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Abstract

De-Noising with the traditional (orthogonal, maximally-decimated) wavelet
transform sometimes exhibits visual artifacts; we attribute some of these – for ex-
ample, Gibbs phenomena in the neighborhood of discontinuities – to the lack of
translation invariance of the wavelet basis. One method to suppress such artifacts,
termed “cycle spinning” by Coifman, is to “average out” the translation dependence.
For a range of shifts, one shifts the data (right or left as the case may be), De-Noises
the shifted data, and then unshifts the de-noised data. Doing this for each of a range
of shifts, and averaging the several results so obtained, produces a reconstruction
subject to far weaker Gibbs phenomena than thresholding based De-Noising using
the traditional orthogonal wavelet transform.

Cycle-Spinning over the range of all circulant shifts can be accomplished in order
n log2(n) time; it is equivalent to de-noising using the undecimated or stationary
wavelet transform.

Cycle-spinning exhibits benefits outside of wavelet de-noising, for example in
cosine packet denoising, where it helps suppress ‘clicks’. It also has a counterpart in
frequency domain de-noising, where the goal of translation-invariance is replaced by
modulation invariance, and the central shift-De-Noise-unshift operation is replaced
by modulate-De-Noise-demodulate.

We illustrate these concepts with extensive computational examples; all figures
presented here are reproducible using the WaveLab software package.

1 Introduction

In the last few years, there has been considerable interest in the use of wavelet transforms
for removing noise from signals and images. One method, applied by the authors and their
collaborators, has been the use of transform-based thresholding, working in three steps:

• Transform the noisy data into an orthogonal domain.

• Apply soft or hard thresholding to the resulting coefficients, thereby suppressing
those coefficients smaller than a certain amplitude.

• Transform back into the original domain.
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This approach has been the most studied and applied when the transform in question is
the wavelet transform; then we speak of Wavelet Shrinkage – see [18] and references there.
However, it makes sense quite generally, so one can apply thresholding in a fourier, cosine
packet, wavelet packet, or in some other orthogonal transform domain [8, 12].

The quantitative theory of this method is now well developed – see again [18, 11, 17]
and references therein; one can even show that this approach has various optimality and
near-optimality properties in comparison to other methods. Nevertheless, scientists and
other users have mentioned to us a number of concerns about artifacts of various kinds
that such methods exhibit; our aim in this paper is to discuss such artifacts and to describe
a simple set of tools which helps to suppress them. To the extent that simple thresholding
in an orthogonal domain may be thought of as first-generation de-noising, we might call
the methods developed here “second-generation de-noising”; compare the rejoinder to the
discussion in [18].

1.1 Artifacts

The type of artifacts suffered when using transform domain thresholding depend on the
kind of transform domain one is working in.

For wavelet de-noising, the artifacts have to do with behavior near singularities. In the
neighborhood of discontinuities, wavelet de-noising can exhibit pseudo-Gibbs phenomena,
alternating undershoot and overshoot of a specific target level. While these phenomena are
much better than in the case of Fourier-based de-noising (in which Gibbs phenomena are
global, rather than local, and of large amplitude), it seems reasonable to try to do better
still. An important observation about such artifacts: their size is connected intimately
with the actual location of the discontinuity. For example, when using Haar wavelets, a
discontinuity precisely at location n/2 will lead to essentially no pseudo-Gibbs oscillations;
a discontinuity near a binary irrational like n/3 will lead to significant pseudo-Gibbs
oscillations

For Cosine Packet de-noising, which is based on segmentation of the signal using a
recursive dyadic grid, de-noised series can exhibit discontinuities at segmentation points.
When the signal corresponds to acoustic information, these discontinuities take the form
of audible “clicks”, which are distracting and have nothing to do with the actual sounds
in the original signal.

For Wavelet Packet de-noising, which is based on segmentation of the fourier transform
of the signal using a recursive dyadic grid, de-noised series can exhibit mirror symmetries
across segmentation points in the frequency domain. When the signal corresponds to
acoustic information, these artificial symmetries generate spurious musical notes, which
are distracting and have nothing to do with the actual sounds in the original signal.

1.2 Shifts in Time and Frequency

The artifacts we have just mentioned are all connected in some way with the precise
alignments between features in the signal and features of basis elements; signals exhibiting
similar features but with slightly different alignment in time or frequency might generate
fewer of the artifacts we are interested in. We have already mentioned that for the Haar
basis, discontinuities at n/2 cause no real problems. Similarly, in cosine packet analysis,
signals which essentially vanish near segmentation points of a partition will generate few
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“click” artifacts, and in wavelet packet analysis, signals with no frequency content near
segmentation points in the frequency domain will generate few artifacts in wavelet packet
de-noising.

One approach to correct unfortunate mis-alignments between features in the signal
and features in a basis: forcibly shift signals so that their features change positions. The
hope is that an analysis of the shifted signal will not exhibit the undesirable artifacts, and
that this analysis can later be unshifted. To make our meaning clear, we introduce two
operators, of time- and frequency- shift respectively. For a signal (xt : 0 ≤ t < n), we let
Sh denote the circulant shift by h, (Shx)t = x

(t+h)mod n
, and we let Mξ denote modulation

by ξ: (Mξx)t = eiξtxt. Both operators are unitary, and hence invertible: S−h = (Sh)
−1,

M−ξ = (Mξ)
−1. In terms of these operators, the idea of shifting to avoid artifacts is

just this: given an analysis technique T , calculate, instead of T , the time-shifted version
T̃ (x;Sh) = S−h(T (Sh(x))). Or the frequency-shifted version T̃ (x;Mξ) = M−ξ(T (Mξ(x))).

