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GEOMETRIZING RATES OF CONVERGENCE, IT*

By Davip L. DonoHo AND RicHARD C. Liu

University of California, Berkeley

Consider estimating a functional T(F} of an unknown distribu-
tion FeF from data X,,..., X, iid. F. Let w(¢) denote the modu-

n
lus of continuity of the functional T' over F, computed with respect to

Hellinger distance. For well-behaved loss functions I/(¢), we show that
infr,_ supg EpUT, — T(F)) is equivalent to l(w(n~'/?)) to within con-
stants, whenever T is linear and F is convex. The same conclusion holds in
three nonlinear cases: estimating the rate of decay of a density, estimating
the mode and robust nonparametric regression.

We study the difficulty of testing between the composite, infinite dimen-
sional hypotheses Hy: T(F) <t and H,;: T(F) = ¢t + A. Our results hold,
in the cases studied, because the difficulty of the full infinite-dimensional
composite testing problem is comparable to the difficulty of the hardest
simple two-point testing subproblem.

1. Introduction. Let T(F) be a functional of an unknown distribution F
and let X;,..., X, beiid. F. As in Donoho and Liu (1987, 1988) (hereafter
[GR I] and [GR III]), we are interested in estimating T'(F). For example, T(F)
might be the linear functional £(0), the density of F at zero, or the nonlinear
functional [f2 the squared L,-norm cf the density f. Such functionals arise
in nonparametric estimation and have the general property that they cannot
usually be estimated at a root-n rate. In fact if all that is known is that F € F,
where F is a given class of smooth densities, it may turn out that no estimator
T,=T(X,,...,X,) can converge to T(F) at rate faster than n~"/2 for some
r<l.

In [GR 1], this phenomenon was discussed and a new way of establishing it
was introduced. Given the modulus of continuity of T over the class F with
respect to Hellinger distance.

(1.1) w(e) = sup(|T(Fy) — T(F,)|: H(F,, F,) <¢,F; € F},

it was shown that no estimator can converge to T(F) faster than w(n~1/2)
uniformly over F. This bound is valid for all functionals and it was shown in
[GR I] that the bound is at least as strong as rate bounds due to Farrell, Stone
and Has’minskii.
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In this paper we discuss the attainability of this bound as regards rate.
Since the w(n~1/2) bound subsumes several existing nonparametric, paramet-
ric and semiparametric bounds, we know, of course, from the extensive work
on nonparametrics [e.g., Farrell (1972), Wahba (1975), Stone (1980), . ..] that
the bound is often attainable. We show in this paper that for linear function-
als, the rate is attainable in great generality.

SoME TERMINOLOGY. The loss function I(¢) is well-behaved if it is a sym-
metric increasing function of |¢| and if 1(3¢) < al(¢) for all ¢. Thus ¢2 and |¢|
are well-behaved, with @ = 3 and a = 3, respectively. We write f(n) < g(n) if
the ratio of the two terms is bounded away from zero and infinity as n — .
Combining Theorems 2.1, 2.4 and 3.1, we get:

CoroLLARY. Let T be linear and F be convex. If T is bounded on F, so that

sup [T(F)| < =,
FeF

and if w(e) is Hélderian with exponent r, so that
w(e) =Ce" +o(s"),
then the optimal rate of convergence is w(n=1/2):

i;lf supEpl(T, - T) < l(w(n~?))
S
for any well-behaved loss function 1.

Thus, for linear functionals—the density at a point, the derivative of a
density at a point, the density of a convolution factor at a point—the optimal
rate of convergence is r/2, where r is the exponent in the modulus of
continuity. In short, the rate of convergence (a statistical quantity) is deter-
mined by the modulus of continuity—a quantity deriving from the geometry of
the graph of T over the regularity class F.

We establish this result by directing attention away from the modulus of
continuity and focusing instead on (another) new bound on the rate of
convergence. In Section 2 we derive a new bound from a measure of the
difficulty of testing the composite hypothesis H,: T(F) < ¢ against the com-
posite hypothesis H;: T(F) > ¢t + A. While in general, this new bound is much
more difficult to compute than the modulus bound, it appears to be the right
thing to be computed. Indeed, under a certain hypothesis on the asymptotic
behavior of the new bound [see (2.9)], it is always attainable to within
constant factors, whatever be the functional, linear or nonlinear. This is, to
our knowledge, the first lower bound on estimation of general functionals
which comes equipped with a (near-) attainability result.

In Section 3, we show that, in the linear T, convex F case, the modulus
bound and the new bound agree to within constants. When the modulus is
Holderian, the hypothesis (2.9) holds and so the attainability of the new bound
to within constants implies that of the modulus bound to within constants.
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In Section 4, we show that the modulus bound and the new bound are
equivalent if and only if a certain minimax identity holds, at least approxi-
mately. That is, the testing difficulty of the hardest simple subproblem H,: F,
versus H,: F,, with T(F;) <t and T(F) >t + A, should be roughly the
same as the difficulty of the full composite problem H,: T(F) <t versus
H,: T(F) > t + A. Thus, the modulus bound works in the case of T linear, F
convex, because the difficulty of the hardest 2-point subproblem is comparable
to the difficulty of the full problem.

In Section 5 we discuss some examples of nonlinear functionals. The first is
the rate of tail decay [Du Mouchel (1983), Hall and Welsh (1984)]. For this
functional, the minimax identity holds precisely. Actually, in this case, the
minimax test of Hy: T(F) < ¢t versus H;: T(F) >t + A can be worked out in
detail; it turns out to have a certain monotonicity in ¢ within shows that the
new bound can be attained to within a factor 4. In the second example, robust
nonparametric regression, a combination of the minimax identity, translation
invariance and reflection invariance, show that the new bound can be attained
within a factor 2. In the third example, estimating the mode, the minimax
identity does not hold, but the hardest 2-point subproblem has a difficulty that
is again comparable to the full problem, and so the modulus is again attain-
able.

One should not always suppose the modulus bound to be attainable in the
nonlinear setting. As one can infer from recent results of Ritov and Bickel
(1990) and, in a related problem, of Ibragimov, Nemirovskii and Has’minskii
(1987), attainability of the modulus bound can fail already for quadratic
functionals. See Section 6.

An interesting feature of our approach is the use of notation and techniques
due to Le Cam (1973, 1975, 1986) and Birgé (1983). In brief, the idea is that
the difficulty of an estimation problem ought to be determined by the difficulty
of a corresponding testing problem. As Le Cam has shown how to bound the
difficulty of certain testing problems in terms of Hellinger affinity and has
developed certain useful tools for computing Hellinger affinity, his machinery
is well-suited for our work, which seeks to relate the Hellinger modulus to the
difficulty of certain tests. In particular, Le Cam’s little-known result, given as
Lemma 3.4, is fundamental. Also, a technique of Birgé (1983) allows us to
translate exponential bounds on testing errors [such as (2.10)] into bounds on
expectations of well-behaved loss functions [such as (2.12)]. Finally, we utilize
a connection between estimates and families of tests with a certain monotonic-
ity property [see Huber (1982)] to develop estimates of certain nonlinear
functionals.

These results should be compared with those of Birgé (1983). He found that
for the problem of estimating the entire density (and not just a single func-
tional of it), the geometry of the problem, expressed in terms of certain
dimension numbers, determines the optimal rate. In this paper, we show that
for estimating a linear functional, the geometry, expressed in terms of the
modulus of continuity, determines the optimal rate. We note that the problem
of recovering the entire density is like recovering a whole collection of linear
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functionals and so is in some sense a linear problem. Thus, our work and
Birgé’s both say that for linear problems the optimal rate derives from the
geometry of the problem.

2. An attainable bound. As in Section 1, let T be a functional of
interest and let F be the regularity class in which F is known to lie. Let F _,
and F ,, , denote the subsets of F, where T takes values less than or equal to
¢t and greater than or equal to ¢ + A, respectively. Let F) denote the set of
product measures of X,,..., X, iid. F, FeF_,, and similarly for F{)_ ,.
Denote by conv(F{")) the set of all measures on R"™ which can be gotten as
convex combinations of the product measures in F). Such a measure corre-
sponds to the following: a random device is used to select an element F € F _,,
and then n observations are taken from this realized F. In words, conv(F{))
represents all the joint distribution of data X|,..., X, which can be obtained
by Bayesians under a scheme in which (Xj,..., X,)) and F are random, with
X,,..., X, conditionally iid. F, and where F is a random element taking
values in F _,.

