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SUMMARY
Maximum entropy (ME) inversion is a non-linear inversion technique for inverse problems
where the object to be recovered is known to be positive. It has been applied in areas ranging
from radio astronomy to various forms of spectroscopy, sometimes with dramatic success.
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ill-posedness occurs when the effective dimension of y is considerably smaller than
the dimension of x, i.e. when the operator K has few singular values which are
significantly different from O (Bertero ef al., 1985; Bertero and Pike, 1982; Barakat
and Newsam, 1985a, b). In one of the most common examples, image deblurring,
K would be a smoothing transform, with singular values small at singular vectors
corresponding to high frequencies, so that the detailed high frequency information
in x is lost; the inverse problem is to recover x, with high frequencies restored (if
possible).

Were it not for the ill-posedness, it would be natural to approach the problem by
least squares. After all equation (1) is just a linear model, and an estimate of x can
be obtained from the least squares principle % ¢=argmin,|y—Kx|3, giving
f.s=(KTK)"'KTy. However, because of ill-posedness, this estimate is either
undefined, or else has very poor performance, even if we interpret the matrix inverse
as a generalized inverse. It is by now traditional to approach such problems by least
squares regularization. Then we estimate x by the solution to the optimization problem
&=argmin, ||y — Kx||2 +2\||x||2, which gives the formula fg;s=(K"K+N\)~'KTy.
Here \ is a tuning constant specified by the user in some way. This idea has been
used in many fields and also goes by many other names, such as ridge regression,
penalized likelihood and damped least squares.

In this paper we focus on problems where the object x to be recovered has non-
negative co-ordinates. Think of images, chemical spectra or other measurements of
intensities. In this context, ME (Gull and Daniell, 1978) is a regularization method
which gives an estimate of x by the prescription

mgx( -2 x;log x,-) subject to ||y — Kx||2< 8% ¥))

see also Wernecke and D’Addario (1977) and Frieden (1972) for related definitions
of ME. We prefer to define it in the equivalent form

KvE=arg mxin ly—Kx|32+2)\3 x;logx;, 3)

which empbhasizes the similarity to regularized least squares. There is a (data-dependent)
one-to-one correspondence between \ in equation (3) and S in expression (2) which
makes the two optimization problems have the same solution.

Although ME has a formal similarity with least squares regularization (we are, after
all, just replacing the quadratic penalty x? with X x;logx;) there are important
differences. Because of properties of the entropy H(x)= — X x;logx;, the solution
to equation (3) must always have non-negative entries. Second, because the objective
in equation (3) is not quadratic, the solution is non-linear in the observations vector
y. Finally, no closed form expression is known for the solution of equation (3). Instead,
equation (3) must be approached as a general convex optimization problem and solved
by some variant of gradient descent. However, special optimizers for this problem
have been developed (Skilling and Bryan, 1984) which can solve very high dimensional
problems.

The implicit claim made by advocates and users of ME inversion is that these
differences from least squares regularization matter: that the positivity and non-
linearity of the ME process provide benefits in applications which are worth the
computational expense of ME.
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Fig. 1. (a) Conventional Fourier transform NMR reconstruction; (b) ME reconstruction for the same
data as (a); (c) Fourier transform NMR reconstruction from a better experiment (from Sibisi et al. (1984),
Figs 1 and 2)

Many applications of ME have been developed: to problems in NMR Spectroscopy
(Sibisi ef al., 1984), in astronomy (interferometry) (Gull and Daniell, 1978) and in
infra-red absorption spectroscopy (Frieden, 1972). Many published reconstructions
obtained via ME are excellent, and a few side-by-side comparisons show that ME
regularization can, in certain cases, dramatically outperform quadratic regularization.

We mention two prototypical examples.

(a) Sibisi et al. (1984) compare the ME reconstruction of a nuclear magnetic
resonance (NMR) spectrum with reconstruction by conventional (least squares)
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0.33R—= m

Fig. 2. (Noise-free) data (-------- ), best linear recovery (+----- ) and ME recovery (
object consists of two spikes at 0.33R spacing) (taken from Frieden (1972), Fig. 4)

) (the true

methods (Fig. 1). Not only does the ME reconstruction look nicer (fewer noisy
oscillations), but ME does a better job, in an objective sense. The ME
reconstruction resembles closely the reconstruction which conventional methods
could obtain only on data from a much more sensitive experiment, i.e. an
experiment with higher signal-to-noise ratio.

(b) Frieden (1972) shows that ME can sometimes superresolve. We shall explain
the terminology in Section 4; but we illustrate the point with Frieden’s diagram.
Fig. 2 shows a true, ‘spiky’ object, a least squares reconstruction and an ME
reconstruction. In this case, the true object consists of two closely spaced spikes,
and the data are diffraction limited. The reconstruction by ME clearly shows
two spikes; the reconstruction by least squares does not. The term ‘super-
resolution’ is used here because ME in this case resolves better than the
so-called Rayleigh limit, a resolution limit which all linear translation invariant
methods must obey. In particular, the two spikes are spaced less than a third
of the Rayleigh distance R apart, yet the ME reconstruction resolves them.

These examples illustrate the basic phenomena that sometimes occur with ME
reconstructions:

(a) signal-to-noise enhancement and
(b) superresolution.

The purpose of our paper is to explain how and why these phenomena occur, and
particularly when (i.e. under what conditions) they occur. We hope to make three
main points.

(a) The phenomena are real, and due to the non-linearity of ME. However, they
are delicate, and they occur if and only if the image to be recovered is nearly
black—nearly zero in all but a small fraction of samples.

(b) ME is not the only non-linear inversion technique able to exploit near-blackness
and to produce these phenomena. For example, another method, /-
reconstruction, can do so optimally, from one point of view.

(¢) The improvements obtained by such non-linear processing do not fully substitute
for improving the sensitivity by doing a better experiment.

The paper is organized as follows. Section 2 discusses a simple estimation problem
in which it can be shown how the non-linear behaviour of ME allows for an
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improvement in signal-to-noise ratio. Section 3 shows how this surprisingly simple
analysis extends to studying the behaviour of ME inversion in NMR spectroscopy.
Finally, Section 4 sketches a theory explaining superresolution. For a brief concluding
comment see Section 5. Appendix A contains proofs of the theorems.

2. IMPROVING SIGNAL-TO-NOISE RATIO
Consider the simple problem of estimating x =(x;)/_, from noisy data y:
Yi=Xx;i+2;, i=1,...,n “)
where the noise terms z; are independent and normally distributed with variance o?.
This is a special case of equation (1), with K the identity operator.
In this model, the ME estimate of equation (3) is the solution to
X=arg ’{Izlgl) 2 — V) +2\ 2x;logx; )
where only positive x need be considéred in the minirlnum. Taking partial derivatives,
we find that at the solution (¥;), say,
0=2\(1+logx;)+2(X—y)), i=1,...,n
so that X; is implicitly given as the solution to
yi=%+M1+logx)).
Let 6yEa(y) be the solution to the equation
y=56+A(1+1logé).
Then the solution to equation (5) can be written explicitly in the form
X;=0mex(1)s i=1,...,n (6)

In words, the ME estimate is the result of applying the simple non-linearity Sy \
co-ordinatewise.

Fig. 3 displays the function dyg,( ) for three different parameter values A= g, 3,
2. The non-linearity is defined for both positive and negative arguments, is always

15

Jy)

. A=0.1; ——, A=0.5;

Fig. 3. Non-linearity dyg, for three different parameter values:

m—— \ = 2
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Fig. 4. (a) iject x to be recovered; (b) noisy data y from model (4) (6= 1, n=196); (c) ME estimate
X using A\=3

positive, tends to O for extreme negative arguments and tends to o for extreme positive
arguments. The ME non-linearity has a fixed point, dyg (e~ !)=e"!, towards which
the data are always ‘shrunk’:

[dmea() et < |y—e7!|.
The amount of shrinkage, as measured by the left-hand side of this inequality, increases
as \ increases.

The effects that this non-linearity can produce are shown in Fig. 4. Fig. 4(a) shows
a ‘signal’ x consisting mostly of 0s and a few large spikes. Fig. 4(b) shows data y
observed when the normal errors z have standard deviation 1. Fig. 4(c) shows the
ME estimate & obtained with A=1. The ME estimate has many visual similarities
to the ‘truth’ in Fig. 4(a). There are only a few peaks standing out from a nearly
constant background. To some readers, the transition from Fig. 4(b) to Fig. 4(c) will
seem a dramatic visual improvement.

There is certainly a quantitative improvement. Define the mean-squared error
MSE(R, x)=n"!Z,(£;—x;)*. Then the raw data of Fig. 4(b) have MSE(y, x) = 1,
whereas for the estimate of Fig. 4(c) we have MSE(R, x) = 0.45, an improvement by
a factor of 2.

2.1. Improvement and Nearly Black Images
This improvement is due to the special nature of x used in Fig. 4. Let Y be distributed
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4

p,(6)

Fig. 5. Risk p(6; \, 0) with A=, o=1

N, ¢%), and introduce the risk p(0; N, 0)=E{éue\(Y)—06}? the expectation
referring to the distribution of Y. Then we have

i p(x;)

E{MSE(&, x)}= 1
n -
with expectation referring to model (4).

Fig. 5 plots p(f); the parameters A and ¢* were chosen exactly as in Fig. 4.
Evidently, the risk p is small if and only if 6 is near 0. Hence the expected MSE of
% is small compared with o2 only if most co-ordinates of x are nearly 0. Indeed, we
can read off the graph that

E{MSE (&, x)} < e0?
implies (by Markov’s inequality)

Lt >20<3e
n 4
etc. (where # denotes ‘cardinality of’). The trivial estimate y has expected mean-
squared error o2. This shows that if ME improves significantly on the trivial estimate
then the true image must be significantly non-zero in only a small fraction of samples.
Hence Fig. 4 is in some sense the generic example of ME’s ability to improve the
mean-squared error in model (4).

2.2. Optimal Performance with Nearly Black Images
ME is not the only estimate that can be used in model (4). Consider the optimization
problem

R=arg min >} (=Y’ +2\ X X, @)

where now the minimum is over non-negative x. We call this the minimum /;-rule
because it uses a penalty which is the same as the /;-norm for non-negative x.
Repeating the analysis above, we have that the minimum /,-estimate is obtained by
applying a co-ordinatewise non-linearity:
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i‘i=5,,,)\(y,~), i=1, R (B

where §, ,(») = max(0, y—\). Here we obtain X; by pulling down every measured
observation y; by an amount \, taking care to ensure a non-negative result.

If we were to display the analogue of Fig. 4(c) for this estimator we would obtain
a plot visually resembling the ‘true’ answer for that situation, Fig. 4(a). The reader
is invited to imagine this for himself.

It turns out that for nearly black images of the type in Fig. 4(a) the /,-method does
an excellent job quantitatively, and not just visually. Thus for the data of Fig. 4(b)
the choice N\=3 gives MSE(§,,,, x) = 0.3. This is 50% better than ME and more
than three times as good as the trivial estimate y.

In fact, the /,-procedure has a certain optimality in dealing with nearly black
images. We formalize this property by using minimax decision theory.