The missing ingredient: knowledge of the “correct” choice of the shift parameter h
or ξ. One reasonable approach to choosing such a parameter is optimization: develop a
quantitative measure of the “well-alignedness” of the signal, choosing a best value of the
shift parameter h or ξ. We describe below such an approach, which can be accomplished
by a fast and elegant algorithm.

1.3 Averaging Shifts

It may well be that a given signal can be re-aligned to minimize artifacts, but there is no
guarantee that this will always be the case. When a signal contains several discontinuities,
these may interfere with each other: the best shift for one discontinuity in the signal may
also be the worst shift for another discontinuity. Consequently, we have abandoned the
hope of locating a single shift, ideal for aligning all features of the signal, and tried instead
another approach, which is to apply a range of shifts, and average over the several results
so obtained.

For time shifts this means we consider a range H of shifts and set

T̄ (x; (Sh)h∈H) = Aveh∈HS−h(T (Sh(x))) (1)

or, in words,

Average[Shift-DeNoise-Unshift]

For frequency shifts this means we consider a range X of modulations and set

T̄ (x; (Mξ)ξ∈X) = Aveξ∈XM−ξ(T (Mξ(x))) (2)

or, in words,

Average[Modulate-DeNoise-DeModulate] .

One of us - Coifman - in collaboration with L. Woog, M. Goldberg, and N. Saito
[2, 22] has been experimenting with ideas of this kind in applied work; he has called this
“Cycle Spinning”. The other author, after discussions with Coifman, became interested
in the topic, developed fast algorithms, and made a series of computational experiments.
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1.4 Our Goals

Our purpose in writing this paper is to call the reader’s attention to the use of averaging
over shifts, its benefits in suppressing artifacts, and to give a number of computational
examples. We supply graphical displays of traditional de-noising and a modification using
cycle-spinning, as well as numerical tables for quantitative comparison. It turns out that
cycle-spinning gives results that are visually better, often dramatically so, and quantita-
tively better, as nearly halving the mean-squared error in some examples.

We will spend a considerable amount of time on a specific variant: wavelet de-noising
averaged over all n circulant shifts. This version of cycle-spinning is, naturally, invariant
under circulant shifts, and so translation-invariant - hence the title of the paper. The
method can be calculated rapidly - in n log(n) time, despite appearances.

For the Haar wavelet, we will also show that translation-invariant approaches yield
several theoretical advantages. In addition to faster rates of convergence, there is the visu-
ally satisfying fact that translation-invariant de-noising is non-oscillatory in expectation.

In this paper, all computational results are reproducible, meaning that the code which
generated the figures is available over Internet, following the discipline indicated in [1].

2 Examples

We illustrate the ideas of the introduction by a series of computational examples, based
on artificial signals.

2.1 Wavelet Domain De-Noising

Our signal examples are the same as those constructed and analyzed in [18]. Figure 1
shows 4 signals of length n = 2048, Blocks, Bumps, HeaviSine, Doppler; these were chosen
to display various inhomogeneities.
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Figure 2 shows noisy versions of the 4 signals, where Gaussian white noise has been
added; in each case, the noisy data y = s+z, where s is the corresponding noiseless signal
and z ∼iid N(0, 1).
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Figure 3 shows simple Wavelet Shrinkage applied to the noisy data. The noisy signal
is transformed into the wavelet domain using an orthogonal periodic wavelet transform
based on Nearly Symmetric wavelets with 8 vanishing moments. The wavelet coefficients
(except at the coarsest level) are subjected to soft thresholding, ηt(w) = sgn(w)(|w|− t)+,

with threshold t = tn =
√

2 log(n)σ. The result is then inverse-transformed. Let WS8

denote the wavelet transform with Symmlet 8 wavelets. The whole de-noising process
amounts to a nonlinear operator Tη,S8(y), where Tη,S8 = W−1

S8 ◦ ηtn ◦WS8.
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From theory, we know that the resulting figures are substantially noise-free – they look
substantially the same under independent realizations – though they are not oscillation-
free. The oscillations we see in Figure 3 are especially pronounced in the vicinity of
discontinuities and other rapid changes. These are “pseudo-Gibbs” oscillations caused by
the fact that the curves in question are partial reconstructions obtained using only terms
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from a subset of the wavelet basis. (Indeed, for the De-Noised object, many of the thresh-
olded coefficients are zero, which is the same as saying that the reconstruction uses only
a subset of the full set of basis elements.) In contrast to the classical Gibbs-Phenomena
associated with Fourier Analysis, the pseudo-Gibbs phenomena are much better behaved
– much better localized and much more moderate in oscillation – nevertheless they are
visually annoying.

Figure 4 presents results from Cycle-Spinning Wavelet Shrinkage of the 4 noisy signals.
Here we apply (1), averaging over the range of shifts H = H16 = {h : 0 ≤ h < 16} the
denoising operator Tη,S8 based, as above, on soft thresholding in the Symmlet 8 basis. It
is evident that the pseudo-Gibbs oscillations are considerably reduced.
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Figure 5 presents results from Fully Translation-Invariant De-Noising on the 4 noisy
signals. Here we apply (1), averaging over all n circulant shiftsH = Hn = {h : 0 ≤ h < n},
using again the De-Noising operator Tη,S8 based, as above, on the Symmlet 8 basis.
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It is evident that the pseudo-Gibbs oscillations are again considerably reduced; even
more reduced than in Figure 4. A benefit of the Fully Translation-Invariant approach over
the 16-shift approach of Figure 4 is that there are no arbitrary parameters to set – one
doesn’t have to decide whether to average over 16, or 20, or only 7 shifts.