Let P and @ be probability distributions on a common space. Then the
testing affinity [Le Cam (1973, 1986)] is

(2.1) m(P,Q) = | inf Epé+Eo(l-9);

¢-measurable

it is the minimal sum of type I and type II errors of any test between P and @,
and a natural measure of the difficulty of distinguishing P from Q. If P and Q
are sets of measures, let 7(P, Q) denote the largest testing affinity #(P, Q)
between any pair (P, Q) with P € P and @ € Q—the difficulty of the hardest
two-point testing subproblem. Symbolically,

7(P,Q) = sup inf  Epd + Eg(1 — ¢).
pep O<ox1
Q< Q ¢-measurable

This is not, however, a measure of the difficulty of distinguishing P from Q.
We note, following Le Cam (1973, 1986) that if we view P and Q as composite
hypotheses, the best sum of the two types of errors,

0<d<1l pecp
¢-measurable QQ

is w(conv(P), conv(Q)). Unless P and Q are convex, this minimax difficulty is
usually unequal to the difficulty =(P, Q) of the hardest two-point problem. We
note that m(P,@) = 1 — 1L (P, Q), where L(P,Q) = [|dP — dQ| denotes the
L, distance, so computing the minimax risk amounts to finding the L,
distance between the convex hulls of P and Q. Note that 0 < = < 1.
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2.1. The lower bound. Our two main definitions are as follows. The upper
affinity a,(n, A) of the estimation problem is

(2.2) as(n,A) = sup 7(conv(F?), conv(F ), ).
t

This is the minimax risk of the hardest problem of distinguishing H,: F _, and
H;: F,,, . at sample size n. Next, we let A,(n, a) be the function inverse to
ay:

A (n,a) =sup{A: ay(n,A) > a}.

In words, A (n, ) measures the largest A at which, in a sample of size n, one
cannot test hypotheses Hy: F_, and H;: F, , with sum of errors less than «
for all ¢£. A, places certain limits on how well T can be estimated. Essentially,
this is because any estimator T, of T gives rise to a test: decide H, if
T,<T+ A/2,decide H, if T, > T + A/2.

THEOREM 2.1 (lower bound).

(2.3) i;lfsupPF“Tn —T(F)| 2 Ax(n,a)/2} > a/2.
n F

Proor. Without loss of generality, let the supremum over ¢ in the defini-
tion of a, be attained, at ¢,, and the supremum over A in the definition of A,
be attained; otherwise an ¢; and s, would have to be added in several places
below and later picked arbitrarily close to zero.

The minimax difficulty for testing between Hy: F_, and H;: F,, ., is a.
It follows that for any test statistic,

a< sup Pplreject Hy} + Py {accept H,},
FoEFszo
F\€F . 4a
s0
a/2 < sup max(Pg(reject Hy}, Py {accept Hy}).
Foerzn

Flerto+A

This implies that the test mentioned earlier, based on T,, has at least the
indicated maximum of type I and type II errors. Now

Pp{|T, - T(F)| 2 A/2} = Pp{T, - T(F) > A/2}
= Pp(reject Hy)
and similarly

Pp{|T, -~ T(F)| = A/2} = Py, {accept H,}.
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Combining the last 3 displays gives

(2.4) sup maxPp{|T, - T(F)|>A4/2}2a/2
FoeF 0, F1
Fi€F,i4a

as F,, F; € F and T, was arbitrary, (2.3) is proved. O

CoROLLARY. Fix a in (0,1). A (n, a) is a bound on the rate of convergence:
For any symmetric increasing loss function 1(¢),

(2.5) i;lf supEy (T, — T(F)) = l(Ax(n,a)/2)a/2
» F
for all n.

The reader should note that A, is (nearly) the best lower bound derivable
by a testing argument. Indeed, for each ¢, A and n, there exists a test between
F_,and F,, , which attains the lower bound (2.4) within a factor 2. Thus the
key inequality (2.4) cannot be improved by more than a factor 2. In the form
that we have stated here, the lower bound is original. However, there is some
relation with a bound on the size of confidence sets, due to Meyer (1977). The
only examples the authors know of where an attempt is made to calculate
something resembling this bound are Hall and Marron (1987) and Ritov and
Bickel (1990). In both examples, the authors are attempting to lower bound an
estimation error by the Bayes risk in testing between highly composite finite
hypotheses. While they do not explicitly define any of the quantities we will
deal with in this paper, a sympathetic reader may agree that their efforts are
in the same direction.

2.2. An estimator derived from minimax tests. It is reasonable to guess
that because the bound (2.3) cannot be substantially improved by a testing
argument, it might be nearly attainable. Let us consider, then, constructing an
estimator using the minimax tests which come close to attaining the key
inequality (2.4). This estimator is not intended to be implemented on a
computer, say; but its finite, concrete character allows us to demonstrate that
the bound A ,(n, a) can be (near) attained in great generality.

THE BINARY SEARCH ESTIMATOR. The estimator we propose requires that T
be bounded on F: M = supg|T(F)| < . The estimator has a tuning constant
A, which will depend in a prescribed way on sample size. At a given sample size
n, A is fixed and we proceed as follows. Let N = N(M, A) be the smallest
integer such that (3)MA > 2M. Let Iy = —($)MA/2 and hy = +(3)MA/2.
Then the interval [Iy, hy] contains [—M, M]. At this point we proceed as
follows. Given data Xj,..., X,, we perform a minimax test between the upper
third of [/, h 5] and the lower third, that is, we test F__,, ; against F 5 5.
We then form a new interval [Iy_,, A y_;] by deleting from the current one
whichever third (upper or lower) is rejected by the test. After testing the lower
third of the new interval [/ y_,, A y_,] against the upper third, we form the
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interval [ly_,, hy_,] by deleting from [y _,, hy_,] whichever third was re-
jected. Continuing in this way, we get a sequence of intervals, each one Z as
long as the previous one; we arrive after N stages at an interval [/, k] of
length A and we pick as our estimate T, the midpoint of this interval. The key
result about this procedure is:

LEMMA 2.2. Apply the binary search estimator with parameters A, M and
N. Set ny = A/2 and n, = (D*A fork > 1. Setd, = $(3)*A fork =0,1,....
Then

’ N-1
(2.6) sgpPF{|Tn —T(F)| >} < ;k a,(n,d;).

In particular,
N-1 .
Pp(|T, - T(F)| > 8/2) = T ay(n,3(3)"a),
E=0

which makes an interesting comparison with (2.3). Later we will see that
under some conditions, the terms in the sum decrease rapidly with %2 and this
upper bound is comparable with the lower bound (2.3).

Proor. We first give a formal description of the algorithm.

Algorithm Estimate (A, N):
k=N
Ly = =3
hy = (DM
while £ > 0 do
a, = lk + %(hk - lk)
bk = lk + %(hk - lk)
TestH,: F_,, against H: F ,,,
if Accept H,, then /* new interval is ([, b) */
Lioiv =l by =by
if Reject H,, then /* new intervalis(a, h) */
Leey=aphyp 1 =hy
k=Fk—-1
end while
T,=y+ hy)/2
end Algorithm

Suppose that in place of the fest step in the algorithm, we could substitute an
sracle that always answered correctly. Running such an ideal algorithm would
sroduce sequences {(I¥,h%),k=0,...,N} and {(a},b}),k =1,..., N}, all
‘unctionals of F.
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Consider now the tests &,,..., £y, with £, minimax for testing

Hy:F_,x versus H;:F, .

When T(F) belongs to the middle third of the interval [/, k,], the test by
definition decides correctly, because T(F) will certainly be included in the
interval [{,_,, h,_;]. When T(F) does not lie in the middle third of the
interval [{,, h,], the probability that £, decides incorrectly is bounded above
by

(2.7) m(conv(FL): ), conv(F3r)) < ap(n, bf — a}) = ax(n,d,_y).