Definition 1. The class of e-black images X, (¢) is the set of sequences of length
n satisfying

(a) x; 20 for all i and

(b) #t{i:x;>0}< ne.

Suppose that we have a rule £=46,(y) for estimating x in a problem of size n. If
this rule makes excellent use of the nearly black property, then it should have a small
expected mean-squared error for any x€ X, (¢). Thus, the following worst case
mean-squared error should be small:

M,(5,, = sup (E[MSE{5,(y), x}]).
XE Xy(e)

The smallest that this can possibly be for any rule is
M,(9) =inftM, (G,, )}

A rule attaining this minimum is called minimax.

The class X, (¢) contains all images which are nearly black: images in which the
non-zero pixels can have any conceivable arrangement in space and in amplitude;
M, (¢) therefore measures how accurately it is possible to reconstruct x from y just
using the information that x >0 and that x; >0 in a small fraction of samples. The
following result describes the behaviour of

M(e)=sup[M,(¢)}

and shows that the /;-rule is nearly minimax for small e.

Theorem 1. Let .7, be the class of distributions of non-negative random variables
which place at least 1 — e of their mass at 0. Then

M(e)=o?sup{l — [(P*F):FE 7} 8

where I(G)=|(g’)*/g is the Fisher information and & the standard Gaussian
distribution. We have the asymptotic result

M(e)=20%¢clog e~ {1+ 0(1)} as e—0. ©)

Moreover, let M(/,, €)=inf, [ sup,{M,(5,,, €)}] denote the minimax performance
among /,-rules over all e-black images. Then the optimal \ satisfies A(¢) ~ 20%loge™!
and
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TABLE 1
Maximum risk over e-black objectst

€ M (e) M, M@, ¢
0.01 0.046 0.052 0.20
0.02 0.078 0.087 0.27
0.05 0.153 0.16 0.42
0.10 0.248 0.26 0.56
0.20 0.390 0.41 0.72
tAssumes that ¢2=1. The raw data have worst

case MSE = 1. M(é,,,, ¢) denotes the performance
of Bayes rule for an exponential prior with mean
3 (for comparison).

M, e/ M(e)— 1 as e~0. (10)

The proof is in Appendix A. Our analysis has several points of contact with work
of Bickel (1983) and Pinsker (1980).

We interpret result (9) as follows. If we knew a priori which x; were non-zero in
x, we could always estimate the other x; as 0 and estimate the non-zero x; by y;. This
would give E(MSE)=o%e. Relation (9) says that even without knowing a priori
which x; are non-zero we can obtain a mean-squared error which is worse only by
logarithmic terms.

Table 1 illustrates the fact that relation (10) is a good approximation for ¢ as large
as 5% or even 10%. Included for illustration is the behaviour of a Bayes rule which
assumes that the x; are random variables, independent and exponentially distributed;
this rule does far worse than the /,-rule.

Incidentally, ME is not competitive with / in this worst case analysis. As Fig. 4 shows,
the risk of ME tends to + o as any component x;— . Hence M(Syg ), €)= + .
In fact, ME is asymptotically not competitive even in the best case. Because of the
fixed point property of ME, 6yg,\(¥) > e~ ! if y >e~!. Therefore, we immediately
have

inf{ inf (E' [ MSE{ove(»), X}1)}> e *(1-e)d{—(o0)™'},

which does not go to 0 with e.

In another direction, the minimax risk among linear procedures in this problem
is precisely o?, for each e >0: linear procedures are unable to take advantage of
sparsity. Finally, the family of ‘threshold’ (T-) estimators ér,(y¥)=y1,,,, has a
minimax risk inf\{M(ér,, €)} which goes to 0 with e but performs quantitatively
somewhat worse than does the /;-method.

2.3. Bias versus Variance
The risk improvements attained by the non-linear methods above come at a price:
the estimators are biased. This may be seen by comparison of Figs 4(a) and 4(c). All
the O values in Fig. 4(a) are estimated in Fig. 4(c) by positive values offset from 0
by a (small) nearly constant displacement. The peak values in Fig. 4(a) are estimated
in Fig. 4(c) by systematically smaller ®. Such ‘amplitude bias’ is present also for the
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/;-estimate. This bias is necessary to obtain the risk savings. The unbiased estimate
%=y has expected mean-squared error o2, which is much larger.

2.4. Relation to Practical Maximum Entropy
The signal-plus-noise model discussed above is highly idealized. In practice, we
generally modify the idealized ME above to deal with three specific issues.

2.4.1. Scaling

The benefits of the ME shrinker are most evident where the fixed point e ! is
small compared with the peak amplitudes in x. We may always rescale our data to
arrange for this. Alternatively, we may modify the entropy term, to — X, x;log(8x;).
The resulting scaled ME non-linearity dyg s, 4( ) has its fixed point at A =(8e)"".
A is often called the ‘default value’, particularly in discussions of the Cambridge ME
algorithm. Analysis with the modified objective is conceptually the same as rescaling
the data so that 4 on the old scale corresponds to e~! on the new scale, and then
using the ME approach as we introduced it earlier. See also Skilling (1988).

2.4.2. Normalization

In certain settings we know that the true object is normalized by X;x;=1. This
constraint may be imposed on the ME solution by explicitly adding it to the problem
formulation. For a certain data-dependent constant 3, the solution of this constrained
problem with entropy term — X, x;log x; is the unconstrained solution of a modified
ME problem, with entropy term — X;x;log(8x;). This solution amounts, once again,
to applying the non-linearity dyg s, 3( ) co-ordinatewise.

2.4.3. Choice of regularization parameter

Statisticians would naturally see a variety of possibilities for choosing \ in the analysis
of real data, ranging from cross-validation, to use of Stein’s unbiased risk estimates.
Researchers in ME have developed still other methods; see, for example, Gull (1989).
We do not discuss such methods here, as we are interested in what happens once a
good choice of N\ has already been provided to us.

The idealized picture that we have developed here continues to apply, with minor
modifications and approximations, when practical considerations of scaling and
normalization are enforced. For more information about the application of ME to
large-scale practical situations, see Gull and Daniell (1978), Skilling and Bryan (1984)
and Narayan and Nityananda (1986).

3. APPLICATIONS TO SPECTROSCOPY

The results of the previous section have a broader significance than one might at
first suppose. Suppose that instead of observations (4) we have observations according
to the original model (1), with the linear operator K an orthogonal matrix. Such K
arise in Hadamard transform spectroscopy (Harwit and Sloane, 1979) where they
are Hadamard matrices.
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With K orthogonal, K~! exists, and we can define pseudodata y=K ~'y. As K
preserves Euclidean distances, |y—Kx|2=|§—x||3. The general optimization
problem (3) can therefore be rewritten, in this particular case, as

mxinZ Ui—x)*+2\ 3] x;logx;.. (11)

This is the same as optimization problem (5) that we encountered in the signal plus
noise situation, only with pseudodata ¥ replacing y. It follows that the solution to
the ME problem is given simply by

%= ome () i=1,...n (12)

A related analysis applies in NMR spectroscopy. In that area, when relaxation times
and observation times are long, so that ‘peak deconvolution’ is not required (Freeman,
1988), K may be modelled as the complex n x n discrete Fourier transform matrix.
The data y and the object x to be recovered are then, in general, complex. It is possible
to define an entropy for complex objects in several ways, and this leads to different
properties of estimates; see Hoch ef al. (1989). We mention here the simplest definition,
which leads to

mxinl|y—Kx|l§+2)\Z |x;|log | x;|, (13)

where, in this equation, |z| denotes the modulus (zZ)'? of the complex number z.
Now the discrete Fourier transform matrix is, up to a constant factor, unitary; defining
pseudodata §=K 'y, it turns out, by repeating earlier arguments, that £,=
dcemen (7), for a certain ‘complex ME’ non-linearity closely related to the ‘real ME’
non-linearity. Thus, to solve for x in equation (13), we first take the inverse discrete
Fourier transform of the observations y, obtaining pseudodata ¥, then we apply a
complex data ME non-linearity co-ordinatewise. In contrast, conventional NMR
spectroscopy consists in simply taking the inverse discrete Fourier transform of the
data, and using the pseudodata § to estimate x.

Hence in one area of NMR spectroscopy (‘without deconvolution of line widths’)
the difference between conventional and ME restoration is simply in the application
of a co-ordinatewise non-linearity. We have conducted experiments to show this.
Fig. 6 presents three versions of the real part of an NMR spectrum of the compound
tryptophan in D,0O at 400 MHz, taken on the JEOL GX-400 NMR spectrometer at
the Rowland Institute, Cambridge, Massachusetts. Fig. 6(a) was prepared by using
standard Fourier transform methodology. Fig. 6(b) was prepared with the Cambridge
ME program (Sibisi ef al., 1984; Skilling and Bryan, 1984) by using the ‘four-channel’
method for treating complex spectra, with default value parameter A =0.01 and noise
level parameter S2=5.1 x 10* (these parameters are called def and C, in the software
documentation). Fig. 6(c) was prepared by using the idea described in Hoch et al.
(1989) and Donoho et al. (1990): computing the discrete Fourier transform, followed
by a co-ordinatewise application of a complex ME non-linearity. In principle,
Figs 6(b) and 6(c) must be identical; owing to numerical imprecision, though, they
agree only to six digits of accuracy.

It is interesting to review Fig. 1, taken from Sibisi ef al. (1984), with the developments
of this section in mind. Visual comparison between Figs 1(a), 1(b) and 1(c) and the
corresponding panels of Figs 4 or 6 leaves little doubt that the same effect which is
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(a) Fourier transform NMR recovery of the real part of the spectrum of tryptophan; (b)

Cambridge ME recovery of the real part; (c) recovery of the real part resulting from applying a non-
linearity dcpg) (Y) elementwise to (a)

achieved in Fig. 1 by ME reconstruction could also be obtained by simply applying
the right non-linearity co-ordinatewise to Fig. 6(a). In other words, the qualitative
effect of using ME can, in this case, be obtained by a simple non-linearity. The theory
of Section 2 therefore gives an explanation of how ME has been able to improve the
signal-to-noise ratio in Sibisi et al. (1984).

Let us recall our three points.

(a) Non-linearities can be used to improve the mean-squared error of estimation

when the true object is near 0 in all but a small fraction of samples. However,
as we saw in Section 2.1, if the object to be reconstructed is not nearly black,
little improvement will be obtained. In some practical cases the true NMR
spectrum has a ‘background level’ that is significantly higher than the noise
level over a long interval; there we expect that ME does little to improve the
signal-to-noise ratio. Fig. 7 gives a comparison of an ME reconstruction
(Fig. 7(b)) with a conventional Fourier transform NMR reconstruction
(Fig. 7(a)). The object to be recovered is well away from 0 in a significant portion
of the display. The ME reconstruction is noticeably less noisy than Fourier
transform reconstruction in the areas of the figure where the values are small,
but the two figures differ negligibly in noisiness in the interval where the object
is well away from 0.