2.2 Variations on Wavelet De-Noising

Many variations of the above experiments can be conducted.
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2.2.1 Haar Wavelets. Figure 6 shows the result of standard soft thresholding DeNoising
of the four signals in in the Haar basis. Two sorts of artifacts are evident: (a) the stairstep
nature of the partial Haar approximations in regions of smooth behavior, and (b) pseudo-
Gibbs phenomena in the vicinity of discontinuities.

0 0.5 1
-10

0

10

20
 7 (a) Soft,Haar,TI[yBlocks] 

0 0.5 1
-20

0

20

40

60
 7 (b) Soft,Haar,TI[yBumps] 

0 0.5 1
-15

-10

-5

0

5

10
 7 (c) Soft,Haar,TI[yHeaviSine] 

0 0.5 1
-20

-10

0

10

20
 7 (d) Soft,Haar,TI[yDoppler] 



       

8 R.R. Coifman and D.L. Donoho

For comparison, Figure 7 shows Fully Translation-Invariant reconstruction using Haar
De-Noising. The reconstruction no longer has a stairstep character. Also, Gibbs phenom-
ena in the neighborhood of discontinuities are suppressed.

To illustrate these points, we give in Figure 8 a closeup of the Fully TI Haar recon-
struction of the Blocks object. The noiseless object and the ordinary Haar reconstructions
are also indicated. The TI reconstruction is better both in smooth parts and in the vicinity
of jumps.
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2.2.2 Hard Thresholding. Tν,S8 refers to the operation of applying the nonlinearity
νt(w) = w1{|w|>t} to all the wavelet coefficients except the coarse scale averages, in a
wavelet transform based on Symmlets with 8 vanishing moments. Previous experience
with hard thresholding in traditional non-invariant de-noising suggests that it produces
somewhat greater oscillations in the vicinity of discontinuities than does soft thresholding.
However, one expects that perhaps the translation-invariant approach will damp some of
those oscillations.
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Figure 9 shows this to be the case; it illustrates fully translation-invariant De-Noising
based on Hard Thresholding in the Symmlet 8 Domain. Closeups of the reconstruction
have a very nice visual appearance.

2.2.3 Lower Sampling Rates. Hard thresholding looks so good when used in a
translation-invariant fashion at high sampling rates that one might consider the use of
TI methods at much lower rates than would normally be useful with wavelet shrinkage.
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Figure 10 shows the result on a signal of length n = 256, which is equivalent to 1/8-th
the sampling rate used earlier.
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For comparison, the traditional de-noising result is indicated.

2.2.4 Lower Thresholds. Of course, wavelet shrinkage has many variants, and the√
2 log(n)σ variant can be improved for various purposes. The universal

√
2 log(n)σ thresh-

old was designed (see [15, 10]) for the purpose of suppressing noise-induced spikes which
spoil the smoothness of reconstructions. However, if one wants only to measure perfor-
mance by mean-squared error, then lower thresholds are better [15, 16].

Unfortunately, when used in conjunction with translation-invariant de-noising, such
lower thresholds result in a very large number of noise spikes, apparently much larger
than in the non-invariant case.
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Figure 11 shows the result of Fully-TI de-noising with Symmlet 8 wavelets where the
SURE thresholding rules of Donoho and Johnstone [16] has been used. The reconstruction
contains many more noise spikes than when a non-invariant scheme is applied.

2.3 Quantitative Measures

How do these methods perform in quantitative terms? We summarize numerical perfor-
mance:

Table 1. RMSE, S8 Wavelet De-Noising
Blocks Bumps HeaviSine Doppler

Traditional 42.6868 45.4356 13.1158 24.2214
Cycle Spin 40.2826 40.3183 12.8068 21.4732
Fully TI 38.2768 39.523 12.9204 20.6080

In general, fully translation-invariant methods achieve better RMSE than either tra-
ditional de-noising or cycle-spinning over a range of 16 lags. The quantitative performance
benefit is in the range of 10-20%. This relatively modest figure is due to the fact that a
large gain is being made but only in a relatively small subset of the time domain.

Table 2. RMSE, Haar Wavelet De-Noising
Blocks Bumps HeaviSine Doppler

Soft, Haar 29.7502 55.6212 27.5415 49.2407
Soft, Haar TI 21.8009 39.3873 10.1692 33.2107
Hard, Haar 12.8303 31.8518 19.5161 33.4112
Hard, Haar TI 7.73059 17.947 8.22684 17.6169

In general, hard thresholding behaves quite well, outperforming soft thresholding, with
either wavelet. Ordinary Hard Thresholding with Haar wavelets also would have relatively
good RMSE, but it would have poor visual performance. Hard Thresholding and Trans-
lation Invariance combined give both good visual characteristics and good quantitative
characteristics.

