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Abstract

Considerable e�ort has been directed recently to develop asymptotically mini-

max methods in problems of recovering in�nite-dimensional objects (curves, densi-

ties, spectral densities, images) from noisy data. A rich and complex body of work

has evolved, with nearly- or exactly- minimax estimators being obtained for a variety

of interesting problems. Unfortunately, the results have often not been translated

into practice, for a variety of reasons { sometimes, similarity to known methods,

sometimes, computational intractability, and sometimes, lack of spatial adaptivity.

We discuss a method for curve estimation based on n noisy data; one translates the

empirical wavelet coe�cients towards the origin by an amount
p
2 log(n)�=

p
n. The

method is di�erent from methods in common use today, is computationally practical,

and is spatially adaptive; thus it avoids a number of previous objections to minimax

estimators. At the same time, the method is nearly minimax for a wide variety of loss

functions { e.g. pointwise error, global error measured in Lp norms, pointwise and

global error in estimation of derivatives { and for a wide range of smoothness classes,

including standard H�older classes, Sobolev classes, and Bounded Variation. This is

a much broader near-optimality than anything previously proposed in the minimax

literature. Finally, the theory underlying the method is interesting, as it exploits a

correspondence between statistical questions and questions of optimal recovery and

information-based complexity.
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1 Classical Minimaxity

Consider the problem of estimating a single normal mean. One has data Y � N(�; �2) and

one wishes to estimate �. One chooses a loss function `(t) and de�nes the risk R(�̂; �) =

E�`(�̂(Y )� �). Then in a sense described by the minimax theorem (Wolfowitz, 1950), the

estimator �̂(Y ) = Y is optimal: If the loss ` is symmetric and bowl-shaped,

R(Y; �) = inf
�̂
sup
�

R(�̂; �): (1)

This simple and natural result has many familiar implications. For example, the minimax

estimator of a mean � from n samples X1; : : : ;Xn, with Xi �iid N(�; �2) is just the sample

mean �X. There are a variety of asymptotic implications, via the theory of local asymptotic

normality; for example, that in parametric settings the maximum likelihood estimator is

locally asymptotically minimax; and that in nonparametric settings the sample median of
X1; : : : ;Xn, with Xi �iid F is locally asymptotically minimax for estimating the median
med(F ).

An important aspect of the result (1) is generality: the form of the minimax estimator
does not depend on the loss function. Hence Y is optimal for a wide variety of purposes,

and not just for minimum mean-square estimation.

2 Post-Classical Minimaxity

In recent years, mathematical statisticians have been interested in estimating in�nite-
dimensional parameters { curves, densities, images, .... A paradigmatic example is the
problem of nonparametric regression,

yi = f(ti) + � � zi; i = 1; : : : ; n; (2)

where f is the unknown function of interest, the ti are equispaced points on the unit interval,
and zi �iid N(0; 1) is a Gaussian white noise. Other problems with similar character are
density estimation, recovering the density f from X1; : : : ;Xn �iid f , and spectral density

estimation, recovering f from X1; : : : ;Xn a segment of a Gaussian zero-mean second-order
stationary process with spectral density f(�).

After extensive study of this setting, mathematical statisticians have achieved a number
of important results, a few of which we describe below. Unfortunately, such results lack the

coherence and simplicity of the classical minimax result (1). Instead of a single, natural
minimax theorem, there is a whole forest of results, growing in various and sometimes

con
icting directions; it requires considerable e�ort to master and keep abreast of this
rapidly developing body of knowledge. Moreover, as we shall see, the literature's very

complexity has generated, in the practically-minded, a certain degree of skepticism of theory

itself.
The literature has reached the current complex, demanding state by playing out a series

of questions and responses with their own internal logic.
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2.1 No immediate in�nite-dimensional analog of (1)

By the 1960's it was known that it was not possible to get estimates which work well for

every function f . Results appeared showing that for any estimator f̂ , there was a function

f which caused it to misbehave, so that

sup
f

Rn(f̂ ; f)6!0; n!1: (3)

Compare Farrell (1967) and the more re�ned negative results of Birg�e (1985).

2.2 Development of the Minimax Paradigm

In order to get a nonvoid theory { i.e. one containing positive results { it was necessary

to look elsewhere than (1). In the 1970's and 1980's a certain Minimax Paradigm (MP)
developed, in a long series of work by many authors worldwide. In this paradigm one seeks
solutions to minimax problems over bounded parameter spaces. This paradigm has three
basic parts.

First, one assumes that the function of interest belongs to a speci�c, known, functional
\ball" F(C). Standard examples include: H�older Balls:

��(C) = ff : jf(x)� f(y)j � C � jx� yj�g; (4)

if 0 < � < 1, with generalizations to � > 1 (see (14)); the L2-Sobolev Balls

Wm
2
(C) = ff :

Z
1

0

(f (m)(t))2dt � C2g; (5)

where f (m)(t) denotes the m-th derivative of f at t; and the Lp-Sobolev Classes

Wm
p (C) = ff :

Z
1

0

jf (m)(t)jpdt � Cpg: (6)

Second, one assumes a speci�c risk measure. Standard examples include risk at a point:

Rn(f̂ ; f) = E(f̂(t0)� f(t0))
2; (7)

global squared L2 norm risk:

Rn(f̂ ; f) = Ekf̂ � fk2L2[0;1]; (8)

and other measures, such as risk in estimating some derivative at a point, or estimating

the function with global Lp-loss, or estimating some derivative of the function with global

Lp loss.
Third, one attempts to solve for an estimator which is minimax for the class F(C) and

risk Rn:
sup
F(C)

Rn(f̂ ; f) = inf
f̂

sup
F(C)

Rn(f̂ ; f) (9)
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or, if that proves too di�cult, which is asymptotically minimax:

sup
F(C)

Rn(f̂ ; f) � inf
f̂

sup
F(C)

Rn(f̂ ; f); n!1; (10)

or, if even that proves still too di�cult, as it usually does, which attains the minimax rate

sup
F(C)

Rn(f̂ ; f) � inf
f̂

sup
F(C)

Rn(f̂ ; f); n!1: (11)

Particularly in the case where exact or asymptotic optimality obtains, one may think

of this three-part paradigm as a process of \rational estimator design": one obtains an

estimator f̂ as the solution of a certain optimality problem.

2.3 Implementation of the Minimax Paradigm

In the 1970's and 1980's, the minimaxity paradigm has been developed to fruition. The
space of possible results is a four-dimensional factorial design, where one speci�es the
observation model (regression, density, spectral density), Risk Rn (at a point, globally, L2,

L1, L
1, ...), Function class F (H�older, Sobolev, ...). Many combinations of these factors

have now been explored, and minimaxity and near-minimaxity results have been obtained
for a wide variety of cases.

A sampling of these results would go as follows.

? Speckman (1979) showed that for estimating a function at a point f(t0) with squared-
error loss, with ellipsoidal (L2-smoothness) class F(C), the penalized spline estimate

is minimax among linear estimates. Actually, it is nearly minimax among all estimates
[36, 25, 24, 14].

? Sacks and Ylvisaker (1981) showed that for estimating a function at a point, with
squared-error loss and a quasi H�older class F(C), the linear minimax estimate is

a kernel estimate with specially chosen kernel and specially chosen bandwidth; this
estimate is within 17% of asymptotically minimax among all procedures [25]. ([25]
also showed how to derive optimal kernels for true H�older classes).

? Bretagnolle and Huber (1979), Stone (1982), and Ibragimov and Has'minskii (1982)

studied problems of estimating the whole object with global loss kf̂n � fkpLp and
Lp Sobolev a-priori class W p

m(C) (same p in both), and found that certain kernel

estimates attain the minimax rate { i.e. achieve (11).

? Pinsker(1980), Efroimovich and Pinsker (1982a,1982b), and Nussbaum (1985) showed

that for estimating the whole object with quadratic global loss kf̂n � fk2L2 , and L2

Sobolev a-priori classW 2

m(C), a windowed Fourier estimate is asymptoticallyminimax
{ i.e. achieves (10). This was the �rst in�nite-dimensional estimation problem in this

category in which precise asymptotic minimaxity was achieved.

? Korostelev(1991), Donoho (1991) showed that for estimating the whole object or its
k-th derivative with sup-norm global loss kf̂ (k)n � f (k)kL1 , and H�older a-priori class
��(C), a certain kernel estimate is asymptotically minimax { i.e. achieves (10).
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? In one of the most surprising developments, Nemirovskii, Tsybakov, and Polyak

(1985) and Nemirovskii (1985) showed that for estimating functions in certain classes

(e.g. decreasing functions, Sobolev Spaces Wm
1
), and certain loss functions (e.g. Lp

loss, p > 1), no linear method can achieve the optimal rate. Thus Kernel, Spline, and

Windowed Fourier methods face problems they cannot solve, even at the level (11).

In principle a certain least-squares projection operator, �nding the closest object from

the class F(C) to the data, achieves the optimal rate in such cases. For most classes

F(C) this method is nonlinear.

? Birg�e (1983) showed that a certain method based on throwing down �-coverings of the

parameter space F(C) by balls, and then testing between balls, achieves the minimax

rate for quite general classes F(C).

There are many other signi�cant results in this highly developed literature; we list here
only the very few that we refer back to below.

2.4 Practical Indi�erence

Despite the impressive array of technical achievements present in the above work, the
reaction of the general statistical community has not been uniformly enthusiastic. For
example, a large number of computer packages appeared over the last �fteen years, but the
work of the minimax paradigm has had relatively little impact on software. We identify
several explanations for this.

2.4.1 Philosophical Common-sense

The minimax paradigm designs estimators on the assumption that certain smoothness

conditions hold; yet we never know such smoothness to be the case. (There are even
results showing that it is impossible to tell whether or not a function belongs to some W p

m

[13]). There is therefore a disconnect between the suppositions of the Minimax Paradigm
and the actual situation when one is confronted with real data. This makes the applicability
of the results a priori doubtful.

This concern would be of little import if the results of working through the paradigm

did not much depend on the assumptions; but in fact they do. Di�erent assumptions about
F(C) and Rn lead to markedly incompatible estimators. For example, if we assume that
the underlying object is Lipschitz, jf(x) � f(y)j � Cjx � yj, with known Lipschitz con-

stant C, and we wish to estimate f at the point t0 (risk measure (7)), then a minimax

kernel estimator has as kernel the solution of a special optimization problem, and a band-
width hn � n�1=3 attains the minimax rate n�2=3. On the other hand, if we assume 2
L2-derivatives and global L2-loss, then an estimator with bandwidth � n�1=5 attains the
minimax rate n�4=5 . But suppose we use the method designed under one set of assump-

tions to solve the problem de�ned by the other set of assumptions. The outcome will be

disappointing in both cases; (a) the estimator designed for a Lipschitz function attains only

the rate n�2=3 in case f has 2- L2-derivatives, not n�4=5; (b) the estimator designed for 2-
L2-derivatives may have a risk tending to zero at rate n�2=5 in case f is only Lipschitz, and

not n�2=3. But suppose neither assumption holds; for example that the function is only
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of bounded variation. Under the assumption of global loss (8) and F(C) the collection

of functions of bounded variation � C, the estimator assuming Lipschitz behavior has a

risk tending to zero like n�1=3; the estimator assuming 2 L2 derivatives has a risk tending

to zero like n�1=5. Both fall far short of the minimax rate, which is n�2=3. In this case,

moreover, the issue is not just proper choice of bandwidth; no linear method achieves better

than the rate n�1=2 uniformly over Bounded Variation balls, so that any kernel method is

unsatisfactory.

2.4.2 Computational Common-sense

Minimaxity results are sometimes held to be uninteresting from a practical point of view.

The methods most frequently discussed in the minimaxity literature { kernel methods,

spline methods, orthogonal series { were already well known by practitioners before the

Minimax Paradigm was in place. From this point of view, the principal �ndings of the
minimaxity literature { optimal kernels, optimal bandwidths, optimal penalization, and so

forth { amount to minor variations on these themes, rather than wholesale innovations.
Complementary is the claim that those methods coming out of minimaxity theory which

are really new are also impractical. For example, Nemirovskii in personal communication
explained that he had not succeeded in implementing his least-squares based method on
datasets of realistic size, because it required the solution of a nonlinear optimization prob-
lem whose running time went up roughly as O(n3:5) for n data. The abstract �-covering

approach of Birg�e is perhaps even more challenging to implement; it requires the imple-
mentation of a code for laying down an �-covering on the function space F(C), and the
authors know of no practical example of such a method in use.

