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Abstract

Density estimation is a commonly used test case for non-parametric estimation

methods. We explore the asymptotic properties of estimators based on thresholding of

empirical wavelet coe�cients. Minimax rates of convergence are studied over a large

range of Besov function classes Bs;p;q and for a range of global L0p error measures,

1 � p0 < 1. A single wavelet threshold estimator is asymptotically minimax within

logarithmic terms simultaneously over a range of spaces and error measures. In

particular, when p0 > p, some form of non-linearity is essential, since the minimax

linear estimators are suboptimal by polynomial powers of n. A second approach,

using an approximation of a Gaussian white noise model in a Mallows metric, is used

to attain exactly optimal rates of convergence for quadratic error (p0 = 2).
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1 Introduction

The recent appearance of explicit orthonormal bases based on multiresolution analyses

has exciting implications for non-parametric function estimation. Unlike the traditional

Fourier bases, wavelet bases o�er a degree of localisation in space as well as frequency. This

enables development of simple function estimates that respond e�ectively to discontinuities

and spatially varying degrees of oscillations in a signal, even when the observations are

contaminated by noise.

This paper applies these heuristics in the context of probability density estimation:

estimate a probability density function f(x) on the basis of X1; :::;Xn, independent and

identically distributed observations drawn from f . Because of its simple speci�cation, this

important practical problem has also served as one of the basic test situations for the

theory of non-parametric estimation. An overview of traditional methods and a part of the

vast literature on theory and application of density estimation is given by Devroye(1985),
Silverman(1986) and Scott (1992). The �rst use of wavelet bases for density estimation
appears in papers by Doukhan and L�eon (1990), Kerkyacharian and Picard (1992) and

Walter (1990).
Let us suppose that the (inhomogenous) wavelet basis is derived from f�j1;k= 2j1=2�(2j1x�

k); k 2 Zg and f jk = 2j=2 (2jx� k); k 2 Z; j � j1g where �(x) and  (x) are the scaling
function and mother wavelet respectively. The probability density f has formal expansion

f(x) �
X
k

�j1k�j1k(x) +
X
j�j1

X
k

�jk jk(x): (1)

Since wavelet estimators are a form of orthogonal series estimate, one begins by forming
empirical wavelet coe�cients

�̂j1;k = n�1
nX
i=1

�j1k(Xi) ; �̂jk = n�1
nX
i=1

 jk(Xi): (2)

The key advantages of wavelet estimators follow from the e�ects of even very simple

non-linearities involving co-ordinatewise thresholding:

�s(x; �) = sgn x(x� �)+ ; �h(x; �) = xIfjxj > �g
where the subscripts refer to 'soft' and 'hard' thresholding respectively. The estimators we

consider in this paper are obtained by thresholding empirical coe�cients:

~�jk = �(�̂jk; �j) ; � = �s; �h (3)

along with �̂j1k in (1). Here we use either soft or hard thresholding as dictated by technical

convenience { from simulation experience in other contexts, one expects that soft thresh-

olding will have slightly better mean (square) error properties (at the level of constants,
not rates), while hard thresholding will better preserve the visual appearance of peaks and

jumps.
We look at global error measures for estimating the whole density, evaluating the mean

Lp0 error

Rn(f̂ ; f) = Ejjf̂n � f jjp0p0 = E

Z
jfn(x)� f(x)jp0dx:
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For the most part, we consider 1 � p0 < 1, which includes the important special cases

p0 = 1 and 2, which are of interest respectively for their properties of invariance and

mathematical simplicity. We look at the worst case performance over a variety of functional

spaces:

Rn(f̂ ;F) = sup
f2F

Ejjf̂n � f jjp0p0;

where F will usually be a subset of densities with �xed compact support and bounded

in the norm of one of the Besov spaces Bspq. Our main point is that the same form of

estimator, based on simple thresholding of the wavelet coe�cients, achieves nearly optimal

performance, in terms of rates of convergence over a variety of global error measures and

over a variety of function spaces. Here, near optimality means that the rates are best

possible except possibly for terms logarithmic in sample size. The signi�cance of this

universality of near-optimality is discussed in much greater detail in [DJKP].