2.4 Cosine Packet Domain De-Noising

The general Spin-Cycle approach (1) is of course not limited to use with wavelet trans-
forms. To illustrate this point, we consider its use with transform De-Noising based on
adaptive time-frequency bases using cosine packets. For reasons of space, we cannot de-
scribe here in detail all the ingredients of adaptive cosine packet bases; the interested
reader may consult [7, 24]. The key ideas underlying CP De-Noising are as follows; see
also [17]. We have a family of orthogonal bases, each one a segmented discrete cosine basis
based on recursive dyadic segmentation of the interval. [17] develops a “SURE” functional
for evaluating the suitableness of a given basis for De-Noising; this functional has an ad-
ditive structure that enables us to use the Coifman-Wickerhauser Best-Basis algorithm.
As a result, we can find a best basis (≡ best partition) in O(n log2(n)) time. We then can
apply either hard or soft thresholding in the chosen basis, using a threshold set, as in [17],

at
√

2 loge(n log2(n))σ.
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Figure 12 shows part of 2 signals – MishMash and QuadChirp – and noisy versions of
these signals. The signals are chosen to have a time-varying frequency content [17].
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Figure 13 shows Cosine Packet Shrinkage of the two datasets, and the reconstruction
errors suffered by this approach. A key point: the largest errors occur near the segmenta-
tion points (here, one occurs near the dyadic point 1/4). If the signals are interpreted as
acoustic signals, the result will be “click” sounds at the segmentation points.
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For comparison, Figure 14 shows Cycle-Spin CP Shrinkage of the 2 signals, where
shifts in the range H16 = {h : 0 ≤ h < 16} are used. The reconstruction errors are
smaller, particularly in the vicinity of the segmentation point 1/4.
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Table 3 shows a comparison of Root Mean Squared Errors for traditional and Cycle-
Spin approaches. Evidently, Cycle-Spinning reduces the error by more than a third on the
root-mean-square scale.

Table 3. RMSE, Cosine Packet De-Noising
QuadChirp MishMash

Traditional 33.7773 52.0380
Cycle Spin 19.2762 30.9232

2.5 Fourier Domain De-Noising

We now turn to an example of Modulation-Invariant De-Noising. Our example will be
based in the Fourier domain, so that we may equivalently think of the method as
translation-invariant de-noising in the frequency domain.

Figure 15 shows two signals, RatSine, IrratSine, corresponding to sinusoids with/without
exact periodicity for the signal length in question. In addition, noisy versions are provided
for the two signals.
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Figure 16 shows the results of Fourier-domain Shrinkage
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For comparison, Figure 17 shows the results of Modulation-Based Cycle-Spinning of
Fourier Shrinkage for the two noisy signals; with modulates of the form ξh = 2πh/(16 ·n) :
0 ≤ h < 16.
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Table 4 shows a comparison of Root Mean Square errors for traditional and Cycle-
Spin approaches. Evidently, Cycle-Spinning reduces the error close to 40% in the worst
case, while increasing the error in the best case, so that the errors depend much more
weakly on the precise value of the frequency underlying the signal.

Table 4. RMSE, Frequency De-Noising
RatSine IrratSine

Traditional 1.10767 8.24615
Cycle Spin 4.469 5.15075
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3 Software

We now briefly discuss the tools with which the above experiments where conducted.

3.1 Overview

This paper has been written following the discipline of Reproducible Research described
in [1], appearing elsewhere in this volume. Every figure and table included here was
produced automatically by a software system WaveLab , which is available to the reader
over the Internet, via either a World-Wide-Web browser such as Mosaic or Netscape,
or via anonymous FTP (URL: http://playfair.stanford.edu/ wavelab). WaveLab

consists of more than 700 Matlab .m files which perform standard wavelet, wavelet
packet, cosine packet, and time-frequency analyses. In addition, it contains code which
reproduces the figures in published articles generated by several researchers at Stanford.

As a result of adhering to this discipline, the directory WaveLab/Papers/SpinCycle

contains Matlab code to reproduce the figures of this article. It also contains a directory
WaveLab/Stationary, which implements the basic translation-invariant wavelet trans-
form tools. These tools implement our fast O(n log2(n)) translation-invariant denoising
algorithm, as well as other tools.

A side effect of adhering to this discipline: there is a special rationale for including
figures in this article. Our publication of a figure is not just the publication of a specific
computational result; it is the publication of an algorithm, of datasets, and of a series
of scripts which invoke the algorithm and datasets. The figures you see in this article
are only the visible result of this publication process. The present article serves not only
to announce the possibility and benefits of translation-invariant denoising, but also to
make available, worldwide and electronically, the specific computational tools which are
required.

In particular, as the fully translation-invariant wavelet De-Noising requires more than
just programming – there is a mathematical idea as well – the underlying computational
tools will be of interest for reasons besides De-Noising.

3.2 Scripts Reproducing Figures

The directory WaveLab/Papers/SpinCycle contains scripts for reproducing the figures of
this article. Each script is a Matlab .m file. It contains, at the top of the file, a series
of comment lines (a Matlab “help header”) indicating what the file does. For example,
the help header of cspinf05.m contains the following text

% cspinf05: Fully Translation-Invariant S8 Wavelet Shrinkage

%

% Here we test fully translation-invariant denoising, using

% the Translation-Invariant Transform.

% We apply a specific thresholding rule to the

% four noisy signals depicted in Figure 2.

%

% The procedure for DeNoising:

% 1. Translation-Invariant Transform to Wavelet Domain,

% Using Nearly-Symmetric Wavelet with 8 vanishing moments.
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% 2. Apply a soft thresholding nonlinearity, with threshold set to

% sqrt{2 log(n)}

% 3. Transform back to the signal domain.

%

% Remark: run SpinCycleInit and cspinf0[12] before this.