Consider now (2.6), and let £ > 0. If the tests ¢ all decide correctly for
i=k+1,...,N, then T, € (I}, k%) and so |IT, - T(F)| < h% -} =n,.
Therefore,

N
P{IT,-T(F)| >mn} <P| U {& decides incorrectly}
i=k+1
N
Y. P{¢, decides incorrectly}
i=k+1
N-1

Z aA(n’di);

i=k

(2.8)

IA

IA

the last step uses (2.7). The argument in the case &k = 0 is similar. O

While the sum L N3!a,(n,d;) may look difficult to work with, a simple
hypothesis on A ,(n, a) affords a useful bound.

THEOREM 2.3. Let a € (0,1) be fixed. Suppose there exist r > 0 and 0 <
Ay <A, < w50 that

llog | \"/2 llog a| \"/?
(2.9) AO S AA(n, a) SAl( n

n
for |log al/n < &,. Pick n, so that
llog al/ng <&y and ay=ay(ng, A3/Ae5/?) < 1.

Define B = {;llog(a(2 — aD(A,/A)% and vy = (1/4nyllog(ay(2 — ap).
Pick C so large that CAy > 2A,. Then with A = CA (n,a) and d; as in
Lemma 2.2,

N-1 20
(2.10a) Y au(n,d) < —— +e,,

i—o 1-9¢

N-1 2k
(2.10b) Y, aux(n,d;) < —— +e,
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for n > 2n,, where
9 = exp(—C?/'B)

(2.11) _ log(3M)
e = 1og(AoeS/2)exp( ")

The proof is given in Section 7. In view of (2.6), these bounds imply that for
the binary search estimator with parameters A, M and N, we can have
P{|T, — T| > KA (n, a)} as near zero as we like, by choosing C large and K
still larger. Thus A ,(n, ) is the optimal rate of convergence [compare (2.5)]. A
more precise statement is possible for well-behaved loss functions (recall the
definition in the introduction).

THEOREM 2.4. Suppose that I(t) is well-behaved with constant a and that
(2.9) holds. Pick C so large that 0%a < 1. Then for the binary search estimator
with parameter A = CA ,(n, a), we have

(2.12) El(T, - T) < Al(Ay(n,a)) n>ng
for every F € F, where

26a fa
2.1 A= ——1{2 + [log C log1.5]_
(2.13) 1—02( 1—0%)“

The proof is in Section 7. Combining (2.12) with (2.5) gives:

CoRroLLARY. Under the assumptions of Theorem 2.4,

iqr}fsupEFl(Tn —T) < l(Ax(n,a)).
» F

In words, the minimax risk has the same asymptotic behavior as I(A 4(n, @),
to within constants.

This use of minimax tests to construct estimators is inspired by work of
Le Cam (1973, 1975, 1986) and by Birgé (1983). The Birgé-Le Cam approach
was developed for the problem of estimating an entire density, not just a single
functional of it. It is based on covering the space F by Hellinger balls and then
testing between balls to see in which ball the true F lies. Our approach differs,
in that we are testing between level sets of the functionals in question. As far
as the authors can see, testing between balls could not give the results we are
looking for.

3. Attainability and linearity. The reader may suppose, rightly, that
A 4 is not easy to calculate. In the important special case where T is linear, it
may be bounded using the modulus of continuity, as we show in this section.
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3.1. The main result.

THEOREM 3.1 Suppose T is linear and F is convex. Fix ¢, < (0,1) and
ay € (0,1). There exist universal constants ¢, C such that for a < a, and
llog al/n < g,

n

(3.1) w(c log o ) < Ay(n,a) Sw(C “Oial )

We may take C = V2 and ¢ = } for a,, e, small enough.

If w is Holderian, (3.1) establishes assumption (2.9). Invoking now the
corollaries of Theorems 2.1 and 2.4, we get the corollary cited in the introduc-
tion.

We should emphasize that an inequality of this sort should not be expected
for every functional—the modulus bound is simply not attainable in general.
The lower bound can always be established; it is the upper bound that may
fail.

3.2. The best two-point testing bound. To clarify matters somewhat, let us
introduce yet another lower bound on the rate of convergence. The two-point
testing bound A,(n, a) is defined as follows. Let

(3.2) ay(n,A) = sup m(FC),FL), ).
t

Note the omission of the convex hull operation in comparison with the
definition (2.2) of a,. Similarly, let A,(n, @) be the inverse function of a,. We
can also write

(3.3) Ay(n,a) = sup{|T(Fy) — T(Fy)|: w(F{™, F{™) > a}.
This is a lower bound on the rate of convergence. Indeed, as a, < a,, we have
(3.4) Ay(n,a) <Aj(n,a);

as A, has the lower bound property (2.3), it follows that A, is a lower bound
as well. Thus, (2.3) holds with A, in place of A ,. One could also argue directly
(compare Theorem 2.1 of [GR I)).

One can say more; A, is (nearly) the best possible two-point testing bound.
Thus, for a given n and a, the largest & for which there exists a pair (F,, F,)
with T(F,) — T(F,) >  which cannot be distinguished by the best test with
sum of errors better than «, is precisely A,(n, a). No two-point bound on the
maximum probability of error can exceed «, while this bound guarantees at
least /2.

The two-point bound is closely related to the modulus. Indeed, we have:
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LemMA 3.2. Fix g5 € (0,1) and a, € (0,1). There exist constants ¢ and C
so that for a < ay < 1 and |log al/n < ¢,

(3.5) w(c lloial ) < Ay(n,a) Sw(C llog o )

n

We may take C = V2 and
(1 —e™%0) log(2 — ay)a,

c?
£ log a,

Before giving the proof, we need some facts about Hellinger distance. We
use conventions similar to Beran (1977), Donoho and Liu (1988), Ibragimov
and Has’minskii (1981) and Pitman (1979). These conventions enforce, in a
few cases, different normalizations from Le Cam [(1973, 1986), Chapter 4].
First, recall the Hellinger affinity

(3.6) p(P,@) = [VpVa du,

where p and ¢ denote densities with respect to a measure p which dominates
P and @ (e.g., u = P + @). We have the inequalities

(3.7 m(P,Q) <p(P,Q), p? <m(2 - m),
where 7 is the testing affinity, and the identity
(3.8) p(P,Q) = 3(2 - H(P,Q)),

where H denotes Hellinger distance. We also have the elementary, but very
useful, formula

(3.9) p(P™, Q™) =p(P,Q)",
where P and @™ denote n-fold product measures with marginals P and Q.
Armed with these, we can proceed.
Proor. Define
ho(n,a) = inf{H(Fy, F,): m(F{™, F{™) < a}
and
hy(n,a) = sup{H(Fy, Fo): w(F{™, F{™) > a}.
Using (3.6)—(3.9), we have the easy inequalities

(3.10) hi(n,a) = 2(1 - (a(2 - ))"*"),
(3.11) R3(n,a) < 2(1 - a¥/™).

Combining these, for each § > 0,

(3.12) w(ho(n,a) —8) < Ay(n,a) <w(hy(n,a) +3).

The result then follows by (3.13) and (3.14). O
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LemMa 3.3. For a € (0, 1),

log o
(3.13) (1 - at/ny < 289
n

Fix ay <1, g4 > 0. There exists a finite positive constant ¢ so that for 0 < a <
ay, |log al/n < &4, we have

¢? |log al
2 n

(3.14) (1- (a2 -a)*")>

We may take

. 1-e"1og(2 — ay) e,

£ log

This result is proved in the technical report [GR II].

In particular, if w(e) is Hélderian, then w(n~1/2) is equivalent, to within
constants, with A,(n, a). And so the question of the attainability, as regards
rate, of w(n~'/?) is equivalent to the attainability of the best two-point,
testing bound. Compare also Section 6 of [GR I].

The reader will note that (3.4)-(3.5) together establish the lower bound of
(3.1)—without any hypotheses on T or F.

3.3. Establishing the upper bound. Le Cam has established a fact which
seems, at first, quite similar to (3.9) but is in fact far deeper.

LemMA 3.4 [Le Cam (1986), Chapter 16, page 477]. Let P and Q denote
sets of probabilities and P, Q™ the sets of corresponding product measures.
Then

(3.15) p(convP™ conv Q™) < p(convP,conv@Q)”.

