Typology, judgments, and weights

Michael Hammond

U. of Arizona

Outline

Overview of the experimental task Neighborhood density & phonotactic probability The role of phonology Phonological typology Issues of experimental control Experiment #1 Experiment #2 Generalizing phonotactic probability and counting English distributional regularities The general proposal Conclusions

Collaborators

- Jeff Berry
- Jordan Brewer
- Lynnika Butler
- Jason Ginsburg
- Ben Tucker

The experimental paradigm

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

4 / 38

The experimental paradigm

Nonsense items are presented to subjects, auditorily or visually.

The experimental paradigm

- Nonsense items are presented to subjects, auditorily or visually.
- Subjects rate the items, categorically or gradiently.

The experimental paradigm

- ▶ Nonsense items are presented to subjects, auditorily or visually.
- Subjects rate the items, categorically or gradiently.
- > Judgments are correlated with phonological properties of the items.

Where does wellformedness come from?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Where does wellformedness come from?

Neighborhood density plays a role.

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Where does wellformedness come from?

- Neighborhood density plays a role.
- Phonotactic probability plays a role.

Where does wellformedness come from?

- Neighborhood density plays a role.
- Phonotactic probability plays a role.
- Phonology per se does not appear to play an independent role.

Neighborhood density & phonotactic probability

What is neighborhood density?

Neighborhood density & phonotactic probability

What is neighborhood density?

Neighborhood density is the number of words an experimental item is similar to.

What is neighborhood density?

- Neighborhood density is the number of words an experimental item is similar to.
- Similarity is reckoned in terms of minimum edit distance: a single segmental change, e.g. deletion, addition, permutation, alteration (Luce, 1986).

What is neighborhood density?

- Neighborhood density is the number of words an experimental item is similar to.
- Similarity is reckoned in terms of minimum edit distance: a single segmental change, e.g. deletion, addition, permutation, alteration (Luce, 1986).
- blick [blik] has a neighborhood density of 11:

click [klık]	flick [flık]	lick [lık]
slick [slık]	brick [brık]	black [blæk]
bleak [blik]	block [blak]	blink [blıŋk]
bliss [blɪs]	bilk [bilk]	

Neighborhood density & phonotactic probability

What is phonotactic probability?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Neighborhood density & phonotactic probability

What is phonotactic probability?

> The probability of an item is a function of the probability of its parts.

What is phonotactic probability?

▶ The probability of an item is a function of the probability of its parts.

- What are the parts?
 - segments
 - bigrams
 - morphemes
 - prosodic units

What is phonotactic probability?

▶ The probability of an item is a function of the probability of its parts.

- What are the parts?
 - segments
 - bigrams
 - morphemes
 - prosodic units
- For example: [blik]. The onset [bl] occurs 957 times out of 477,416 monosyllables. The rhyme [ik] occurs 400 times out of the same number.

What is phonotactic probability?

▶ The probability of an item is a function of the probability of its parts.

- What are the parts?
 - segments
 - bigrams
 - morphemes
 - prosodic units
- For example: [blik]. The onset [bl] occurs 957 times out of 477,416 monosyllables. The rhyme [ik] occurs 400 times out of the same number.

• $P(\text{blik}) = \frac{957}{477416} \times \frac{400}{477416}$

What about phonology?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

8 / 38

What about phonology?

Certainly, nonsense items that are phonologically impossible are judged worse than items that are phonologically possible, e.g. wf([blik]) > wf([bnik]).

What about phonology?

- Certainly, nonsense items that are phonologically impossible are judged worse than items that are phonologically possible, e.g. wf([blik]) > wf([bnik]).
- But this sort of effect can also be described with neighborhood density and phonotactic probability.

item	Neighbors	Probability
[blık]	11	.0000016794
[bnık]	2	0

Gradience

Gradience

 Neighborhood density and phonotactic probability provide for gradient effects too.