%

Note that the first line contains a brief title for the rest of the file; this is called the H1
line in Matlab parlance and the Matlab command lookfor allows the user to search all
H1 Lines in the system for text matching a certain keyword. A listing of all the H1 Lines
in the directory:

% SpinCycleInit: setup all global datastructures for SpinCycle

% PrintAllCSpinFigs: Generate all Encapsulated Postscript for Article

function s = cyclespin(x,k)

function recon = FourierDeNoise(y)

function y = Modulate(x,freq)

function coef = WPDeNoise_TI(basis,y,qmf)

% cspinf01: Four Spatially Inhomogeneous Signals

% cspinf02: Noisy Versions of Four Signals

% cspinf03: Ordinary S8 Wavelet Shrinkage

% cspinf04: Cycle Spinning S8 Wavelet Shrinkage

% cspinf05: Fully Translation-Invariant S8 Wavelet Shrinkage

% cspinf06: Ordinary Haar Wavelet Shrinkage

% cspinf07: Fully TI Haar Wavelet Shrinkage

% cspinf08: Closeup of Fully TI Haar Wavelet Shrinkage

% cspinf09: Fully TI, S8, Hard-Thresholding Shrinkage

% cspinf10: TI, Hard, Haar Shrinkage, Small Sample Size

% cspinf11: Cycle Spinning SURE Threshold Wavelet Shrinkage

% cspinf12: Two examples for time-frequency de-noising

% cspinf13: Ordinary Non-Spinning CP De-Noising

% cspinf14: CycleSpinning CP De-Noising

% cspinf15: Two Sinusoids for Fourier Denoising

% cspinf16: Non-Spinning Fourier De-Noising.

% cspinf17: Cycle-Spinning Fourier De-Noising.

% cspinf18: TI Table of Blocks; Haar Wavelet

% cspinf19: Stat Table of Blocks (= Unscrambling of TI Table)

% cspinf20: Stat Table of Noisy Blocks

% cspinf21: Thresholding Stat Table of Noisy Blocks

The reader will recognize the captions of the individual figures seen so far, and a few
figures still to appear, as well as a number of computational tools which are invoked by
the figure-generating tools.
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3.3 Underlying Algorithms

The interested reader can easily inspect the scripts in the SpinCycle directory to see how
most of the computations are done; in general, we compute Cycle-Spinning estimates
by applying the brute force definitions (1), (2), so no fancy term like “algorithm” needs
to be invoked. However, our approach to one special case - wavelet shrinkage averaged
across all n-circulant shifts - is clever enough to warrant specific “data structures” and
“algorithms”.

3.3.1 Fully TI De-Noising. A complete statement of the algorithm for Tη,S8 is as
follows. We assume that variables ncol and t have been appropriately initialized, and
then execute the code

CQF = MakeONFilter(’Symmlet’,8); % Symmlet 8 Filter

TITable = FWT_TI(y,3,CQF); % Fast TI Transform

for j=2:ncol,

TITable(:,j) = SoftThresh(TITable(:,j), t); % Threshold each column

end

yDeNoise = IWT_TI(TITable,CQF); % Invert TI Transform

The key computations here are done by FWT TI and IWT TI which rapidly go from
signal domain to TI Table and back. The remainder of the code is routine.

3.3.2 TI Table. We briefly describe the key data structure. Let x be a vector with
dyadic length n = 2J , and let τ(x) be the corresponding TI Table. This has three key
properties: (i) for any integer h, the wavelet coefficients of the circulant shift W [Shx] are
contained in the table τ(x); (ii) the full TI Table for x can be computed in order n log2(n)
time; and (iii) the extraction of the wavelet transform of any circulant shift, W [Shx], takes
order n time.

The TI Table is an n by D array, where 0 ≤ D ≤ log2(n). The table formally has the
same structure as a wavelet packet table or cosine packet table. The d-th column has n
entries partitioned into 2d “boxes”, each box having n/2d entries. The interpretation of
the “boxes”: they correspond to the 2d different collections of wavelet coefficients that can
occur in the wavelet expansion at level J − d under different shifts of the input vector x.



        

Translation-Invariant De-Noising 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-7

-6

-5

-4

-3

-2

-1

0

1
18. TI Table; Haar Wavelet, Blocks Object

sp
lit

tin
g 

de
pt

h,
 d

box[location], k[t]

The TI Table is calculated by a series of decimation and filtering operations, just like
the wavelet transform, only an extra-element – a circulant shift – is thrown in. Let G and
H stand for the usual downsampling high pass and low pass operations of wavelet theory;
let Sh again stand for circulant shift by h; and set βJ,0 = s. Then put

αJ−1,0 = GS0βJ,0; αJ−1,1 = GS1βJ,0

and
βJ−1,0 = HS0βJ,0; βJ−1,1 = HS1βJ,0.

Continue recursively:

αj,2k = GS0βj+1,k; αj,2k+1 = GS1βj+1,k,

and
βj,2k = HS0βj+1,k; βj,2k+1 = HS1βj+1,k,

and so on. To fill out the TI Table, place, in box k of column d, the vector αJ−d,k; in an
extra column, place all the βj,k’s computed at the final stage (we use the zero-th column
for this).

To state formally the invariance property possessed by TI Tables, suppose we let τ(x)
be the TI Table corresponding to x, and let τ(Shx) be the table corresponding to the
circulant shift Shx. Then, for each shift h ∈ {0, . . . , n − 1} there is a permutation of
matrix entries Πh so that

Πhτ(x) = τ(Shx). (3)

The traditional wavelet transform consists of the unshifted data

W [x] = (βj0,0, αj0,0, αj0+1,0, . . . , αJ−1,0).