2.4.3 Spatial Common-Sense

A third argument for skepticism takes as given that theoretical methods found by the

minimax paradigm are, generally, spatially nonadaptive, while real functions exhibit a
variety of shapes and spatial inhomogeneities. It holds that such spatially variable objects
should be addressed by spatially variable methods. Since the minimax paradigm doesn't

seem to give methods with such properties, it argues, minimaxity should be abandoned; it
concludes that we should construct methods (heuristically, if necessary) which address the
\real problem" { spatial adaptation.

This point of view has had considerable in
uence on software development and daily

statistical practice; apparently much more than the minimax paradigm. Interesting spa-
tially adaptive methods include CART (Breiman, Friedman, Olshen, and Stone, 1982),

TURBO (Friedman and Silverman, 1989), MARS (Friedman, 1991), and Variable Band-
width Kernel methods (Breiman et al., 1977; M�uller and Stadtmuller, 1987; Terrell and

Scott, 1990; Brockmann et al. 1991). Such methods implicitly or explicitly attempt to

adapt the �tting method to the form of the function being estimated, by ideas like recur-
sive dyadic partitioning of the space on which the function is de�ned (CART and MARS),

adaptively pruning away knots from a complete �t (TURBO), and adaptively estimating
a local bandwidth function (Variable Kernel Methods).

The spatial adaptivity camp is, to date, a-theoretical, as opposed to anti-theoretical,
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motivated by the heuristic plausibility of their methods, and pursuing practical improve-

ments rather than hard theoretical results which might demonstrate speci�c quantitative

advantages of such methods. But, in our experience, the need to adapt spatially is so

compelling that the methods have spread far in the last decade, even though the case for

such methods is not proven rigorously.

2.5 Recent Developments

The di�culties enumerated above have been partially addressed by the minimax community

in recent years.

The seminal proposal of Wahba and Wold (1975) to adaptively choose smoothing pa-

rameters by cross-validation has opened the possibility that one can adapt to the unknown

smoothness of an object in a simple, automatic way. Translated into the minimax paradigm,

the issue becomes: can one design a single method f̂ which is simultaneously asymptotically
minimax, i.e. which attains

sup
F(C)

R(f̂n; f) = (1 + o(1)) inf
f̂

sup
F(C)

R(f̂ ; f) (12)

for every ball F(C) arising in a certain function scale. (Corresponding notions of simulta-
neously asymptotically rate-minimax can be de�ned in the obvious way). The existence of
such estimators would go a long way towards alleviating the philosophical objection listed
above, namely that \you never know F(C)".

Pioneering work in this direction was by Efroimovich and Pinsker (1984), who developed

a method which exhibited (12) for every L2 Sobolev Ball. The method is based on adap-
tively constructing a linear orthogonal series estimator by determining optimal damping
coe�cients from data. Compare also Golubev (1987).

Unfortunately, the idea is based on adapting an underlying linear scheme to the un-
derlying function, so it adapts over only over those classes where linear methods attain

the minimax rate. For other function classes, such as the class of bounded variation, the
method is unable to approach the minimax rate.

Another important development was a theory of spatial adaptivity for the Grenander
estimator due to Birg�e (1989). The Grenander estimator is a method for estimating a

monotone density. It is nonlinear and, in general, di�cult to analyze. Birg�e succeeded

in showing that the Grenander estimator came within a factor two of a kind of optimally

adaptive procedure: the histogram estimator with variable-width bins which achieves the

minimum risk among all histogram estimators.
Extension of such results to a general theory of spatial adaptation would be the next

step, for example to �nd a nonlinear estimator which achieves essentially the same per-
formance as the best piecewise polynomial �t. However, until now, such an extension has

been lacking.

2.6 Epilogue

The literature on minimax estimation of curves, densities, and spectra has elucidated the
behavior of many di�erent proposals under many di�erent choices of loss and smoothness
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class. The literature has not converged, however, to a single proposal which is simple,

natural, and works in an optimal or near-optimal way for a wide variety of losses and

smoothness classes; even the Efroimovich-Pinsker estimator, which seems quite general,

fares badly over certain smoothness classes.

Another issue is that, of course, the simple model (5) is not by itself the beginning

and end of statistical estimation; it is simply a test-bed which we can use to develop ideas

and techniques. It is important that whatever be developed generalize beyond that model,

to handle inverse problems, where one has noisy and indirect data { for example inverse

problems of tomography, deconvolution, Abel inversion. From this point of view, the a-

theoretical spatial adaptation proposals have defects { they don't seem to generalize, say

in the tomographic case, to adapt spatially to structure in the underlying object.

The net result is that the Minimaxparadigm has led to a situation of complexity, nuance,

uncertain generality, and �nally, to a psychology of quali�cation and specialization.

3 Wavelet Shrinkage

Recently, a growing and enthusiastic community of applied mathematicians has developed
the wavelet transform as a tool for signal decomposition and analysis. The �eld is growing
rapidly, both as a practical, algorithm-oriented enterprise, and as a �eld of mathematical
analysis. Daubechies' book features an algorithmic viewpoint about the wavelet transform;
the books of Meyer (1990) and Frazier, Jawerth, and Weiss (1991) feature the functional

space viewpoint. Further references and descriptions may be found in our other papers.
Proper deployment of this tool allows us to avoid many of the di�culties, hesitations,

quali�cations, and limitations in the existing statistical literature.

3.1 The Method

For simplicity, we focus on the nonparametric regression model (3) and a proposal of [22];
similar results are possible in the density estimation model [39]. We suppose that we have

n = 2J+1 data of the form (3) and that � is known.

1. Take the n given numbers and apply an empirical wavelet transform W n
n , obtaining

n empirical wavelet coe�cients (wj;k). This transform is an order O(n) transform, so

that it is very fast to compute; in fact faster than the Fast Fourier Transform.

2. Set a threshold tn =
q
2 log(n) � �=pn, and apply the soft threshold nonlinearity

�t(w) = sgn(w)(jwj� t)+ with threshold value t = tn. That is, apply this nonlinearity
to each one of the n empirical wavelet coe�cients.

3. Invert the empirical wavelet transform, getting the estimated curve f̂�n(t).

Figure 1 shows four spatially inhomogeneous functions { Bumps, Blocks, Heavisine,
and Doppler. Figure 2 shows noisy versions, according to model (5). Figure 3 shows

reconstructions.

These reconstructions display two properties of interest. The �rst is the almost noise-
free character of the reconstructions. There is very little of the random oscillation one
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associates with noise. The second property is that sharp features have stayed sharp in

reconstruction. These two properties are not easy to combine. Linear approaches (such

as kernel, spline, and windowed Fourier methods) inevitably either blur out the sharp

features and damp the noise or leave the features intact, but leave the noise intact as well.

For comparison, see Figures 4 and 5, which display the results of spline and Fourier series

estimates with adaptively chosen penalization and windowing parameters, respectively.

The spline method blurs out certain features of the object, such as jumps, while exhibiting

certain noise-induced oscillations in areas that ought to be smooth; the windowed Fourier

series method tends to preserve the features, but without damping the noise.

These two visual properties of wavelet shrinkage reconstruction pre�gure various theo-

retical bene�ts to be discussed below.

Wavelet shrinkage depends in an essential way on the multiresolution nature of the

wavelet transform. The transform we use in our examples is based on the article of Cohen,

Daubechies, Jawerth, and Vial (1992), and uses the special wavelet \Daubechies Nearly
Symmetric with 8 vanishing Moments"; the method is boundary corrected. Our recon-
struction takes the form

f̂�n =
X
j;k

�̂j;k j;k

where the function  j;k is a smooth wiggly function of \scale" 2�j and \position" k=2j . The
thresholding gives wavelet coe�cients �̂j;k, many of which are zero. The result is a sparse
reconstruction, with signi�cant contributions from many di�erent scales. Traditional linear
smoothing methods operate in a monoresolution fashion, at best with the resolution scale

chosen adaptively; the resolution scale is, of course, the bandwidth. To underscore this
point we present in Figure 6 a display which shows the method operating in the wavelet
domain. Figures 6 (c) and 6(d) show the empirical and reconstructed wavelet coe�cients
strati�ed by scale; contributions of several di�erent scales are present in the display.

We mention now a number of elaborations of the proposal. First of all, in practice, we
don't shrink the coe�cients at the very coarsest scales. In the wavelet transform there is a

set of coe�cients at j � j0 measuring \gross structure" these correspond to basis functions
derived from \father wavelets"; the remainder derive from \mother wavelet" and measure
detail structure. In practice, one only shrinks the detail coe�cients. Secondly, when the
noise level � is unknown, we take the median absolute deviation of the wavelet coe�cients

at the �nest scale of resolution, and divide by .6745 to get a crude estimate �̂. Finally,

we can treat densities, spectral densities, indirect data, non-white noise, and non-Gaussian
data by various simple elaborations of the above proposal; see the discussion.

3.2 Our Claims

Wavelet Shrinkage avoids many of the objections to minimax theory listed above in section
2.4. The method makes no a priori assumption that f belongs to any �xed smoothness

class; it even accomodates discontinuities, as the �gures show. The method is simple and

practical, with an algorithm that functions in order O(n) operations. The method is also
new, not just a minor variation on something previously in widespread use. The method

is spatially adaptive, being able to preserve the spatially inhomogeneous nature of the
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estimand. Finally, the wavelet shrinkage method also generalizes to high-dimensional data,

to density estimation, and to treatment of various inverse problems.

While avoiding many common-sense objections, the estimator f̂�n is nearly optimal for a

wide variety of theoretical objectives. It is nearly optimal from the point of view of spatial

adaptation. It is nearly optimal from the point of view of estimating an object of unknown

smoothness at a point. And it is nearly optimal from the point of view of estimating an

object of unknown smoothness in any one of a variety of global loss measures, ranging from

Lp losses, to Lp losses on derivatives, and far beyond.

In brief then, we claim that the wavelet shrinkage method o�ers all the things one might

desire of a technique, from optimality to generality, and that it answers by and large the

conundrums posed by the current state of minimax theory.

3.3 Basic Results

We now state with somewhat more precision the properties of the wavelet shrinkage esti-
mator introduced above. We �rst mention properties which have been proved elsewhere.

3.3.1 f̂�n is, with high probability, as smooth as the truth.

The empirical wavelet transform is implemented by the pyramidal �ltering of [CDJV];

this corresponds to a theoretical wavelet transform which furnishes an orthogonal basis of
L2[0; 1]. This basis has elements (wavelets) which are in CR and have, at high resolutions,
D vanishing moments. The fundamental discovery about wavelets that we will be using is
that they provide a \universal" orthogonal basis: an unconditional basis for a very wide
range of smoothness spaces: all the Besov classes B�

p;q[0; 1] and Triebel classes F �
p;q[0; 1] in

a certain range 0 � � < min(R;D). Each of these function classes has a norm k � kB�
p;q

or k � kF�
p;q

which measures smoothness. Special cases include the traditional H�older (-
Zygmund) classes �� = B�

1;1 and Sobolev Classes Wm
p = Fm

p;2. For more about the
universal basis property, see the article of Lemari�e and Meyer (1986) or the books of
Frazier, Jawerth, and Weiss (1992) and of Meyer (1990).

De�nition. C(R;D) is the scale of all spaces B�
p;q and all spaces F �

p;q which embed con-

tinuously in C[0; 1], so that � > 1=p, and for which the wavelet basis is an unconditional

basis, so that � < min(R;D).

Theorem 1 [17]. There are universal constants (�n) with �n ! 1 as n = 2j1 ! 1, and
constants C1(F ;  ) depending on the function space F [0; 1] 2 C(R;D) and on the wavelet

basis, but not on n or f , so that

Prob
n
kf̂�nkF � C1 � kfkF 8F 2 C(R;D)

o
� �n: (13)

In words, f̂�n is, with overwhelming probability, simultaneously as smooth as f in every
smoothness space F taken from the scale C(R;D).