(b) If near-blackness is present, it is clear from the discussion of Section 2.2 that

other non-linearities can exploit it as well. We could, for example, define a
‘complex /,-method’ as the solution to
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(a) Real part of the Fourier transform reconstruction from synthetic data (the data consist

of two decaying sinusoids with line widths 1.0 and 1000.0 Hz and amplitudes 100, 5000; series length
n=256); (b) real part of the ME reconstruction for the same data, using the Cambridge method with
Cy=3.6x107

©

min |y - Kx |3+ 23 3 |x.

with | | again the modulus; compare Newman (1988). Presumably, an analysis
similar to Section 2.3 would show this to perform well in the nearly-black,
complex-valued case.

We may seriously question the extent to which a gain in mean-squared error
leads to a gain in insight. When the comments of this section apply, the difference
between ME and conventional reconstruction amounts to presenting the same
data on two different plotting scales. Suppose that we wanted to identify peaks
that were ‘statistically significant’, by the simple device of drawing a horizontal
line across the plot at the 95th percentile of the null distribution of the plotted
quantity (here null refers to the assumption that the true signal value at that
sample is 0). The calculation of the height at which such a line should be drawn
would differ, depending on whether we were plotting 7 or the ME
reconstruction §6,(7;), but the same i-co-ordinates would be identified as
significant.

We might therefore maintain that ME improves the signal-to-noise ratio (if
the signal is nearly black) but does not improve sensitivity (i.e. the ability to
discriminate small amplitude signal from noise successfully). Compare Freeman
(1988) and Donoho et al. (1990).

The bias in amplitude estimates produced by ME should also be mentioned.
While the ME reconstruction may be close to the truth in mean square, its
peak amplitudes are biased. (The habit, in papers such as Sibisi ef al. (1984),
of suppressing axis labels on plots obscures this fact.) In contrast, by
improving the experiment, we obtain a better signal-to-noise ratio without
introducing bias.
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4, SUPERRESOLUTION

A full discussion of superresolution would require considerable space, so we
specialize. We suppose that we have data according to model (1), where the object
is a vector of dimension 7 and the operator K consists of the first m rows of the n xn
discrete Fourier transform matrix:

—l—cosw—(l:—l)(l;l)l j=1,3,..., m,
n n
K=
isinM j=2,4,...,m-1
Jn n

Then the observations vector y is of dimension m, and the elements of y represent
noisy observations of the m low order Fourier coefficients of x. (Our definition requires
that m be odd.) This is a discrete model of diffraction-limited imaging; compare Bertero
and Pike (1982), Frieden (1972), Pike et al. (1984) and Barakat and Newsam (1985a, b).

As in many other inverse problems, here the operator K is of less than full rank.
It has m non-zero singular values and a null space of dimension n — m. Consequently,
analysis by least squares or regularized least squares faces certain limitations. The
formula Rz, = (KTK+NI)"'KTy gives an estimate & which must lie in a subspace
of dimension m, consisting of those vectors x whose last n — m Fourier coefficients
vanish. Vectors whose high order Fourier coefficients vanish are representable as sums
of low frequency sinusoids and are therefore ‘smooth’.

Although there certainly are applications where the object to be recovered is smooth,
in areas like astronomy or spectroscopy the object to be recovered is nearly a set of
scattered spikes. The smoothing effect of regularized least squares can be to lump
two closely spaced spikes together into a single bump. Therefore, in such areas,
regularized least squares can hide important structure. The terminology ‘Rayleigh
distance’ has arisen to explain this; this is the minimal distance that two spikes must
be spaced apart so that they can still be visually recognized as separate features in
the conventionally reconstructed image. The Rayleigh distance in this discrete model
may be taken as R = n/m. This is the reciprocal of the incompleteness ratio e=m/n.

Frieden (1972) demonstrated convincingly that ME can, sometimes, resolve
structures closer together than the Rayleigh distance. This was illustrated in Fig. 2.

4.1. Theory of Superresolution

Frieden’s is not the only example of superresolution. There is by now a considerable
literature documenting many different non-linear algorithms which may be employed
to obtain superresolution. Jansson (1984) contains several articles detailing different
approaches.

However, superresolution is not well understood theoretically. To our knowledge,
no theoretical treatment has emerged to answer questions such as, if the Rayleigh
limit can be circumvented by non-linear procedures, what is the true limit of resolution?
The absence of a theory of superresolution makes it easy for sceptics to invoke general
principles which, in their view, cast doubt on the whole superresolution phenomenon.

We have developed a theory which shows when superresolution is possible, and
what its limits are. From empirical work reported in Donoho ef al. (1991), we believe
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that the theory adequately models the application of superresolving methods to real
data. In this paper, we present only a limited selection of results, just enough to make
our main points. Other aspects of this theory will be reported elsewhere (Donoho,
1990; Donoho et al., 1991). Here and later we adopt the usual conventions
vl =Zilvil, vl2=J(E:v?) and || v] . =max;|v,].

Definition 2. Let

w(A; x)=supf{|x’ —x||;:[|Kx’ —Kx|], < A and x’ > 0}. (14)
We say that x admits of superresolution if
w(4; x)—0 as A—0. (15)

The definition makes sense. Suppose that x admits superresolution according to
our definition. When we observe data y = Kx + z, and the noise z satisfies | z||, < A,
then if & is any purported reconstruction satisfying

ly - K&, <~vA (16)
and
=0 i=1,...,n, amn
we must have, by the triangle inequality,
1% -x]l; < wl(1+1)4; x}. (18)

If the noise level A is sufficiently small, this means that X accurately reconstructs x
from the partial information y=Kx+ z.

Examples of methods satisfying inequalities (16) and (17) are ME in constrained
form (2), with S=+A, or the minimum /, -variant, defined by

min(Z x,-) subject to [|ly—Kx[,<S and x>0

also with S=~vA. We could also mention the positive-constrained least squares estimate,
defined by

min ||y — Kx ||, subject to x >0,

which satisfies inequalities (17) and (16) with y=1.

In contrast, suppose that x does not admit superresolution, as we have defined
it. Then, there exists X' which is non-negative and unequal to x, yet Kx’ = Kx. Even
with noiseless data, we cannot say whether x or x’ is the true object. Other pathologies
occur in this case; we can show that neither the minimum / -estimate nor the
positivity-constrained least squares estimate is uniquely defined for small noise levels,
etc.

Our definition is particularly strong, intended to convince sceptics rather than to
reassure advocates. In fact, the definition is so strong that it may be surprising that
there is any x which admits of superresolution. Under this definition, x must be so
special that any method (ME, or any of those described in Jansson (1984)) must give
a good restoration of the full object x from incomplete, noisy data y—if the noise
level A is small, and if the restoration method obeys inequalities (16) and (17).

In fact, all sufficiently nearly black objects admit of superresolution, as we see
in theorem 3 later.
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True object lies in
intersection of
cone and cylinder

Cylinder of objects x' satisfying
IKx-KxII<A

Cone of
nonnegative objects

Fig. 8. Geometry of superresolution: the set of non-negative objects is a cone; the set of objects satisfying
| Kx — K& | < A is a cylinder; when the intersection of the cone and cylinder becomes small as A— 0,
we say that x admits superresolution

A certain geometry underlies the definition: see Fig. 8. When inequalities (16) and
(17) hold, we know from the triangle inequality that | K(x' —x) ||, < (1 +y)A. For the
particular K that we are using, the set of all possible reconstructions x’ obeying this
inequality is a cylinder, the product of an m-dimensional sphere with an (n— m)-
dimensional affine subspace. This set of reconstructions is unbounded. However, when
we include the constraint that we are interested only in positive reconstructions,
attention focuses on the small shaded area in the figure. When we are sufficiently
lucky that the geometry of the situation is as in that figure, the set of all possible
reconstructions is small, and also its diameter tends to 0 as A—0.

The issue is to find for which x the geometry is of the favourable kind indicated
by Fig. 8. The following (basically technical) result permits a reduction.

Theorem 2. x admits of superresolution if and only if there is a finite, positive
constant C so that

Ix" —x|l; < C|Kx" — Kx|, (19)
holds whenever
x/ =0 i=1,..., n (20)

Let C(K, x) denote the smallest constant for which inequalities (19) and (20) hold,
and C(K, x) = o if no such relations hold. If C < oo, x admits superresolution, and

w(d; )~ C(K, X)A  as A—O0. 21

We therefore turn attention to the coefficient C(X, x). It is clear from the proof
of theorem 2 that C(K, x) does not depend on x except through the number and
arrangement of non-zero elements, i.e. the amplitudes of the non-zero elements of
x do not matter. Our main result involves just the number of non-zero elements.

Theorem 3.

(a) If x has j(m —1) or fewer non-zero elements then C(K, x) < oo.

(b) If 3(m+1) divides n, there exists x with i(m+ 1) non-zero elements yet
C(K, x)= o0,

(c) If x has more than m non-zero elements then C(K, x)= .
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The proof, in Appendix A, revolves around a lower bound on the number of negative
values taken on by high frequency sequences. That bound, in lemma 2, may be viewed
as an analogue, for high frequency sequences, of Logan’s (1965) results on the number
of 0s of high frequency functions in continuous time.

We restate the result in the language of our title. If the incompleteness ratio is
e=m/n, x must admit superresolution if x is Je-black. Moreover, x might not admit
superresolution if x is not je-black and x cannot admit superresolution if x is not
e-black.

Thus, near-blackness is both necessary and sufficient for superresolution.

We now briefly turn to consider the size of C. When C happens to be very large,
say 10'2, superresolution is largely a theoretical curiosity, since subquantum noise
levels would be required to make C(1 + y) A sufficiently small to exert useful control
on the reconstruction error |8 —x|,.

It turns out that C is strongly correlated with the spacing of non-zero elements
in x. If all non-zero elements in x are well spaced, then C can be moderately small,
but if it can happen that as many as r are bunched together within a Rayleigh interval
then C can be very large, growing roughly exponentially in r.

Theorem 4. There exists x having only r non-zero elements, and a non-negative
x' such that

Ix" —x|; =C(r, m, )| K&-x)|, (22)

where, if m, n— o with r fixed, and m/n— e,
I(r, m, n)~ ~ L S”)P,(B)Pdo, 23)

27 Jo

where P, is a certain trigonometric polynomial having P,(6) ~ (6/2)* as §—0. In
particular, for small ¢,

1 [ 2 R A
~ SO | P(0) |2 = (4r+2) (2> e+l (24)

4.2. Interpretation
Our three claims in Section 1 apply to superresolution also.

(a) Superresolution is a real, delicate, non-linear effect. It is real, because we have
proved that under certain conditions ME accurately reconstructs the unknown
object, despite massive incompleteness. It is delicate, because it depends on
the near-blackness of the object to be reconstructed (by theorem 3). It is non-
linear, because it depends on the two properties (16)-(17); these cannot both
be guaranteed by linear methods.