Gradience

- Neighborhood density and phonotactic probability provide for gradient effects too.
- Phonologically well-formed nonsense items like *sphick* [sfik] are judged as worse than items like *blick* [blik] (and, of course, better than items like *bnick* [bnik]).

item	Neighbors	Probability
[blık]	11	.0000016794
[sfık]	4	.0000000421
[bnık]	2	0

There is more to phonology

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

There is more to phonology

But there is more to phonology than language-specific wellformedness.

There is more to phonology

- But there is more to phonology than language-specific wellformedness.
- ► There is phonological typology.

What is phonological typology?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

11 / 38

Description of the second s

What is phonological typology?

 Generalizations about the range of well-formedness patterns across languages. Description of the second s

What is phonological typology?

- Generalizations about the range of well-formedness patterns across languages.
- Sonority hierarchy: onset clusters prefer to increase in sonority.

What is phonological typology?

- Generalizations about the range of well-formedness patterns across languages.
- Sonority hierarchy: onset clusters prefer to increase in sonority.
- Onset size: onset clusters prefer to have fewer segments.

Why would typology to play a role?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

12 / 38

Why would typology to play a role?

Zamuner (2001), Zamuner et al. (2004) show that acquisition of codas in English reflects ambient frequency patterns of English, not cross-linguistic typological generalizations.

Why would typology to play a role?

- Zamuner (2001), Zamuner et al. (2004) show that acquisition of codas in English reflects ambient frequency patterns of English, not cross-linguistic typological generalizations.
- Maybe well-formedness judgments work the same way... or maybe they don't.
Why would typology to play a role?

- Zamuner (2001), Zamuner et al. (2004) show that acquisition of codas in English reflects ambient frequency patterns of English, not cross-linguistic typological generalizations.
- Maybe well-formedness judgments work the same way... or maybe they don't.
- In independent work, Albright (2007) has found an effect of the sonority hierarchy in a judgment task.

Issues of experimental control

Earlier work

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

13 / 38

We've designed and run several studies where we control neighborhood density and phonotactic probability as much as possible so we can look for effects of typology.

- We've designed and run several studies where we control neighborhood density and phonotactic probability as much as possible so we can look for effects of typology.
- ► There are always minuscule differences that can't be eliminated.

- We've designed and run several studies where we control neighborhood density and phonotactic probability as much as possible so we can look for effects of typology.
- ► There are always minuscule differences that can't be eliminated.
- ► Even those minuscule differences sometimes show effects.

- We've designed and run several studies where we control neighborhood density and phonotactic probability as much as possible so we can look for effects of typology.
- There are always minuscule differences that can't be eliminated.
- ► Even those minuscule differences sometimes show effects.
- Let's try a different strategy to search for an effect of phonological typology. (Cf. also Bailey & Hahn, 2001.)

Current studies

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

14 / 38

Current studies

The problem: with only "well-formed" items, it's impossible to find sufficient items with precisely the same neighborhood density and phonotactic probability.

Current studies

- The problem: with only "well-formed" items, it's impossible to find sufficient items with precisely the same neighborhood density and phonotactic probability.
- What about appropriately constructed impossible items?

Current studies

- The problem: with only "well-formed" items, it's impossible to find sufficient items with precisely the same neighborhood density and phonotactic probability.
- What about appropriately constructed impossible items?
- Such items would have a phonotactic probability and neighborhood density of 0.

Experimental design

- Items with impossible onset clusters.
 - Constructed so there are no neighbors.
 - Phonotactic probability = 0.
- Single group, randomized presentation.
- Items are visually presented, since items can't be pronounced in English. (Cf. Bailey & Hahn, 2001.)
- ▶ Rank items for well-formedness on a scale from 1 (good) to 7 (bad).