We remark that this is not an obvious consequence of the identity
p(P™, Q™) = p(P, @)". Combining (3.7), (3.15) and the definition of a,, we
have:

COROLLARY.

(3.16) as(n,A) < sup p(conv(F_,),conv(F,,, )"
t

Thus the Hellinger distance between the convex hulls of F_, and F_,,,
may be used to bound «,. The upper bound in (3.1) follows niore or less
directly from this. To see how, notice that for each § > 0,

(3.17) e < inf H(F ., Fypiuirns):
t
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Combining this with (3.8) we have
(318) p(Fst’F2t+w(s)+8) <1- 82/2'

Now, and this is the key observation, if T is a linear functional and if F is
convex, then F_, and F,, , are both convex for all ¢+ and all A. Thus
F_,=convF_,andF,,, )5 = convF ., . 5 combining(3.16) and (3.18),

(3.19) ay(n,o(e) +8) < (1 -£%/2)".
It follows that

Au(n,a) < w(\/2(1 - (a*)l/”)) +8

for every a* > . Since (3.13) holds with strict inequality, we get the upper
bound in (3.1). This completes the proof of Theorem 3.1.

4. Attainability and the minimax identity. In general, a relation such
as (3.1) between w(n~'2?) and A,(n,a) is not to be expected. It requires
essentially that the hardest two-point subproblem of testing F _, versus F,, ,
be roughly as hard as the full problem. Let us see how.

4.1. The minimax identity. The two-point testing bound and the attain-
able bound have an interesting connection. As (3.4) shows, the two-point
bound is always smaller; as (3.1) and (8.5) make plain, when T is linear and F
is convez,

(4.1) Au(n,a) < CAy(n,a)

for an appropriate constant C, for small & and large n.

It seems natural to ask if the two-point and the attainable bounds can ever
agree, that is, if we can have C =1 in (4.1). Chasing a few definitions, this
leads in turn to the question of whether we can have

(4.2) (conv(F$?), conv(FLY, ) = m(FE), FL). L),

Indeed, the quantity on the left-hand side is the main ingredient in the
deﬁmtlon of A,, while that on the left is the main ingredient in A,. Now, from
the definition of 7, the quantity on the left is

inf sup D, (¢, (F,, Fy)),

tests p eF
¢ Rer.l,

where D, ({,(F,, F))) is the difficulty EF(n)§ + EF(n)(l — {) representing the
sum of errors of the test {. This is the minimax dlfﬁculty for the problem of
testing the composite hypotheses F_, versus F,,,. On the other hand, the
quantity on the right of (4.2) is

sup lnfDn(g’(FO,F))

FyeF_, tests
FlerH-A
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This is the difficulty of the hardest two-point testing problem. Consequently,
the identity (4.2) is equivalent to the minimax identity

(4.3) inf sup D,({,(Fy, Fy)) = sup inf D,(¢,(Fy, Fy)).
{ (F,Fy (F\, Fy) ¢

This identity says, in words, that the difficulty in testing between the
infinite-dimensional composite hypotheses F_, and F,,,, is precisely the
difficulty of the hardest two-point testing problem.

We will see later two concrete examples where this minimax identity holds.
For clarity, we summarize some implications the identity would have:

LemMma 4.1.  If (4.2) holds for every t and n and all A < A,, then A, = A,
for large, n and so w(n~'/2) represents the optimal rate of convergence of an
estimate T, to T.

Indeed, the conclusion that A, = A, follows from the definition of these
quantities and the conclusion that w(n~1/2) is the optimal rate follows from
(3.5) and Theorem 3.1.

It does happen that (4.2) holds in interesting examples. The following result
is proved in the technical report [GR II].

THEOREM 4.2. Let T(F) = f(0) and let F be the Sacks-Ylvisaker (1981)
class

SY = {f: £(x) = /(0) +37/(0) + h(x), £(0) <M,

ff= 1, f=0,|h(x)] sz/z}.

(Here we must have (4V2 /3)M3/2 < 1.) Then for every t and n and every A
small enough, the minimax identity (4.2) holds and so A, = A, for large n.

For other examples, see Section 5. In general, one cannot expect (4.2) to
hold. Oné case when (4.2) does hold is when the sets F_, and F,,, are
generated by capacities [see Huber and Strassen (1973), Bednarski (1982)].
This is much stronger than simple convexity of the two sets. However,
Le Cam’s result, as recorded in Lemma 3.4, may be used to show that
convexity alone is enough to guarantee that a certain approximate minimax
identity holds.

Lemma 43. If F_, and F,, , are both convex,

(4.4) p(conv(F$2), conv(F), ) = p(FEL,FEL, ).

This says that, although (4.2) may not hold when just convexity is assumed,
its analog, with 7 replaced by p, does hold.
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Proor. We have
p(Fst’ th+A)n 2 p(conV(F(snt))’ COHV(F(Znt)+A))
2 p(FELFL),4)

= P(Fst’FzHA)n’

the first line following from Lemma 3.4 and the assumed convexity; the second
from the obvious inclusion relation; and the third from the formula (3.9) for
affinity of product measures. As the first and last quantities are the same, it
follows that the middle inequality is actually an equality. Hence, (4.4). O

Because of the inequalities (3.7), (4.4) places definite limits on how different
the two sides of (4.2) can be for large n. In fact, we get for the ratio of
logarithms that

(4.5)

llog ay(n, A)| 1
S <214 ——— |
llog ax(r, A)| llog ay(n, A)l

Thus, at every n and A for which a,(n,A) <a, <1, we can bound the
discrepancy between a, and a,. In this sense, Le Cam’s Lemma 3.4, which
underlies (4.4), is an approximate minimax theorem. And one could say that
Theorem 3.1 holds because (4.2) almost holds when T is linear and F is
convex.

A e ITHI,\’EQFE Iiﬁ il P 1 kipsnge ced B ane,

»
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whatever be T and F, these two accompany each other, so that if one holds, so
does the other. This gives a clue to the general attainability issue; attainability
of w(n~'?) really does imply that the two sides of (4.2) are close, but only in
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Has’'minskii (1984); in our own work, this theme appears in the sequel [GR
IIT], in Donoho, Liu and MacGibbon (1990) and in Donocho (1989).

5. Attainability in nonlinear cases. In this section we study three
nonlinear functionals in order to see how the ideas of the preceding sections
carry over.

5.1. Estimating tail rates. While it is most natural to consider estimating
the rate at which the tail of a density approaches 0 as x — » [compare
Du Mouchel (1983)], a transformation of the problem (to observations Y, =
1/X;) leads one to consider estimating the rate at which a density, known to
be zero at the origin, approaches this limit as x — 0* [compare Hall and Welsh
(1984)]. We adopt this point of view here. Accordingly, let F =
Tails(C_,C, §, ¢4, ¢, 7, ), the set of distributions supported on [0, ©) with
densities f satisfying

(5.1) f(x) = Cx*(1 + h(x)) 0<x<d<1,
with

(5.2a) O0<ty<t<st <w

and

(5.2b) 0<C_=C=<C<w

and

(5.2¢) |h(x)| < yxP.

For such an F € F, let T(F) =t, where ¢ is the exponent in (5.1). This
functional is nonlinear.

Consider now the problem of testing F_, against F,, ,. In [GR I] we have
shown that the closest pair in a Hellinger sense has the form

(5.3) fd(x) = C_ax'(1 — yxP),  x <aytA),
(5.4) fif(x) = C x""2(1 + yxP), x<aytA),
and
fo' (x) fo'(ay)
5. =
e R " Ry T
and
(5.6) fo'(a)) 1-[5ifo(v)dv

fi(a;))  1- [@fiF(v)dv’

As we will see, this closest Hellinger pair represents a hardest two-point
testing problem. From the properties of this pair, we can show that the
minimax identity (4.2) holds in this case.
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THEOREM 5.1. For the previously described pair (Fg*, F}*), we have
7(conv(FLY), conv(FL, ,)) = w(FLLFLY,) = ((Fg)™, (Fr)™)

and the minimax test between F_, and F.,. , is the likelihood ratio test
between Fyg* and F*.

Proor. The likelihood ratio L, J(x) = f*(x)/f;"(x) has, according to
(5.3)-(5.5), the form

C, ,1+yx?
5 s C—_x m, 0<x<a,,
(5.) R P
—al———, x=a,.

a
C_'1-yaf’

This is a nondecreasing function of x.