Concerning the scale of Besov spaces Bspq, for the purposes of this introduction, let
us note only that it includes the traditional norms used in statistical theory, namely the
Hilbert-Sobolev (Hs

2 = Bs;2;2) and H�older (C� = B�;1;1; 0 < � =2 N ). For more general
Sobolev spaces, and the interesting special case of functions of bounded total variation, we

have the inclusions

Bs;p;1 � Hs
p � Bs;p;1 ; B1;1;1 � TV � B1;1;1:

Nemirovskii, Tsybakov and Polyak (1984) and Nemirovskii (1985) have shown that
over certain spaces in this scale, no linear estimate can attain even the optimal polynomial

rate of convergence. For example, over balls in the total variation norm, and for global
L2 error, the minimax rate among linear estimators is O(n�1=2), whereas the minimax
rate among all estimators is O(n�2=3). Thus the Besov scale includes a su�ciently broad
range of phenomena to make the near optimality results for wavelet thresholding esimators
interesting.

Theorem 2 establishes lower bounds for optimal rates of estimation over Bs;p;q. Two
cases emerge, which we shall call "dense" and "sparse", according as � = sp� (p0 � p)=2 is
> 0 or � 0. The lower bounds are derived by considering perturbations of a �xed density,
where the perturbations are combinations of basis functions drawn from an appropriate

resolution level. The terms dense and sparse refer to the number of basis functions used

to form the perturbation - for example, in the less smooth case when � < 0, a single basis
function is employed. It follows from these lower bounds that when p0 > p linear estimators
cannot achieve the optimal rate of convergence.

To establish upper bounds for speci�c wavelet threshold estimators, we use two di�erent

approaches. The �rst consists of a direct evaluation of the Lp0 losses for p
0 � p over densities

in Bs;p;q with support in a �xed interval. Theorem 3 shows that the estimator TW de�ned

using thresholds �j = K
q
j=n attains the optimal rate to within logarithmic terms, and

attains the exactly optimal rate in the "sparse" case.

A second approach is based on approximating the density model by a Gaussian white
noise model and then using results for threshold estimators in the white noise model derived

by Donoho and Johnstone (1992). This approach is at present carried out only for quadratic

loss but with appropriate choice of thresholds, it can be used to show that wavelet estima-
tors attain the exactly optimal rate. This is perhaps of interest, since the use of quadratic
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loss implies that one is in the "dense" case, for which the �rst approach does not yield

exactly optimal rates.

The paper concludes with an adaptivity result, Theorem 4, which emphasises that a

single, simple estimator can come within logarithmic terms of optimality simultaneously

over a wide range of Lp0 losses and Besov classes. In fact, one simply uses thresholds

�j = K
q
j=n over a range

n1=(1+2r0) � 2j � n= log n

where r0 + 1 is the regularity of the wavelet.

Some of the results of this paper were announced without proof in Johnstone, Kerky-

acharian and Picard (1992).

2 Besov Spaces and Wavelets

In this section, we recall de�nitions and set notation for later use. Some equivalent de�-
nitions of Besov spaces, which shed further light on their relevance to density estimation,
are reviewed in the Appendix.

2.1 Multiresolution analysis and wavelets

Let us recall (cf. Meyer [M]) that one can construct a function � such that:

(1) the sequence f�(x � k); k 2 Zg is an orthonormal family of L2(R). Let V0 be the
subspace spanned.

(2) 8j 2 Z, Vj � Vj+1 if Vj denotes the space spanned by f�jk; k 2 Zg, where �jk =
2j=2�(2jx� k).

Then we have \j2ZVj = f0g and furthermore, if � 2 L2(R) and R � = 1, L2(R) = [j2ZVj
and � is called the multiscale function of the multiresolution analysis (Vj)j2Z . Various
regularity properties can be required of �: we shall here assume that

(3) � is of class Cr, � and every derivative up to order r is rapidly decreasing. In this
case, the analysis is said to be regular .