Experimental items

- 2/Rising mruke dliz shliz thliz fnape kneeb lmube pmazz thmazz zloog tmaz vmupe zmiv znafe vriss
- 2/Falling rmuke ldiz lshiz lthiz nfape nkeeb mlube mpazz mthazz lzoog mtaz mvupe mziv nzafe rviss
- 3/Rising bmluke gnruke knliz dmloke znlape fmreap zmrube fnlope tnlope kmroot thmled zmlen thnlem tnrafe pmreeze thmrass tmrofe thnreef
- 3/Falling Imbuke rnguke Inkiz Imdoke Inzape rmfeap rmzube Infope Intope rmkoot Imthed Imzen Inthem rntafe rmpeeze rmthass rmtofe rntheef rnvizz

Results of Experiment #1

Numerical results for Experiment #1

 By subjects
 sonority
 F(

 onset
 F(

 sonority:onset
 F(

 By items
 sonority
 F(

 onset
 F(

 onset
 F(

 sonority:onset
 F(

 onset
 F(

 sonority:onset
 F(

F(1,20) = 75.807, p < .000 F(1,20) = 122.116, p < .000 F(1,20) = 47.979, p < .000 F(1,64) = 23.521, p < .000 F(1,64) = 37.889, p < .000 F(1,64) = 14.886, p < .000

	2	3
Falling	5.441270	5.791980
Rising	4.047619	5.576441

Michael Hammond (U. of Arizona)

Interaction plot for Experiment #1

What does this mean?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

20 / 38

What does this mean?

▶ Three consonants are worse than two consonants.

- Three consonants are worse than two consonants.
- Falling sonority is worse than rising sonority.

- Three consonants are worse than two consonants.
- Falling sonority is worse than rising sonority.
- There is no effect of sonority when clusters have three consonants.

- Three consonants are worse than two consonants.
- Falling sonority is worse than rising sonority.
- There is no effect of sonority when clusters have three consonants.
- Maybe the last is because the task is "odd" in some way.

- Three consonants are worse than two consonants.
- Falling sonority is worse than rising sonority.
- There is no effect of sonority when clusters have three consonants.
- Maybe the last is because the task is "odd" in some way.
- Can we replicate this with yes-no judgments (and the same items)?

Results of Experiment #2

Numerical results for Experiment #2

Aggregated (number of 'no' responses) by item, anova by subject:

sonority	F(1,87) = 8.595, p < .004
onset	F(1, 87) = 65.391, p < .000
sonority:onset	F(1, 87) = 6.4777, p < .01

	2	3
Falling	12.826087	16.56522
Rising	9.130435	16.30435

Interaction plot for Experiment #2

Typology, judgments, and weights

Interpreting Experiment #2

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Interpreting Experiment #2

▶ Three consonants are again worse than two consonants.

- Three consonants are again worse than two consonants.
- Falling sonority is again worse than rising sonority.

- ▶ Three consonants are again worse than two consonants.
- ► Falling sonority is again worse than rising sonority.
- Again, there is no effect of sonority when clusters have three consonants.

- ▶ Three consonants are again worse than two consonants.
- Falling sonority is again worse than rising sonority.
- Again, there is no effect of sonority when clusters have three consonants.
- The task in Experiment #2 is effectively traditional grammaticality judgments. (Cf. Frisch et al., 2000.)

- ▶ Three consonants are again worse than two consonants.
- Falling sonority is again worse than rising sonority.
- Again, there is no effect of sonority when clusters have three consonants.
- The task in Experiment #2 is effectively traditional grammaticality judgments. (Cf. Frisch et al., 2000.)
- Hence, typology plays a role in judgment tasks.

- ▶ Three consonants are again worse than two consonants.
- Falling sonority is again worse than rising sonority.
- Again, there is no effect of sonority when clusters have three consonants.
- The task in Experiment #2 is effectively traditional grammaticality judgments. (Cf. Frisch et al., 2000.)
- Hence, typology plays a role in judgment tasks.
- But what kind of role?

Experience plays a role Judgments generally reflect experience, e.g. phonotactic probability and neighborhood density.

- Experience plays a role Judgments generally reflect experience, e.g. phonotactic probability and neighborhood density.
- Typology plays a role Just so.