Property (13) is a strong way of saying that the reconstruction is noise-free. Indeed,

as k0kF = 0, the theorem requires that if f is the zero function f(t) � 0 8t 2 [0; 1] then,
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with probability at least �n, f̂
�
n is also the zero function . In contrast, traditional methods

of reconstruction have the character that if the true function is 0, the reconstruction is

(however slightly) oscillating and bumpy as a consequence of the noise in the observations.

The reader may wish to compare Figures 3, 4, and 5 in light of this theorem.

3.3.2 f̂�n is near-optimal for spatial adaptation.

We �rst describe a concept of ideal spatial adaptation, as in [22]. Suppose we have a method

T (y; �) which, given a spatial adaptation parameter �, produces a curve estimate f̂ . We

are thinking primarily of piecewise polynomial �ts, with � being a vector of breakpoints

indicating the boundaries of the pieces. For a given function f , there is an ideal spatial

parameter �, satisfying

Rn(T (y;�); f) = inf
�
Rn(T (y; �); f);

however, since � = �(f), this ideal parameter is not available to us when we have only

noisy data. Still, we aim to achieve this ideal, and de�ne the ideal risk

Rn(T; f) = Rn(T (y;�); f):

The ideal risk can be smaller than anything attainable by �xed nonadaptive schemes;
to measure this, we �x the risk measure

Rn(f̂ ; f) = n�1
X
i

E(f̂(ti)� f(ti))
2:

For a generic piecewise constant function with discontinuity, the best risk achievable by
linear non-adaptive schemes is of order n�1=2, while the ideal risk, based on a partition �

which exactly mimicks the underlying piecewise structure of the function, achieves n�1.

Theorem 2 [22]. With Rn(TPP (D); f) the ideal risk for piecewise polynomial �ts by poly-
nomials of degree D, and with the wavelet transform having at least D vanishing moments,

Rn(f̂
�
n; f) � C � log(n)2 � Rn(TPP (D); f)

for all f and all n = 2J+1. Here C depends only on the wavelet transform, and not on f

or n.

Hence all the rate advantages of spatial adaptation are reproduced by wavelet shrinkage.

(The log(n)2 bound of this theorem is not sharp for \most" functions; wavelet shrinkage

may perform even better than this indicates).
In short, we have a theory for spatial adaptation and wavelets are near-optimal under

that theory.
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3.3.3 f̂�n is near-optimal for estimating a function at a point.

Fix the risk Rn(f̂ ; f) = E(f̂(t0) � f(t0))
2, where t0 is one the sample points t1; : : : ; tn.

Suppose f obeys a H�older smoothness condition f 2 ��(C), where, if � is not an integer,

��(C) = ff : jf (m)(s)� f (m)(t)j � Cjs� tj�g; (14)

with m = d�e � 1 and � = � �m. (If � is an integer, we use Zygmund's de�nition [46]).

Suppose, however, that we are not sure of � and C. If we did know � and C, then we

could construct a linear minimax estimator f̂ (�;C)n =
P

i ciyi where the (ci) are the solution

of a quadratic programming problem depending on C, �, �, and n [36, 25, 14]. This

estimator has worst-case risk

sup
��(C)

E(f̂ (�;C)n � f(t0))
2 � A(�)(C2)1�r(

�2

n
)r; n!1; (15)

where A(�) is the value of a certain quadratic program, and the rate exponent satis�es

r =
2�

2� + 1
: (16)

This risk behavior is minimax among linear procedures, and the mean squared error is
within a factor 5/4 of minimax over all measurable procedures.

Unfortunately, if � and C are actually unknown and we misspecify the degree � of the
H�older condition, the resulting estimator will achieve a worse rate of convergence than the

rate which would be optimal for a correctly speci�ed condition.
Can one develop an estimator which does not require knowledge of � and C and yet

performs essentially as well as f̂ (�;C)n ? Lepskii (1990) and Brown and Low (1992) show that
the answer is no, even if we know that the correct H�older class is one of two speci�c classes.
Hence for 0 < �0 < �1 <1 and 0 < C0; C1 <1,

inf
f̂n

max
i=0;1

C
2(ri�1)
i nri��2ri sup

��(C)

E(f̂n(t0)� f(t0))
2 � const � log(n)r0: (17)

Theorem 3 [23]. Suppose we use a wavelet transform with min(R;D) > 1. For each

H�older class ��(C) with 0 < � < min(R;D), we have

sup
��(C)

E(f̂�n(t0)� f(t0))
2 � log(n)r �B(�) � (C2)1�r � (�

2

n
)r � (1 + o(1)); n!1: (18)

Here r = 2�=(2� + 1) is as in (16), and B(�) can be calculated in terms of properties of
the wavelet transform.

Hence f̂�n(t0) achieves, within a logarithmic factor, the minimax risk for every H�older
class in a broad range. When the H�older class is unknown, the logarithmic factor cannot

be eliminated, because of (17). So the result is optimal in a certain sense.
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3.3.4 f̂�n is near-optimal for estimating the object in global loss

Now consider a global loss measure k � k = k � k�0;p0;q0 taken from the B�
p;q or F

�
p;q scales, with

�0 � 0. With �0 = 0 and p0; q0 chosen appropriately, this means we can consider L2 loss,

Lp loss p > 1, etc. We can also consider losses in estimating the derivatives of some order

by picking �0 > 0. We consider a priori classes F(C) taken from norms in the Besov and

Triebel scales with � > 1=p { for example, Sobolev balls.

Theorem 4 (Near-Minimaxity) Pick a loss k � k taken from the Besov or Triebel scales

�0 � 0, and a ball F(C;�; p; q) arising from an F 2 C(R;D), so that � > 1=p; and suppose

the collection of indices obey � > �0 + (1=p � 1=p0)+, so that the object can be consistently

estimated in this norm. There is a modulus of continuity 
(�) with the following properties:

[1] The estimator f̂�n nearly attains the rate 
(n�1=2); with constants C1(F(C);  ),

sup
f2F(C)

P

8<:kf̂�n � fk � C1 � 
(� �
s
log(n)

n
)

9=;! 0; (19)

provided �0 > 1=p0; if instead 0 � �0 � 1=p0, replace C1 by a logarithmic factor.

[2] No method can exceed the rate 
(n�1=2): for some other constant C2(k � k;F)

inf
f̂

sup
f2F(C)

P
n
kf̂ � fk � C2 � 
(�=

p
n)
o
! 1; (20)

if (� + 1=2)p < (�0 + 1=2)p0, or if (� + 1=2)p = (�0 + 1=2)p0 and we work exclusively

in the Besov scale, we may increase 
(�=
p
n) to 
(� �

q
log(n)

n
).

In words, f̂�n is simultaneously within a logarithmic factor of minimax over every Besov and
Triebel class in the indicated range; and over a certain subrange, it is within a constant
factor of minimax.

By elementary arguments, these results imply similar results for other combinations of

loss and a-priori class. For example, we can reach similar conclusions for L1 loss, though it

is not nominally in the Besov and Triebel scales; and we can also reach similar conclusions
for the a-priori class of functions of total variation less than C, also not nominally in
C(R;D). Such variations follow immediately from known inequalities between the desired

norms and relevant Besov and Triebel classes.

3.4 Interpretation

Theorems 2-4 all have the form that a behavior which would be attainable by measurable

procedures equipped with extra side information (perhaps a di�erent measurable procedure
for di�erent problems) can be obtained, to within logarithmic factors, by the single estima-

tor f̂�n. Hence, if we are willing to systematically ignore factors of log(n) as insigni�cant,

we have a single estimator which is optimal for a wide variety of problems and purposes.
Moreover, there is a sense in which, among estimators satisfying Theorem 1, these log(n)

13



factors are necessary; so if we want the visual advantages of Theorem 1, we must accept

such logarithmic factors. For results like Theorems 2 and 3, logarithmic factors are also

unavoidable. Also, the results show that for a certain range of choices of loss and a-priori

class, the estimator is actually within a constant factor of optimal.

These results raise an important question: do we want exact optimality for one single

decision-theoretic purpose or near-optimality (within a logarithmic factor) for many pur-

poses simultaneously? The exact optimality approach often leads to very speci�c procedures

for speci�c problems, de�ned uniquely as solutions of certain optimization problems; but

the procedures so designed might turn out to be unsuitable for other problems. On the other

hand, the near-optimality approach gives us an estimator which is the exact solution of no

classical optimization problem, but which almost solves many problems simultaneously.

As a simple example, consider the problem of estimating a decreasing function bounded

by C in absolute value. The method of least-squares gives an estimate which is decreasing

and seems quantitatively quite close to minimax; wavelet shrinkage does not give a decreas-
ing estimate, and so is less well adapted to estimating decreasing objects, yet it is within
log(n)2=3 factors of minimax for this class, and continues to work well when the object is
not decreasing.

An interesting parallel between the estimators based on wavelet shrinkage and wavelets

themselves is the fact that wavelets are the solution of no classical optimization prob-
lem; unlike sinusoids and classical orthogonal systems they do not serve as eigenfunctions
of a classically important operator, such as di�erentiation or convolution. Nevertheless,
wavelets are \almost-eigenfunctions" of many operators [30, 46]; while if they were the
exact eigenfunctions of some speci�c operator (e.g. a convolution operator) they could not

continue to be \almost-eigenfunctions" of many other operators. Here, precise optimality
rules out a broad approximate optimality.

There is also a parallel with the theory of robustness. The exact maximum likelihood es-
timator in certain parametric models has a property of minimum asymptotic variance, but
this is accompanied by a non-robustness, an extreme sub-optimality at models in�nites-

imally distant. However, it is possible to �nd estimators which have almost minimum
asymptotic variance but which perform acceptably at a broad range of models close to
the original model under consideration. Again exact optimality to one particular set of

assumptions rules out a broader approximate optimality.
This interpretation is particularly important in light of the fact that the traditional

minimax paradigm makes a rather arbitrary premise: it posits smoothness information

that is never actually available. We never actually know that the object of interest has

a certain number of derivatives, nor in what space the derivatives ought to be measured
(Lp? L1?). Therefore, the expenditure of e�ort to achieve exact optimality, at the level
of constants (10) is particularly hard to support, except as part of a larger e�ort to obtain
basic understanding.

4 An alternative to (1) for high dimensions

At a conceptual level, the wavelet shrinkage method represents a di�erent response to the

negative result (3). We get an analog of (1) valid in high dimensions if, instead of trying
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to do absolutely well uniformly for every f , we try to do nearly as well as the minimax risk

for every \nice" �.

Informally, the principle we are exploiting is the following: for estimating an n-dimensional

vector � there is a single shrinkage estimator �̂�n with the following \universal near-minimax

property": for any loss that is in some sense \bowl shaped and symmetric" and any a-priori

class � that is also \bowl shaped and symmetric", then

sup
�

Rn(�̂
�
n; �) � \log n factor" � inf

�̂

sup
�

Rn(�̂; �): (21)

In a sense, this principle has the generality and appeal of (1): it says that a single

estimator is good for a very wide variety of loss functions and purposes.

We put quotes around things in (21) to emphasize that we do not prove this principle

in this paper. For results like (21), compare [22, 17, 23].

5 Proof of Theorem 4

We give here the proof of Theorem 4; the other theorems have been proved elsewhere. Our

approach is inspired by (21).

5.1 Translation into Sequence Space

Consider the following Sequence Model. We start with an index set In of cardinality n, and
we observe

yI = �I + � � zI ; I 2 In; (22)

where zI
iid� N(0; 1) is a Gaussian white noise and � is the noise level. The index set In is

the �rst n elements of a countable index set I. From the n data (22), we wish to estimate
the object with countably many coordinates � = (�I)I with small loss k�̂��k The object of
interest belongs a priori to a class �, and we wish to achieve a Minimax Risk of the form

inf
�̂

sup
�

Pfk�̂ � �k > !g

for a special choice ! = !(�). About the error norm, we assume that it is solid and

orthosymmetric, namely that

j�I j � j�I j 8I =) k�k � k�k: (23)

Moreover, we assume that the a priori class is also solid and orthosymmetric, so

� 2 � and j�I j � j�Ij 8I =) � 2 �: (24)

Finally, at one speci�c point (37) we will assume that the loss measure is either convex,
or at least �-convex 0 < � � 1, in the sense that k� + �k� � k�k� + k�k�; 1-convex is just

convex.