(b) ME is not the only method which exhibits superresolution. As mentioned earlier,
many different methods have been shown to exhibit it in published examples.
In our theory, any method with the two properties (16)-(17) exhibits
superresolution,

(c) Superresolution produced by these non-linear methods is not, in general, a
substitute for superresolution produced by developing better instrumentation
(i.e. increasing m). If the object to be recovered consists of a few spikes spaced
well apart, the coefficient C can be moderate in size, and ME and like methods
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might conceivably give a highly accurate reconstruction. But if there are several
spikes close together theorem 4 shows that the coefficient C can be very large,
and the prospects for accurate reconstruction are doubtful. (See also the
examples in Donoho e al. (1991).) In contrast, developing better instrumentation
(where possible!) would increase the resolution of the experiment for both the
easy (well-spaced) and the difficult cases.

5. COMMENT

This paper is written against a background of some controversy: Skilling (1984),
Redfearn (1984) and Titterington (1984). Some ME proponents have made, in open
forums, claims that ME is the one and only method to use for solving inverse problems
where the answer is known to be positive. We quite naturally feel an affinity for
Titterington’s objections to such fundamentalism. In fact, we believe that many
statisticians feel some distrust towards the fundamentalist school of ME. It sometimes
seems that the feeling is reciprocated.

The ME literature encompasses many points of view, and not just fundamentalist
ones. For example, Frieden, Komesaroff, Narayan and Nityananda have all evidenced
concern for analysing why ME can sometimes improve significantly on conventional
methods, and for describing conditions under which ME fails to improve on
conventional methods; see Frieden (1972, 1985), Komesaroff et al. (1981) and Narayan
and Nityananda (1982, 1986).

Our most balanced assessment of the situation is this. Proponents of ME have
performed a service to inverse theorists by demonstrating the possibility of signal-to-
noise enhancement and superresolution, and to practitioners by making available
efficient ME software which makes it possible to exploit these phenomena. Perhaps
both statisticians and ME proponents can find common ground in the recognition
of these contributions and in building on these achievements.
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APPENDIX A: PROOFS

A.l. Proof of Theorem 1
The arguments presented here are related to those in Donoho and Johnstone (1989). The
reader may also be helped for Section A.l.1 by consulting Pinsker (1980) and for
Section A.1.2 by consulting Bickel (1983).
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A.1.1. Proof of formula for M(e)

Let Il; denote the set of exchangeable probability measures on R” which put mass 1 on
Xy (€). For a (prior) measure 7 on R”, let i denote the joint distribution of (x, y) when x ~ =
and y ~ N(x, 02I). We define the Bayes risk

p(m)y=n~1E [|E,{x|y}-x|3].
As in Donoho and Johnstone (1989), the minimax theorem of decision theory implies that
M, (e) =supfp(x): nE€Ils}. (A.])

Given 7w €Ilg let 7y be the product measure with the same marginal. As in Donoho and
Johnstone (1989) we have p(m) <p(my). Now if we define the rescaled marginal
Fi,()=n{x:x,/0< t}, the Bayes risk p(m)=02{l —I(F),+®)}, where ® denotes the
standard univariate Gaussian distribution and I denotes the Fisher information (this is an
identity due to L. D. Brown; see for example Bickel (1983)). Finally observe that
{F),,:m€Il5} C #,. Combining these facts,

M, () < o2 [ 1 —inf{I(F*®):FE F,}]
for every n, so that
M(e) < o?[1-inf{I(Fx®):FE F.}]. (A.2)
Let a <e. There exists a sequence (Fy,, k=1, 2, . . .) of distributions in F, with
I(Fy ,*®)— inf{I/(F*®). FE &)}

and, additionally, supp(Fy,)C [0, k].

Put 4,={xE€ X,,(¢)}. Let m, be the product measure on R” with marginal Fy . Define the
conditional measure w,(B)=my(B|A,). Then 7,EIl;, and so by equation (A.1)
M, (e) 2 p(x,). Let bin(n, p) denote a random variable with binomial distribution having
parameters n and p. Then as #n— o

mo(A,) = Pibin(n, o) < ne}— 1. (A.3)

Hence =y and =, are very close, in variation distance, for large n. Hence =, and o give
almost the same expectations to bounded measurable functions. The boundedness
supp(my) C [0, k]” can therefore be used to show the equivalence of Bayes risks:

plm,)/ p(mp)—1 (A4)
as n— . As p(my)=0%{1 —I(Fy ,*®)}, we then have
lim inf(M,(€)) > 021~ I(Fy,o* @)},

As M(e) 2 M, (e), it follows on letting k — oo that
M(e) 2 o2 [ 1 —inf(I[(F*x®).FE F,}].

Now I(F+®) is a continuous functional of F in supremum norm (compare, for example,
Donoho (1988)); letting o = ¢ and invoking this continuity, we obtain the reverse inequality
to inequality (A.2), and equation (8) follows.

A.1.2. Asymptotic formula for M(e)
In this section, we establish the lower bound

M(e) > 202¢loge™ {1+ 0(1)}. (A.5)

The upper bound on behaviour of the /;-rule of the next subsection shows that equality holds.
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Here and in the next section we take o= 1, without any loss of generality. Inequality (A.5)
follows from equation (8), taking a large in expression (A.7) below.

Proposition 1. Let F, ,=(1—¢) vy + ¢v,, where v, denotes Dirac mass at x. Let > 0, and,
for all sufficiently small ¢, define p implicitly as a function of e by

pr+2ap=2loge . (A.6)
Then
1-I(®*F, )~ ep? P (a) as e—0. (A7)

Proof. By L. D. Brown’s identity, 1 —I(®*F, ) is the Bayes risk for estimation of the one-
dimensional parameter 6 from data which is N(6, 1), when 6 =0 with probability 1 —¢, and
6 =p with probability e.

This risk may be written

p=(1 —e)X(Etom—O)zqs(y) dy+eS(E{0|y}—u)2¢(y—u) dy.
Define p(y)= P{6=u|y}, and note that

E{0)|y}=np(»).

Lemma 1 below shows that, as ¢~ 0, p tends to 0 or 1 depending on whether y is smaller
than or bigger than u+a. Applying this, and carefully bounding remainder terms,

o

p=(1-u SW o) dy+6n2S: 60— 1) dy+ o(ed). (A.8)

Now using assumption (A.6), we have ¢(u+ a) = ¢(0) e exp(— a?/2); combined with the
standard inequality

1-®() < P (2)/t forall t>1 (A.9)

we obtain

a-a2| " s0)dy=0= o),
1
and so the first term in equation (A.8) is negligible compared with the second term, leaving
P ~ en? ®(a)
as required.
Lemma 1. With the assumptions and notation of proposition 1,

z>a,
z<a,

.D(n+2)—'1(1) (A.10)

as €~ 0, uniformly in z>a+46 and in z<a -4, 6>0.
Proof.
ep(y—p)
(1-9 oM +ed(y—mw

so that p(p+2)={(1—¢) exp(—puz—pn*/2+loge=1)+1}-!. Now by equation (A.6) —pu2/2+
loge~!=au, so

p(»)=

plp+z)=[(1-¢explu(a—z)}+1]-L
From this, expression (A.10) is immediate.
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A.1.3. Asymptotic minimaxity of li-rule
We complete the proof of equations (9) and (10) by showing that if we put

N=2loge! (A.11)
then, for the /;-rule 6, based on this choice of \, we have
sup{M, (8,, &)} < Ne{l +0(1)} as e~ 0. (A.12)

Since the u of the last section and A of this section are asymptotically equivalent, this shows
that the inequality in expression (A.5) can be replaced by equality. It also shows that choice
(A.11) is asymptotically optimal. Letting 8(y)=max(0, y—\), we have

E{MSEG, , )] H (60+2)— 0P (2) dz dF, (6)

where F), is the empirical distribution of the x;. As this functional is linear in F,, and as
F,(0)>1-e whenever x€ X,,(¢), we have
E{MSEC(5,, x)} < (1—¢) 1(0)+esup{r(\, )}

where '

r(\, W) =E{(u+2)—ph.
A calculation gives

rN W= A=) = A+ ) s =)+ (N2 + D{1 -2 (A —p)}.
This implies that dr(\, w)/dpu=2x $(\—p), and so
sup{r(\, Wi=r(\, + ®)=N\2+1.
Moreover, ’
r(y, 0)= =AW+ N2+ D1 —d(N)).
By equation (A.11) we have ¢(N\)=e¢(0); using again inequality (A.9), we obtain
1 —®(\) < ed(0)/\ and so
r(x, 0) < e d(0)/\.
We conclude that for e <e™!
(—e)r(\, O+er(n, w<e(Z2+2)

and inequality (A.12) follows.

A.2. Proof of Theorem 2

Let 7 ={i:x;=0)}. Let 7/ ={v:||v|;=1and v; >0, /€ »}. Then 7 is closed and compact.
Let v* be any minimizer of |Kv|, on 7.

If | Kv*|,> 0, we claim that C=1/|Kv*|, and that w(A; x)=CA for sufficiently small
A. If | Kv*|,=0, we claim that C= o and that w+ 0. These two claims together prove the
theorem.

Assume that | Kv*|,>0. Put v=x'—x, x' 0. Then v/|v|,€ 7, so

&Vl = I Kv*l2 vl

hence C< 1/ | Kv*|,.
Now, if we pick o very small, then x’ =x+ av* defines a non-negative vector, with

| K& =x) 2= [ Kv* = | Kv* |, | x" = x|,
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$O
w(A; X) > o V¥ for A> o Kv*|, (A.13)
for all a < ap, say. As | Kv*|, >0, this says
w(A; X) = A/ | Kv*|,

for A < Ay. By definition of w and C,

w(A; x) < C(K, X)A, A>O0. (A.14)
It follows that C > 1/ Kv*|,, and hence C=1/| Kv*|,. We may also conclude that

w(A; x)=C(K, x)A, A< Ay,

completing our first claim.
For the second claim, suppose that | Kv*|,=0. Let o be any positive value for « for which
inequality (A.13) holds. Then

lir}l_'iglf{w(A; x)} 2 o,

i.e. w#0as A— 0. From this and inequality (A.14), C= oo, completing the proof of the second
claim.

A.3. Proof of Theorem 3
Assertion (c) of the theorem is an exercise in parameter counting and linear algebra. We
omit the argument.
Let 0 < k < n/2. B(k) is the set of discrete band-limited sequences of length n and bandwidth
k, i.e. the real sequences (b;) satisfying

D b,~exp{J(—l)@}=O j=k+1, ... n—1—k
i=1

Let 1 <l/<n/2. #()is the set of discrete high pass sequences of length n, i.e. the real sequences
(h;) satisfying

n N
3 h,-expg\](— 1)@} 0 j=0,...0-1,n-I+1,...,n—1.
i=1

It follows from Parseval’s relation for the finite discrete Fourier transform that if b& (k)

and h&€ #(/), with k<!, then
>, bk =0. (A.15)
i

The importance of these two vector spaces is that
B (@5_—1) =range(KTK), H (@;_l) =kernel(KTK).

