From the lexicon to a stochastic grammar

Michael Becker, University of Massachusetts, Amherst

The problem: Getting from a lexicon to a grammar

Phonological processes that are restricted to certain lexical items typically apply stochastically to novel items.

The behavior of novel items reflects lexical trends (Hayes & Londe 2006, Albright & Hayes 2003, Zuraw 2000, and several others)

→ We need a way to project a stochastic grammar from the lexicon

Case study: Hebrew plurals

Hebrew has two plural markers: —*im* on most masculine nouns —*ot* on most feminine nouns

Most of the masculine nouns that exceptionally take -ot have [o] in their final syllable. The preference for -ot in masculine nouns that end in [o] applies productively to novel nouns, as seen in Berent, Pinker & Shimron (1999).

Analysis: Regular nouns allow mid vowels freely; irregular nouns want mid vowels to be licensed by an adjacent stressed mid vowel.

	Singular	Plural	
Regular	alón	a l o n - í m -hi][+hi]	'oak tree'
Irregular	xalón	xalon-ót [–hi]	'window'

A morphological constraint, φ -Match, requires the masculine -im on masculine nouns. φ -Match conflicts with mid vowel licensing:

/alon _{MASC} + {im _{MASC} , ot _{FEM} }/		+ $\{im_{MASC}, ot_{FEM}\}/$	ф-Матсн	*MID
	a.	alon-ím		*
	b.	alon-ót	*!	

$/xalon_{MASC} + {im_{MASC}, ot_{FEM}}/$		$_{C}$ + $\{im_{MASC}, ot_{FEM}\}/$	*MID	ф-Матсн
	a.	xalon-ím	*!	
	b.	xalon-ót		*

The solution: Clone a constraint, then keep track of lexical items

When lexical items demand conflicting rankings, BCD (Prince & Tesar 1999) detects inconsistency and stalls:

	ф-Матсн	*MID
alon-ím ~ alon-ót	W	L
xalon-ót ~ xalon-ím	L	W

The Pater (2006) solution: Clone a constraint to resolve the inconsistency. My proposal: make **both** clones lexically specific.

	*MID _{xalon}	ф-Матсн	*MID _{alon}
alon-ím ~ alon-ót		W	
xalon-ót ~ xalon-ím	W	Ĺ	

Result: A categorical grammar for listed lexical items:

*MID_{xalon, makom, ...} » φ-MATCH » *MID_{alon, šaon, pagoš, ...}

The relative number of lexical items on each clone defines a stochastic grammar:

*MID 24% » φ-MATCH » *MID 76%

References

Albright, Adam and Bruce Hayes (2003) *Learning nonlocal environments*. Talk given at the LSA yearly meeting in Atlanta, Jan 4.

Becker, Michael, Christopher Potts and Joe Pater (2007) JavaTableau. Open-source software, UMass Amherst

Becker, Michael & Joe Pater (2007) OT-Help. Open-source software, UMass Amherst. Beckman, Jill (2004) Positional Faithfulness, in *Optimality Theory in Phonology: A Reader*, John J. McCarthy (ed), 310–342.

Berent, Iris, Steven Pinker & Joseph Shimron (1999). Default nominal inflection in Hebrew: Evidence for mental variables. *Cognition* **72**. 1–44

Boersma, Paul (1997). How we learn variation, optionality, and probability. *Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam* **21**. 43–58.

Hayes, Bruce, Bruce Tesar and Kie Zuraw (2004) OTSoft 2.1. Software package, http://www.linguistics.ucla.edu/people/hayes/otsoft/

Hayes, Bruce and Zsuzsa Londe (2006) Stochastic phonological knowledge: the case of Hungarian vowel harmony. *Phonology* **23**. 59–104

Pater, Joe (to appear) Morpheme-Specific Phonology: Constraint Indexation and Inconsistency Resolution. In Steve Parker, (ed.) *Phonological Argumentation: Essays on Evidence and Motivation*. London: Equinox.

Prince, Alan and Bruce Tesar (1999) Learning Phonotactic Distributions. ROA-353. Zuraw, Kie (2000). Patterned Exceptions in Phonology. Ph.D. dissertation, UCLA. michael@linguist.umass.edu

Cloning specific constraints early

Exceptions without [o] in them are selected using a constraint that doesn't depend on the root vowel, e.g. *Stress/HI

/gag	MASC	+ $\{im_{MASC}, ot_{FEM}\}/$	*MID	*ớ/Hι	ф-Матсн
	a.	gag-ím		*!	
	b.	gag-ót			*

*Mid accounts for fewer lexical items, i.e. it is more specific:

	*MID	*ớ/Hι	ф-Матсн
alon-ím ~ alon-ót	L	L	W
xalon-ót ~ xalon-ím	W	W	L
gag-ót ~ gag-ím		W	L

If we clone *Stress/Hi first, it will account for all exceptions, and the mid vowel effect will be lost:

We must clone *MID first to list words with [o] in them, then clone *Stress/Hi to account for words without [o]:

* $MID_{\{xalon,\}}$, * $\acute{\sigma}/HI_{\{gag\}}$ » ϕ -MATCH » * $MID_{\{alon\}}$, * $\acute{\sigma}/HI_{\{alon\}}$

Check out the implementation!

The input: A list of OTSoft (Hayes, Tesar & Zuraw 2004) tableaux, each representing a lexical item.

I use RCD to detect inconsistency, then clone a constraint that assigns the non-zero minimum of both W's and L's to the set of inconsistent ERC's. This continues recursively, until the data becomes consistent, or can't be made consistent by cloning.

The output: a single grammar that is categorical relative to existing lexical items, but can apply stochastically to novel items.

The program uses code from JavaTableau (Becker, Potts & Pater 2007) and OT-Help (Becker & Pater 2007).