In fact, we will assume in succeeding sections that in addition, � is compactly supported
in an interval [�A;+A] ( e.g. Daubechies' families [D]).

Under these conditions, de�ne the space Wj by

Vj+1 = Vj �Wj:

There exists a function  (the "wavelet") such that

(1) f (x� k); k 2 Zg is an orthonormal basis of W0.

(2) f jk; k 2 Z; j 2 Zg is an orthonormal basis of L2(R), where  jk = 2j=2 (2jx� k).

(3)  has the same regularity properties as �.
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In addition, we have the decomposition

L2(R) = Vj0 �Wj0 �Wj0+1 � : : : :

That is, for all f 2 L2(R),

f =
X
k2Z

�j0k j0k +
X
j�j0

X
k2Z

�jk jk;

where

�jk =
Z
f(x)�jk(x)dx; �jk =

Z
f(x) jk(x)dx:

2.2 Besov spaces

We give here the de�nition of Besov spaces in terms of wavelet coe�cients. This is conve-
nient as it gives a description in terms of sequence spaces.

Let � satisfy conditions (1), (2) and (3) with r > s, let E be the associated projection
operator onto Vj, and Dj = Ej+1 � Ej. Besov spaces depend on three parameters s > 0,
1 � p � 1 and 1 � q �1 and are denoted Bspq. Say that f 2 Bspq if and only if

Jspq(f) = jjE0(f)jjLp(R) + (
X
j�0

(2jsjjDjf jjLp(R))
q)1=q < 1:

(with the usual modi�cation for q =1). Using now the decomposition of f :

E0f =
X
k2Z

�0k�0k

Djf =
X
k2Z

�jk jk

we may also say that f 2 Bspq if and only if

J 0spq(f) = jj�0�jjlp +
0
@X
j�0

(2j(s+1=2�1=p)jj�j�jjlp)q
1
A
1=q

< 1:

(we have set jj�j�jjlp = (
P

k2Z j�jkjp)1=p ).
Note that Sobolev spaces have a di�erent characterisation in terms of sequences (e.g.

[FJ]).

This second de�nition is equivalent to the previous one as a consequence of the following
lemma (which will also be useful in the sequel).

Lemma 1 (Meyer, [M]) Let g be such that conditions (1) and (3) hold. Let �(x) = �g(x) =P
k2Z jg(x � k)j, and jj�jjp = (

R 1
0 j�(x)jpdx)1=p. Let f(x) =

P
k2Z �k2

j=2g(2jx� k). If

1 � p � 1 and p1 satis�es 1=p + 1=p1 = 1, then

1

jj�jj1=p11 jj�jj1=p1

2j(1=2�1=p)jj�jjlp � jjf jjLp � jj�jjp2j(1=2�1=p)jj�jjlp
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Remarks. 1. Using the J or J 0 norms, the Sobolev embeddings are easily obtained:

Bs0pq0 � Bspq for s0 > s; or s0 = s and q0 � q:

Bspq � Bs0p0q for p0 > p; s0 = s� 1=p + 1=p0;

In particular, for s�1=p � 0, Bsp1 is included in the space of bounded continuous functions,

and the same is true for s� 1=p > 0 and Bspq; q > 1.

2. Well known particular cases of the Besov spaces include the Hilbertian Sobolev

spaces Hs = Bs22, the set of bounded s-Lipschitz functions = Bs11, and the Zygmund

class B111.

3. We will also need the inclusion (cf. [M], [P,p. 80]): B0;p0;p0^2 � Lp0; p
0 � 1, where

B0p0q is de�ned through the J 0spq norm by putting s = 0.