Results for this model will imply Theorem 4 by suitable identi�cations. Thus we will
ultimately interpret
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[1] (�I) as wavelet coe�cients of f ;

[2] (�̂I) as empirical wavelet coe�cients of an estimate f̂n; and

[3] k�̂ � �k as a norm equivalent to kf̂ � fk.
We will explain such identi�cations further in section 5.4 below.

5.2 Solution of an Optimal Recovery Model

Before tackling data from (22), we consider a simpler abstract model, in which noise is

deterministic (Compare [47, 48, 61]). The approach of analyzing statistical problems by

deterministic noise has been applied previously in [14, 15]. Suppose we have an index set

I (not necessarily �nite), an object (�I) of interest, and observations

xI = �I + � � uI ; I 2 I: (25)

Here � > 0 is a known \noise level" and (uI) is a nuisance term known only to satisfy
juI j � 1 8I 2 I. We suppose that the nuisance is chosen by a clever opponent to cause the

most damage, and evaluate performance by the worst-case error:

E�(�̂; �) = sup
juI j�1

k�̂(x)� �k: (26)

5.2.1 Optimal Recovery { Fixed �

The existing theory of optimal recovery focuses on the case where one knows that � 2 �,
and � is a �xed, known a priori class. One wants to attain the minimax error

E�
� (�) = inf

�̂

sup
�

E�(�̂; �):

Very simple upper and lower bounds are available.

De�nition 1 The modulus of continuity of the estimation problem is


(�; k � k;�) = sup
n
k�0 � �1k : �0; �1 2 �; j�0I � �1I j � �;8I 2 I

o
: (27)

Proposition 1

E�
� (�) � 
(�)=2: (28)

The proof? Suppose �0 and �1 attain the modulus. Then under the observation model

(25) we could have observations x = �0 when the true underlying � = �1, and vice versa.

So whatever we do in reconstructing � from x must su�er a worst case error of half the

distance between �1 and �0.
A variety of rules can nearly attain this lower bound.

De�nition 2 A rule �̂ is feasible for � if, for each � 2 � and for each observed (xI)

satisfying (25),
�̂ 2 �; (29)

j�̂I � xI j � �: (30)
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Proposition 2 A feasible reconstruction rule has error

k�̂ � �k � 
(2�); � 2 �: (31)

Proof: Since the estimate is feasible, j�̂I� �Ij � 2� 8I, and �; �̂ 2 �. The bound follows

by the de�nition (27) of the Modulus.
Comparing (31) and (28) we see that, quite generally, any feasible procedure is nearly

minimax .

5.2.2 Soft Thresholding is an Adaptive Method

In the case where � might be any of a wide variety of sets, one can imagine that it would

be di�cult to construct a procedure which is near-minimax over each one of them { i.e. for

example that the requirements of feasibility with respect to many di�erent sets would be
incompatible with each other. Luckily, if the sets in question are all orthosymmetric and
solid, a single idea { shrinkage towards the origin { leads to feasibility independently of the
details of the set's shape.

Consider a speci�c shrinker based on the soft threshold nonlinearity �t(y) = sgn(y)(jyj�
t)+. Setting the threshold level equal to the noise level t = �, we de�ne

�̂I
(�)
(y) = �t(xI); I 2 I: (32)

This pulls each noisy coe�cient xI towards 0 by an amount t = �, and sets �̂I
(�)

= 0 if

jxIj � �. Because it pulls each coe�cient towards the origin by at least the noise level, it
satis�es the uniform shrinkage condition:

j�̂Ij � j�Ij; I 2 I: (33)

Theorem 5 The Soft Thresholding estimator �̂(�) de�ned by (32) is feasible for every �
which is solid and orthosymmetric.

Proof: j�̂(�)I �xIj � � by de�nition; while (33) and the assumption (24) of solidness and
orthosymmetry guarantee that � 2 � implies �̂(�) 2 �.

This shows that soft-thresholding leads to nearly-minimax procedures over all combina-
tions symmetric a priori classes and symmetric loss measures. Surprisingly, although the

result is both simple and useful, we have been unable to �nd results of this form in the
literature of optimal recovery and information-based complexity.

5.2.3 Recovery from �nite, noisy data

The optimal recovery and information-based complexity literature generally posits a �nite

number n of noisy observations. And, of course, this is consistent with our model (22). So

consider observations

xI = �I + � � uI ; I 2 In: (34)
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The minimax error in this setting is

E�
n;�(�) = inf

�̂

sup
�

k�̂ � �k:

To see how this setting di�ers from the \complete-data" model (25), we set � = 0.

Then we have the problem of inferring the complete vector (�I : I 2 I) from the �rst n

components (�I : I 2 In). To study this, we need the de�nition

De�nition 3 The tail-n-width of � in norm k � k is

�(n; k � k; �) = supfk�k : � 2 �; �I = 0;8I 2 In; g:

We have the identity

E�
n;0(�) = �(n; k � k; �);

which is valid whenever both k � k and � are solid and orthosymmetric.
A lower bound for the minimax error is obtainable by combining the n = 1 and the

� = 0 extremes:

E�
n;�(�) � max(
(�)=2;�(n)): (35)

Again, soft-thresholding comes surprisingly close, under surprisingly general conditions.
Consider the rule

�̂n;� =

(
��(xI); I 2 In;
0; I 2 InIn : (36)

Supposing for the moment that the loss measure k � k is convex we have

k�̂n;� � �k � 
(2�) + �(n); � 2 �: (37)

(If the loss is not convex, but just �-convex, 0 < � < 1, we can replace the right hand side
by (
(2�)� +�(n)�)1=�).

Comparing (37) and (35), we again have that soft-thresholding is nearly minimax,
simultaneously over a wide range of a-priori classes and choices of loss.

5.3 Application to the Sequence Model

We now translate the results on optimal recovery into results on statistical estimation.

5.3.1 Upper Bounds

The basic idea is the following fact [43]: Let (zI) be i.i.d. N(0; 1). De�ne

An =
�
k(zI)k`1n �

q
2 log n

�
;

then

�n � ProbfAng ! 1; n!1: (38)
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In words, we have very high con�dence that k(zI)Ik`1n �
q
2 log(n) This motivates us to

act as if noisy data (22) were an instance of the deterministic model (34), with noise level

�n =
p
2 log n � �. Accordingly, we set tn = �n, and de�ne

�̂I
(n)

=

(
�tn(yI); I 2 In;
0; I 2 InIn (39)

Recall the optimal recovery bound (37) (case where triangle inequality applies. We get

immediately that whenever � 2 � and the event An holds,

k�̂(n) � �k � 
(2�n) + �(n);

as this event has probability �n we obtain the risk bound

Theorem 6 If k � k is convex then for all � 2 �,

Pfk�̂(n) � �k � 
(2�n) + �(n)g � �n; (40)

with a suitable modi�cation if k � k is �-convex, 0 < � < 1.

This shows that statistical estimation is not really harder than optimal recovery, except

by a factor involving
q
log(n).

5.3.2 Besov and Triebel Bodies

To go farther, we specialize our choice of possible losses k � k and a priori classes � to
members of the Besov and Triebel scales of sequence spaces. These are de�ned as follows.
First, we specify that the abstract index set I is of the standard multiresolution format
I = (j; k) where j � �1 is a resolution index, and 0 � k < 2j, is a spatial index. We
write equally (�I) or (�j;k), and we write I(j) for the collection of indices I = (j; k) with

0 � k < 2j . We de�ne the Besov sequence norm

jj�jjb�
p;q

=

0B@ X
j��1

0B@2js
0@X
I(j)

j�Ijp
1A1=p

1CA
q1CA

1=q

(41)

where s � � + 1=2 � 1=p, and the Besov body

��
p;q(C) � f� : jj�jjb�

p;q
� Cg:

Similarly, the Triebel body ��
p;q = ��

p;q(C) is de�ned by

jj�jjf�p;q � C;

where f�p;q refers to the norm

jj�jjf�p;q = k(
X
I2I

2jsqj�I jq�I)1=qjjLp[0;1];

�I stands for the indicator function 1[k=2j;(k+1)=2j), and s � � + 1=2. We remark, as an

aside, that Besov and Triebel norms are �-convex, with � = min(1; p; q), so that in the
usual range p; q � 1 they are convex.
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Theorem 7 (Besov Modulus) Let k � k be a member of the Besov scale, with parameter

(�0; p0; q0). Let � be a Besov body ��
p;q(C), and suppose that � > �0 + (1=p � 1=p0)+. Then

c0 � C(1�r)�r � 
(�) � c1 � C(1�r)�r 0 < � < �1(C); (42)

where ci = ci(�; p; q; �
0; p0; q0) and the rate exponent satis�es

r = min

 
� � �0

� + 1=2
;
� � �0 � (1=p � 1=p0)+

� + 1=2 � 1=p

!
; � > 1=p; � > �0+(1=p� 1=p0)+; (43)

except in the critical case where p0 � p and the two terms in the minimum appearing in

(43) are equal { i.e. (� + 1=2)p = (�0 + 1=2)p0. In this critical case we have instead

c0 � C(1�r)�r log(C=�)e2 � 
(�) � c1 � C(1�r)�r log(C=�)e2 0 < � < �1(C); (44)

with e2 = (1=q0 � (1 � r)=q)+.

What if k � k or �, or both, come from the Triebel Scales? A norm from the Triebel

scale is bracketed by norms from the Besov scales with the same � and p, but di�erent q's:

a0k�kb�
p;max(p;q)

� k�kf�p;q � a1k�kb�
p;min(p;q)

(45)

(compare [53, page 261] or [62, page 96]). Hence, for example,

��
p;min(p;q)(C=a1) � ��

p;q(C) � ��
p;max(p;q)(C=a0);

and so we can bracket the modulus of continuity in terms of the modulus from the Besov
case, but with di�ering values of q,q0. By (42), the qualitative behavior for the modulus in
the Besov scale, outside the critical case (�+1=2)p = (�0+1=2)p0, p0 > p, does not depend
on q,q0. The modulus of continuity therefore continues to obey the same general relations

(42) even when the Triebel scale is used for one, or both, of the norm k � k and class �.
In the critical case, we can at least get bounds; combining (44) with (45) gives

c0 � C(1�r)�r � 
(�) � c1 � C(1�r)�r log(C=�)e
+
2 0 < � < �1(C);

with e+2 = (1=min(q0; p0) � (1 � r)=max(p; q))+. In the spirit of data compression, we
truncate our discussion at this point.

In addition to concrete information about the modulus, we need concrete information

about the tail-n-widths.

Theorem 8 Let k �k be a member of the Besov or Triebel scales, with parameter (�0; p0; q0).

Let � be a Besov body ��
p;q(C) or a Triebel Body ��

p;q(C). Then

�(n; k � k;�) � c2 � n�(���
0�(1=p�1=p0)+); n = 2J+1;

and c2 = c2(�; p; q; �
0; p0; q0).
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5.3.3 Lower Bound

With noise levels equated, � = �, statistical estimation is not easier than optimal recovery:

inf
�̂

sup
�

Pfk�̂ � �k � max(�(n); c
(�))g ! 1; � = �=
p
n! 0: (46)

Half of this result is nonstatistical; it says that

inf
�̂

sup
�

Pfk�̂ � �k � �(n)g ! 1 (47)

and this follows for the reason that (from section (5.2.4)) this holds in the noiseless case.

The other half is statistical, and requires a generalization of lower bounds developed by

decision theorists systematically over the last 15 years { namely the embedding of an

appropriate hypercube in the class � and using elementary decision-theoretic arguments

on hypercubes. Compare [56, 6, 35, 59].