Let % ={i:x;>0}. From the proof of theorem 2 we know that C(K, x)= o if and only if
there exists v#0 such that Kv=0 yet v; >0, /€ 2. From now on we fix /=(m+1)/2. We
can rephrase the condition of theorem 2 as

CKK, x)=o if and only if for some non-zero h€ H(l), h; 20, i€ . (A.16)
We use this to prove the two halves of the theorem.
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A.3.1. Fewer than m/2 non-zero elements

Lemma 2 shows that a non-zero h€ Z#(/) has at least / negative elements. For such an
h to satisfy h; >0, i€ P, we must have card( ) <n—/, i.e. x has at least / non-zero
elements. As />m/2 this cannot happen. The proof of the first half is complete.

Lemma 2. Let h€ #(I). If h#0, then h has at least / negative elements.

Proof. Put # ={i:h; > 0}. Put k=card( &#¢). We claim that there is a sequence b= (b;)
so that

min|b;| >0, (A.17)
bh; >0, i=1, ... n, (A.18)

and
bE B (k). (A.19)

It follows from equations (A.17) and (A.18) that

2 bihi>miin|bi|2|hi|-
; T

Now if k<, F#(k+1)2 H#(]). Therefore # (k) and J#(/) are orthogonal. It follows that
X;b;h;=0, which forces h=0. Consequently, if k</ then h=0.

The construction of such a vector b is made by adapting a construction of Logan, who
used it to show that continuous time high pass functions must change sign frequently (Logan
(1965), theorem 5.3.1).

Let (i,)%_, be an enumeration of the elements of <. Define

2, — 4
5= =3, (A.20)
n
2w, + 1
tu=————7r('“ 2), (A.21)
n
for u=1, . . ., k. Define the sequence
A 27 A1 {270
B =sin {5 <7’r — s, )} sin H% —t, )X ) (A.22)
The reader will want to check at this point that
BO>0 Q€L .. ., n)—{i,),
BO<0  i=i,. (A.23)
Now putting equation (A.22) in the equivalent form
27 ,. .
b = T) —cos|<Z (i- 2
} cos<n cos . (—1i) /
shows that, for certain constants e, &/ and f*), we have
b = e+ & cos {—2”(’" —DIy £ sin 1—2”(’” = ”I : (A.24)

i.e. b® € Z(1). Define now .
bi=(-DI] 5"; (A.25)
u=1
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this gives a sequence (b;) such that

b;>0 e

b; <0 ie e,
Properties (A.17)-(A.18) follow. By the convolution theorem for the finite discrete Fourier
transform, we may show that if b®, . . ., b® are all in #(a) then ITI¥_ b® is in & (ka).
As equation (A.24) shows that the b® are all in <8 (1) we conclude that expression (A.19)
holds.

We could also check this directly by combining equation (A.24) with equation (A.25), giving
explicitly the representation

bi=ey+ Y, e,cos

u=1

+ £, sin

]

k 12%(1’— Du
n

27(i— Du
n
which implies expression (A.19).

A.3.2. More than m/2 non-zero elements
By hypothesis, / divides n. Pick 0<z#<n/Il, and define

1 i=0, n/l, 2n/l, . . .,
hi=1{ -1 i=t, t+n/l, t+2n/, . . .,
0 otherwise.

Now (#;) is periodic with period n/l. Thus h is representable as a Fourier sum using only
sinusoids also of period n//. Hence

3 hexp {J(—l)ﬂ;l)—j}=0, JG0, L2, . . . n—1I}.

i=1

Now by construction £;h;=0. Hence,

=

hyexp {J(—l)z—@} -0, j&i 2 ... n-I,
1

!

which implies h€ #(/).
If we define

1 i=t, t+n/l, t+2n/, . . .,

x. = .
"0 otherwise,

then x; has only / non-zero elements. Putting 5 ={i:x;=0}, we see that #;> 0, i€ ¥ . Hence,
condition (A.16) is satisfied for this h and this x, and C(K, x)= .

A.4. Proof of Theorem 4
We treat indices circularly, so that 0 is identified with n, —1 with n—1, etc. Put u=r—1.
Suppose that ris odd. Let x;=1if i= —u, —u+2,..., -2,0,2,...,u—2,u, and ;=0
otherwise. If, instead, ris even, let x;=1if i= —u, —u+2, ..., —1,1, ..., u—2, u, and
x;=0 otherwise.
Define the sequence ¢=(c;)/_ via
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(—1)"( 2’.)2—2f —rgigr,
= r+1i
0 otherwise.

Pick a>0 with a<min_,¢;¢,(1/]|c;}). Define x’ by
x; =x;+(— 1) ac; i=1,..., n

then x’ >0. Now |x’' —x|;=aoX;|¢;|=a and | K(x' —x) |, = a{Z7()*}12, where

Lsgeos| V=Dl Gy 35 m,
n5 n

1
In
are the discrete Fourier coefficients of ¢. ¢ is an even sequence, so that the sine coefficients

vanish: =0, j=2,4,6, . ...
Define now P,(0)=X]_ _, c;cos(6i), so that é=n-12P{(xj—1)/n} for j=1,3,5,....

With this notation, equation (22) holds, with
i
n
As P, is Riemann integrable, if we let n, m— o with m/n—-e¢€(O, 1),
A 12 e
n 27 Jo

To estimate the behaviour of P,, let f denote a function defined on the real line. Define
the 2rth-order differencing operator

Zc,-siniw—lj] j=2,4,6,... m—1
~ n
1

2
T(r, m, n)~2=y, &=n-1 3, ) (A.26)

0gj<m/2

2
dé.

n~t 3

0<j<m/2

P.(0)

, < il 2r .
@Qr H= 2 (-1 <r+i>f(x+h')'

i=—r
Then, if f is integrable, we have for the Fourier transforms
2% P,(6)/(60)= BT 1)6)-
Now if fis C* and of compact support,
h=A¥ f->D¥ f as h—~0

in L;, where D¥ denotes the differentiation operator of order 2r. Hence for each fixed 0 we
have that as 71— 0

22 h=2r P.(h6) f(8) ~ 6% F(6)
for all fin C* of compact support. Consequently
P.(0)=(6/2)>{1 +0o(1)) as 60
and, applying equation (A.26), approximation (24) follows.
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DISCUSSION OF THE PAPER BY DONOHO, JOHNSTONE, HOCH AND STERN

B. D. Ripley (University of Oxford): My interest in maximum entropy (ME) methods arose from
work on image enhancement in astronomy. It may surprise many statisticians that ME has the entrenched
position as the received wisdom in several areas of physical science. Rafael Molina and I encountered
this view quite forcefully recently when attempting to publish an account of our own methods (Molina
and Ripley, 1989) in a major astronomical journal. We had made some comparisons with ME but the
referee wanted to see us demonstrate whether ME could match every insight we extracted from our
examples.

How has ME reached this position? First it seems to work well and looks impressive; its proponents
have been tenacious in developing adequate algorithms, for which they deserve considerable credit.
Second, it is flexible and appealing, as the following quote from a ‘guru’ shows (Jaynes, 1978):

‘It is the obvious importance of Shannon’s theorems that first commands our attention and
respect; but as I only realised later, it is just his vagueness on these conceptual issues—allowing
every reader to interpret the work in his own way—that made Shannon’s writings, like those of Neils
Bohr, so eminently suited to become the Scriptures of a new Religion, as they so quickly did in both
cases.’

The evangelists have clearly been influential!

We have to be careful with arguments that methods ‘look good’. Our human image interpretation
system is good at some things, but not others, such as removing one-dimensional blurs. Thus some
impressive ME results can be matched by many other algorithms. The more I learn about research on
human cognition, the less I believe we do know about our own cognitive system!

One of the major advantages of ME is that it is non-linear and respects non-negativity. The authors
are cavalier in the use of ‘positive’ and ‘non-negative’; ME gives strictly positive solutions in most
problems, including those they describe, even when zero may be desirable. The use of linear methods
with a non-negativity constraint is perhaps the appropriate bench-mark comparison, and Roy Frieden
states that it works well in many deblurring problems.

Many astronomical problems have large dynamic ranges, with peak photon counts of say 100000

and features of interest in the hundreds. There the non-linearity is important. (At the meeting David
[— . . wﬁ_ﬁ'ﬁr‘ I SN PV« - S P R VO Lt .:=r3 ———
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What maximum entropy is not
Despite the claims in this paper, it should be said that ME is not

(a) a regularization method,
(b) a superresolution technique or
(c) a means for noise suppression.

It is certainly true that our ME programs have all these properties, so that the authors’ analyses of
the ability of ME to increase resolution and to suppress noise are a valuable exercise. To settle on those
aspects, however, is to misunderstand the motivation for ME and to ignore its role as a fundamental
technique. This is crucially important because, by misunderstanding the basic rationale of ME, we are
led to inappropriate and misleading generalizations. These include

(a) attempts to generalize the functional form of the entropy expression (e.g. to use an L;-norm) and
(b) a plethora of ad hoc choices for the regularization constant.

At the same time, useful generalization paths are ignored, including those which enable us to side-step
the main conclusions of this paper, namely that the usefulness of ME is limited to objects that are ‘nearly
black’.

What maximum entropy is

Modern ME data analysis (Gull and Daniell, 1978; Skilling, 1989; Gull, 1989) is a fully quantitative
tool for inference. We ‘fundamentalists’ believe that any inference must be based on strict adherence
to the laws of probability theory, because any deviation automatically leads to inconsistency (Cox, 1946).
Consequently, we are Bayesians. We set up our hypothesis space for the image processing problem as
follows: f represents the object being reconstructed and D denotes our data set;

Pr(f, D) = Pr(f) x Pr(D|f)
joint prior likelihood

Pr(D) x Pr(f|D).
evidence posterior

The names for the various terms are familiar, except for the term that we now call the ‘evidence’. We
find that this neglected term is the most useful of all, because it enables us to compare the posterior
probability of alternative hypotheses. For Gaussian errors the likelihood is proportional to exp(— x2/2)
and there are good reasons to take the prior Pr( f)xexp(aS), where S is essentially the same entropy
defined by the authors. The maximum of the posterior distribution, which corresponds to our best
inference about f, can therefore be found by maximizing oS — x2/2. Note that this derivation shows
that there is a good reason to have the Lagrange multiplier on the prior, rather than the likelihood.
The following are some advantages of the Bayesian view of ME.

(a) There is a consistent choice of regularization constant «: use Bayes’s theorem to find what it
should be (Gull, 1989). This prescription can also be found in the literature: Davies and Anderssen
(1986) are ‘right’; all other prescriptions are, therefore, ‘wrong’.

(b) We can quantify the reliability of our reconstructions and place error bars on our results.

(c) We can estimate the noise level of our data set if it is not known a priori.

(d) We can make a series of typical samples from the posterior distribution, and display them as
a probabilistic film (Skilling et al., 1991).

(¢) Spatial correlations between pixels can be incorporated, and any resulting improvements assessed
quantitatively.

(f) There is an enormous variety of applications.

Once we see ME processing in these terms, we can generalize our hypothesis space to overcome its
apparent restriction to nearly black objects. Fig. 9 shows an example of a Raman spectrum supplied
by P. Graves at Harwell Laboratories. The spectroscopist was interested in a quantitative assessment
of the amount of signal in the sharp lines, but these lines are confused by a background of scattered
laser light. Our ME reconstruction shows two separate channels: a diffuse, background, channel and
a sharper, signal, channel that is now ‘nearly black’.

