Solution for statistical mechanics qual exam January 2005

1 Part A

A uniform system has \(N \) particles in a volume \(V \). The Helmholtz free energy \(F \) is given by \(F = E - TS \), where \(E \) is the internal energy, \(T \) is the absolute temperature, and \(S \) is the entropy. Use the first and second laws of thermodynamics to obtain the following results:

\[
S = -\left(\frac{\partial F}{\partial T} \right)_V, \quad p = -\left(\frac{\partial F}{\partial V} \right)_N, \quad \mu = \left(\frac{\partial F}{\partial N} \right)_T,
\]

where \(\mu \) is the chemical potential and \(p \) is the pressure.

The first law of thermodynamics states the conservation of energy. It is often written in differential form as

\[
dE = \delta W + \delta Q
\]

where \(\delta W \) is the work done on the system and \(\delta Q \) is the heat added to the system. Neither of these quantities is a perfect differential. In contrast, the important content of the first law is that the internal energy \(E \) is a function of the state of the system, so that \(dE \) is a perfect differential. For the system under consideration, the work done is \(\delta W = -pdV + \mu dN \), where \(p \) is the pressure and \(\mu \) is the chemical potential (the first term follows from elementary force considerations and the second can be considered a definition of \(\mu \)). The second law of thermodynamics can be written as \(\delta Q = TdS \), where the entropy \(S \) is also a function of the state of the system, so that \(dS \) is a perfect differential. Together, these relations give

\[
dE = TdS - pdV + \mu dN,
\]

implying that \(E \) is a natural function of the variables \(S, V, N \).

Direct calculation shows that the Helmholtz free energy \(F = E - TS \) has the corresponding differential

\[
dF = -SdT - pdV + \mu dN.
\]

Hence \(F \) is a natural function of the variables \(T, V, N \), and the desired relations follow by inspection as the appropriate partial derivatives.

2 Part B

An ideal gas consists of \(N \) indistinguishable ultrarelativistic classical particles (each has the dispersion relation \(\epsilon_p = cp \) where \(p = |\vec{p}| = \sqrt{p_x^2 + p_y^2 + p_z^2} \) and \(c \) is the speed of light in vacuum)

1. Calculate the partition function \(Z(T, V, N) \) for this gas.
The Hamiltonian for the \(N \)-body system is \(H = \sum_{j=1}^{N} \mathbf{p}_j \). For \(N \) classical indistinguishable particles, the partition function is an integral over all phase space

\[
Z = \frac{1}{N!h^{3N}} \int d^{3N} p \, d^{3N} q \, e^{-\beta H(p,q)},
\]

where \(\beta = (k_B T)^{-1} \), the factor \(N! \) arises from the permutations among the indistinguishable particles, and the factors of Planck’s constant \(h \) are needed to give the correct correspondence with quantum statistical mechanics.

It is easy to evaluate this integral to obtain the result

\[
Z = \frac{1}{N!} \left(\frac{V}{\lambda_R^3} \right)^N,
\]

where \(\lambda_R^3 = \pi^2 \hbar^2 c/(k_B T)^3 \) appears on doing the integrals. Note that the canonical partition function is indeed an explicit function of the variables \(T, V, N \), as anticipated.

2. Use Stirling’s approximation \(\ln N! \approx N \ln N - N \) to derive the following expression for the Helmholtz free energy

\[
F = -k_B TN \left[\ln \left(\frac{V}{N \lambda_R^3} \right) + 1 \right],
\]

where \(\lambda_R = \pi^{2/3} \hbar^2 c/(k_B T) \) is the relativistic thermal wavelength. How does the classical limit constrain \(\lambda_R \) relative to the interparticle spacing \(\ell \equiv (V/N)^{1/3} \)?

The basic result of the canonical ensemble relates the Helmholtz free energy \(F \) to the canonical partition function \(Z \) according to \(F = -k_B T \ln Z \). Application to the result of part 1 and use of Stirling’s approximation readily give the result given in the problem. Note that \(F \) is indeed a function of the expected variables \(T, V, N \).

The thermal wavelength \(\lambda_R \) characterizes the ultrarelativistic de Broglie quantum waves at temperature \(T \). The classical limit (analogous to ray optics) requires that \(\lambda_R \) be much smaller than the interparticle spacing \(\ell \equiv (V/N)^{1/3} \), so that quantum diffraction is negligible. When \(\ell \sim \lambda_R \), quantum diffraction becomes important, along with the quantum statistics of identical particles; this happens at sufficiently low temperatures.

3. Use part A to find the equation of state and the chemical potential.

The partial derivative in Part A immediately gives the pressure \(p = Nk_B T/V \), which is simply the familiar equation of state for a classical ideal gas. Note that the ultrarelativistic dispersion relation plays no role here. Similarly, the chemical potential becomes

\[
\mu = -k_B T \ln \left(\frac{V}{N \lambda_R^3} \right).
\]

For an ideal classical gas, the quantity \(\mu/k_B T = \beta \mu \) is typically large and negative, because the classical occupation for each state contains a factor \(e^{\beta \mu} \), which must be small compared to 1 if quantum statistics are irrelevant.
4. Similarly, find the entropy and the heat capacity \(C_V \) at constant volume. How and why does \(C_V \) differ from that for an ideal nonrelativistic classical gas?

The partial derivative with respect to \(T \) from part A immediately gives the entropy

\[
S = Nk_B \left[\ln \left(\frac{V}{N\lambda_R^3} \right) + 4 \right],
\]

where the additional contribution 3 comes from the derivative of the thermal wavelength. Note that \(S \) still depends on \(T \) through \(\lambda_R \).

The basic thermodynamic relation \(\delta Q = TdS \) leads to the desired heat capacity

\[
C_V = T \left(\frac{\partial S}{\partial T} \right)_{V,N} = 3Nk_B.
\]

It differs from the classical nonrelativistic result (which has a factor \(\frac{3}{2} \) instead of 3) because of the altered dispersion relation. Note that the usual equipartition theorem fails here, because each particle contributes a linear term to the energy, instead of the quadratic one familiar from nonrelativistic mechanics.

5. Find the heat capacity \(C_p \) at constant pressure. Find \(C_p - C_V \) and compare with the nonrelativistic result.

One easy way to obtain \(C_p \) is to re-express the entropy in terms of the pressure using the equation of state, giving

\[
S = Nk_B \left[\ln \left(\frac{k_B T}{p\lambda_R^3} \right) + 4 \right].
\]

The extra factor of \(T \) means that \(C_p = T(\partial S/\partial T)_{p,N} = 4Nk_B \). The difference \(C_p - C_V = Nk_B \) now has the same value as for an ideal nonrelativistic gas (the difference follows from the equation of state, which is the same in both cases).