Since the right side of (3), τ(Shx) contains all the coefficients of the wavelet transform of
the shift Shx, (3) says that those same wavelet coefficients are already present in the TI
Table τ(x); they just need to be unpacked correctly.
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More precisely, the wavelet transform of a circulant shift of x is realized as

W [Shx] = (βj0,kj0 , αj0,kj0 , αj0+1,kj0+1
, . . . , αJ−1,kJ−1

)

for an appropriate sequence (kj0 , kj0+1, . . . , kJ−1), where each kj = 2kj+1 + bj and bj ∈
{0, 1}. The bits bj encode the shift h in a special binary notation.

To extract the wavelet transform of a certain circulant shift from a TI Table, one
needs therefore to specify the shift, in terms of a special coding of h. In WaveLab this is
specified by setting up a path data structure, which is a representation of a path through
a rooted complete tree, starting at the root, and ending in a leaf node. Envisioning the
root of such a tree as placed at the top, and the leaves at the bottom, the path data
structure contains a series of flags saying to go “left” or “right” at each level of descent
from the root. This data structure therefore specifies the series of bits bj needed to extract
the required data from the structure.

Elaborating the above discussion with a few computational details will show explicitly
that the TI Table can be calculated in order n log2(n) time and one can extract from the
TI table the n coefficients of any specific shift in order n time.

3.3.3 Inversion. How to go back from a TI Table to the original signal? The idea is to
systematically average: start with j = J −D and then for each k in the range 0 ≤ k < 2j,
compute (with the help of the usual upsampling operators G∗ and H∗)

γk = (S0G
∗βj,2k + S−1G

∗βj,2k+1)/2, δk = (S0H
∗αj,2k + S−1H

∗αj,2k+1)/2,

and

βj+1,k = γk + δk.

After exhausting all k at one level, set j = j + 1 and repeat. After reaching j = J , stop.
Set s̃ = βJ,0.

When applied to the TI Table generated from signal s, the result is s̃ = s. When
applied to a thresholded TI Table, the result is an average of all n reconstructions from all
n circulant shifts. The fact that each γk and δk is an average of two possible reconstructions
– one from an unshifted series, one from a shifted one – is responsible for this result.

This algorithm takes order n arithmetic at each level, and goes through order log2(n)
levels, so the whole algorithm takes order n log2(n) work.

3.3.4 Stationary Wavelet Transform. The coefficients in the TI Table record infor-
mation about the signal x in rather a scrambled fashion. Figure 18 shows the TI Table
generated under WaveLab for the Blocks signal. Figure 19 shows a special “unscrambled”
form of the same table, which we call the Stat Table.
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19. Stat Table (=Unscrambled TI Table) of Blocks

The unscrambled form correlates directly with the underlying scale and spatial struc-
ture of the signal. It has an appearance similar to a number of displays which associate
log2(n) signals of length n each to a signal of length n: (i) the multi-resolution decomposi-
tion of Mallat, (ii) what Mallat calls the Undecimated Wavelet Transform, and (iii) what
Nason and Silverman call, elsewhere in this volume, the Stationary Wavelet Transform.
In fact, while the transform is visually similar to (i) in some ways, it is mathematically
different. However, it is identical to both (ii) and (iii) except for some possible details of
scaling.

In short the Stat Table σ(x) is an n by D array which may be viewed as a collection
of D − 1 discrete time signals αj(t), j = j0, . . . , J and one extra signal βj0(t). By the
equivalence with (ii) and (iii) above, we are saying that these signals are of the form

βj0(t) = (Ej0 ? x)(t)

and

αj(t) = (Fj ? x)(t),

where Ej0 and Fj are discrete time filters of length n, and intrinsic bandwidth ³ n/2j

samples, and ? denotes circulant convolution. The claim of equivalence is that Fj etc.
are equivalent (when the wavelets are appropriately chosen) to the impulse responses of
the j-th level of either Mallat’s undecimated Wavelet Transform or Nason-Silverman’s
Stationary wavelet transform.

Owing to the equivalence of the Stationary Wavelet Transform and the unscram-
bled TI Transform, our algorithm for fully TI de-noising has an equivalent “unscrambled
form”: it amounts to thresholding of the stationary wavelet transform. To visualize this,
we simply take the intermediate results of the algorithm described in subsection 3.3.1,
and unscramble them.
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20. Stat Table of Noisy Blocks

Figure 20 displays the Stat Table of a noisy HeaviSine signal, and Figure 21 displays
the thresholded version. The result of inverse transforming this table has been seen already
in figure 5.
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21. Thresholding of Stat Table of Noisy Blocks

3.4 Other Translation-Invariant De-Noising Algorithms

The specific algorithm for de-noising we have discussed here is not the only translation-
invariant method that can be fashioned from these tools. For completeness, we mention
two alternatives here.

3.4.1 Best Shift Algorithm. The transforms of the n different circulant shifts W [Shx]
might be considered n transforms into n different orthogonal bases. Which basis is best?

Suppose that one can measure the quality of a basis by an additive functional
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E(h) =
∑
I

e((W [Shx])I)

where e(w) is some fixed function of a scalar w; the so-called Coifman-Wickerhauser
entropy eCW (w) = −w2 log(w2) is one example. Then it turns out that a fast algo-
rithm can be developed for finding the optimum h. The algorithm is similar in many
ways to the Coifman-Wickerhauser algorithm for best basis in Cosine Packet or Wavelet
Packet Libraries [7]. The fast algorithm is implemented in WaveLab in two steps; first,
CalcShiftStat, which builds a data structure filled with entropy numbers, and second,
BestShift, which processes the data structure using a dynamic programming algorithm
to optimize over all shifts. Both steps together, once the TI table is available, take only
order n time; thus one can find and transform into the best shift basis in order n log2(n)
time.