An example of modern ME processing that can incorporate spatial correlations in a picture and thereby
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Fig. 9. Raman spectrum: (a) data; (b) maximum entropy—spectrum; (¢) maximum entropy—background; (d)

maximum entropy—noise

reduce noise is given by Gull (1989). Once again, ‘near-blackness’ is not the issue—we must merely
have a sensible hypothesis space. Finally, Charter (1991) gives a state-of-the-art example that shows
how an orally administered drug enters the bloodstream via the stomach and the liver. ME is used to
measure the proportion of the dose that was effective (for this case it was 80% =+ 5%) and the median
time for entry of the drug into the systemic circulation. In all cases it is the quantitative power of Bayesian
ME to make these inferences that is crucial. It is far more than a means of producing pretty pictures.

On the lighter side, I note that the authors are wary of fundamentalists, and they suggest that ‘this
feeling is reciprocated’. I wonder, therefore, whether, in seconding the vote of thanks to the authors
for their stimulating contribution, I may be permitted to end by saying ‘amen’ to these sentiments.

The vote of thanks was passed by acclamation.
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J. A. Jones (University of Oxford): I would like to take a completely different tack on this problem
and to say a little about how maximum entropy processing looks to a practising nuclear magnetic
resonance (NMR) spectroscopist (this is based on work done with my supervisor, Dr P. J. Hore, in
the Physical Chemistry Laboratory, University of Oxford).

What is important to an NMR spectroscopist? The answer is not signal to noise on the base-line,
but how reliably various parameters may be extracted from the data, in particular peak areas on which
we have decided to concentrate.

We have abandoned the theoretical approach in favour of a crude, but robust, Monte Carlo simulation
method. This works as follows: a large number of data sets which contain the same signal but different
pseudorandom noise are synthesized; each data set is then processed by the method under investigation
and the parameter of interest is extracted. The mean and variance of the parameter are then calculated.

For the peak areas the simple maximum entropy processing described gives both a larger variance
and a larger negative bias than conventional processing (direct Fourier transformation). This is obviously
completely useless to NMR spectroscopists. If, however, information on the line shape is included, i.e.
if we attempt to deconvolve the line shape, then maximum entropy processing can give areas which
are both less variable and less biased than those obtained by conventional processing. We feel that this
is a genuine improvement. However, maximum entropy processing is not unique in this. It is always
possible to obtain a better estimate of areas, in terms of both variability and bias, if an attempt is made
to fit a model function (curve fitting).

We would argue therefore that, although maximum entropy processing can give spectra which are
in some sense better than conventional spectra, it is not unique in this. Other methods can do better
still, particularly if there is a known model function.

— ool I

T e

Ad hoc estimator (when K=1)

Figs 1 and 4 suggest a threshold estimator. The authors state that the /,-method is better. We can
understand this by considering small, medium and large values of y. When y is very small (or negative)
it is probably all noise: both estimators have 6(y)=0 for y<\. When y is large there is a signal and,
assuming symmetric noise, 6(y) =y seems reasonable; however, 5, (»)=y—\. For intermediate values
of y we may be observing a large amount of noise or a small 51gnal plus some noise: a good estimator
will shrink towards 0, 0< 6(y)<y. This is what 6, does, but 57(y) is either 0 or y (dependent on y<M).
Since intermediate values of y are far more common than large values, 5, is better on average.

This analysis suggests a new estimator:

0, if y<i,,
84 =1{ =AM/ (=N, if <y,
Y, 1fy>)\2.

We may even argue (2 /a James-Stein) that for large y we should ‘shrink’ towards u=FE[x1,.q].

Bayes estimator (when K=1)

Our model is Y,=x,+ z, where z,~ N(0, ¢2) and x,=0 with probability 1 —¢, and is otherwise from
a distribution on [0, o) with density f. If o, € and f are known, the Bayes estimator is the mean of
the posterior distribution:

| T x a1 -0/01 10 ax

sg(¥)= .
(1-06070) +e| " 61r-0/01f @ dx

The function 653(y) is graphed for =1, e=0.02 and f(x) =0.1 exp(— x/10) (Fig. 10). 6 has the usual
decision theoretic optimality properties of Bayes estimators and behaves according to the intuition used to

propose 8, . (o, € and a parametric f can be estimated from the data; 6 is insensitive to their precise
values.)

Ridge regression and subset selection
A change of notation makes the general problem look more familiar:
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Fig. 10. (a) Bayes estimator compared with y=ux; (b) ratio of Bayes estimator to y

The problem is then to estimate the vector 8 for a given design matrix X with the knowledge that 3,20
and all but p are 0. When the total number of covariates is large (1) best subset and backward elimination
are impractical. Instead we start with forward selection. Proceeding stepwise we may also allow deletions.
Thus, for instance, we grow large regression trees and then prune them. Non-linear estimators are quite
familiar to statisticians but have names such as subset selection.

When X is orthogonal there is no need for backward steps. Instead we may build a big model and
then shrink those coefficients that are of marginal significance: 5= (X{X,+NG) ' XY, where
Xo=(X|, X;, 0) (nxn) and

oo (0 0>
0 I

(nx n) with X, (n X p,) the matrix of important covariates, X,(n X p,) a matrix of marginal covariates
and I the (n— p,)-identity. (A is a ridge parameter.) § has the intuitively appealing properties of the
ad hoc estimator. (Classically we wish to estimate X3; here we concentrate on 8 per se.)

John T. Kent (University of Leeds): I greatly enjoyed this paper. It has substantially enhanced my
understanding of the way that the maximum entropy method works. The paper is concerned with the
reconstruction of a signal x=(x,) from indirect noisy measurements y. There seem to be two key
assumptions about the signal x:

(a) the signal x is nearly black, i.e. x,=0 for nearly all /, and
(b) the components of x are non-negative, i.e. x,>0 for all /.

Maximum entropy and related methods are effective at reconstructing signals satisfying assumption
(a) because they shrink a naive reconstruction of x towards 0 or a nearby value. Similarly they are effective
for signals satisfying assumption (b) because the estimated reconstruction is required to have non-negative
components.

Could the authors give us some insight into the relative importance of assumptions (a) and (b) for
explaining the effectiveness of the maximum entropy method, both for the examples in the paper and
more widely? In particular how effective is maximum entropy if the signal is only partly black? Also
non-negativity seems to be a key assumption in Section 4 on superresolution (see especially Fig. 8) but
is relaxed to allow negative and even complex signals in Section 3. Finally, another example where
maximum entropy has been used effectively is in deblurring problems, where it seems to be the non-
negativity constraint which helps to avoid the ‘ringing’ artefacts of linear deblurring methods.

William E. Strawderman (Rutgers University, New Brunswick): I congratulate the authors for an
interesting and well-written paper. It provides a particularly nice example of the insight and potentially
practical benefits that can be obtained by applying statistical optimality concepts to a difficult and
important practical problem. I am not an expert in inverse problems and no doubt my comments will
reflect my naivety. In the context of Section 2 at least an empirical Bayes approach might preserve
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(at least nearly) the optimality properties of the minimum /;-rule in the nearly black case and perhaps
allow as good or better behaviour when the object is not nearly black. One possible class of priors would
be a mixture of a point mass at 0 with probability to be estimated from the data and a gamma prior
with parameters also to be estimated. Here the probability of the point mass at 0 would play the role
of the tuning parameter A for the maximum entropy and minimum /,-methods and would be adaptively
determined. The potential advantage of such a method should come in its ability to adapt at least
somewhat to the non-black part of the image. As such empirical Bayes methods are well known to the
authors I presume that there are computational or other reasons for not using some variation on the
empirical Bayes theme.

Didier Dacunha-Castelle (Université Paris Sud, Orsay): [ am pleased to congratulate the authors for
their fascinating paper. For their model (1) Y,=(Kx),+¢, x is chosen by maximizing S(x) subject to
the relaxed constraint. Model (2) is | Y —Kx|,<e; of course the procedure can be thought of as a
deterministic fitting procedure. There is a certain kind of optimality if we choose S(x)=|x}, . This
optimality depends on

(a) the normality of (¢,) and
(b) on the asymptotics chosen, i.e. a level of noise tending to 0.

What happens if we change condition (a)? What is the link between this result with the classical asymptotic
optimality in robustness theory (as in P. Huber’s work)? From this deterministic point of view, instead
of model (2) we can regularize a problem maximizing S(x) under constraint (3), m,(x)=m(y),
1<k<m, when

1 n
mk(X)=ﬁkZ Xk
=1

This point of view is linked to the use of a generalization of the maximum entropy principle as in Dacunha-
Castelle and Gamboa (1990) and Gamboa and Gassiat (1990) and in some statistical problems. It seems
well adapted when we work with the asymptotics of discretization, with (x,) thought of as a finite
number of values of a continuous function x,. In this asymptotic, there is a Bayesian interpretation
of the choice of § (Gamboa and Gassiat, 1991a, b).

Elisabeth Gassiat (Université Paris-Sud, Orsay): I would first like to congratulate the authors for
their clear exposition of the properties of the so-called ‘maximum entropy’ methods in general, underlying
the role of positiveness and ‘nearly blackness’ of the object to be recovered. I shall focus my contribution
on the second part of the paper, where the operator K is not easily invertible. The authors show a
superresolution property in the particular case where K is the finite Fourier transformation: y = Kx + ¢,
x€R” and YER"™, m<<n. Here e is a deterministic error.

In this approach, and looking at their proofs, the role of the discretization and of the geometric structure
induced by K does not demonstrate clearly why superresolution occurs.

The problem may be rephrased in a more general form: if U is a compact metrizable space, x a positive
measure, K an m-dimensional continuous function on U, the observation is

y=‘ Ude+e.

The problem is now a generalized moment problem. In Gamboa and Gassiat (1991b), it is shown that
superresolution occurs if and only if | ;K dx is a determinate point, i.e. a point for which the set of
positive measures solutions to the moment problem is reduced to a singleton. In that paper criteria are
also given to show whether a point is determinate or not. All the results rely on developments on
‘maximum entropy methods on the mean’ developed in Gamboa and Gassiat (1991a). Another point
of view of near-blackness has also been studied in Gassiat (1990), relating it to some concentration property
of the support of any positive measure solution of the moment problem.

Andrew Gelman (University of California, Berkeley): The authors present an enlightening discussion
of where and why maximum entropy methods are effective. Many of their results become even clearer
from a Bayesian perspective: better prior distributions yield better estimates. Jaynes (1987) makes a
similar point in his discussion of the non-linear shrinkage that results from Bayesian spectral estimation
using a nearly black model (without maximum entropy).

For simplicity, I shall analyse the example of Section 2. Each of the estimates considered by the authors
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TABLE 2
Shrinkage estimates and their corresponding prior densities

Estimate %, Prior density on x,

¥, Uniform(— o, o)

max(y,, 0) Uniform{ 0, «)

Rris Normal(0, o2/ M)

max(¥y, g, 0) Normal(0, ¢%/)\), truncated to be non-negative
SmE Density proportional to exp{(—\/a2)x, log x,}
8, Exponential(a2/\)

O Thresh Mixture of point mass at 0 and uniform[0, oo ]

may be interpreted as a posterior mode under the appropriate family of proper or improper prior
distributions on x,, . . ., x, (Table 2).