Theorem 9 Let k � k come from the Besov scale, with parameter (�0; p0; q0). Let � be a
Besov body ��

p;q(C). Then with a c = c(�; p; q; �0; p0; q0)

inf
�̂

sup
�

Pfk�̂ � �k � c
(�)g ! 1: (48)

Moreover, when p0 > p and (� + 1=2)p � (�0 + 1=2)p0, we get the even stronger bound

inf
�̂
sup
�

Pfk�̂ � �k � c
(�
q
log(��1))g ! 1: (49)

The proof of Theorem 7 constructs a special problem of optimal recovery { recovering

a parameter � known to lie in a certain 2j0 -dimensional `p ball (j0 = j0(�;�; p; �
0; p0)),

measuring loss in `p
0

-norm. The construction shows that this �nite-dimensional subproblem
is essentially as hard (under model (25)) as the full in�nite-dimensional problem of optimal
recovery of an object in an �; p; q-ball with an �0; p0; q0-loss. The proof of Theorem 9 shows
that, under the calibration � = �, the statistical estimation problem over this particular
`p ball is at least as hard as the optimal recovery problem, and sometimes harder by an

additional logarithmic factor.

5.4 Translation into Function Space

Our conclusion from Theorems 7-9:

Corollary 1 In the sequence model (22), the single estimator (39) is within a logarithmic

factor of minimax over every loss and every a priori class chosen from the Besov and
Triebel sequence scales. For a certain range of these choices the estimator is within a

constant factor of minimax.

Theorem 4 is just the translation of this conclusion back from sequences to functions.

We give a sketch of the ideas here, leaving the full argument to the appendix.

Fundamental to our approach, in section 5.1 above, is the heuristic that observations

(3) are essentially equivalent to observations (22). This contains within it three speci�c
sub-heuristics.
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1. That if we apply an empirical wavelet transform, based on pyramid �ltering, to n

noiseless samples, then we get the �rst n coe�cients out of the countable sequence

of all wavelet coe�cients.

2. That if we apply an empirical wavelet transform, based on pyramid �ltering, to n

noisy samples, then we get the �rst n theoretical wavelet coe�cients, with white noise

added; this noise has standard deviation � = �=
p
n.

3. That the Besov and Triebel norms in function space (e.g. Lp, Wm
p norms) are equiv-

alent to the corresponding sequence space norms (e.g. f0p;2 and f
m
p;2).

Using these heuristics, the sequence-space model (22) may be viewed as just an equiv-

alent representation of the model (3); hence errors in estimation of wavelet coe�cients are

equivalent to errors in estimation of functions, and rates of convergence in the two problems

are identical, when the proper calibration � = �=
p
n is made.

These heuristics are just approximations, and a number of arguments are necessary to
get a full result, covering all cases. The appendix gives a detailed sketch of the connection
between the nonparametric and sequence space problems, and a proof of the following

result:

Theorem 10 (Precise version of Theorem 4) Pick a loss k � k taken from the Besov and
Triebel scales �0 � 0, and a ball F(C;�; p; q) arising from an F 2 C(R;D), so that � > 1=p;
and suppose the collection of indices obey � > �0+ (1=p� 1=p0)+, so that the object can be
consistently estimated in this norm. There is a rate exponent r = r(�; p; q;�0; p0; q0) with
the following properties:

[1] The estimator f̂�n attains this rate within a logarithmic factor; with constants C1(F(C);  ),

sup
f2F(C)

P
n
kf̂�n � fk � C1 � log(n)e1+e2+r=2 � C1�r � (�=pn)r

o
! 0:

[2] This rate is essentially optimal: for some other constant C2(k � k;F)

inf
f̂

sup
f2F(C)

P
n
kf̂ � fk � C2 � log(n)e3+e4 � C1�r � (�=pn)r

o
! 1:

The rate exponent r satis�es

r = min

 
� � �0

� + 1=2
;
� � �0 � (1=p � 1=p0)+

� + 1=2 � 1=p

!
; � > 1=p; � > �0 + (1=p � 1=p0)+;

and the logarithmic exponents ei may be taken as

e1 =

8><>:
0 �0 > 1=p0

1=min(1; p0; q0)� 1=q0 0 � �0 � 1=p0; Besov Case

1=min(1; p0; q0)� 1=min(p0; q0) 0 � �0 � 1=p0; Triebel Case

; (50)
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e2 =

8><>:
(1=q0 � (1 � r)=q)+ (�0 + 1=2)p0 = (� + 1=2)p; p0 > p; Besov Case

(1=min(q0; p0)� (1� r)=max(q; p))+ (�0 + 1=2)p0 = (� + 1=2)p; p0 > p; Triebel Case

0 otherwise

;

(51)

e3 =

(
(1=q0 � (1� r)=q)+ (�0 + 1=2)p0 = (� + 1=2)p; p0 > p; Besov Case

0 otherwise
; (52)

e4 =

(
r=2 (�0 + 1=2)p0 � (� + 1=2)p; p0 > p

0 otherwise
: (53)

The lower bound can be sharpened in the Triebel case for the special critical regime

(� + 1=2)p = (�0 + 1=2)p0; for reasons of space we omit a fuller discussion.

6 Discussion

6.1 Extensions

Wavelet thresholding can, with minor variations, be made to cover other types of problems
and data. We mention here some examples.

6.1.1 Estimated Scale

The wavelet shrinkage algorithm, as initially described, assumes the scale of the errors �
is known and �xed. In our software, we estimate the error scale, as described above, by
taking the median absolute deviation of the empirical wavelet coe�cients at the �nest scale
J and dividing by .6745. Because :6745 < �(1)��(�1), the result is a statistic that, with
increasing probability, overestimates �:

inf
f
Pf�̂ > �g ! 1; n!1;

but not by much: if F(C) is a ball from C(R;D),

sup
f2F(C)

Pf�̂ � 1:01 � �g ! 1; n!1:

It is easy to analyze the behavior of this method; one de�nes the event

eAn =

�
�kzIk`1n < �̂

q
2 log(n)=

p
n

�
;

then

inf
f
P ( eAn)! 1;

which is all we need to get the risk upper bounds paralleling the scale-known case, but

involving 
(2:02 � � �
q
2 log(n)=

p
n) in place of 
(2 � � �

q
2 log(n)=

p
n). The conclusions

of Theorem 4 hold for this estimator.
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6.1.2 More General Risk Measures

The results quoted in section 2.3 typically studied integral Lp risk measures such as (8).

Theorem 4 can be extended to such measures.

Indeed, Borell's inequality tells us that the noise never exceeds
q
2 log(n) by very much:

Pfk(zI)k`1n > t+
q
2 log(n)g � e�t

2=2; t > 0:

By systematically exploiting this observation, one can obtain bounds on integral risks (8),

and conclude that

Ekf̂�n � f̂ks � Const � (
(c
q
log(n)=

p
n) + �(n))s; f 2 F(C);

as one would expect; the argument is similar to the way in which conclusions for 0-1 loss

are extended to power-law losses in Birg�e (1983) and Donoho and Liu (1991).

6.1.3 Higher-Dimensions

For a higher dimensional setting, consider d-dimensional observations indexed by i =

(i1; :::; id) according to

di = f(ti) + � � zi; 0 � i1; ::::; id < m (54)

where ti = (i1=m; :::; id=m) and the zi follow a Gaussian white noise. Suppose thatm = 2J+1

and set n = md.
For this setting an empirical wavelet transform derives from a d-dimensional pyramid

�ltering operator Uj0;j1 which is based on a tensor product construction; this requires only
the repeated application, in various directions, of the 1-d �lters developed by [CDJV].

To process these observations one follows exactly the 3-step prescription described in sec-

tion 3.1: empirical wavelet transform, followed by soft thresholding at level
q
2 log(n)�=

p
n,

followed by an inversion of the empirical wavelet transform, giving f̂�n.
Adaptivity results paralleling Theorem 4 are available in this setting. The function space

scale C(R;D) is the collection of Besov and Triebel spaces B�
p;q([0; 1]

d) and F �
p;q([0; 1]

d) with

min(R;D) > � > d=p. For balls in this scale we get errors bounded, with overwhelming

probability, by log(n)e(�=
p
n)r where the rate exponent satis�es

r = min

 
� � �0

� + d=2
;
� � �0 � (d=p � d=p0)+

� + d=2 � d=p
; 2(� � �0 � (d=p � d=p0)+)

!
:

Here we have � > d=p, and � > �0 + (d=p � d=p0)+ and the logarithmic exponent is
e = e1 + e2 + r=2, where we replace expressions like 1=p by d=p etc. throughout.

Moreover, no estimator can do better over any individual ball in this scale that n�r=2,

so again the wavelet shrinkage estimator f̂�n is nearly-optimal. The proof is parallel to the
proof of Theorem 4.
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6.1.4 Area Samples

Suppose we have d-dimensional observations of noisy area averages.

di = Aveff jQ(i)g+ � � zi; 0 � i1; : : : ; id < m (55)

where Q(i) is the cube

Q(i) = ft : i1=m � t1 < (i1 + 1)=m; : : : ; id=m � td < (id + 1)=mg;

and the (zi) are i.i.d. N(0; 1). Set m = 2J+1, n = md. In the case d = 2 this may be taken

as a model of noisy digital camera CCD imagery.

Such data may be processed in the (by now) usual 3-step fashion: empirical wavelet

transform, threshold at level
q
2 log(n)�=

p
n, invert the empirical wavelet transform, giving

f̂�n. For this estimator, one has again a result like Theorem 4, with a di�erence.
Say that the scale L(R;D) consists of all spaces B�

p;q and F �
p;q which embed in L1 so

that their averages are well de�ned (the condition amounts to � > d(1=p � 1)) and which
have smoothness � < min(R;D). Compare [17][Section 8]. A result like Theorem 4 holds,

only with a scale L(R;D) replacing the scale C(R;D).
For balls in this scale we get errors bounded, with overwhelming probability, by log(n)e(�=

p
n)r

where the rate exponent satis�es

r = min

 
� � �0

� + d=2
;
� � �0 � (d=p � d=p0)+

� + d=2 � d=p
; 2(� � �0 � (d=p � d=p0)+)

!
:

Here we have � > d(1=p � 1), and � > �0 + (d=p � d=p0)+ and the logarithmic exponent is

e = e2 + r=2. Here e2 follows the same expressions as before, replacing terms like 1=p by
d=p etc. throughout.

Moreover, no estimator can do better over any individual ball in this scale than n�r=2,
so again the wavelet shrinkage estimator f̂�n is nearly-optimal. The proof is parallel to the
proof of Theorem 4.

The advantage of area sampling is the broader scale of function spaces accomodated
and the simpli�cation of the logarithmic terms in the upper bound (i.e. e1 � 0). The proof

is parallel to the proof of Theorem 4.

6.1.5 Density Estimation

Johnstone, Kerkyacharian and Picard have shown that wavelet thresholding may be used
to obtain near-optimal rates in density estimation [39]. Suppose that X1; : : : ;Xn are i.i.d.

f , where f is an unknown density supported in [0; 1]. Let

Wj;k = n�1
nX
i=1

 j;k(Xi)

where  j;k is again the appropriate wavelet basis function.
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De�ne thresholds tj = 0;, j < j0, and tj = A
p
j, j0 � j � J , J = log(n)=(log(2) log(log(n)).

The thresholded wavelet series estimator of [39] is

f̂+n =
JX

j=�1

X
k

�tj(Wj;k) j;k:

For this estimator, [39] gives optimal rate results which are the exact parallel of the

results we get above in Theorem 4. This of course is no accident, as the problems are

known to be closely connected.

We mention here a simple corollary of the results of the present paper, which makes

an interesting comparison to [39]. Suppose we let In denote the collection of wavelet

coe�cients up to level J where J = blog
2
(n)� 1c. We de�ne a density estimator by

f̂�n =
X
I2In

�tn(Wj;k) j;k:

where tn = 2 log(n)C=
p
n, with C = supf2�j=2k j;kk1g. This is in parallel to our treatment

of regression obervations, except that the threshold behaves like log(n), not
q
log(n). In

work with Eric Kolaczyk, a Ph.D. candidate at Stanford, we have shown that, if kfk1 �M ,
then the noise in the empirical wavelet coe�cients is smaller than the threshold with high
probability: the event

fsup
In

p
njWj;k � EWj;kj � log(n)Cg

has a probability approaching 1, uniformly in ff : kfk1 � Mg. This is an application of

Bennett's inequality. As in (38), this is all we need to get results. Indeed, with overwhelm-
ing probability we have

k�̂�n � �k � 
(2 log(n)C=
p
n) + �(n)

which gives bounds paralleling all earlier ones in the Gaussian noise case, only with factors

of log(n) in place of
q
log(n).