From the point of view of Mean-Squared error of De-Noising, one could argue, as in
[17, 12] that the best basis for De-Noising is one minimizing the expression

Eλ(h) =
∑
I

min((vhI )
2, λ2σ2)

where (vhI ) = W [Shy] is the collection of wavelet coefficients in the h-th basis of the noisy
signal, and λ2 = 2 loge(n log2(n)). This is an additive “entropy”-type functional of the
wavelet coefficients. The fast algorithm can be used to obtain a best-shift-basis in order
n log2(n) time. Applying hard or soft thresholding in that basis, and then reconstructing,
gives a translation invariant de-noising.

Unfortunately, we believe that it is usually the case that a single best shift is not
suitable, as the underlying signal will often contain features interfering with each other,
each “wanting” a different shift. We have implemented Best-Shift De-Noising but have not
employed it heavily. We have mentioned it here because some readers may find the idea
interesting, and because we have included the relevant tools in the WaveLab distribution.

3.4.2 Overcomplete Representation. The operation of transforming an n-long signal
x into an n by log2(n) TI Table τ(x) is equivalently calculating the collection of all inner
products 〈x, φI〉 of the signal with a Dictionary of n log2(n) different waveforms (φI).
These waveforms are the basic orthogonal wavelets in a single orthogonal basis, together
with all their circulant shifts. Viewing temporarily τ(x) as a vector with n log2(n) entries,
we can symbolize this as τ(x) = ΦTx where Φ is an n by n log2(n) matrix.

From this point of view, it is interesting to consider the problem of translation-
invariant representation in this dictionary, that is, to find, for a given signal s, a collection
of coefficients α satisfying

∑
I αIφI = s. In terms of the matrix Φ this can be written as

Φα = s

As the matrix Φ has fewer rows (n) than columns (n log2(n)), the problem is undercon-
strained: there are multiple solutions.

The routine IWT TI referred to above offers a specific solution, based on the method
of frames; it essentially calculates the solution α† of minimum `2 norm. Equivalently, it
applies the generalized inverse Φ† = (ΦΦT )−1ΦT to s: α† = Φ†s. The result is an average of
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all possible reconstructions in all n circulant-shift bases, as revealed by careful examination
of the matrix Φ†.

Another solution has been studied by Chen and Donoho [4], which is to find the
element α? of minimum `1 norm. This solution is a nonlinear function of the entries in s
and can be obtained by linear programming. The result is a linear combination of at most
n waveforms taken from the n log2(n) element dictionary; it is therefore more sparse than
the method of frames approach used implicitly in this paper. The paper [4] shows how to
calculate this sparse solution rapidly; the fast algorithms FWT TI and IWT TI developed
for this paper are key ingredients of this task. The solution is translation-invariant since
the dictionary is translation-invariant.

[4] also proposes a translation-invariant de-noising method. Assuming noisy data yi =
f(ti) + σzi with zi ∼iid N(0, 1). The idea is to solve the penalized problem

min
a
‖y − Φa‖22 + λ‖a‖1

with λ =
√

2 loge(n log2(n)))σ. The solution then furnishes a linear combination of at most
n wavelets taken from the dictionary. The constrained quadratic programming algorithm
they use is based on iterative application of Φ and ΦT , that is to say it relies on the same
tools FWT TI and IWT TI.

4 Analysis

While the purpose of this paper is not a theoretical analysis of the performance benefits of
translation-invariance, we think a few brief comments might be helpful for understanding
some phenomena which are visually apparent in the earlier figures.

4.1 Improvement in Approximation

With (xt) a discrete-time signal and Pjx =
∑
k〈x, φj,k〉φj,k the approximation at scale j

by the Haar subspace Vj, and

P j = Aveh∈Hn{S−hPjSh}

the translation-invariant approximation, we have two nice properties.
First, Pjx is a piecewise constant function with steps of width n/2j, while P jx has

steps of width 1, which can be considerably narrower.
Second, if xt = a+bt is a straight line, then Pjx is a stairstep sequence approximating

the line, while P jx is, except at the end points, a straight line of the same slope as x
itself.

To understand these properties, it is convenient to shift viewpoint, and analyze a
continuous-time version of “all shift” cycle-spinning. Suppose now that f(t) is a function
of t in the interval [0, 1), viewed as a circle, and define

P ∗j = Aveh∈[0,1]{S◦−h P ◦j S◦h}

where P ◦j =
∑
k〈x, φj,k〉φj,k, with φj,k(t) = 2j/21[k/2j ,(k+1)/2j) and S◦h refers to the circulant

shift on the continuum circle.
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Then one has

P ∗j =
∫ 1

0
Φj(t, s)f(s)ds

where the kernel Φj is in fact convolutional and of bandwidth ∼ 2−j:

Φj(t, s) = 2jφ(2j(t− s))

with triangular kernel
φ(u) = (1− |u|)+.

From this representation, three properties are easy to verify.

1. Continuity. If f ∈ L∞[0, 1), then (P ∗j f)(t) is continuous in t. In contrast, P ◦j f is in
general discontinuous.

2. Preserving Lines. If f(t) = a+bt, then (P ∗j f)(t) = f(t) identically on t ∈ [2−j+1, 1−
2−j+1]. In contrast P ◦j f is in general a stairstep, not a line.