The regularization parameter A is assumed known. In practice, the normal and maximum entropy
prior distributions typically each take another parameter, fitting location for the normal and scale for
the entropy distribution. In either case, fitting the additional parameter allows the fixed point of shrinkage
to be fitted to the data, rather than be fixed at O for quadratic regularization and e~! for maximum
entropy. (Incidentally, fitting the second parameter eliminates the problem with maximum entropy
described in the penultimate paragraph of Section 2.2.)

As the authors report, maximum entropy reconstruction shrinks large data values proportionately
less than small data values, thus preserving peaks while suppressing noise. Least squares regularization
performs worse for the nearly black object, even when restricted to positivity, because it shrinks all
positive data by a common factor.

The shrinkage behaviour of the estimates makes perfect sense in light of the corresponding prior
distributions. The prior density for the trivial estimate is constant, so the data are not pulled at all.
The priors for least squares regularization have rapidly decaying exp(— x?) tails, so large data points
will be pulled strongly towards the fixed point. The priors for maximum entropy-—and also for the
l,-estimate—decay only like exp(— x) and so large data values are shrunk less strongly. The threshold
estimate Sy pulls points to the point mass at 0, but its uniform component fails by not shrinking
the positive components x, to their common mean.

In summary: under the ‘nearly black’ model, the normal prior is terrible, the entropy prior is better
and the exponential prior is slightly better still. (An even better prior distribution for the nearly black
model would combine the threshold and regularization ideas by mixing a point mass at 0 with a proper
distribution on {0, o ].) Knowledge that an image is nearly black is strong prior information that is
not included in the basic maximum entropy estimate.

The following contributions were received in writing after the meeting.

Bob Anderssen (CSIRO, Canberra): In making this important contribution, the authors, not
surprisingly, find that maximum entropy has its limitations. The impact which this paper has will depend
on the extent to which it removes the belief that maximum entropy is a panacea. The shortcomings
of maximum entropy have already been noted by others (e.g. Engl and Landl (1991), Koch and Anderssen
(1987) and Titterington (1984)). What the present authors have achieved is to have placed this earlier
understanding on a much firmer foundation.

Certainly, strong support for maximum entropy can be based on physical (thermodynamical) and
philosophical (minimum assumptions) considerations. But, it is one among many such principles like
minimum energy in elasticity and minimum action in optics and seismology. The choice of methodology
should be driven by the information flowing from the context in which the data have been collected
rather than other considerations. The context also has a bearing on the statistical interpretation of the
approach (O’Sullivan, 1986; Wahba, 1990). For example, Wahba (1990), section 1.5, gives a Bayesian
estimation interpretation for regularization with a quadratic regularizor.

The success (when it occurs) of maximum entropy relates to its implementation via a regularization
framework such as

min, |y — Kx|)3+2) A(x)}, 25)
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and to the ramifications associated with the use of this variational formulation. The present authors
understand and exploit this point. In fact, their conclusions fit the general picture about (discrete)
regularization which theoretical studies have so far uncovered. From the variational framework (25),
it is clear that, in the minimization, the regularizor A(x) controls the smoothness of x. For quadratic
regularizors, where A(x)=|Tx|? with T a linear differential operator, we know from theoretical
investigations (Lukas, 1980; Wahba, 1990) that

(a) If K'=1 (data smoothing), then the structure of the solution of expression (25) (the regularized
approximation), x, , is piecewise with respect to the ordinates of the data and, between the data
points, is a function from the null space of T*T. If K is a linear operator, then x, is not
necessarily piecewise, but its structure is known explicitly (Lukas, 1980).

(b) As \— 0, the regularized approximation x, tends to a corresponding x such that KX interpolates
the data.

() As \— oo, the regularized approximation x, tends to the least squares function which best fits
the data from among the functions which form the null space of T.

It is therefore natural to conclude that, because the null space of the maximum entropy regularizor
lacks the structure associated with that of quadratic regularizors, the utility of maximum entropy
regularization will be limited to specialized situations.

C. A. Glasbey and G. W. Horgan (Scottish Agricultural Statistics Service, Edinburgh): This paper
sheds welcome light on what to us was a nearly black object, maximum entropy. We have three comments.

(a) Although Table 1 gives minimax mean-squared errors for various shrinkage operators, in practice,
with a particular probability density function for x, relative performances could be quite different.
For example, in many cases a threshold operator will do better than the uniform shrinkage of
the /, -estimator.

(b) In applications such as nuclear magnetic resonance spectroscopy and image analysis, X is usually
a function over continuous one- or two-dimensional space, although y is only observed on a grid
of points. Could the authors comment on the recovery of x in this case?

(¢) Inimage analysis, near-blackness is but one of many forms of prior knowledge. The human vision
system exploits features such as spatial continuity and straightness of edges in images to achieve
greater resolution than the limits predicted from the optics of the eye. In computer vision it remains
a largely open question which assumptions lead to tractable algorithms, and how much can be
gained in resolving power.

1. J. Good (Virginia Polytechnic Institute and State University, Blacksburg): In the method of maximum
penalized likelihood (MPL) a roughness penalty is subtracted from a log-likelihood, and the difference
is then maximized. (For numerous references see, for example, MPL in the first index of Good (1983a),
especially Good and Gaskins (1980) and Good and Deaton (1981). See also Tapia and Thompson (1978),
Good (1983b) and Good (1989).) Without the penalty, i.e. if pure maximum likelihood (ML) is used,
the result is usually too rough if the number of parameters exceeds the number of observations, e.g.
if the number is in principle infinite (the ‘nonparametric’ case). The penalty can be multiplied by a
factor N\ which acts as a smoothing parameter, or, in the Bayesian interpretation, as a hyperparameter,
and can also be interpreted as a Lagrange multiplier. For categorical data the negative entropy was
suggested as a roughness penalty (Good (1963), p. 931) thus providing the natural compromise between
ML (appropriate for large samples) and ‘maximum entropy’ (appropriate for zero-size samples). This
suggestion was developed in detail for contingency tables by Pelz (1977). We have found, in work not
yet published, that the method appears to be most appropriate for the estimation of the physical
probabilities corresponding to cells containing small or zero frequencies. Thus the MPL method should
be useful for multidimensional contingency tables because, putting it roughly, the larger the dimensionality
the larger the fraction of empty cells. This state of affairs is analogous to the requirement, for continuous
problems, that the data be ‘nearly black’, as in the work of the present authors.

For continuous problems, involving the estimation of probability densities, where there is always a
natural ordering, I have preferred, from a theoretical point of view, to use measures of roughness that
depend on derivatives of the density function (or differences in some numerical approaches). Even for
contingency tables, if the rows have a natural ordering (or the columns etc.), the use of sums of squares
of first or second differences might be theoretically preferred to entropy. But in practice the
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entropic penalty might be just as good. In particular, I hope that the authors’ impressive theorems can
be extended to categorical data.

My main point is that the analogy between continuous problems on the one hand, such as those dealing
with radio astronomy and nuclear magnetic resonance, and discrete problems, on the other hand, should
be held in mind.

Jim Kay (University of Glasgow): The authors are to be congratulated for producing an interesting
paper which presents the advantages of the maximum entropy method in an illuminating and non-
fundamentalist manner. The paper refers to ill-posed problems and yet in the theory developed in Sections
2 and 3 the contexts considered are not ill posed. Clearly, in general the stationarity equations are

x=% - MNKTK) ! grad(®),

where & is a non-linear penalty function, and so the simple co-ordinatewise non-linearity is lost. To
what extent does this theory extend to (real) ill-posed problems?

With regard to computation, Green (1990) hes introduced an algorithm based on penalized likelihood
estimation. It is simple to programme and yields the simple recursion

xnewzxold_n—ID—l [KT(y—Kx"ld)—)\gl‘ad[cb(x(’ld)}],

where D=diag(KTK).
Some other penalty functions that might be of interest are

()= %8 (0<B<),
®,(x) =2, x,(x¢" /o) (0<a<l),

q>3 (X) = 2 X, IOg(xl /X/)
i~J
and

®,= 2 x;log(x,/x)1—e,)+v Z €,
i~j

where {~j means that pixels i and j are neighbours. In the special case considered in Section 2, the
use of penalties ®, and ®, would involve simple co-ordinatewise non-linearities and might also exhibit
signal-to-noise enhancement. Reconstruction with &, has a fixed point at (¢+1)""* and a
corresponding shrinkage property; as o — 0 this penalty yields maximum entropy whereas, as a«— 1,
it gives a quadratic regularization. In general, penalties ®, and ®, would exhibit superresolution as
conditions (16) and (17) would be satisfied. The use of penalty ®; would invoke a local smoothing,
similar in spirit to first-order quadratic regularization: generalizations are possible; see Thompson (1988).
In penalty @,, ¢, =1 when pixels  and j are connected by an edge and e, =0 otherwise. The {¢,} may
be ‘estimated’ from the data. Such an approach might be helpful in reducing the negative bias of spikes.

Alan M. Thompson (University of Glasgow): I would like to congratulate the authors for their paper
which goes a long way towards putting the importance of the maximum entropy method into perspective.
In light of their work it seems ironic that the reason that the maximum entropy method is used in radio
astronomy is because it reconstructs images of spatially distributed sources better than its main rival
CLEAN (Cornwell and Evans, 1985).

There has also been some recent work on a comparison of some methods of selecting the smoothing
parameter \ (e.g. Thompson et al. (1991)) which shows that the choice of smoothing parameter can
have a significant effect on the quality of the reconstructed image. In particular, the new methods
developed by the maximum entropy school (Gull, 1989) which are mentioned by the authors have been
examined by Thompson and Kay (1991) who have obtained results which suggest that these methods
produce reconstructed images which are undersmoothed (i.e. produce reconstructed images which retain
more noise than the best fit solution).

D. M. Titterington (University of Glasgow): I was very sorry not to be able to attend the meeting
at which this important paper was presented. The paper provides a major service in identifying
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concrete comparative characteristics of a range of non-linear inversion techniques that include maximum
entropy (ME) as a special case. I owe the ME method a personal debt of gratitude in that my initial
encounter with it was a major factor in my being led from a comparatively narrow interest in density
estimation to an awareness of a general structure underlying many statistical smoothing exercises
(Titterington, 1985a, b). I had my differences with the originators of the ME method in that I could
not accept that the approach is uniquely special among regularization procedures; I could not fit the
wide range of data analytic applications of the method into the axiomatic ME formalism for probability
measures (Jaynes, 1968; Shore and Johnson, 1980; Johnson and Shore, 1983; Tikochinsky et al.,
1984a, b). At the time, I worried that I was just missing the key link, and I was greatly reassured when
I discovered that Terry Speed, for one, was of a similar mind.