Theorem 11 (Density Estimation) Fix the loss k � k = k � k�0;p0;q0 with 0 � � � min(R;D).

For each ball F(C;�; p; q) arising from an F satisfying 1=p < � < min(R;D), the estimator

f̂�n attains the rate (log(n)2=n)r=2, where r is as in the earlier results (43).

The work of Johnstone, Kerkyacharian, and Picard (1992) shows that no estimator can
exceed the rate n�r=2, and shows that f̂+n achieves (log(n)=n)r=2. This lower bound shows
that f̂�n is within logarithmic factors of minimax; and the upper bound shows that f̂+n
outperforms f̂�n because, loosely speaking, it is able convert log(n)-type bounds to

q
log(n)

bounds. The proofs of [39] are entirely di�erent from the proofs given here.

6.2 Insights

We collect here a few insights generated by the wavelet thresholding work.
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6.2.1 Minimaxity and Spatial Adaptivity

The implicit position of the \Spatial Adaptivity" community that minimax theory leads to

spatially non-adaptive methods is no longer tenable. [20] shows that minimax estimators

can generally be expected to have a spatially adaptive structure, and we see in this paper

that a speci�c nearly-minimax estimator exhibits spatially adaptive behavior { in actual

reconstructions. The lack of spatial adaptivity in previous minimax estimators is due to

the narrow range of classes F(C) studied.

6.2.2 Need for Nonlinearity

The \Minimax Community" has, until now, not fully assimilated the results of Nemirovskii

et al. on the need for nonlinear estimation. Ildar Ibragimov has proposed, privately, that

the rate-ine�ciency of linear estimators in various cases is due to a kind of misstatement of

the problem { a mismatch of the norm and function class. Here we have shown that a very

simple and natural procedure achieves near-optimal performance both over classes where
linear estimators behave well and those where they behave relatively poorly. Moreover,
tests on data show that there are evident visual advantages of wavelet shrinkage methods.
Now that we are in possession of near-optimal nonlinear methods and can test them out,
we see that their advantages are not due to a mathematical pathology, but are intuitive
and visual.

6.2.3 Modulus of Continuity; Optimal Recovery

[25, 14] demonstrated that, for problems of estimating a linear functional of an unknown
object in density and regression models, the minimax risk was measured by a geometric
object { namely the modulus of continuity of the functional under consideration, over the a
priori set F . Since that time, it has been natural to inquire whether there was a \modulus
of continuity for the whole object". Johnstone and Silverman (1990) have proposed lower

bounds based on a kind of modulus of continuity. We have shown here that a speci�c
modulus of continuity gives both upper and lower bounds over a broad variety of a priori
classes F and losses j � j. Essentially, this modulus of continuity works for parameter

estimation problems over function classes which are orthosymmetric and solid in some
orthogonal basis.

In [14, 15] in addition, it was shown that quantitative evaluations of minimax risk may
be made by exploiting a connection between optimal recovery and statistical estimation.

Here similar ideas are used to show that evaluations which are somewhat weaker { i.e. only
accurate up to logarithmic terms { carry through in considerable generality. The method

appears to have many other applications, for example in estimation of nonlinear functionals

and in study of inverse problems.

6.2.4 Relations to other work

There is at the moment a great deal of work by applied mathematicians and engineers

in applying wavelets to practical signal processing problems. Within this activity, there
are several groups working on the applications of wavelets to \De-Noise" signals: Coifman
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and collaborators at Yale, Mallat and collaborators at Courant, Healy and Collaborators

at Dartmouth, De Vore at South Carolina, and Lucier at Purdue. These groups have

independently found that thresholding of wavelet coe�cients works well to de-noise signals.

They have claimed successes on acoustic signals, photographic and medical images, which

encourages us to believe that our theoretical results describe phenomena observable in the

real-world.

Of these e�orts, the closest to the present one in point of view is the work of De Vore

and Lucier [12], who have announced results for estimation in Besov spaces paralleling

our own. Obtained from an approximation theoretic point of view, the parallel is per-

haps to be expected, because of the well-known connections between optimal recovery and

approximation theory.

6.3 On the meaning of \Asymptopia"

There are of course many objections one can make to the opinions expressed here. Cer-
tainly we have ignored the signi�cance of logarithm terms, of irregularly spaced data, of
nonGaussian data, of small sample performance; and we have unduly emphasized the Besov
and Triebel spaces rather than real datasets. For the record, many speci�c improvements to

the simple estimator described here can be made to enhance small-sample performance, to
reduce the prevalence of logarithm terms, to handle irregular data, and we hope to describe
these elsewhere.

In this connection, the title word \Asymptopia" is meant to be thought-provoking. One
can easily envision positive and negative connotations, just as \utopia" has both kinds of

connotations.
In this paper, we have proposed an operational de�nition of the term. We believe

that the ultimate goal of asymptotic minimax theory must be to develop, by rational
mathematical criteria, new approaches to estimation problems, with previously unsuspected
properties. If we attain this goal, and if the results look promising for certain applications,

we are in \Asymptopia".

7 Appendix

7.1 Proof of Theorem 7

De�nition 4 W (�; C; p0; p; n) is the value of the n-dimensional constrained optimization

problem
sup k�kp0 s.t. � 2 Rn; k�kp � C; k�k1 � �: (56)

A vector � which satis�es the indicated constraints is called feasible for W (�; C; p0; p; n).

Remark: if p � 1 then this quantity describes the value of a certain optimal recovery

problem. Let �n;p(C) denote the n-dimensional `p ball of radius C; thenW (�; 2C; p0; p; n) =

(�; k � kp0;�n;p(C)). Our approach to Theorems 7 and 9 will be to reduce all calculations

to calculations for W (�; C; p0; p; n) and hence to calculations for `p balls. In some sense the

idea is that Besov bodies are built up out of `p balls.
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Lemma 1 We have the relations:

W (�; C; p0; p; n) = n1=p
0 �min(�; Cn�1=p); 0 < p0 � p �1; (57)

W (�; C; p0; p; n) � min(�n1=p
0

; �1�p=p
0

Cp=p0; C); 0 < p � p0 � 1: (58)

Moreover even the second result is a near-equality. In fact there are an integer n0 and a

positive number �0 obeying

1 � n0 � n; 0 < �0 � �

so that the vector � de�ned by

�1 = �2 = : : : = �n0 = �0

�n0+1 = : : : = �n = 0

is feasible for W (�; C; p0; p; n) and satis�es

k�kp0 = �0n
1=p0

0 �W (�; C; p0; p; n) � �0(n0 + 1)1=p
0

: (59)

Moreover, if 0 < p0 � p � 1 and we have

n0 = n; �0 = min(�; Cn�1=p);

and there is exact equality �0n
1=p0

0 = W (�; C; p0; p; n); on the other hand, if 0 < p � p0 �1
then

n0 = min(n;max(1; b(C=�)pc)); and �0 = min(�; C): (60)

We omit the proof, which amounts to applying standard inequalities (upper bounds)

and verifying the stated results (lower bounds).
We now apply this result to Theorem 7. To begin with, we assume that we are not in

the critical case where p0 > p and (� + 1=2)p = (�0 + 1=2)p0. We will use the following
notational device. If � = (�I)I2I then �(j) is the same vector with coordinates set to zero
which are not at resolution level j:

�
(j)
I =

(
�I I 2 I(j)
0 I 62 I(j) :

We de�ne


j � 
j(�; C;�
0; p0; q0; �; p; q) � supfk�(j)k

b�0

p0;q0
: k�(j)kb�

p;q
� C; k�(j)k1 � �g

Then, using the de�nition of 
 and of the Besov norms

k(
j)jk`1 � 
 � k(
j)jk`q0 :

Now applying the de�nitions,


j = 2js
0

W (�; C2�js; p0; p; 2j):
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We now point the key observation. Let W �(�; C2�js; p0; p; 2j) denote either of the formulas

on the right hand sides of (58) and (57). Viewing these formulas as functions of a real

variable j, we can de�ne a function of a real variable j:


�(j) = 2js
0

W �(�; C2�js; p0; p; 2j):

Then, as soon as � < C,

sup
j2R


�(j) = �rC1�r;

as may be veri�ed by direct calculation in each of the cases concerned. Let j� be the point

of maximum in this expression. Using the formulas for W �(�; C2�js; p0; p; 2j), we can verify

that, because we are not in the critical case, p0s0 6= sp, and

2��0jj�j
�j � 
�(j)=
�(j�) � 2��1jj�j

�j (61)

with exponents �i > 0. We can also verify that for � < �1(C), j
� > 1. Now picking j0 to be

the nonegative integer maximizing 
�(j), we get that as soon as � < �1, jj0 � j�j < 1 and

(1 + 1=n0)
1=p0 � 
j0 � 
�(j0) � 2��0�rC1�r;

on the other hand, using the formulas for W �(�; C2�js; p0; p; 2j), we get that for c1 and
�1 > 0,


j � 
�(j) � �rC1�r � 2��1(jj�j0j�1):
Because (60) guarantees n0 � 1, it follows that

c0 � �rC1�r � 
j0 � 
 � k(
j)jkq0 � 
j0 � c1 � (
X
h

2��1hq)1=q � c0
1
� �rC1�r:

Now we turn to the critical case p0 > p and s0p0 = sp. Let j�(�; C) denote the smallest
integer, and j+(�; C) the largest integer, satisfying

(C=�)1=(s+1=p) � 2j� � 2j+ � (C=�)1=(s)

evidently, j� � log2(C=�)=(s + 1=p) and j+ � log2(C=�)=s. We note that, from (58)


�(j) = �rC(1�r); j� � j � j+

so that a unique maximizer j� does not exist, and exponential decay (61) away from the
maximizer cannot apply. On the other hand, we have that for �1 > 0,


�(j)=
�(j+) � 2��1(j�j+); j > j+ (62)


�(j)=
�(j�) � 2��1(j��j); j < j� (63)

which can be applied just as before, and so attention focuses on the zone [j�; j+].

We now recall the fact that


 � sup (
X
j

(2js
0

W (�; cj; p; p
0; 2j))q

0

)1=q
0

subject to (
X
j

(2jscj)
q)1=q � C
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Let (cj)j be any sequence satisfying cj = 0, j 62 [j�; j+] and satisfying (
Pj+

j
�

(2jscj)
q)1=q � C.

Because in the critical case s0 = s(1 � r)

(
j+X
j
�

(2js
0

W (�; cj; p; p
0; 2j))q

0

)1=q
0 � (

j+X
j
�

(2js
0

�rc
(1�r)
j )q

0

)1=q
0

= �r(
j+X
j
�

(2js(1�r)c
(1�r)
j )q

0

)1=q
0

= �r(
j+X
j
�

(2jscj)
q0(1�r))1=q

0

� �r(j+ � j� + 1)(1=q
0�(1�r)=q)+C(1�r)

where the last step follows from kxk
`
q0(1�r)
n

� kxk`qn � n(1=q�1=q
0(1�r))+; see (65) below. Com-

bining information from the three ranges j < j�, j > j+ and [j�; j+]


 � C1 � (log2(C=�))(1=q
0�(1�r)=q)+ � �rC(1�r) + C2 � �rC(1�r); � < �1(C)

On the other hand, let (c�j)j be the particular sequence

c�j = 2�jsC(j+ � j� + 1)�1=q; j� � j � j+;

then, as W � 2�1=p
0

W �,

(
j+X
j
�

(2js
0

W (�; c�j ; p; p
0; 2j))q

0

)1=q
0 � 2�1=p

0

(
j+X
j
�

(2js
0

W �(�; c�j ; p; p
0; 2j))q

0

)1=q
0

� c0 � (log2(C=�))(1=q
0�(1�r)=q)+�rC(1�r) � < �1(C):

7.2 Proof of Theorem 8

De�nition 5 D(C; p0; p; n) is the value of the n-dimensional constrained optimization prob-
lem

sup k�kp0 s.t. � 2 Rn; k�kp � C: (64)

A vector � which satis�es the indicated constraints is called feasible for D(C; p0; p; n).