- Experience plays a role Judgments generally reflect experience, e.g. phonotactic probability and neighborhood density.
- Typology plays a role Just so.
- Experience trumps typology If there is relevant experience, judgments reflect experience.

- Experience plays a role Judgments generally reflect experience, e.g. phonotactic probability and neighborhood density.
- Typology plays a role Just so.
- Experience trumps typology If there is relevant experience, judgments reflect experience.
- Occlusion Some typological effects can occlude others, i.e. three-consonant clusters are so bad that sonority shows no effect in that condition.
Generalizing phonotactic probability and counting

What do we count?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

We've shown an effect of typology only against a backdrop of phonotactic probability and neighborhood density.

- We've shown an effect of typology only against a backdrop of phonotactic probability and neighborhood density.
- For example, if [km...] is judged better than [kmr...], this cannot follow from simple phonotactic probability.

- We've shown an effect of typology only against a backdrop of phonotactic probability and neighborhood density.
- For example, if [km...] is judged better than [kmr...], this cannot follow from simple phonotactic probability.

$$\blacktriangleright P([km]_{onset}) = P([kmr]_{onset}) = 0$$

- We've shown an effect of typology only against a backdrop of phonotactic probability and neighborhood density.
- For example, if [km...] is judged better than [kmr...], this cannot follow from simple phonotactic probability.

$$\blacktriangleright P([km]_{onset}) = P([kmr]_{onset}) = 0$$

What if the system underlying judgments is different?

Generalizing phonotactic probability and counting

Generalized phonotactic probability

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

•
$$P([C]_{onset}) = ?$$

- *P*([CC]_{onset}) = ?
 P([CCC]_{onset}) = ?

- $P([C]_{onset}) = ?$
- $\blacktriangleright P([CC]_{onset}) = ?$
- $\blacktriangleright P([CCC]_{onset}) = ?$
- Sonority
 - P([Rising]_{onset}) = ?
 - P([Falling]_{onset}) = ?

- ► *P*([C]_{onset}) = ?
- $\blacktriangleright P([CC]_{onset}) = ?$
- $P([CCC]_{onset}) = ?$
- Sonority
 - P([Rising]_{onset}) = ?
 - P([Falling]_{onset}) = ?
- These values would correlate with judgments of items with novel onsets.

- $P([C]_{onset}) = ?$
- $P([CC]_{onset}) = ?$
- $P([CCC]_{onset}) = ?$
- Sonority
 - P([Rising]_{onset}) = ?
 - P([Falling]_{onset}) = ?
- These values would correlate with judgments of items with novel onsets.
- Can these values be learned on the basis of English distributional data?

What is the distribution in English?

Items	Tokens
Total monosyllables	477,416
No onset	120,943
One-consonant onset	314,407
Two-consonant onset	40,102
s[ptkf] onset	5,882
Three-consonant onset	1,964
s[ptkf]C onset	1,964

Do English onsets violate the sonority hierarchy?

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Do English onsets violate the sonority hierarchy?

Does s[ptkf] count as a violation, as a sonority reversal?

Do English onsets violate the sonority hierarchy?

- Does s[ptkf] count as a violation, as a sonority reversal?
- ▶ If it does, then a two-consonant s[ptkf] cluster counts as a reversal.

Do English onsets violate the sonority hierarchy?

- Does s[ptkf] count as a violation, as a sonority reversal?
- ▶ If it does, then a two-consonant s[ptkf] cluster counts as a reversal.
- If it does, then what about a three-consonant cluster that begins with s[ptkf] and then rises in sonority, e.g. spl, skr, etc?

If English respects the sonority hierarchy

If English respects the sonority hierarchy

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

If English violates the sonority hierarchy

Typology, judgments, and weights

If English violates the sonority hierarchy

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Import of the distributional facts

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

Import of the distributional facts

Neither assumption about falling sonority maps exactly to our results.

Import of the distributional facts

- Neither assumption about falling sonority maps exactly to our results.
- But the relationship looks pretty good either way.