Although I would now probably wish to put my objections in a way different from that expressed

in Titterington (1984), I have for several years regarded this particular controversy as a non-issue; any

D P — A
L, ,:‘ﬁ_EJ_ P ]

quantitatively as one of a wide class of comparable prescriptions for smoothing. There are clearly many
further aspects to be examined, some of them alluded to in the paper. Among them are the following.

(a) In spite of what is said in Section 2.4.3, some systematic study of the influence, in practical terms,
of the choice of \ should be carried out. An oft-repeated, throwaway line in the context of
smoothing procedures is that the choice of method (e.g. choice of kernel function in kernel-based
density estimation) is much less important than the choice of smoothing parameter. Is the converse
being postulated here, partially, at least?

(b) If the ‘object’ is believed to be nearly black, should this be accommodated at the outset, through
appropriate modelling and suitable, possibly semiparametric, analysis, rather than by an essentially
nonparametric approach? In this context, algorithms such as CLEAN, referred to by Koch and
Anderssen (1987), for instance, deserve scrutiny.

(c¢) The question of superresolution is very important and of wide current interest; see Luttrell (1990),
for instance.

In summary, I am very pleased that this paper is being published, as well as being full of admiration
for the technical achievements underlying its clearly stated, meaningful conclusions.

Grace Wahba (University of Wisconsin, Madison): We owe the authors a great debt for shedding
new light on maximum entropy and positivity constraints in solving ill-posed inverse problems. I comment
from the point of view of positivity constraints in the context of regularized least squares. We find
x as the minimizer of

ly—Kx|*+2)J(x), (26)

where J( ) is a quadratic smoothness penalty functional (but generally not the ./, squared norm). See
Wahba (1980, 1982, 1990) and the references in Wahba (1990). Wahba (1980, 1982, 1990) discusses
the minimization of expression (26) subject to linear inequality constraints. In Wahba (1982) (summarized
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We again thank the authors for examining carefully the role of positivity and /,-estimation in the
case of the nearly black object.

The authors replied later, in writing, as follows.

The discussants approached their task from many different viewpoints, each with its own set of
characteristic concerns and reactions. Below we paraphrase these viewpoints and compare them with
our own. (Our grouping is arbitrary; the discussants may not agree with it.)

Scientists

Ripley claims that the squared error loss may be an inadequate measure of how scientists would judge
the quality of fit; he asks how to quantify the visual quality of reconstruction. Anyone who has proved
theorems about mean-squared-error optimality, and then compared the theorems with pictures of actual
reconstructions, has probably lost sleep over this question. Now Ripley states the question publicly.
It is important for our profession, and not just this discussion, that someone finds an answer!

Jones points out that scientists are often interested in the recovery of certain linear functionals (peak
areas) rather than the whole curve. Except for John Rice, statisticians have not looked at the recovery
of peak areas. We hope that Jones’s question will prompt renewed interest. We suspect that Jones is
correct: that non-linear estimates of peak areas can improve on linear estimates.

Decision theorists

Decision theorists focus on quantifying and improving performance under a given statistical model,
and on understanding how variations of the model affect the results.

Accordingly, both Sasieni and Strawderman suggest improvements to the /,-rule of Section 2.3. With
good choices for A\, and \,, Sasieni’s 6, will certainly perform at least as well as the /,-rule, though
of course we now have two parameters to choose rather than one. The class of Bayes rules é is ideally
suited to precise prior information that the image is e-black. A more detailed study of the minimax
risk M (e) of theorem 1 (Johnstone, 1991) leads to a three-term asymptotic expansion of which equation
(9) is the leading term. From this, it follows that, although the /,-rule is first order minimax as shown
in theorem 1, it is not even second-order minimax. It would be interesting to know whether Sasieni’s
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of a parallel to ‘superresolution’ in the model selection literature. Superresolution occurs in the
underdetermined case, when the unknown parameter vector is sparse and positive; what is the model
selection analogue?

Good’s suggestion to keep sparse contingency tables in mind is well taken. The details of a
corresponding theoretical development would differ somewhat from the Gaussian case, if only for the
following reason. In theorem 1, the phenomenon underlying the value for the minimax risk is the threshold
N\, at which an observation is equally likely (in the marginal distribution) to be a (rare) large error
imposed on a (likely) zero signal or a negligible error on a (rare) signal of magnitude about \,. In a
contingency table with, say, Poisson counts, the corresponding situation cannot arise for a cell with
zero mean because positive counts cannot occur by definition. Perhaps this could be handled by assuming
a small positive base-line intensity on which signal is added.

Bayesians

Bayesians seem most interested in quantifying prior information about near-blackness probabilistically,
and in interpreting the resulting Bayes rules.

For the signal-plus-noise model, Gelman interprets various estimators as maximum a posteriori for
various prior distributions. This is a natural way to obtain some quick intuition into the structure of
a given estimator. We had done this also, and found it curious that, whereas the greatest successes of
ME vis-g-vis linear methods occurred in nearly black settings, the imputed maximum a priori prior
suggested that ME was somehow optimized for independent and identically distributed ‘snowy’ images
with the exp{— (\/0?)x;log x;] pixelwise distribution!

Accordingly, the success of ME derives from its non-linear behaviour at those objects which are near-
black, rather than from the astuteness of its prior.

Naturally, however, better priors give better results. Sasieni and Strawderman both suggest the use
of empirical Bayes methods, which in effect derive a prior from the data. There is little doubt that these
methods would outperform both ME and /,-methods. However, optimality per se has not been our
main goal.

Maximum entropy

As Gull’s discussion shows, the Cambridge rationale for ME is undergoing changes, so that the
‘consistency’ argument of years past, which leads to entropy penalization of the likelihood (‘classical
ME’), has been replaced by a ‘coherence’ argument, which leads to ‘modern ME’.

The example Gull (1989) of modern ME processing is, in Bayesian language, a hierarchical Bayes
model based on Gaussian priors at two levels, with hyperparameters chosen to maximize the appropriate
marginal distribution (see Berger (1985) and Good (1983a) for further exposition of this standard ‘type
II maximum likelihood’ approach). The specific model used seems quite close in spirit to the conditionally
autoregressive models of Besag (1974) or the integrated Brownian motion priors of Grace Wahba.

The cited advantages of Gull’s Bayesian approach to ME are largely characteristic of the use of the
Bayesian paradigm, and by no means specific to the use of entropic priors on appropriately chosen
‘hypothesis spaces’. In the colourful words of L. J. Savage, if one breaks the Bayesian egg, one gets
to enjoy the Bayesian omelette. Of course, one had better use good eggs!

Frequently the non-linearity of ME, rather than its Bayesian character, or other philosophical
underpinnings, is responsible for the method’s relative successes. In Gull’s Raman spectrum example,
the separation into ‘sparse spectrum’ plus ‘rolling base-line’ is remarkable. This separation is due to
a non-linear effect called Logan’s phenomenon by Donoho and Stark (1989) and Donoho and Logan
(1991), in a study of minimum /,-norm reconstruction. Understanding this successful example requires
ideas of Ben Logan or Werner Heisenberg (i.e. the uncertainty principle) rather than Thomas Bayes
or Edwin Jaynes.

Quadratic regularization

Quadratic regularization is the most widely employed method for linear inverse problems. Grace
Wahba, a distinguished developer of techniques based on quadratic regularization, makes interesting
historical comments about the improvements which she has discovered when supplementing quadratic
regularization with positivity constraints. Her volumetric heuristic may persuade many of the importance
of positivity constraints.

Kay and Anderssen discuss the structure of quadratic regularizers and ask whether similar structure
persists with non-quadratic regularizers. Analysis of quadratic regularizers is based on methods of calculus,
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but superresolution occurs where the regularizer and associated optimum solution operator are non-
differentiable. Superresolution seems intrinsically tied up with the failure of traditional linearizations.

Recent research associated with quadratic regularization has focused on the choice of the regularization
parameter A. Both Titterington and Thompson express some surprise at our relative lack of discussion
of this topic. Titterington’s (1985a) excellent survey was concerned mostly with families of /inear estimators
indexed by a smoothing parameter. When the choice is between linear estimators, we would agree that
the main practical issue is often the choice of the smoothing parameter rather than the specific kernel,
filter or whatever. However, when we consider situations with strong prior information about sparsity,
the advantages of appropriate non-linear methods over linear methods may be so large that they warrant
separate study, and this was our focus. The appropriate choice of smoothing or regularization parameter
for non-linear superresolving methods is the natural next question, and we thank the discussants for
their references to ongoing work on this topic.

Applied mathematicians

Gassiat and Gamboa show that superresolution is quite general in an abstract qualitative sense. Qur
approach is more specialized, but it yields explicit quantitative information on the stability of
superresolution; compare Donoho (1990) and Donoho et al. (1991).

John Kent asked us to compare the superresolution available from sparsity constraints alone, and
from sparsity in conjunction with positivity constraints. Donoho (1990) and Donoho et al. (1991) develop
a quantitative theory of superresolution and provide explicit stability estimates under sparsity constraints
which are parallel to explicit stability estimates under positivity constraints. From the point of view
of theoretical performance, the combination of sparsity and positivity constraints is not intrinsically
more powerful than sparsity constraints alone.

From the point of view of computation, however, the two types of constraint are very different. Whereas
imposition of positivity constraints in least squares fitting is accomplished with standard quadratic
programming software, or through entropy penalization, imposing sparsity constraints is a job of
seemingly combinatorial complexity requiring a best sparse subset search through an enormous number
of linear least squares fits. Our understanding of sparsity constraints is at present largely theoretical,
whereas many published reconstructions with positivity constraints exist.

Signal/image processors

Glasbey and Horgan ask how our conclusions generalize to continuous objects, objects with spatial
continuity and objects with edges. Superficially, there is little applicability, as we discuss objects such
as discretized star maps and molecular spectra, which do not have such features.

The recently developed wavelet transform (Meyer, 1990; Mallat, 1989; Daubechies, 1989) opens up
several possible applications of our ideas in image and signal processing. Work of Coifman et a/. (1990)
suggests that many images and signals, when wavelet transformed, become sparse objects (i.e. objects
most of whose co-ordinates are essentially 0).

We may regard such wavelet transforms as nearly black objects. Donoho and Johnstone (1991) exploit
this point of view, applying simple threshold non-linearities to wavelet transforms to suppress noise
in a theoretically optimal way. When the wavelet transform is inverted, we obtain a curve or surface
reconstruction. Despite the apparent simplicity of this ‘wavelet shrinkage’ method, the resulting curve
or surface reconstruction adapts automatically to discontinuities, singularities and spatial smoothness
of the unknown object and adapts in a way which is near optimal.

Conclusion

The diverse and thoughtful discussion has slighted, so far, the concept of sparsity. We ask explicitly:
how generally useful is the concept of the nearly black object? The optimizing impulses of decision
theorists, the philosophizing of Bayesians and ME advocates, the analytical skills of mathematicians—
all can be well exercised by an ample subject. Is sparsity ample in this sense?

We believe so. Not only molecular spectra and sky maps, but also images and voice recordings (after
suitable transformation) may be seen as nearly black objects. We look forward to work, from the many
points of view represented here, identifying and exploiting cases where the object is nearly black.

We thank the Society and discussants for a most stimulating occasion.
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