3. Approximation Order. If f ∈ Cα[0, 1), then

|P ∗j f(t)− f(t)| ≤ Const. · ‖f‖α · (2−j)α (4)

holds for all α in [0, 2). For example, set f0(t) = sin(2πt); then |P ∗j f0(t) − f0(t)| ≤
C · 2−2j. In contrast, the type of relation (4) holds for the classical operator P ◦j only
for α ∈ [0, 1]. Moreover, |P ◦j f(t)− f(t)| ³ 2−j even for smooth f like f0.

In short, the Haar-TI approximation spaces gain in continuity and in approximation
order over classical Haar approximation spaces.

4.2 Suppression of Gibbs Phenomena

Figure 8 above showed that Translation-Invariant Haar De-Noising is essentially non-
oscillatory. That is, when applied to a discontinuous Heaviside, the Haar-TI de-noising
does not overshoot or undershoot the target. In fact, it can be proved that in the presence
of normally distributed noise, the expectation of Haar-TI de-noising is non-oscillatory,
when soft thresholding is employed.

To show this, suppose we have normally distributed data W ∼ N(µ, σ) and define the
bias function

B(µ; t, σ) = Eηt(W )− µ.
We note that B is an odd continuous monotone function of µ.

We use this to analyze components of the reconstruction. To simplify the presentation,
we assume a continuous cycle-spinning model as in the previous subsection. Thus, we
assume a white noise model and an estimator

f̂ ∗(t) =
∫ 1

0
Φj0(t, s)y(s)ds+

∑
j≥j0

∫ 1

0
η(α̂j(s))ψj(t− s)

where η is one of the soft thresholding nonlinearities (ηt), y(s)ds stands for f(s)ds+W (ds)
with W a Wiener process, ψj(u) = 2j/2ψ(2ju), and
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α̂j(s) =
∫ 1

0
ψj(u− s)y(u)du.

We analyze the expectation of this estimator when f is a Heaviside f(t) = H(t− t0)
jumping at a point t0 well inside the interval [2−j0+1, 1−2−j0+1). We need the expectation

αj(s) = Eα̂j(s) =
∫ 1

0
ψj(u− s)f(u)du.

Using this we can write

f̂ ∗(t)− f(t) =
∫
Φj0(t, s)y(s)ds−

∫
Φj0(t, s)f(s)ds+

∑
j≥j0

∫ 1

0
(η(α̂j(s))− αj(s))ψj(t− s),

leading to
Ef̂ ∗(t)− f(t) =

∑
j≥j0

βj(t)

where

βj(t) =
∫ 1

0
B(αj(u))ψj(t− u)du.

and B is the bias function corresponding to the given nonlinearity.
The key analytic property we need is the relation:

βj(t) ≤ 0, t ∈ [t0, 1− 2−j0+1), βj(t) ≥ 0, t ∈ (2−j0+1, t0] (5)

which follows from elementary manipulations using the Haar wavelet, from the triangular
profile of αj, and from the odd, monotone nature of B(µ).

The non-oscillatory nature of the expectation follows from (5), because it says that
the expectation is greater than the Heaviside on t < t0 and less than the Heaviside on
t > t0. There is no alternating overshoot and undershoot.

Note that when the threshold
√

2 loge(n)σ is used, the bias dominates the variance,
and so the properties of the expectation describe the dominant visual features of the
estimate. Hence, we have a full explanation for the behavior of Figure 8.

4.3 Improvement in De-Noising performance

One can show, combining ideas of the last two subsections, that the mean-squared-error of
TI-Haar Denoising tends to zero at a rate faster than Haar De-Noising in an interesting
range of cases. Suppose that we have observations yi = f(ti) + σzi, where the zi are
i.i.d. N(0, 1). Suppose that the sampling points are equispaced, and that f ∈ Cα with

α ∈ (1, 2). Then ordinary Haar De-Noising will obey En−1‖f̂ − f‖2`2 ³ ( log(n)
n

)2/3 while

TI-Haar De-Noising will obey En−1‖f̂ ∗ − f‖2`2 ³ ( log(n)
n

)2α/2α+1. As α > 1 this is an
improvement at the level of rates.

5 Discussion

5.1 Relation to Other Work

There is nothing new under the sun, not even in a field like wavelets.
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Although Coifman had been using SpinCycle ideas before that time, Donoho recalls
first hearing of it from Coifman in mid-1993. Stéphane Mallat explained to Donoho in
January 1994 that Mallat had been using thresholding on the non-decimating wavelet
transform and had found significant visual benefits over comparable thresholding in the
decimating transform. As mentioned above, when used with the right wavelets, thresh-
olding the non-decimating transform is mathematically equivalent to Cycle Spinning with
all n circulant shifts.

Guy Nason and Bernard Silverman gave talks throughout 1994 on the Stationary
Wavelet Transform. As mentioned above, the stationary wavelet transform can be obtained
by a permutation of the entries in the TI Table. In their paper in this volume [21], they
mention the possibility of applications to De-Noising. This paper may be taken as, in
part, an illustration of their comment.

The article of Simoncelli et al. [23] points out that E. Adelson wrote in the early 1980’s
a patent which, broadly construed, includes the application of threshold-like nonlinearities
to “full density laplacian pyramids”, which is, broadly speaking the same as thresholding
in a non-decimated wavelet transform.

The key algorithmic idea underlying the fast application of SpinCycle ideas in a
wavelet setting is already present in Beylkin’s work on fast matrix operations [3] which
already says that it is possible to compute the wavelet coefficients of all n circulant shifts
of a vector in O(n log2(n)) time.
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