Import of the distributional facts

- Neither assumption about falling sonority maps exactly to our results.
- But the relationship looks pretty good either way.
- Thus typological generalizations in English may follow from innate general constraints and language-specific learning.

Import of the distributional facts

- ▶ Neither assumption about falling sonority maps exactly to our results.
- But the relationship looks pretty good either way.
- Thus typological generalizations in English may follow from innate general constraints and language-specific learning.
- This, of course, leaves open why English respects those typological generalizations.

The facts in OT terms

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

The facts in OT terms

Experience plays a role Rankings (and constraints?) can be learned.

The facts in OT terms

- **Experience plays a role** Rankings (and constraints?) can be learned.
- ► Typology plays a role There are innate constraints.

The facts in OT terms

- **Experience plays a role** Rankings (and constraints?) can be learned.
- Typology plays a role There are innate constraints.
- Specificity There are a number of ways to formalize constraints on sonority and onset cluster size in OT. We've established that there must be such constraints *independent* of phonotactic probability and neighborhood density.

More specifically

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

More specifically

$\blacktriangleright \ldots \gg *[\mathsf{CCC}]_{\mathsf{onset}} \gg \ldots \gg *[\mathsf{Falling}]_{\mathsf{onset}} \gg \ldots$

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

More specifically

▶ ... \gg *[CCC]_{onset} \gg ... \gg *[Falling]_{onset} \gg ...

These constraints must be available in advance.

More specifically

- ▶ ... ≫ *[CCC]_{onset} ≫ ... ≫ *[Falling]_{onset} ≫ ...
- These constraints must be available in advance.
- Their ranking is probabilistic and learned.

More specifically

- ▶ ... ≫ *[CCC]_{onset} ≫ ... ≫ *[Falling]_{onset} ≫ ...
- These constraints must be available in advance.
- Their ranking is probabilistic and learned.
- The size constraint must outrank the sonority constraint at a sufficient distance—or with sufficient weight—so that the former occludes the latter.

More specifically

- ▶ ... ≫ *[CCC]_{onset} ≫ ... ≫ *[Falling]_{onset} ≫ ...
- These constraints must be available in advance.
- Their ranking is probabilistic and learned.
- The size constraint must outrank the sonority constraint at a sufficient distance—or with sufficient weight—so that the former occludes the latter.
- (See Hammond, 1999 for a more general statement of the kinds of constraints we need for margin size and sonority.)

An open question: innateness and faith

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

An open question: innateness and faith

Typological generalizations cannot follow in their entirety from linguistic experience because we must know "what to count".
The general proposal

An open question: innateness and faith

- Typological generalizations cannot follow in their entirety from linguistic experience because we must know "what to count".
- Are such constraints innate?

An open question: innateness and faith

- Typological generalizations cannot follow in their entirety from linguistic experience because we must know "what to count".
- Are such constraints innate?
- ... or do we induce the parameters to generalize on? (Hayes & Wilson, 2007)

An open question: innateness and faith

- Typological generalizations cannot follow in their entirety from linguistic experience because we must know "what to count".
- Are such constraints innate?
- ... or do we induce the parameters to generalize on? (Hayes & Wilson, 2007)
- ... or do those generalizations follow from phonetic experience?

Conclusions

Michael Hammond (U. of Arizona)

Typology, judgments, and weights

38 / 38

Conclusions

► Typological generalizations play a role in judgment tasks.

Conclusions

- Typological generalizations play a role in judgment tasks.
- Hence phonology plays a role in judgment tasks.

Conclusions

- Typological generalizations play a role in judgment tasks.
- Hence phonology plays a role in judgment tasks.
- Not all generalizations mirror linguistic experience.

Conclusions

- > Typological generalizations play a role in judgment tasks.
- Hence phonology plays a role in judgment tasks.
- ► Not all generalizations mirror linguistic experience.
- This is consistent with innate constraints and learned probabilistic rankings.