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1.  Background 

 
In most OT work on variation, the output is made to vary from utterance to utterance 
by varying the constraint ranking (cf. Coetzee 2006).  Two ways of doing this: 
 
• Specific constraint values are selected from a normal distribution around a 

mean with each iteration of EVAL (e.g., Boersma 1998, Boersma & Hayes 2001) 
 
• A full ranking consistent with a partially-stratified hierarchy is selected with each 

iteration of EVAL (e.g., Anttila 1997, 2002, Kiparsky 1993, Reynolds 1994) 
 
Numeric constraint values have no real meaning in OT.  As long as A >> B >> C, 
the same candidate will be selected as optimal; for a different variant to emerge, the 
constraint ranking must change. 
 

(1) /input1/ A = 4 B = 2 C =1 

 ! candidate1-a  * * 
  candidate1-b *!   

 
 /input1/ A = 6 B = 4 C =3 

 ! candidate1-a  * * 
  candidate1-b *!   

 
Weighted constraint systems differ from ranked constraint systems by making direct 
reference to numeric values associated with constraints – i.e., to their weights. 
 
Here I consider two ways of determining optima and incorporating variation in 
weighted constraint systems: 
 
• “Noisy HG” – Linear additive constraint interaction as in Harmonic Grammar 

(Legendre, Miyata & Smolensky 1990, Smolensky & Legendre 2006) with 
added noise (per Boersma 1998; in HG, see Boersma & Pater 2007, Pater, 
Bhatt & Potts 2007) 

 

• “MaxEnt/OT” – Log-linear constraint interaction as in Maximum Entropy OT 
(Goldwater & Johnson 2003, Jäger to appear, Jäger & Rosenbach 2006) 
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While Noisy HG and MaxEnt/OT systems can capture many of the same patterns, 
they make different predictions about the types of variation patterns that are 
possible. 
 
 
2.  Noisy HG 

 
Constraint violations are treated as penalties.  The harmony score of a candidate R 
is determined by multiplying its violations of each constraint {C1(R),C2(R),…,Cn(R)} 
by the weights associated with those constraints {w1,w2,…,wn} and summing.  The 
candidate with the highest score is deemed optimal. 
 
(2)   H(R) = (C1(R)*w1) + (C2(R)*w2) + … + (Cn(R)*wn) 
 

Following Prince (2002) and Pater, Bhatt & Potts (2007), constraint weights are 
limited to positive real numbers. 
 
This system allows cumulativity effects to emerge; multiple lower-weighted 
constraints can overcome the pressure of a higher-weighted constraint. 
 

(3) /input1/ A = 4 B = 2 C =1 H 

 ! candidate1-a  -1 -1 -1(2) + -1(1) = -3 

  candidate1-b -1   -1(4) = -4 

 
 /input1/ A = 6 B = 4 C =3 H 

  candidate1-a  -1 -1 -1(4) + -1(3) = -7 

 ! candidate1-b -1   -1(6) = -6 

 
In (3), Candidate1-a is optimal when wA > wB + wC, and candidate1-b is optimal 
when wB + wC > wA.  The ordinal relationship of the constraints has not changed. 
 
Variation is introduced in Noisy HG using GLA-style noise. 
 
• With each iteration of EVAL, a specific value for each constraint is selected from 

a normal distribution around its mean.  This can alter the relevant inequalities, 
introducing variation.  

 
• Unlike in Stochastic OT (Boersma 1998), the ordinal relationship of the 

constraints need not necessarily change; changing the inequalities is sufficient.  
 
The locus of variation in Noisy HG is the constraint values.  Variation emerges 
over multiple applications of EVAL. 
 
Noisy HG systems can reproduce both categorical and variable patterns.  
 
• Both types of pattern can be learned using the error-driven learner in Praat 

(Boersma & Weenink 2007; PositiveHG decision strategy; 2.0 noise). 
 