Among all distributions in F_,, Fs* is the stochastically largest on [0, a,].
Similarly, among all distributions in F_,, ., F;* is the stochastically smallest
on [0, a,]. This implies that the distribution of L, (X), where X is distributed
F, is stochastically largest under the null hypothesis at F = F* and stochasti-
cally smallest under the alternative hypothesis at F = F{*. Now let X,,..., X
be i.i.d. F. Consider the likelihood ratio statistic

n
(5.8) Loea= l:-[lLt,A(Xi)'

Under H,: F_, this statistic is then stochastically largest at F' = F*, and so
on. Therefore, if we consider accepting H, when L,,, <1 and rejecting
when L, , , > 1, we have
sup Pp{Reject Hy} = Pp.{Reject H},
FeF_,
sup Pp{Accept H,} = Pg,{Accept Hy}.
FeF.,.a
It follows that the worst sum of type I and type II errors of our test occurs at

(Fg, Fy*). But the likelihood ratio test is optimal for that pair, and hence it is
minimax. O

We now use the minimax identity to show that the lower bound of Theorem
2.1 may be nearly attained. An extra level of structure in the minimax tests of
Section 2 may exist which we have not previously considered: monotonicity in
t. Suppose that we are in a situation like the present one, where the minimax
test can be taken to be nonrandomized. If A(#, n, A) is the region in which
such a test accepts H,: F_, rather than H,: F,,,, we say that the accep-
tance regions are monotone in ¢ if

(5.9) A(t,n,A) CA(t+ h,n,A) Y&>O0.

The following result is proved in Section 7.
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TueoreM 5.2. For all sufficiently small A, the likelihood ratio L, (x) is
monotone decreasing in t for each fixed x.

It follows from this theorem that the minimax test for our problem has
acceptance region

A(t,n,A) = {(Xi)?=1: ilf[lLt»A(Xi) = 1}

with the monotonicity property (5.9). Consider what we call the likelihood
ratio estimator

2

By the monotonicity established in Theorem 5.2, T.* “s is always uniquely
defined.

(5.10) T}, = 4 +sup{ ]_[Lt (X)) 21t [ty t, - A]}.

THEOREM 5.3. Suppose that L, \(x) is monotone decreasing in t for each
fixed x. Then

(5.11) sup Pp{|T.% s — T(F)| > A/2) < 2a,(n, A).
F

This is to be compared with the lower bound (2.3); it is parallel in form; but
in the lower bound the 2« is replaced by « /2.

Proor. By the monotonicity in ¢ of L, ,, {T},*, — T(F) > A/2} happens if
and only if the minimax test between H0 F<T( ry and Hy: F,rp) . would
reject H,. The probability of this event is smaller than « A(n A) by definition.
Similarly, the probability of the event {T,*, — T(F) < —A/2} is also less than
ayn,A). As {|IT}, — T(F) > A/2} is the union of these two events, (5.11)
follows. O

Thus, in this case, the lower bound A, (= A,) is achievable within a
factor 4.

5.2. Robust nonparametric regression. Let (u;,y), i=1,...,n be our
observations and suppose that
(5.12) ¥i=§(w;) +z,

where £(u) is an unknown function, known only to be Lipschitz with constant
< C, and the z; are supposed to be independent errors, z; having the distribu-
tion G; which is unknown, but which is supposed to lie in the gross-errors
neighborhood

(5.13) G, ={G:G=(1-¢)®+¢H}

with @ the standard normal distribution and ¢ a known constant, 0 < ¢ < 1.
We are interested in estimating &(u,). If & = 0, then &(u) = E{y|u} is the
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regression function; thus with ¢ > 0 we get a problem of robust nonparamet-
ric regression.

To fit this in our framework, suppose (for definiteness) that the u; are i.i.d.
according to Lebesgue measure on [0, 1] and let Reg(C, ¢) denote the class of
distributions F(u, y) on R? such that the z marginal is uniform and

(5.14) F(y - é(u)lu) € G,,

where ¢ € Lip(C).

It is now evident that the problem fits in the framework of this paper. We
are trying to estimate the nonlinear functional T'(F) = £(u ) from data X, =
(u;,y;) which are i.i.d. F, with F an unknown element of F = Reg(C, ¢).

Our solution depends on results about minimax testing in the gross-errors
model; see Huber [(1982), Chapter 10]. Define the Huber score function
¥y, (x) = min(k, max(—k, x)), where k = k(e, A) is the solution to

o=y ) - 957 ) -
2 —k 2-k) 1-¢°

Define the censored likelihood ratio

AMx;A,¢) = eXP{ll’A,s(x)}'

Let G, be the class of all distributions G(- + A/2) with G in G,, and G, be the
class of all distributions G(- — A /2) with G in G,. Suppose we w1sh to test H,:
G, against H;: G, from n iid. observations x;. Then I?_, /\(xt, A, €) fur-
mshes the minimax test. Another significant fact is that A(x — t) is monotone
decreasing in ¢. Huber uses these to construct location estimates with a certain
optimality property.

Now return to our model. Define E(u,A) = inf{[£(u) — £,(u)l: £,0) —
£4(0) > A}. Then by the Lipschitz condition E(u, A) = (A — 2C|ul),. Define

(5.15) Lya(u,y) =AMy — t;E(u — uy), )
and‘
(5.16) Ly a= fILt,A(Xi)-

We can use this to test between H: F_, and H,: F,,_, as follows: Reject H,
if L,,,>1,acceptif L, , a< 1 and randomlze with equal probability other-
wise. This test is, in fact, minimax: L, (&, ) is the likelihood ratio between a
pair (Fg*(-|u), F*(-|u)) which makes L, ((u,") stochastically largest among
all F( Iu) obeying &(uy) <t —A/2 and stochastically smallest among all
F(-|u) obeying &(ugy) >t + A/2.

Moreover, one sees that L, J(u,y) is decreasing in ¢ for each fixed u, y and
A. Let

Tn’_= inf{t: Ln,t,A < 1},
T, .=sup{t: L, , ,>1}.
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Finally, let 7,", be the randomized estimator taking values T,_and T, ,
with equal hkehhood

It follows essentially as in Theorem 5.3 that (5.11) holds for the present
setting. But in the present case the symmetry of the problem under reflections
(t = ¢ — t) means that the two types of errors of the minimax test are each
bounded by «/2 and so we can do twice as well as (5.11).

THEOREM 5.4. For the nonparametric regression model,
(5.17) Pe{|T)s - T(F)| 2 A/2) < ay(n,d).

Thus the estimator T,", is within a factor 2 of minimax. Actually, if we
define the difficulty (as opposed to risk)

D(T,, F) = max Pe(£(T, - Tr) = A/2),

then the symmetry of worst case type I and type II errors implies that
D(T,},, F) < ay(n,A)/2 for every F € F. On the other hand, close inspection
of the proof of Theorem 2.1 reveals that for any measurable estimator T,
supg D(T,, F) > a,(n, A)/2. It follows that T,*, is exactly minimax, in ﬁnlte
samples:

aA(n,A)
2

The analogous fact about location estimation occurs in Huber [(1982), Theo-
rem 7.1, page 285].

The setting just developed is rather general and works in other cases as
well. We give details for estimating the conditional median. Retain the obser-
vation scheme (5.12), but suppose that the unknown error distribution G,
belongs to

(5.19) H, ;={G:Med(G) =0,g(¢t) >mon[-4,5]).
We are interested in estimating T(F) = §(u0) = Med(ylu = u,), the condi-
tional median. Our class F = CMed(C, m, 8) is defined by (5.14) in a fashion

similar to Reg(C, ¢), only with H,, ; in place of G,.
Suppose that A/2 < §, that 2m$ < 1 and deﬁne vy=0-2mA)™L Set

v, x>A/2,
A(x,A,m,3)= 1, xE[—A/2,A/2],
y7l, x< —-A/2.
Using this ratio, we can form L, (u,y) = My — t; E(u — u,), m, §). By mim-
icking the prescription (5.15)-(5.16), we obtain tests for F<t against F_,
and an estimator T*, , for T. In fact, the tests will be mlmmax and the
conclusion (5.17) will hold for the resulting estimate.
Indeed consider the problem of testing between H,: {G,(- + A/2): G, €

m,s) against H: {Gl( A/2): G, € H, ;} on the bas1s of n ii.d. observa-
tlons (x;). Then /\ is stochastically largest under H, and stochastically small-

(5.18) i;lf supD(T,,F) = = supD(T,,, F).
n F F
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est under H,, at a pair for which I1; A(x,) furnishes the Neyman—Pearson test.
Hence A furnishes the minimax test between H, and H,. Moreover, A is
monotone. Finally, the maximal type I and type II errors are equal. Hence the
key points used in the analysis for Reg(C, ¢) carry through and (5.17) holds in
the present setting. Of course, the minimaxity (5.18) for the difficulty measure
D carries through as well.