4. The spaces of densities we use are de�ned by

Fspq(M) = ff :
Z
f = 1; f � 0; J 0spq(f) �Mg:

3 Linear estimators

In order to compare the classes of linear and non-linear estimators, we begin �rst with the
class CL of linear estimators, de�ned by the representation

f̂L(X1; : : : ;Xn; x) =
nX
1

Ti(Xi; x):

An important class of examples arises as follows. Let X1; : : : ;Xn be n i.i.d. random
variables with common density f and empirical distribution function Fn = n�1

Pn
i=1 IfXi �

xg.Given a function E(x; y), let Ej(x; y) = 2jE(2jx; 2jy), and consider the linear estimator

Êj(n) =
Z
Ej(n)(x; y)dFn(y):

Two cases are of particular interest:

E1(x; y) = �(x� y) (4)

E2(x; y) =
X
k2Z

�(x� k)�(y � k): (5)

E1 corresponds to the classical kernel estimate and E2 to a projection estimator on the space
Vj derived from the scale function � of a multiresolution analysis. Linear estimators have

the following distinguishing property. If f; g are two probability densities and � 2 [0; 1],
then

E�f+(1��)gf̂L = �Ef f̂L + (1 � �)Egf̂L:

The following results will show that the rate of convergence of linear procedures may

be strictly slower than that of non-linear ones. This phenomenon is associated with a

di�erence between the order of integration, p0, in the loss function and the order, p, in the

regularity constraints. It has already been observed in the related context of regression

([N], [DJ2]), and estimation over `p- balls [DJ90]. In the case of density estimation, we
have the following results, beginning �rst with linear estimators.
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Theorem 1 Let 1 � p; q � 1, p0 � p, s > 1=p.

RL
n = inf

f̂n2CL

sup
f2Fspq(M)

Ef jjf̂n � f jjp0p0:

There exist constants Ci such that

C1n
� s0p0

1+2s0 � RL
n � C2n

� s0p0

1+2s0 ;

where s0 = s� 1=p + 1=p0.

The corresponding lower bound for non-linear estimators reveals an `elbow' in the rates

of convergence. Let

� = min(
s

1 + 2s
;
s� 1=p + 1=p0

1 + 2s� 2=p
) ; � = sp � p0 � p

2
: (6)

We note that

� =

(
s=(1 + 2s) � � 0
s0=(1 + 2s� 2=p) � � 0:

(7)

Theorem 2 Let 1 � p; q � 1, p0 � p, s > 1=p.

Rn = inf
f̂

sup
f2Fspq(M)

Ef jjf̂ � f jjp0p0 :

(the in�mum being taken over all estimators (taking their values in a space containing
Fspq(M)). There exists a constant C3 such that

Rn � C3(
logn
n
)�p

0

� � 0

� C3n
��p0 � > 0:

Remarks. 1. As will be shown in the next two sections, the lower bound of Theorem 2 is
sharp, at least in the cases ( p0 � p; 1 < sp < (p0 � p)=2) and (p = 2; s > 1=p).

2. We note two special phenomena. First, an \elbow" appears in the rate of convergence:

the \usual" rate (s=(1 + 2s)) applies only if s is large enough - in other cases, the rate is

s0=(1 + 2s � 2=p). Secondly, a log term appears in the low regularity cases.

3. Comparison with Theorem 1 now shows that linear estimates have sub-optimal rates

of convergence for p0 � 2; p < p0; s > 1=p:

Proof of Theorem 2. We give only a brief sketch, as it is a slight modi�cation of

Nemirovskii's method to the case of densities. For small s (i.e. � � 0), we consider the set
of vertices of a pyramid

Pj = fg0 � 
 jk; k 2 Kjg for j � 0

where g0 is some in�nitely di�erentiable density satisfying g0 � c for x in the interval

[�A;A] containing the support of � and  . Choose M so that J 0spq(g0) � M=2 and let
Kj = f�(2j � 1)A + 2lA; l = 0; : : : ; (2j � 1)g, so that  jk and  jk0 have disjoint supports
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for k 6= k0. Finally, in order that Pj be included in Fspq(M), choose 
 such that 0 � 
 �
�(j; s; p;M), where

�(j; s; p;M) =
C

jj jj1
2�j=2 ^ M

2
2�j(s+1=2�1=p):

The inequality follows by standard arguments using Fano's lemma.

For the case of larger s (i.e. � � 0), we consider the set of vertices of a cube

Cj = ff� = g0 +
X
k2Kj


�k jk; �k = �1g

with

0 � 
 � C2�j=2

jj jj1 ^ M

2
2�j(s+1=2)

and using now Assouad's lemma, we obtain the required inequality.