Because the ordinal 
ranking of the 
constraints is the 
same in both 
tableaux, the same 
candidate is optimal 
in both cases.   
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Categorical pattern: The Wolof tongue-root grammar (Boersma 1999) was learned 
with average 99.997% accuracy over 10 trials. 
 
Variation Pattern: The Finnish genitive plurals pattern (Anttila 1997, 2002, 
Boersma & Hayes 2001) was learned with the average % accuracy shown in (4) 
over 10 trials (columns are ERC patterns – see Goldwater & Johnson 2003): 
 

(4)  1 2 3 4 5 6 7 8 

 Target %  
light ending: 

0 100 100 79.0 100 0.2 81.1 49.5 

 Noisy HG % 
light ending: 

0 100 100 69.4 100 1.0 82.1 49.0 

 

Which output emerges as optimal on a given iteration of EVAL depends 

upon the weighting conditions that hold once the constraint values have 
been selected.  It is the weighting conditions (e.g. wA > wB+wC vs.   
wB+wC > wA) that are key, not the raw Harmony scores. 

 

 

3.  MaxEnt/OT 

 
Constraint violations are treated as penalties and the summed weighted score (i.e., 
H) is calculated for each candidate. The probability of each candidate is then 
determined by taking the exponent of its score (eH) and dividing this by the sum of 
the exponents of the scores for the full candidate set (eH1+eH2+….+eHn). 
 

e
Hj 

(5) Given a candidate set Y,  Probability(candj) = 
   !    eHx 

  candX!Y 

 
(6) /input1/ A = 4 B = 2 C =1 H e

H p 

  candidate1-a  -1 -1 -3 0.0498 0.73 

  candidate1-b -1   -4 0.0183 0.27 

 
 /input1/ A = 6 B = 4 C =3 H e

H p 

  candidate1-a  -1 -1 -7 0.0009 0.27 

  candidate1-b -1   -6 0.0025 0.73 

 
Probabilities vary depending upon the raw Harmony scores of the candidates. 
 
The locus of variation is in the candidate probabilities computed by the 
grammar.  EVAL yields probabilities directly using a single set of constraint 
values and no noise. 
 
As with Noisy HG, this system allows cumulativity effects to emerge and can 
reproduce both categorical and variable patterns. 
 

• Both types of pattern can be learned using the error-driven learner in Praat 
(MaximumEntropy decision strategy; 0.0 noise). 

 
Categorical pattern: The Wolof tongue-root grammar was learned with average 
99.996% accuracy over 10 trials. 
 
Variation Pattern: The Finnish genitive plurals pattern was learned with the 
average % accuracy shown in (7) over 10 trials: 
 

(7)  1 2 3 4 5 6 7 8 

 Target %  

light ending: 

0 100 100 79.0 100 0.2 81.1 49.5 

 Noisy HG % 
light ending: 

0.4 100 100 70.1 99.8 1.8 80.3 44.5 

 

Candidates’ probabilities are directly calculated based on their Harmony 
scores.  Weighting conditions do not determine optimal outputs. 

 

 

4.  Difference 1 - Harmonic Bounding 

 
In MaxEnt/OT, all candidates – including harmonically-bounded candidates (marked 
with !) – always receive some portion of the probability mass. 
 
• This probability can be trivial (<0.00000001), or it can be fairly substantial. 
 
(8) /CV/ *COMPLEX 

 = 2 

NOCODA 
 = 1 

FAITH  
= 1 

H e
H p 

  CV    0 1 0.84 

 ! CVC  -1 -1 -2 0.135 0.11 

 ! CCV -1  -1 -3 0.050 0.04 

 ! CCVC -1 -1 -2 -5 0.007 0.005 

 
The MaxEnt/OT system readily learns a variation pattern based on this distribution 
including harmonically-bounded candidates; the Noisy HG system does not. 
 