These examples should reinforce the points (1) that nonparametric regres-
sion is a special case of density estimation; (2) that the lower bound of
Theorem 2.1 is nearly attainable in some interesting cases; (3) that the optimal
rate of convergence is w(n~'/2) in some nonparametric regression problems.

5.3. Estimating the mode. Let F = Mode(M, c_, c_, 8), the class of distri-
butions with unimodal densities f, that are uniformly bounded:

(5.20) f(x) <M,

and have quadratic maxima:
mode) — ¢ (x — mode)?
(5.21) 199 = e )

< f(x) < f(mode) —c_(x — mode)z, lx — mode| < 8.

Let T(F') = mode(F).

T is nonlinear. In this case the modulus satisfies w(¢) = Ae2/5(1 + o(1))
and, as we shall see, the rate w(n~!/2) is attainable. However, attainability is
not easy to demonstrate by the methods used so far. Instead, we turn to
methods of analysis. For reasons of space, our discussion is abbreviated; for
more information, see the technical report.

We study rates of convergence of kernel estimators of the mode. Our rate
result applies to any kernel satisfying:

AsSsUMPTION. K is a positive even function of compact support, bounded,
square integrable and absolutely continuous, with
”K”2 < o, ”K”co < o,
and
1Kl <o,  IKlls <o,

where the norms of K' are defined distributionally and so represent the
smallest constants C, and C,, for which

IK(-) = K(- = 8)ll2 < C,3,
IK(-) - K(-—8)ll. <C.b

are valid for all 6 > 0.

THEOREM 5.5. Let T be the mode and F be as in (5.20)~(5.21). Then «w(e)
is Holderian with exponent 2 and so no estimator can achieve faster than an
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n~Y5 rate of convergence uniformly over F:

-1/2

llmlnflnfsupPF{|T T|>w(n '} >

n—-® 2
Let K satisfy Assumption K and let h, = bn~1/5. Let T{® be any maximizer of

n K((X, —t)/h
; (¢ ht)/)

n

Then T ® attains the n=/° rate uniformly over F:

hm lim sup supPF{|T(k) -T|> Cw(n_1/2)} =0.

n-—we

The proof is sketched in Section 7. It involves analysis of the supremum and
fluctuations of a certain empirical process. While papers such as Bickel and
Rosenblatt (1973), Silverman (1978), Révész (1978) and Rudzkis (1985, 1987)
consider similar processes, we are unable to simply apply their results because
we must get bounds uniform in F and such uniformity does not seem to have
been directly addressed in empirical process research.

Has’minskii (1979) established a lower bound for estimation of the mode
also of the order n~!/% although his results do not quite cover our class.
Has’minskii claims in this article that the n~1/5 rate is attainable and that the
results of Venter (1967) show this. However, Venter’s work only establishes
individual (rather than uniform) rates and only almost sure (rather than
in-probability) rates. Using Lemmas 7.1 and 7.2 and some facts about || £, —
Ef,|l.. due to Silverman (1978), it is possible to show that the almost sure rate
suggested by Venter’s result, log n/n'/®, does indeed hold uniformly over F.
However, to show that n-1/8 is the optimal rate in probability seems gen-
uinely harder; our approach uses Bernstein’s inequality and a chaining argu-
ment. Thus, Theorem 5.4 verifies Has’'minskii’s claim and shows that n~1/% is
the optimal rate for estimation of the mode over the class F.

6. An interesting example. Consider now the nonlinear functional
T(F) = [f2 Let F be the family of distributions supported in [0, 1] with
densities bounded by M. Then, it follows from Section 5 of [GR I] that
w(e) < 4Me. This suggests that the rate n~1/2 might be attainable in estimat-
ing this functional.

In a very penetrating analysis, Ritov and Bickel (1990) have shown this
guess to be very far from true. Translating their results into the language of
this paper, we have:

THEOREM (Ritov-Bickel). With T and F as before,
(6.1) as(n,A) =1 forallnand A € (0,(M - 1)/2),
(6.2) Ag(n,a) =(M-1)/2>0 foralln.
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In short, no rate of any kind is available under these conditions. As
w(e) = O(e), we thus have an example where

Ay(n,a) = O(n™1%)
but
Ap(n,a) + 0;
the two lower bounds behave as differently as it is reasonable to expect. In
view of this result, there may be a large and interesting class of cases where

the two-point and composite bounds are not comparable [see also Donoho and
Nussbaum (1990)].

7. Proofs.

Proor oF THEOREM 2.3. Before proving (2.10a, b), we first establish some
exponential bounds on a,(n,d,). Let £, = min((A,/CA,)* e, llog al /5). We
consider two cases, depending on k. For £ small,

3\* (llogal\"? \
(Case 1) (E) CAI( - ) < Ajer/?.

In this case, by our constraint on ¢,, there exists an integer m, satisfying
n/2>m,>5and

A1 2/r
n\————— <m,,
Ay(3/2)°C

n (3 *CA,\Y"
3l—|=21l= -1
[mk_ 2) A,

and |log a|/m, < ¢,. Then a calculation reveals that

logal \™/? [3\* llog a| \"/?
Al( g < (—) CAO( g )
m, 2 n

and as |log al/m, < &,, (2.9) implies
Ag(my, @) <d,

and thus a,(m,,d,) < a. Le Cam (1973) gives the formula

Tim < (‘/‘n'm(2 - T,) )j,

where 7;,, = w(conv(PY™), conv(QY™)) and ,, = m(conv(P™), conv(Q™)).
We conclude

as(imy,dy) < (Va@ —a) ).
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Using monotonicity of a, in n, we get

ayu(n,d,) < (m)ln/mkj

( (3/2)*CA, )M _ 1}}
A,

2k/r
=exp(—2BCz/'(§) +E|log(a(2—a))|).

1
< eXp{— gllog(a(2 - a))]

The hypothesis CA, > 2A, implies
26C* (3™ - $llog(a(2 - a))| > BC*7(3)™
for £k =0,1,2,... and so we have, in Case 1,
k/r

(7.1) au(n,d,) < exp(-BCY"(3)™").

In Case 2, £ is so large that condition (Case 1) does not hold. It follows that
d;, > (A} /A))e]’?; using the definition of n, and arguing as before,

(n/ng)—-1

a(n,dy) < (Vao(Z = ag) ) """ = exp(—2yn + }[log(ag(2 — ao))]).

Now as 2((n/ny) — 1) > n/n, for n > 2n,, we get
2yn - 3{log(ao(2 - a0))| > yn

and so
(7.2) as(n,d,) <exp(—ny), n>2n,.

With our bounds established, we now consider (2.10a). Let K be the
number of d, covered by Case 2. Formally,

3\* (llogal\"/? 3\N
K=#{k:Aoe{/2s (5) Al( " ) < (5) A}

As (PNA < 3M, K < log(3M)/log (A,e;/?); thus K is bounded independently
of n and N. Now by (7.1) and (7.2), if n > 2n,,

N-1 N-K-1 N:91
Y oau(n,d)= ¥ +
k=1

k=1 N-K
N-K-1 24 r
(7.3) < exp( —BC? (%) ) + K exp(—nvy)
k=1 '
< exp(_Bcz/r(%)Zk/r) te,.

k=1
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If I = 0, then since ($)%*/" > 2k for k = 1,2, ...,
o 3 2k/r ®
kgoeXP(—Bcz/r(E) ) < exp(—-BC?¥7) + kz;,lexp(—ﬂcz/'Zk)
02
=60+ W
Combining this with (7.3) gives (2.10a). If / > 0, we have

21

— 92"

% 3 2k/r )
Z ( Cz/’(z) ) < ) exp(—BC¥"2k) = T
which, with (7.3), gives (2.10b). O

Proor oF THEOREM 2.4.