Proof of Theorem 1. For the lower bound, we present the details of the proof in the
appendix and give on the idea here. The minimax risk is bounded below by the maximum
risk over an `p ball at a particular resolution level j. For p

0 � p, the least favorable points for
linear estimates over `p balls are \spikes" { such as the elements of a �xed Pj as introduced

above (compare [DJ, 1990, Section 8 in the Gaussian case). The lower bound is obtained
by randomizing over the elements of Pj.

For the upper bound, it su�ces to exhibit an estimator attaining the right rate of
convergence, for example the \linear wavelet estimator" (c.f. [KP 1992a]):

f̂n;j =
X
k2Z

�̂jk2
j=2�(2jx� k);

where �̂jk = n�1
Pn

i=1 �jk(Xi). We recall that since � has compact support, the summation
in k is �nite, and that � has regularity r > s.

Proposition 1 ([KP 1992a]) For � � 1; � < r; and f 2 F��q(M), if j(n) = [log2(n
1

1+2� )],
there exists a constant C4 such that

Ef jjf̂n;j(n) � f jj�� � C4n
� ��
1+2� :

The result is proved in [KP 1992a] for � � 2, but the same argument extends to � � 1
(cf. also (23) below). The upper bound in Theorem 1 is now a consequence of Proposition

1 and the Sobolev embeddings (see Section 2) Bspq � Bs0p0q for p
0 � p; s� 1=p = s0� 1=p0 ,

in which we take � = p0 and � = s0.

4 Threshold wavelet estimators

Among non-linear estimators, we propose a very special one: a truncated threshold wavelet
estimator. De�ne empirical coe�cients �̂jk, �̂jk as in (2), and employ hard thresholding:

~�jk =

(
�̂jk if j�̂jkj > KC(j)n�1=2

0 if j�̂jkj � KC(j)n�1=2
;
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Then the estimator TW associated with the functions j0(n); j1(n); C(j) and K is

TW (x) =
X
k2Z

�̂j1k�j1k(x) +
j0X
j1

X
k2Z

~�jk jk(x): (8)

Before considering the properties of this estimator, we pause for some motivation. The

linear wavelet estimator, LW , (corresponding to j0 = j1) is not optimal if p < p0.This

may be explained via the decomposition of the error into bias and stochastic (variance)

components. If LW uses level j(n), it has bias of order 2�j(n)s
0p0, while the stochastic term

is of order (2j(n)=n)p
0=2. This leads to the idea of beginning with a low frequency estimator

LW (j1(n)), with j1(n) chosen low enough that the stochastic term has the right rate, and

then to add in certain \details" up to the higher order j0(n) in such a way that the bias

term also has the right order. (It is easily seen that if p0 = p, it su�ces to choose j0 = j1,

whereas for p0 > p, it is necessary to take j0 > j1).
It remains now to choose a way of re�ning the details, and this is done using a supere�-

ciency procedure in the spirit of the Hodges-Lehmann estimator near �jk = 0. This choice
makes sense since the constraint Fspq(M) on the function \forces" most of the �jk to be
small. We focus on the choice C(j) =

p
j. The �rst theorem describes the behavior of TW

when p; q; s are known. An adaptivity result for unknown p; q; s appears in Section 6.
As before, let � = sp � (p0 � p)=2: In the statement below, the notation 2j(n) ' g(n)

means that j(n) is chosen to satisfy the inequalities 2j(n) � g(n) < 2j(n)+1.

Theorem 3 Let p0 � p _ 1; s � 1=p > 0: Suppose that

Fspq(M;T ) = ff 2 Fspq(M) : suppf � [�T;+T ]g

If C(j) =
p
j, there exist constants C5 = C5(s; p; q;M) and K0 such that if

2j1(n) ' (n(log n)
p0�p

p
If��0g)1�2�

2j0(n) ' (n(log n)�If��0g)�=s
0 (9)

and K � K0, then

sup
f2Fspq(M;T )

Ef jjTW � f jjp0p0 �
8><
>:
C5(log n)

(1��=sp)�p0n��p
0

� > 0

C5(log n)
(p0=2�p=q)+( logn

n
)�p

0

� = 0

C5(log n=n)
�p0 � < 0:

(10)

where x+ = max(x; 0).

