
Grammars leak: 

How categorical phonotactics can cause gradient phonotactics 

 

 In this poster I present evidence from Turkish, Navajo, and English that categorical 

phonotactics that hold within morphemes can be accompanied by gradient versions of the same 

phonotactics in heteromorphemic contexts. In English, for example, geminate consonants are 

forbidden within morphemes, but permitted across morpheme boundaries, e.g., taillight, 

bookcase. English words with geminates, however, although legal, are statistically 

underrepresented. Of the 5,070 noun-noun compounds in the CELEX database (Baayen et al. 

1993), 3.0% contain geminates, significantly lower than the rate of 4.1% that would be expected 

by chance (p<.0001 by Monte Carlo test). In other words, a sound sequence that is banned within 

roots is legal, but dispreferred, across morpheme boundaries. I show that the same is true for 

vowel harmony in Turkish (compounds with disagreeing vowels are underrepresented) and 

sibilant harmony in Navajo (compounds with disagreeing sibilants are underrepresented). 

 I argue that these gradient phonotactics are the result of the presence of two constraint 

types in the phonotactic grammar: those that are sensitive to morphological structure (e.g., a 

constraint banning geminates within morphemes), and those that are blind to structure (e.g., a 

constraint that simply bans all geminates). I model the English data with a Maximum Entropy 

(“maxent”; Della Pietra et al. 1997, Goldwater and Johnson 2003, Hayes and Wilson to appear) 

learning algorithm which uses both structure-sensitive and structure-blind constraints. 

A maxent phonotactic grammar consists of a set of markedness constraints, each of which 

has a weight, represented by a nonnegative real number. The grammar maps candidate outputs to 

probabilities; candidates that violate constraints with high weights have correspondingly lower 

probabilities. The learning algorithm, when given a set of constraints and a set of training data, 

adjusts the weights of the constraints until the expected number of constraint violations equals 

the actual number of violations, which is equivalent to maximizing the probability of the data 

(the learner finds the maximum of the function in Figure 1).  

 Because simply maximizing the probability of the data can result in overfitting the data, 

however, maxent learning is typically performed in conjunction with a smoothing method, which 

in my model consists of a Gaussian prior on the constraint weights (Chen and Rosenfeld 2000). 

The prior penalizes high weights (I set the ideal weight µ for all constraints to zero) and thus 

exerts a pressure to generalize, even at the cost of accuracy in modeling the training data. I gave 

the maxent learner both structure-sensitive and structure-blind constraints and exposed it to data 

in which geminates do not occur within morphemes, but occur freely across morpheme 

boundaries. Predictably, it assigns a high weight (4.01) to the structure-sensitive constraint 

against tautomorphemic geminates, correctly ruling such geminates out as illegal. But the prior 

also forces the learner to assign a small, nonzero weight (0.03) to the structure-blind constraint 

against all geminates, despite the fact that there is no bias against heteromorphemic geminates in 

the training data. The algorithm is in effect predicting that heteromorphemic geminates should be 

slightly ill-formed based on the absence of tautomorphemic geminates. The pressure to 

generalize enforced by the Gaussian prior can thus result in overgeneralization, causing a 

phonotactic in a restricted domain to “leak” into other domains. These results have consequences 

for theories of phonotactic learning, phonotactic restrictions on morphological operations, and 

the interaction between categorical and gradient generalizations. 

 

 



Figure 1. Function maximized by the learning algorithm 

 
 

 〈x1, x2…xN〉:  outputs in training data 

 P(xi):   probability of output xi 

 〈w1, w2…wM〉:  constraint weights 

 〈µ1, µ2…µM〉:  priors on constraints (set to zero for all constraints) 

 σ
2
:   free parameter 
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