Phonotactic gaps

Accidental gaps: don't violate any phonotactic restrictions Systematic gaps: violate some phonotactic constraint(s).

Traditional grammatical approaches presume a categorical distinction between systematic and accidental gaps:

- all systematic gaps are equally ill-formed;
- all accidental gaps are equally well-formed.

This predicts categorical wellformedness judgments.
But: not all unattested words are judged identically!

- Acceptability of unattested words is gradient
- Acceptability reflected in statistical properties of the lexicon (n-gram probabilities, neighborhood density, etc.)
Previous studes focused on accidental gap acceptability, perhaps assuming systematic gaps are equally ill-formed [1] [2] [4] [6]

Research questions:

1. How do Cantonese speakers judge the wellformedness of systematic gaps?
2. Do the judgments correlate with lexical statistics?

Cantonese

(C)(G)V(V)(C) syllable structure

19 onsets: /p $\mathrm{p}^{\mathrm{h}} \mathrm{t}^{\mathrm{h}}$ ts $\mathrm{ts}^{\mathrm{h}} \mathrm{k}^{\mathrm{h}} \mathrm{k}^{\mathrm{w}} \mathrm{k}^{\mathrm{wh}} \mathrm{mng} \mathrm{fsh} 1 \mathrm{j} w /$ 6 codas: /ptkmng/
8 monophthongs: /a: a ε : ix o: ø: u: y:/
11 diphthongs: /ai $\mathbf{~ i}$ au ru ei ε u өy oi ui iu ou/ 6 tones: /55 25332123 22/

Typology of systematic gaps

- Labial dissimilation gaps
- No labial onsets and labial codas (*pap, *pu:p)
- No labial codas and rounded vowels (${ }^{-y}$-y:m, ${ }^{*}$-o:m)
-No labial onsets and front round vowels (${ }^{*} m \varnothing{ }^{2}$-, *my:-)
- Onset-tone gaps
- No aspirated onsets with 22 tone (${ }^{*} p^{h} a 22$, $* t^{h} u: 22$)
-No unaspirated onsets with 21/23 tones (${ }^{*}$ pa23, ${ }^{*}$ ta21)

- Coronal gaps

-No coronal onsets and codas with /os u:/ (*to:n, *tu:t),
-No coronal onsets with /u/ (*tu:p, *tu:)

Experimental corpus

432 items conforming to a $\mathrm{CV}(\mathrm{C})$ template, derived from all possible combination of

- eight onset phonemes /f $\mathrm{p}^{\mathrm{h}} \mathrm{mst} \mathrm{t}^{\mathrm{h}} \mathrm{n}$ /
- three vowel phonemes /a: is u:/
- an optional $/ \mathrm{m} \mathrm{n} /$ coda
- six tones /55 25332123 22/

Produces 162 attested syllables and 270 nonwords:

- 61 fill labial dissimilation gaps
- 36 fill onset-tone gaps
- 42 fill coronal gaps
- 27 syllables filled two types simultaneously, 1 all three

Remaining 103 nonwords classified as accidental gaps.

Procedure

Ten Cantonese native speakers were presented with a randomized series of items from the corpus \& given two tasks per stimulus:

- Lexical decision: "Is this a word of Cantonese?" (y / n)
- Wordlikeness rating: "How good a word of Cantonese is this?" (1-7; $1=$ worst, $7=$ best $)$

Results

Figure 1: Mean arcsine-transformed goodness ratings by syllable type. Error bars show standard error for the mean

Lexical statistics

Phonotactic probability (PP) operationalized as average bigram log probability (1):

$$
\begin{equation*}
P(W) \approx \sum_{i=1}^{\text {length }(W)}-\log _{2} p\left(w_{i} \mid w_{i-1}\right) \tag{1}
\end{equation*}
$$

Neighborhood density (ND) operationalized as Levenshtein edit distance between strings
$\mathrm{ND}(w)=$ number of syllables in the Chinese Character Database [3] which could be formed by changing, adding, or deleting a single segment (or tone) of w; weighted by token frequency in the Hong Kong Cantonese Adult Language Corpus (HKCAC: [5])

Results

Figure 3: Wordlikeness as a function of phonotactic probability by syllable type.

Figure 4: Wordlikeness as a function of weighted lexical density by syllable type.

Subset	R_{a}^{2}	$d f$	F	p	Factors
Words	0.052	2,159	4.43	$=0.013$	ND
Nonwords	0.214	2,267	37.71	<0.001	ND, PP
Both	0.343	2,429	113.4	<0.001	ND, PP

Table 1: Multiple regression analyses.

Discussion

Our study found that speakers are sensitive to degrees of ill-formedness among systematic gaps and that their judgments correlate with lexical statistics, particularly ND.

Why is ND such a good predictor relative to PP? (cf. [4])

- English allows for a far greater number of logically possible monosyllables ($n>158,000$) than does Cantonese ($n=5,130$ [19 initials $\times 45$ rimes $\times 6$ tones] $)$
- English also makes use of a much smaller proportion of the possibilities (10,000 monosyllables $\approx 6 \%$) vs. Cantonese (1,900 monosyllables, $\approx 36 \%$)
- For most Cantonese nonwords, $\mathrm{ND}(w) \geq 1$
- The fact that most nonwords have lexical neighbors may underlie the emergence of lexical neighborhood density as a predictor of wordlikeness.

Conclusions

- Gradient acceptability effects emerge even among nonwords which roundly violate phonotactic constraints.
- In Cantonese, acceptability seems to be correlated most strongly with lexical neighborhood density.
- Wordlikeness judgments are influenced by the phonotactic and lexical properties of a given language.

References

[1] Adam Albright and Bruce Hayes. Rules vs. analogy in English past tenses: a computational/experimental study. Cognition, 90:119-161, 2003.
[2] John Coleman and Janet Pierrehumbert. Stochastic phonological grammars and acceptability. In Computation Phonology: ACL SIGPHON 3, pages 49-56, Somerset, NJ, 1997. Assoc. Comp. Ling.
[3] Chinese Character Database. http://humanum.arts.cuhk.edu.hk/lexis/lexi-can/ Visited 09-Feb-07.
[4] Stefan A. Frisch, Nathan R. Large, and David B. Pisoni. Perception of wordlikeness: effects of segment probability and length on the processing of nonwords. J. Mem. Lang., 42:481-496, 2000
[5] Man-Tak Leung and Sam-Po Law. HKCAC: the Hong Kong Cantonese adult language corpus. Intl. J. Corpus Ling., 6:305-326, 2001.
[6] John J. Ohala and M. Ohala. Testing hypotheses regarding the psychological man ifestation of morpheme structure constraints. In J. J. Ohala and J. J. Jager, editors, Experimental Phonology, pages 239-252. Academic Press, Florida, 1986.