N-1

Z P{ny1 2T, = T[> m}l(mpsy)
=0

IA

Epl(T, - T)

1

N-
Y P{T,-T|> MM (M4 s1)
k=0

IA

-1

02k N
+ Z l(nk+1)en'
0

20 N-1
<lm)y—pz + kZ Hmes) T—52
-1

Now as [ is well-behaved, 1(n,) = I((3)*A) < a*1(A), so

20 ) 02kak+1 aN_ 1
E;l -T l + +
F(Tn )S (A) 1 - 2a kzl 1 — 82 ena_l]
)A 2a0 1 a?6? a¥ -1
= +
(8)7 M R gy S

=1(8)(Ay + 43.,),

say. Now as N < log(3M)/log(A) < log(83M X(r/2)log(n) — logllog al) —
log(A,)),

ae, = exp(—ny + log(a)N)
<exp(—ny+Aglog(n) +A;) -0, n >,

Therefore, A;, — 0. For large enough n, A;, <A, and so I(AXA, +

A; ) < 2A,1(A). Then, as I(A) = I(CA [(n, @) < a*¥C/*B151(A (n, @), we
have (2.11) with A = 2A,a!°8¢/%¢151
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ProorF OF THEOREM 4.4. [Proof that (i) implies (ii).] As w is Holderian, for
&, small enough, then by (3.5) there exist constants A,, A; so that
llog a llog a! \"/?
Ao( g g )

(7.4) -

r/2
) < Ay(n,a) sAl(
for @ < ag and |log al/n < &,. Let m be an integer so that m/2 + 1>M.
Now we claim that
log(a(mn, )| m

Hog(as(n,A))| ~ 2
Let us see why. Let pu(n,A) denote a quantity similar to « 4(n, A), only
defined using Hellinger affinity rather than testing affinity. Then

ay(mn, A) < pa(mn, A) < pa(n, 8)" < (2an(n, 8)%)",
where the second inequality follows from (3.15) and the third from (3.7). Thus
llog ay(mn,A)| = m[3|log ax(n,A)| + log2].
Now, for a, < %, log2/(log a4l > 1 and so the last display proves (7.5).
Combining (7.5) with hypothesis (4.6) gives
|log ay(mn, A)| >|log ay(n, A)|.

It then follows that, with & = ay(n, A), Ax(mn, a) < Ay(n, a). Now by (7.4),

+ 1.

(7.5)

llog a| \"/?
Agy(n,a) < Al( )
and
llog ol |/

A, o < Ay(mn,a).

Combining these,
1’nr/2
7.6 Ay(n,a) < A,(mn,a).
2 2

Hence, for every &k = mn,

(7.7) Ak, @) < CyAy(k, @),

where C, = A;m"/?/A,. The argument extends to other k with the larger

constant C = (A,/A,)*(2m) /% details are given in the technical report.
[Proof that (ii) implies (i).] As in the last proof, (7.4) holds by hypothesis.

Pick an integer m so that (A,/A;)m"/? > C. Then

Ay(mn,a) < CAy(mn, a)

l r/2 A l r/2
sCAl(logal) 1 ('Og"") |

m/?A, °\ n

mn

llog al \"/?
<A0( i ) < Ay(n, a).
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Hence, with A = A,(mn,a), ay(n,A) > a. Defining py,(n,A) in a fashion
analogous to A,(n, A), only using p in place of testing affinity, we have that
pon, A) > a and also py(mn, A) > a™. Then from 7 > 3p2,

ay(mn,A) > a®™.
And so, if a < 3,
|log ay(mn, A)|

. < + 1.
(7.8) . |log a,(mn, A)| =2m+1

It follows that, for a, < 3 and k of the form m - n, we have (4.7) with
M =2m + 1. The argument extends to other 2 with the larger constant
M = 10m + 5; see the technical report for details. O

Proor oF THEOREM 5.2. (5.7) shows that L, ,(x) is constant in ¢ for
x < a,(¢, A) and is a monotone increasing function of a,(¢, A) for x > a,(¢, A).
Thus the proof requires showing that a,(¢, A) is monotone decreasing in ¢.
Now a,(¢, A) is the value of x solving

(7.9) A(x) = p(x,t),
where
C, 1+ yx?
= ——— A————-——-—
A(x) C_x 1= yx?
and

1— [ify(v) dv
1- fsfolv)dv’

Now A is monotone increasing in x. We claim that for sufficiently small x,,
x € (0,x), 0 <xy <1, u(x,t) is monotone decreasing in ¢. Then, at any (¢, A)
pair at which the solution a,(¢,A) of (7.9) falls in the interval (0, x,), the
solution must be monotone decreasing in ¢. Finally, a little calculus will show
that for a given x,, there is a A, > 0 so that a(¢,, A) < x, for A < A,, where
¢, is the constant used in (5.2a) defining the class F. Combining the last two
sentences completes the proof.

It remains only to establish the claim, that is, to show that u(x,?) is
monotone decreasing in ¢. Put

p(x,t) =

1-B()
'u(x’t)_l——a(t)’
where
t+A+1 t+A+1
= - 14 yxp—
a(?) C+t+A+1 yxt+A+p+1’

; Cx”ll , 1
B = a7 )
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Now one can easily verify that, if x < 1 and also yx? < 1,
(7.10) a(t), B(t) are decreasing in ¢.

Then monotonicity of u(x, ¢) follows from

L-B) _ B
1-a(t) a(t)

In fact, we will show that for x, small enough,

1-B(t) _,_B()

(7.11) e <2< 20

for all ¢ > 0 and all x € (0, x,).

Let us first establish the left-hand inequality. This can be rewritten as
1> 2a(t) — B(t) and as 2a(t) + B(#) > 2a(t) — B(¢), it is implied by 1>
max, 2a(t) + B(¢). By (7.10), this reduces to

(7.12) 1> 2a(0) + B(0).

Now pick x, so that

xp*t A+1 xP
1>2C+—A-—+-I 1+’}/xfm + C_x, 1+'yp+1 .

Then for x € (0, x,),

2a(0) + B(0)

xP xA*1 A+1
=2C‘x(1"7p+1)+C+A+1(1+7xpm
xf xfp+t A+1
SzC’xl(lJrYp+1)JrC"A+1 1+yx‘lnA+p+1

<1
and so (7.12) follows. Thus the left-hand side of (7.11) is established for

X < X4
We now consider the right-hand inequality of (7.11). Now

B'(t) = ¥(x,t)[ B, — B, + B3],
a'(t) =¥(x,t)[A - Ay + Agl,
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where ¥(x,t) = (x**1 /(¢ + 1))|log(x)| and

t+ 1)x?
Bl=_c_(1_u),
t+p+1
t+ 1)x? 1
2=C_1_7( ) ,
t+p+1 ] (¢t+1)log(x)|
y(t + 1)x? yxP 1
B3= — 2— ’
T\@E+p+ 1) t+p+1]]|log(x)]
y(t + A + 1)x? t+1
= -C. {1+
A +( t+p+A+1 ) t+A+1’
t+ A+ 1x? t+1 1
A2=C+(1 + Y( ) )xA 2 ’
t+p+A+1 (t + A + 1)° [log(x)]
yx? y(t+ A+ 1)x? t+1 1
A3=C+ - 2 X 2 .
t+p+A+1  (t+p+A+1) (t + A + 1)% |log(x)|

The desired inequality is then equivalent to
(7.13) B, —B,+B3;<2(A, —A, —Ay)
for all ¢ and all x < x,.