(9)   MaxEnt 

/OT 

Noisy 
HG 

  MaxEnt 
/OT 

Noisy 
HG 

 CV "  CV 84 100 CVC "  CV 47.6 50.1 

   !  "  CVC 11.4 0  "  CVC 47.8 49.9 

   !  "  CCV 4 0    !  "  CCV 2.3 0 

   !  "  CCVC 0.6 0    !  "  CCVC 2.4 0 

 CCV "  CV 64.7 68.9 CCVC "  CV 36.7 31.6 

   !  "  CVC 17.3 0  "  CVC 36.8 34.5 

  "  CCV 23.3 31.1  "  CCV 13.2 15.5 

   !  "  CCVC 3.1 0  "  CCVC 13.3 15.5 
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Noisy HG, like Standard HG, never allows simply harmonically-bounded candidates 
to win, assuming all weights are positive (see Prince 2002). 
 
Why? By definition, simply harmonically-bounded candidates incur a proper 
superset of the violations of some other candidate.  
 
• E.g.,  /CVC/![CCVC] violates NOCODA and FAITH, and so it is bounded by 

/CVC/![CVC], which violates only NOCODA. No matter what values are 
selected, it will always be the case that: 

 
 wNOCODA + wFAITH > wNOCODA  

 
Weighting conditions determine optimality in Noisy HG, and so   
/CVC/![CCVC] can never win. 

 
MaxEnt/OT calculates probabilities directly, without reference to weighting 
conditions.  Harmonically-bounded candidates are treated like all other candidates. 
 
Positional variation poses a different challenge.  Candidates that resolve the same 
marked structure differently at different loci are normally collectively harmonically 
bounded; however, they are clearly attested (Jäger & Rosenbach 2006, Riggle & 
Wilson 2005, Vaux 2003). 
 
• MaxEnt/OT systems readily allow collectively-bounded candidates to emerge. 
 
• HG allows collectively-bounded candidates to prove optimal, but only under 

certain circumstances (Prince 2002).  In cases of positional variation, 
collectively-bounded candidates normally require inconsistent weighting 
conditions and so are ruled out. 

 
(10) /ãvid!t!bat!/ *SCHWA MAX-V 

 a. ãvid!t!bat! -2  

 b. ! ãvidt!bat! -1 -1 

 c. ãvidtbat!  -2 

 
For (10b) to beat (10a) in HG, it must the case that w*SCHWA > wMAX-V 
For (10b) to beat (10c) in HG, it must be the case that wMAX-V > w*SCHWA 
 
This typological gap can be resolved in Noisy HG using positional constraints as 
proposed by Riggle & Wilson (2005), or by making assessment local and noisy 
(Pater, Bhatt & Potts 2007). 
 

MaxEnt/OT is a less restrictive theory than Noisy HG.  In MaxEnt/OT, 
harmonically-bounded candidates readily receive some portion of the 
probability mass; there is no clear way to disentangle the desirable 
collectively-bounded candidates from the undesirable simply-bounded 
ones. 

 
 

5.  Difference 2 - Process Interaction 

 
In MaxEnt/OT, the likelihoods of variable processes applying are always 
independent of one another – even when the sets of constraints governing them 
overlap.  
 
In Noisy HG, the likelihoods of variable processes applying are influenced by one 
another when the processes share some subset of relevant constraints. 
 
(11) Onset cluster simplification: w*COMPLEX > wMAX 
 Coda consonant deletion: wNOCODA > wMAX 
 
I trained the Noisy HG and MaxEnt/OT systems on the inputs /CCV/ and /CVC/, 
with the following input-output distribution: 
 
• Onset cluster simplification: /CCV/"[CCV] 50 /CCV/"[CV]   50  

Coda consonant deletion:    /CVC/"[CVC] 50 /CVC/"[CV]   50  
 
In both systems, the three constraints must all have the same value for these 
patterns to obtain. 
 
