0.7% of the assemblage.

127 Stanzel 1991, Table 35.

129 Tuchelt 1992, 81; Hägg 1998a, 54.

130 The mismatch between literary generalizations and the details revealed by inscriptions and archaeology has become a major research topic in Greek religious history. See particularly Jameson 1988; Hägg 1991; 1998b.

133 See Galinsky 1968; Momigliano 1975; Wiseman 1995.

135 Zonaras 8.9.12. Diodorus (23.5) mentions Segesta and Alicia abandoning Carthage for Rome that year, but not the Segestan use of the Aeneas myth.

136 De la Genière 1976/1977. Greeks associated the major sanctuaries at Erice and Monte Iato with Aphrodite, perhaps via earlier Phoenician interpretations of them as cults of Astarte.

137 Artemis’ strong associations with Asia Minor (Burkert 1985, 149) would have made sense as part of the theory that the Elymians came from Troy.

139 Giuliani 1953, 51-52, with references. Galinsky (1969, 68) concludes that Artemis/Diana was probably Segesta’s major divinity; we would suggest instead that
Greeks and Romans interpreted Segesta’s major divinity as Artemis/Diana, and that some Segestans may have come to believe them.

140 Castellana 2000, 265; quotation from p. 268. Castellana may be right to assume that political power came from access to the gods; when Ducetius created a capital for his new Sicel federation in the 450s, he chose Palike, a holy place (Diodorus 11.88-90; Maniscalco and McConnell 1997/1998).

141 Once again, the famous chthonic sanctuaries at Agrigento (see n. 94 above) provide an early example of the fusion of native and Aegean traditions.

142 Trapezoidal structure D at Sabucina is much earlier, perhaps c. 650, but was even smaller than the hut shrines (approximately 3-4 x 6.5 m. = 23 m²). So far there are no examples to fill the hundred-year gap between Sabucina and Monte Iato.

143 The temple of Aphrodite at Monte Iato measured 17.7 x 7.2 m. = 127 m² (Isler 1984, 15), as compared to 50-80 m² for the largest hut shrines. The contrada Mango temple covered 56 x 28 m. = 1568 m². Monte Polizzo A1 covers just 32 m².

144 At this point we have no reliable data. See Gallo 1994.

146 Expressed in equivalent late-fifth century Athenian values. We are not suggesting that seventh-century Polizzello was monetized; we use fifth-century Athenian measures simply as a convenient way to compare the levels of material and labor invested in religious architecture at different sites.

147 The thick enclosure wall probably cost more than the hut shrines.

148 65-70 people x 60 drachmas = 3,900-4,200 drachmas = two-thirds of a talent. No surveys have been carried out at Polizzello, but the flat area known as the “piano della città antica” covers about 8 hectares. Some 450 m² have been excavated, exposing seventh- and sixth-century houses crowded in much the same way as at other indigenous sites (De Miro 1999, 188-189). We guess that the actual population was 500-1,000, and the cost per capita of the sanctuary 4-8 drachmas, roughly one-tenth that for contrada Mango.

149 Vassallo 2000; see MP 2001, 189, figure 40.
The fall of the tyrannies, civil wars, and *koinon dogma* in the Greek cities in the late 460s also contributed to the Elymians' ability to maintain political freedom, just as they provided opportunities for Ducetius in the east; but we also need to explain why by 418 Segesta and Halkyai were powers worthy of Athenian alliances, while Sicel independence was a thing of the past.

Halikyai’s location remains unclear, although most historians now assume that it lies under Salemi (Storti 1997).

As noted above, we have only excavated a small area, and we may yet find very different structures on the slopes around A1.

Blake, in preparation.

Blake, in preparation.

Spatafora (1997) has advanced this thesis strongly for Monte Maranfusa, although at Sabucina, De Miro (1983, 342) stresses that “l'aspetto è quello di un pittoresco agglomerato con strade e stradine irregolare, con il carattere agglutinante degli organismi edilizi disposti su due o tre lati di una corte commune.”

MP 2001, 164-165.

The portfolio contains the author’s own drawings and illustrations from Hillson 1995; Cohen and Serjeantson 1996; and Schmid 1972.

Grant 1982; Silver 1969; Habermehl 1985; Prude 1983.

Serjeantson 1996.

Gilchrist and Mytum 1986. See Appendix B below.

Silver 1969.

Crabtree and Monge 1987; Ruscillo 1993.

When establishing the age of cervus elaphus most published sources use tooth wear and eruption. This requires the teeth to be in situ. All cervus elaphus teeth recovered were loose. I know of no published sources for the epiphyseal fusion of cervus elaphus. Prude (1983) is meant as a guideline only, and was used in conjunction with Habermehl (1985).

Boardman and Jones 1990.

Boardman and Jones 1990.

Boardman and Jones 1990; Wattez and Courty 1987.

Norton 1986.

Kramer 1979.

I would like to thank the excavation directors Professor Ian Morris, Stanford University, Professor Kristian Kristiansen, University of Göteborg, Professor Christopher Prescott, University of Oslo, and Professor Sebastiano Tusa, University of Naples, and their teams for the help during the excavation campaigns and later on. Many thanks go as well to Professor Kristina Kelertas-Boving and Chris Sevara for supervising the sampling and flotation in my absence. Many students from the different teams helped with taking archaeobotanical samples, carrying the sediment samples down the slope, and assisting in working the flotation machine. Thanks to the Selinunte excavation team, namely the
director Dr. M. Mertens, the archaeobotanist B. Zach-Obmann, as well as C. and E. Sciacca.

187 Collected and cited in Lenz 1859.
188 Zohary and Hopf 2000, 82.
191 Stika 1997.
192 B. Zach-Obmann, pers. comm.