Note that for x € (0, 1), B, is increasing in ¢. Thus

Bl < limBl = _C_(l - 'yxp) = B4(x);

>
similarly A, is decreasing in ¢ and
A > limA, = —C x%(1 + yxP) = Ay(x).
t— o
Pick ¢ > 0. For x, small enough, B,(x,) < 2A,(x,) — ¢ and so by the obvious

monotonicities in x, By (x) <2A(x) — ¢ for all x € (0,x,). We will show
below that B,, B;, A, and A, are negligible, in the sense that

(7.14) | By| +|Bs| + 2| Ay| + 2|Ag] <&

for x < x5. Then (7.13) follows, for x, < min(x,, x3).
Note the inequalities

1+yxP 2yxP
1Byl < Co—tn | |By| < O,
(7.15) |log(x)| [log(x)|
' 14, <C A1+ yx? Ay < €t 2yxP

< C xbe—, < C ozt i,

2ET log(x)] 377 log(x) |

valid for ¢ > 0, 0 <x < 1. Pick x5 so small that the sum of the uppér bounds
in (7.15) is less than ¢ /2. Then we have (7.14) for all x < x3 by the monotonic-
ity in x of the upper bounds in (7.15).
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Putting x, = min(x,, x,, x3), we see that both sides of (7.11) hold for all
t>0andall x € (0,xy). O

Proor oF THEOREM 5.5. The claim about the modulus follows from Theo-
rem 4.2 of [GR I). The claim about the lower bound follows from Theorem 2.1
of [GR I]. As w(n~1/2) is asymptotic to An~1/® for an appropriate constant A,
the proof is completed by showing that T’ — T(F) = 0,(n~'/%) uniformly
in F.

Suppose without loss of generality that K is a probability density: { K = 1.
Then fn is an estimated density and f,(¢) = Efn(t) is a density.

Let ¢, be an maximizer of f,(¢). Let £, be any maximizer of fn(t). By
Lemma 7.1, the assumption h, =bn~'/® guarantees that ¢, — T(F) =
O(n~1/5) uniformly in F. Thus the theorem is proved, if we can show that
£, = t, = 0,(n"1/%) also uniformly in F.

Now we have

(7'16) fn(in) an(tn)

and so
(fn(fn) - fn(in)) - (fn(tn) _fn(tn)) an(tn) _fn(in)'
Now by Lemma 7.2, there is a constant y > 0 so that

(7.17) Fu(ty) = F(t) 2 v(t — t,)°

uniformly in F, if ¢t €I, =(T(F) + gh,s,T(F) +¢), for a certain ¢ > 0
defined in the lemma and any ¢ smaller than the constant & used in defining
the class F. It follows that if £, € I,,, then

(7.18) Z,(3,) - Z,(2,) = yn?5(3, — t,)%,
where Z, is the stochastic process

Z,(t) = n**(fu(t) — Fu(®))-

Therefore, if A is so large that n='/°A > (¢ + 1)k s, we must have
Pelf, =ty > 70} < Pe(Z,(8) = Z,(8,) > /(¢ = 1,)°

for some ¢ € (¢, + n”'/%A, ¢, + c)}

+ Po{ sup £u(t) > Fu(t).

>t,+c

Now

Po( sup £u(t) > Fu(t)} = Be{ fulta) <£u(t) - 57}

t>t,+c

« Be swp £(0) > £u(t) -~ 3¢}

i>t,+c
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Using Lemma 7.3, we get that the first probability on the right side may be
bounded, for all F' € F, by exp(—n*/5 Const), while for each § > 0, an argu-
ment like that in Lemma 7.4 can be used to show that the second term on the
right side is bounded above, for all F € F, by P(n)exp(—n*/® Const(8)) + 8,
for a polynomial P(n). The conclusion is that the left-hand side of this display
must tend to zero uniformly in F.

By Lemma 7.3,

n'/%h y2A*/8
PF{Zn(tn) < —%AZ} < exp{— ra/ }

MIKIZ + max(Mh,,,I|K|l.)n~2/°A2

for every F € F. Hence, if n'/5h, = constant,

0 = lim limsup supPF{Zn(tn) < —ZAz}.
A—> o n F 2

If we can also show that

0= Alim lim sup supPF{Zn(t) > %nz/f’(t —t,)°

(7.19) n F
for some ¢ > ¢, + n‘1/5A},

then

Alim lim sup sup Pp{¢, — ¢, > n~ %A} = 0.
—® n F
By the obvious symmetry in the problem, a similar relation would hold for
£, ~t, < —n~"/°A and so we would have (, - ¢,) = O,(n~'/?) uniformly in
F and the proof would be done. Consider then (7.19). As the class F is closed
under translation, we can always assume F is such that ¢,(F) = 0. Define
F, ,={F: F € Fand t,(F) = 0}. Our aim is to show that the previous display
tends to zero uniformly for F € F,, ,.

Now, for 6 > 0 and for i =0,1,..., put ¢, = n~1/3%(A + 8i); we will also
refer to A; = (A + 8i) so that ¢, = n~1/°A; (and A, = A).

PF{Zn(t) > p2/s %tz for some ¢ > n—l/sA}
YAz g .
(7.20) < PpiZ,(¢;) > ZA,- for some i > 0

+ PF{ sup Z,(t) > %Azl for some i > O}.

t,<t<t, .,

1

By Lemma 7.4, with a = 3,

(7.21)  lim limsup supPF{zn(t,.) > %A% for some i > o} 0.
A

— 00 n Fn‘O
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By Lemma 7.6, with a = 1,
(7.22) lim limsup supPF{ sup Z,(t) > ZA% for some i > O} = 0.

Ao 5 F.o t<t<t,,, 4

So (7.19) is established and the proof is completed. The following lemmas are
proven in the technical report. O

LemMA 7.1.  Let K be positive and of support [ —s, s]. Then for every F in F,

|t,— T(F)| < h,s,

where t, denotes the maximizer of f,(t).

LEMMA 7.2. Let K be positive and of support [—s, s]. Let ¢ > 0 be so large
that

1 (¢g-1)* ¢, 1
2 (¢+1* O (¢-1¥
Put y = C_/2. Then for every F € F,
fn(tn) _fn(t) > ‘Y(t_tn)z t—t, € (qhns’c_tn)

for ¢ < 8.

LEMMA 7.3.
—n'/5h,A%/2
MIK|l5 + max(Mh,,, | K|l.)n"2/%A |

supPp(Z,(t) > A) < exp
F

This is an application of Bernstein’s inequality.

LEMMA 7.4. Lett; = n '5(Ay + i8). Let Mh, < |K|l.. Then for a € (0, 1),

= exp( —Bo4A%) exp( —Bgnh,)
oo L, et > avti) < 7= exp(—Bohdo8) 1 - exp(—p,6n*°)’
where
n'/5h, a®y? n'/5h, a%y? az‘yan”%M
Po= SoikiEm’ P ” 221kl BT T mikE

This is an application of the previous lemma and additional calculations.

LemMmaA 7.5. Suppose that the kernel K has
IK() - K+ &)l < £1K13,
IKC) = K(-+ €)llo < €1K 'l
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for some constants |K'll3, |K'|l.. Let n > 0. Suppose that the kernel K is
positive, supported in [—s, s] and that 2h,s < t. Then

_n1/5hnn2/2
IK'IZM + IR ln =259 /3 |

sup Pp{n®5(f,(t + £h,) — (1)) > né} < exp

n,0

This is an application of Bernstein’s inequality.

LeEMMA 7.6. Suppose that K satisfies Assumption K, with support [—s, s].
Suppose that 2h,s <n~Y%A,. Put t; = n"Y5%A, + 8i), A, = Ay + 8i. Then
for A, large enough (K, 8 fixed).

sup £ Pe{ sup n/3(£u(1) = (1) > ara)
F,o0i=0 t;<t<t;y,

- Bs(Ao)exp(—B1(4)) + Bs(Ao)exp(—Bi1o(Ao))
To1- eXP(_37(Ao)) 1- eXP('Blo(Ao)) ’

where
b
3b
A= ook
1
Bs =

1- exp(—B3(a'y)2A%8b2/2)
Bs = Ikpirll22kk_5(36/7r4),
By = Bs(ayb)* A% B — log(2),

1
1 — exp(—B,aybdyn?/%/2)’

min 2*k~3(6 /7%),
k=1

Bs =

B

Bio = B4a7bA2039’?2/5 — log(2),
provided n'/°h, = b independent of n and Mh, < ||K'll.. The inequality is
valid as soon as B, > 0 and B, > 0.

The proof uses a chaining argument. See the technical report.
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