• In MaxEnt/OT, for /CCV/"[CCV], which violates *COMPLEX, and /CCV/"[CV], 

which violates MAX, to have equal probability, they must have the same H 
value.  The weights of *COMPLEX and MAX must therefore be equal.  The same 
holds of NOCODA and MAX, based on /CVC/"[CVC] and /CVC/"[CV].  By 
transitivity, then, all three constraints must have the same value. 

 
• In Noisy HG, for /CCV/"[CCV] and /CCV/"[CV] to have equal probability, it 

must be the case that wMAX > w*COMPLEX and w*COMPLEX > wMAX are equally 
likely.  This can only occur if MAX and *COMPLEX have the same mean. The 
same holds of NOCODA and MAX, based on /CVC/"[CVC] and /CVC/"[CV].  
By transitivity, then, all three constraints must have the same value. 

 
To see how the resulting grammars generalize, I gave them input /CCVC/, where 
both processes could apply.  The average result over 10 trials is given in (12). 
 

(12)  MaxEnt/OT Noisy HG 

 /CCVC/"[CCVC] (neither process) 24.4 33.2 
 /CCVC/"[CVC] (cluster simplification) 25.1 16.8 
 /CCVC/"[CCV] (coda deletion) 24.8 16.5 
 /CCVC/"[CV] (both processes) 25.7 33.3 
 
In MaxEnt/OT, there is no dependence between the two processes; all output 
candidates are equally likely.   
 
• Why? Each candidate incurs two marks, and, because all constraints are 

equally weighted here, the resulting H value for each candidate is the same.  
Candidates with the same harmony scores have equal probability in 
MaxEnt/OT. 

 

French variable schwa 
deletion (based on 
Riggle & Wilson 2005) 
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(13) /CCVC/ *COMPLEX 

=100 

NOCODA 
=100 

MAX 
=100 

H 
 

e
H p 

 CV   -2 -200 1.38-87 0.25 

 CVC  -1 -1 -200 1.38-87 0.25 

 CCV -1   -200 1.38-87 0.25 

 CCVC -1 -1  -200 1.38-87 0.25 

 
In Noisy HG, it is most likely that neither process will apply or that both processes 
will apply.  
 
• Why?  If all constraints have the same value, each of the 6 (3!) possible 

weighting conditions is equally likely.  Two of the weighting conditions favour 
/CCVC/![CCVC], and two favour /CCVC/![CV].  Only one favours each of the 
other mappings. 

 
(14) wMAX > w*COMPLEX > wNOCODA /CCVC/ ! [CCVC] 
 wMAX > wNOCODA > w*COMPLEX  /CCVC/ ! [CCVC] 
 w*COMPLEX > wNOCODA > wMAX /CCVC/ ! [CV] 
 wNOCODA > w*COMPLEX > wMAX /CCVC/ ! [CV] 
 w*COMPLEX > wMAX > wNOCODA /CCVC/ ! [CVC] 
 wNOCODA > wMAX > w*COMPLEX  /CCVC/ ! [CCV] 
 
Both MaxEnt/OT and Noisy HG systems predict that variable processes that are 
governed by complementary sets of constraints will pattern independently. 
 

MaxEnt/OT predicts that processes will always pattern independently.  
Noisy HG predicts that related processes will pattern together to at least 
some extent.  The two theories thus impose different restrictions upon the 
interaction of variable processes; these should be empirically tested. 

 
 
6.  Summary 

 
In MaxEnt/OT, the grammar yields candidate probabilities directly using a single set 
of weights. The probability of a variant is computed by the grammar based on its H 
score and the summed H score of the full candidate set.  This system allows 
harmonically-bounded candidates to emerge, and predicts that the likelihoods of 
variable processes will always be independent of one another, even when they 
share relevant constraints. 
 
In Noisy HG, variation emerges through perturbation of constraint weights over 
multiple iterations of EVAL.  The probability a variant is based on the probability that 
the associated weighting conditions will hold. This system generally prevents 
harmonically-bounded candidates from emerging, and predicts that the likelihoods 
of variable processes will be interdependent if they share relevant constraints. 
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