SinceD(C; p0; p; n) = W (1; C; p0; p; n), we have immediately upper bounds from Lemma

1. More careful treatment gives the exact formula

D(C; p0; p; n) = Cn(1=p
0�1=p)+: (65)

We now turn to the proof of Theorem 8. We consider the case where both loss and a

priori class come from the Besov scale. Other cases may be treated using (45). De�ne

�j = �j(C; p
0; p; �; �0) = supfk�(j)k

b�0

p0;q0
: k�(j)kb�

p;q
� Cg
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we note that

�J+1 � �(n) � k(�j)j�J+1kq0:
Now comparing de�nitions, we have

�j = 2js
0

D(C2�js; p0; p; 2j);

and comparing with the formula (65), we get

�j = C � 2�j(���0�(1=p0�1=p)+); j � 0

Consequently

k(�j)j�J+1kq0 � �J+1 � (
X
h�0

2�h�q)1=q; � = �(�; �0; p0; p):

Combining these results, we have

�(n) � 2�J(���
0�(1=p0�1=p)+); n = 2J+1 !1;

and the Theorem follows.

7.3 Proof of Theorem 9

We presuppose an acquaintance with the Proof of Theorem 7. That proof identi�es a
quantity 
j0, which may be called the di�culty of that single-level subproblem for which
the optimal recovery problem is hardest. In turn, that subproblem, via Lemma 1, involves
the estimation of a 2j0 -dimensional parameter, of which n0(j0) elements are nonzero a priori.

The proof operates by studying this particular subproblem and showing that it would be
be even harder when viewed in the statistical estimation model.

The proof below follows from a study of cases, depending upon whether this least
favorable subproblem represents a \dense", \sparse", or \transitional" case. The phrases
\dense", \sparse", etc. refer to whether n0 � 2j0 n0 = 1, or n0 � 2j0(1�a), 0 < a < 1.

7.3.1 Case I: The least-favorable ball is \dense"

.
In this case, either p0 � p, or p � p0 yet (� + 1=2)p > (�0 + 1=2)p0.
We describe a relation between the minimax risk over `p balls and the quantityW (�; C).

We have observations

vi = �i + � � zi; i = 1; : : : ; n (66)

where zi are i.i.d. N(0; 1) and we wish to estimate �. We know that � 2 �n;p(C). Because

of the optimal recovery interpretation of W (�; C), the following bound on the minimax risk

says that this statistical estimaton model is not essentially easier than the optimal recovery
model.

Lemma 2 Let �0 = �(�1)=2 � :08. Let n0 = n0(�; C; p
0; p; n) be as in Lemma 1. Then

inf
�̂(v)

sup
�n;p(C)

Pfk�̂(v)� �kp0 � �0 � (1 + 1=n0)
�1=p0 �W (�; C; p0; p; n)g � 1 � e�2n0�

2
0 : (67)
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Proof. Let n0 and �0 be as in Lemma 1. Let the si be random signs, equally likely to

take the values �1 independently of each other and of the (zi). De�ne the random vector

� 2 Rn via

�i =

(
si�0 1 � i � n0;

0 i > n0
:

Note that � 2 �n;p(C) with probability 1. The indicated minimax risk in (67) is at least

the Bayes risk under this prior.

Let �̂�(v) denote the Bayes estimator, under this prior and observation scheme, for

the 0 � 1 loss 1
k�̂��k��0��0�n

1=p0

0

. Owing to the special structure of the prior and monotone

likelihood structure of the normal translation family, this Bayes rule always has the same

sign as the corresponding observation:

sgn(vi) � sgn(�̂�(v)i) � 0 8i; w:p:1: (68)

It follows that if the data have a \sign error" the Bayes rule does as well. Now as 0 < �0 � �,
and j�ij = �0, the probability of a sign error in any one coordinate is at least

Pfvi�i < 0g = Pf� � zi < ��0g � �(�1) = 2 � �0:

By the Cram�er-Cherno� large deviations principle, the number of sign errors is highly likely
to exceed �0n0:

Pf#fi : vi�i < 0g < �0n0g � e�n0H(�0;2�0)

where H(�; �0) = � log(�=�0) + (1� �) log((1� �)=(1� �0)). As H(�; �0) � 2(� � �0)2, we
get

Pf#fi : vi�i < 0g � �0n0g � 1� e�2n0�
2
0 : (69)

Because a sign error in a certain coordinate implies an estimation error of size �0 in that
coordinate,

#fi : vi�i < 0g � m =) k�̂�(v)� �kp0 � �0m
1=p0:

Hence (69) imples the bound on the Bayes risk

Pfk�̂�(v)� �kp0 � �0 � �0 � n1=p
0

0 g � 1� e�2n0�
2
0 :

Recalling that n0 and �0 satisfy

W (�; C; p0; p; n) � �0(n0 + 1)1=p
0

gives the stated bound on the minimax risk (67).
It remains only to show that the Bayes rule must have the sign-consistency property

(68). To do this, we let � denote the prior for �, and we put t
1=p0

0 = �0 � �0 � n1=p
0

0 for short.

We de�ne the Bayes risk

R(�̂; �) = E P�
n
k�̂ � �kp0p0 > t0jv

o
:

We claim that for any rule �̂(v), the sign-consistent rule

~�i(v) = �̂i(v) � sgn(�̂i(v))sgn(vi)
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has smaller Bayes risk

R(�̂; �) � R(~�; �);

this means that the Bayes rule may be taken to be (a.s.) sign-consistent.

In the posterior distribution of �jv, the �i are independent, supported on ��0, with

p+(vi) = P (�i = �jv) = (1 + e�2vi�=�)�1:

In particular, if vi � 0, then p+(vi) � 1 � p+(vi) � p�(vi).

In the posterior distribution of L̂(�; v) =
P

i j�̂i(v)��ijp
0

, the summands are independent,

with two-point distribution

j�̂i(v)� �ij =
(
j�̂i � �j with prob. p+(vi)

j�̂i + �j with prob. p�(vi)
:

The variable j~�i � �ij di�ers from j�̂i � �ij only if sgn(vi) 6= sgn(�i) and in that case is
stochastically smaller in the two-point posterior distribution, the larger deviation being as-

signed the smaller probability. Consequently, ~L(�; v) is stochastically smaller than L̂(�; v),
and so

R(~�; �) = E P�f~L(�; v) � t0jvg � E P�fL̂(�; v) � t0jvg � R(�̂; �)

as claimed.

This lemmaallows us to prove the dense case of Theorem 9 by choosing the n-dimensional
`p balls optimally. Using now the notation introduced in the proof of Theorem 7, there is
c0 > 0 so that for � < �1(C; c0) we can �nd j0 giving


j0(�) > c0 � 
(�):

Let �(j0)(C) be the collection of all sequences �(j0) whose coordinates vanish away from
level j0 and which satisfy

k�(j0)kb�
p;q
� C:

For � in �(j0)(C), we have

k�kb�
p;q

= 2jsk�kp;
geometrically, �(j0)(C) is a 2j0 -dimensional `p-ball inscribed in ��

p;q(C). Moreover, for �, �0

in �(j0)(C),
k� � �0k

b�0

p0;q0
= 2js

0k� � �0kp0

hence, applying Lemma 2, and appropriate reductions by su�ciency (Compare Brown,

Cohen, Strawderman (1975)), we have that, under the observations model (22), the problem

of estimating � 2 �(j0)(C) is no easier than the problem of estimating � 2 �n;p(2
�j0sC)

from observations (66), with noise level � = �, and with an `p
0

loss scaled by 2js
0

. Hence,
(67) gives

inf
�̂
sup
�(j0)

Pfk�̂ � �k
b�0

p0;q0
� 2j0s

0 � �0 � (1 + 1=n0)
�1=p0 �W (�; C2�j0s; p0; p; 2j0)g � 1 � e�2n0�

2
0

Now


j0 = 2j0s
0

W (�; C2�j0s; p0; p; 2j0)
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and


j0 � c0 � 
(�; C); � < �1(C)

so

inf
�̂

sup
��
p;q(C)

Pfk�̂ � �k
b�0

p0;q0
� c0 � �0 � (1 + 1=n0)

�1=p0 � 
(�; C)g � 1� e�2n0�
2
0

By (60), n0 !1 as �! 0, so that setting c = c0 � �0 � (1� 
), 
 > 0, we get (48).

7.3.2 Case II: The least-favorable ball is \sparse"

We fall in this case when (� + 1=2)p < (�0 + 1=2)p0.

Our lower bound for statistical estimation follows from a special needle-in-a-haystack

problem. Suppose that we have observations (66), but all the �i are zero, with the exception

of at most one; and that one satis�es j�ij � �0, with �0 a parameter. Let �n;0(1; �0) denote

the collection of all such sequences. The following result says that we cannot estimate �
with an error essentially smaller than �0, provided �0 is not too large. In the sparse case,
we have n0 = 1 and so this bound implies that statistical estimation is not easier than

optimal recovery.

Lemma 3 With � 2 (0; 2), let �0 <
q
(2� �) log(n) � � for all n

inf
�̂(v)

sup
�n;0(1;�0)

Pfk�̂(v)� �kp0 � �0=3g ! 1: (70)

Proof. We only sketch the argument. Let Pn;� denote the measure which places a

nonzero element at one of the n sites uniformly at random, with a random sign. Let

 = �0=�. By a calculation,

dPn;�

dPn;0
(v) = e�


2=2Avei cosh(�0vi=�
2):

The terms not involving signal contribute a sum which has the same distribution under
both Pn;� and Pn;0. The other term, when it is at coordinate 1, contributes

n�1e�

2=2cosh(
(
 + z1)) � e
jz1jn��=2

which obeys the probabilistic bound

Pfe
jz1j > �n�=2g � Pf
q
2 log(n)jz1j > log(n)�=2 + log(�)g ! 0:

Consequently

Pn;�fj1�
dPn;�

dPn;0
(v)j > �g ! 0:

Consequently, any rule has essentially the same operating characteristics under Pn;� as
under Pn;0 and must therefore make, with overwhelming probability an error of size � �0=3

in estimating �.
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To apply this, we argue as follows. Let � 2 (0; 2) and let j0 be the largest integer

satisfying q
(2 � �) log

2
(2j) � � � 2js � C

so that roughly j0 � s�1 log
2
(C=�) + O(log(log(C=�))), and set �j0 =

q
(2 � �) log

2
(2j0) � �.

Then for some a > 0,

�j0 � a � C � 2�j0s � < �1(C; a): (71)

Now, de�ne the random variable �(j0) vanishing away from level j0: �
(j0)
I = 0, I 62 I(j0);

and having one nonzero element at level j0, of size �j0 and random polarity. Then, from

the previous lemma we have

inf
�̂

Pfk�̂(j) � �(j)kp0 � �j0=3g ! 1

as �! 0, and also

inf
�̂
Pfk�̂ � �(j)k

b�0

p0;q0
� �j0=3 � 2js

0g ! 1:

Using (71) gives

�j02
�js0 � a � C � 2�j0(s0�s) = a �

�q
log(C=�)

C

�

�s0�s
s

(1 + o(1)); �! 0:

which proves the theorem in this case.

7.3.3 Case III: The least-favorable ball is \transitional"

The �nal, \transitional" case, is where (� + 1=2)p = (�0 + 1=2)p0 and p0 > p. Here the
variable n0 tends to 1, but much more slowly than the size of the subproblems.

Our lower bound for statistical estimation follows from a multi- needle-in-a-haystack
problem. Suppose that we have observations (66), but that most of the �i are zero, with the
exception of at most n0; and that the nonzero ones satisfy j�ij � �0, with �0 a parameter.

Let �n;0(n0; �0) denote the collection of all such sequences. The following result says that,

if n0 � n we cannot estimate � with an error essentially smaller than �0n
1=p0

0 , provided �0
is not too large. This again has the interpretation that a statistical estimation problem is

not easier than the corresponding optimal recovery problem.

Lemma 4 If n0 � A � n1�a, and, for � 2 (0; a) we have �0 �
q
2(a� �) log(n) � � then

inf
�̂(v)

sup
�n;0(n0;�0)

Pfk�̂(v)� �kp0 � (�0=2)(n0=5)
1=p0g ! 1; n0 !1: (72)

Proof. Set �n = n0=(2n). Consider the law making �i, i = 1; : : : ; n, i.i.d., taking values
0, with probability 1 � �n, and with probability �n taking values si�0, where the si = �1
are random signs, independent and equally likely to take values +1 and �1. Then let vi
be as in (66), and let 
 = �0=� be the signal-to-noise ratio. The posterior distribution of �i
given v satis�es

P (�i 6= 0jv) = (�ne
�
2=2cosh(
v=�))=((1� �n) + �ne

�
2=2cosh(
v=�)):
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Under our assumptions on �n and �0, �ne
�
2=2cosh(
2)! 0, so for all su�ciently large n,

�ne
�
2=2cosh(
v) < (1� �n); for v 2 [��0; �0]:

Therefore, the posterior distribution has its mode at 0 whenever v 2 [��0; �0]. Let �̂�i
denote the Bayes estimator for �i with respect to the 0 � 1 loss function 1j�̂i��ij>�0=2. By

the above comments, whenever �i 6= 0 and vi 2 [��0; �0], then the loss is 1 for the Bayes

rule. We can re�ne this observation, to say that whenever �i 6= 0 and sgn(�i)vi � �0, the

loss is 1. On the other hand, given �i 6= 0 there is a 50% chance that the corresponding

sgn(�i)vi � �0. Let �0 = �n=5. Then �0 � �n=2 = P f�i 6= 0 & sgn(�i)vi � �0g =2. For the
Bayes risk we have, because 0 < �0 < 2�0 < P f�i 6= 0 & sgn(�i)vi � �0g, and H(�0; �) is

increasing in � for � > �0,

P
n
#fi : j�̂�i � �ij > �0=2g > �0 � n

o
� e�nH(�0;2�0) = e�nH(�n=5;2�n=5):

In order to use this bound, we must take account of the fact that the prior does not
concentrate on �n;0(n0; �0). Since

P f#fi : �i 6= 0g > n0g � e�nH(2�n;�n);

the prior almost concentrates on �n;0(n0; �0). Hence, with minor modi�cations, we can
produce a prior strictly concentrating on �n;0(n0; �0) and satisfying

inf
�̂

P
n
#fi : j�̂i � �ij � �0=2g < �0 � n

o
� e�nH(�n=5;2�n=5) + e�nH(2�n;�n):

By a calculation, for k 6= 1, there is b(k) > 0 so that

e�nH(�n;k�n) � e�b(k)n�n = e�b(k)n0 ;

as n0 !1, so with overwhelming probability the number of errors j�̂i� �ij � �0=2 exceeds
m = �0n = n0=5. Because an error in a certain coordinate implies an estimation error of
size �0=2 in that coordinate,

#fi : j�̂i � �ij � �0=2g � m =) k�̂(v)� �kp0 � (�0=2)m
1=p0:

Hence

inf
�̂

Pfk�̂(v)� �kp0 � (�0=2) � (n0=5)1=p
0g � 1� 2e�b

0n0 :

To prove the required segment of the Theorem, we recall notation from the proof of the

critical case of Theorem 7. For j�(�; C) � j � j+(�; C), there are constants cj such that

(
Pj+

j
�

(2sjcj)
q)1=q � C. There corresponds an object supported at level j� � j � j+ and

having n0;j nonzero elements per level, each of size �, satisfying �n
1=p
0;j � cj. This object, by

earlier arguments attains the modulus to within constants, i.e.

(
j+X
j
�

(2js
0

�n
1=p0

0;j )
q)1=q � c
(�); � < �1(C; �) (73)
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A side calculation reveals that we can �nd 0 < a0 < a1 < 1 and Ai > 0 so that,

n0;j � A02
j(1�a0); ja � j � jb; � < �1(C)

and also

n0;j � A12
j(1�a1); ja � j � jb; � < �1(C):

De�ne now �j =
q
2(1 � a1 � �) log(2j)�, and de�ne m0;j such that �jm

1=p
0;j = cj . Let

ja = (4=5)j�+(1=5)j+ and jb = (1=5)j�+(4=5)j+ Then set up a prior for �, with coordinates

vanishing outside the range [ja; jb] and with coordinates inside the range independent from

level to level. At level j inside the range, the coordinates are distributed, using Lemma 4,

according to our choice of �0 � �j and n0 � bm0;jc.
Lemma 4 tells us that at each level, the `p

0

error exceeds (�j=2)(m0;j=5)
1=p0 with a prob-

ability approaching 1. Combining the level-by-level results, we conclude that, uniformly

among measurable estimates, with probability tending to one, the error is bounded below
by

k�̂ � �k �
0@ j1X

j0

(2js(�j=2)(m0;j=5)
1=p0)q

0

1A1=q0

:

Now we note that

�jm
1=p0

0;j = (
q
2(1� a1 � �) log(2j))(1�p=p

0

)�n
1=p0

0;j

hence this last expression is bounded below by

k�̂ � �k � (
q
2(1 � a1 � �) log(2j�))(1�p=p

0

) � c0 � 
(�):

In this critical case, r = (1�p=p0) and j� � log
2
(C=�)=(s+1=p). Hence with overwhelming

probability,

k�̂ � �k � c0 � 
(�
q
log(C=�)):

This completes the proof in the transitional case; the proof of Theorem 9 is complete.

7.4 Proof of Theorem 10

7.4.1 Empirical Wavelet Transform

Point 1. In [17, 18] it is shown how one may de�ne a theoretical wavelet-like transform

�[n] = Wnf taking a continuous function f on [0; 1] into a countable sequence �[n], with two

properties:

(a) Matching. The theoretical transform of f gives a coe�cient sequence �[n] that agrees

exactly with the empirical transform �(n) of samples of f in the �rst n places. Here

n is dyadic, and �[n](f) depends on n.

(b) Norm Equivalence. Provided 1=p < � < min(R;D), the Besov and Triebel sequence

norms of the full sequence �[n] are equivalent to the corresponding Besov and Triebel

function space norms of f , with constants of equivalence that do not depend on n,
even though in general �[n] depends on n.
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In detail, this last point means that if f̂ and f are two continuous functions with coe�cient

sequences �̂[n] and �[n] respectively, and if k�k and jf j denote corresponding sequence-space
and function-space norms, respectively, then there are constants Bi so that

B0k�̂[n] � �[n]k � jf̂ � f j � B1k�̂[n] � �[n]k; (74)

the constants do not depend on f or n. In particular, the coe�cient sequences, though

di�erent for each n, bear a stable relation to the underlying functions.

Point 2. The empirical wavelet transform of noisy data (di)
n
i=1 obeying (3) yields data

~yI = �I + � � ~zI ; I 2 In; (75)

with � = �=
p
n. This form of data is of the same general form as supposed in the sequence

model (22). Detailed study of the Pyramid Filtering Algorithm of [10] reveals that all but

O(log(n)) of these coe�cients are a standard Gaussian white noise with variance �2=n;
the other coe�cients \feel the boundaries", and have a slight covariance among themselves
and a variance which is roughly, but not exactly, �2=n. Nevertheless, the analog of (38)
continues to hold for this (very slightly) colored noise:

Pfsup
In

j~zI j �
q
2 log(n)g ! 0: (76)

In fact, our upper risk bound (40) depended on properties of the noise only through (38),
so this is all we need in order to get risk upper bounds paralleling (40).

7.4.2 Risk Upper Bound

To see the implications, suppose we pick a function ball F(C) and a loss norm j � j, both
arising from the Besov scale, with indices �; p; q and �0; p0; q0, respectively. Consider the
corresponding objects ��

p;q and k �k in the sequence space. (74) assures that sequence space
losses are equivalent to function space losses. Also, with �[n] the set of coe�cient sequences
�[n] = �[n](f) arising from f 2 F(C), for constants Ai, (74) yields the inclusions

��
p;q(A0 � C) � �[n] � ��

p;q(A1 � C): (77)

Now suppose we estimate f by applying the prescription (39) to the data (~yI)I2In,
producing �̂�n. By (77), �[n](f) 2 ��

p;q(A1 � C). By (76), the estimation error in sequence

space obeys, with overwhelming probability,

k�̂�n � �̂[n]k � 
(2tn) + �(n);

where 
 is the modulus for k � k over ��
p;q(A1 �C), etc. Combining with (74) and Theorem

7 we get that with overwhelming probability, for large n,

jf̂�n � f j � 2B1 � 
(2 � � �
s
2 log(n)

n
): (78)

Completely parallel statements hold if either or both j � j and F(C) come from the Triebel
scales with �0 > 1=p0.
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To �nish the upper risk bound, we consider the case where j � j comes from the Besov

scale with 0 � �0 � 1=p0 < min(R;D). We remark that if f (j) is a function whose

wavelet transform vanishes away from resolution level j and �(j) denotes the corresponding

coe�cient sequence, then

b0k�(j)k � jf (j)j � b1k�(j)k; (79)

with constants of equivalence independent of f and j. See Meyer (1990, page 46, Th�eor�eme

7). At the same time j � j is �-convex, � = min(1; p; q). Hence, if f is a function whose

wavelet coe�cients vanish at levels j > J , then

jf j� � b
�
1

X
j�J

k�(j)k�:

This bears comparison with

k�k = (
X
j�J

k�(j)kq0)1=q0: (80)

Now from n1=��1=q
0k�k`qn � k�k`�n , valid for q � � and � 2 Rn, we have

jf j � C � (J + 2)1=��1=q
0k�k:

Applying this in place of (74) gives, instead of (78),

jf̂�n � f j � b1 � log(n)1=��1=q
0


(2 � � �
s
2 log(n)

n
): (81)

In the Triebel case, we use (45),

k�kf�p;q � Ck�kb�
p;min(p;q)

so that we may continue from the point (80) with min(p0; q0) in place of q0 to conclude that
with overwhelming probability

jf̂�n � f j � b1 � log(n)1=��1=min(p0;q0)
(2 � � �
s
2 log(n)

n
): (82)

7.4.3 Risk Lower Bound

We remark again that the noise in the wavelet coe�cients (75) is exactly a Gaussian white

noise except for O(log(n)) terms which \feel the boundary". Modifying the lower bound
argument (48) by avoiding those coordinates which \feel the boundary" does not change
the general conclusion, only the constants in the expressions. Hence (48) is a valid lower

bound for estimating the parameter vector � from observations (3).

To translate the sequence statement into a function statement, we again distinguish
cases.

1. In the case where the loss comes from the scale C(R;D), the translation follows from
norm equivalence [(b) above].

40



2. For the case where the loss does not come from the scale C(R;D), and (�0+1=2)p0 6=
(� + 1=2)p, we use the single-level norm equivalence (79). Because the lower bound

(48) operates by arguing only with objects �(j0) that are nonzero at a single resolution

level j0, this establishes the lower bound.

3. For the case where the loss does not come from the scale C(R;D), and (�0+1=2)p0 =

(�+1=2)p, we use a more involved argument. Owing to the regularity of the wavelets,

we have, even when �0 < 1=p0, the norm inequality

k�k
b�0

p0;q0
� Cj

X
I

�I IjB�0

p0;q0
(83)

even though no inequality in the opposite direction can be expected. Similar results

hold in the Triebel scale. Consequently, lower bounds on the risk in sequence space

o�er lower bounds on the risk in function space. A careful proof of the inequality
requires study of the functions  I as constructed in [18], together with arguments
given there, which depend on techniques of Meyer (1990, Page 50 et seq.). Another
argument would use Frazier, Jawerth, and Weiss (1990), to show that ( I)I is a

collection of \smooth molecules".

The proof of Theorem 10 is complete.
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