Remarks. In the case � < 0, the rate is sharp: the bounds in Theorems 2 and 3 agree. In

the other cases, the power of n is correct, but an extra logarithmic term appears (as it does
also in the work of Nemirovskii).

The logarithmic term does not appear in the case p0 = 2 studied by Donoho-Johnstone,

and we show in the next section that we can modify C(j) so as to obtain the analog of
their result when p0 = 2. The modi�cation has two disadvantages: �rstly C(j) is implicitly

speci�ed and is hard to calculate, and second, it depends strongly on (p; s; q; p0). Thus it
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will not be of use in the �nal section, where we construct adaptive procedures. However,

adaptive rate optimal procedures can be constructed in the Gaussian case using Stein's

unbiased estimate of risk to choose thresholds (Donoho and Johnstone, 1993) and it is

natural to conjecture that the argument could be extended to the density case also.

It is also of interest to look at the exponent of this extra log term. In case of � > 0, it is

strictly better than �p0 and is independent of q, but if � = 0, we see that we have an extra

term in addition when q su�ciently large. It turns out (Donoho, Johnstone, Kerkyacharian,

Picard, 1993) that this extra term is actually sharp, since the lower bound of Theorem 2

can be improved to contain it, at least in the Gaussian white noise setting. Of course the

constant C5 depends on p; q; s; p
0 and blows up for �! 0 or q ! 2p

p0
, which accounts for the

discontinous nature of the results as presented here.

The number of levels used is proportional to log2 n: indeed j1(n) � (1� 2�) log2 n and

j0(n) � (�=s0) log2 n: In particular, we note that j1(n) < j0(n) unless p
0 = p; � > 0, in

which case Theorems 1 and 2 show that the linear estimators considered in the previous
section are optimal. Thus we will exclude this case from the proof that follows.

The condition of compact support is not necessary. It is easy to show that it can be
replaced by a domination condition of the following type:

(C) 9r > 1, 9! : R !R symmetric, non-negative, decreasing on R+, jj!jj1=r <1 such

that 9a for which f(x) � !(x� a); 8x 2 R.
Nevertheless, we do not know if the result is still true without any further condition at

all on Fspq(M).

Proof of Theorem 5. Preliminaries.

Moment bounds. We recall the following result of Bretagnolle-Huber [BH]: Let Y1; : : : ; Yn
be i.i.d. random variables with EYi = 0; EY 2

i � �2; jYij � A. Then there exists cm such
that:

if m � 2 ; Ejn�1
X

Yijm � cm(
�2Am�2

nm�1
+

�m

nm=2
) (11)

if 1 � m � 2 ; Ejn�1XYijm � �mn�m=2:

Back in the density estimation setting, let X1; : : : ;Xn be an i.i.d. sample from a dis-
tribution with bounded density f , and let g 2 L2(R) be bounded with

R
g2 = 1. De�ne

gjk(x) = 2j=2g(2jx� k),


jk =
Z
gjk(x)f(x)dx ; 
̂jk = n�1

nX
i=1

gjk(Xi):

Now apply the Bretagnolle-Huber inequalities to Yi = gjk(Xi) and set

A = 2jjgjj12j=2 ; �2 �
Z
jgj2(x� k)f(x=2j)dx � jjf jj1jjgjj22 = jjf jj1:

It follows that there exists a constant cm depending only on m such that

Ej
̂jk � 
jkjm � cmfjjf jjm=2
1 + jjf jj1(2jjgjj1)m�2gn�m=2 (12)

for all j if 1 � m � 2, and as soon as n � 2j for m > 2.
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Now it is easy to show that if f 2 Fspq(M), then

jjf jj1 � (1� 2�s
00q0)1=q

0

J 0s001q(f) �M(1� 2�s
00q0)1=q

0

: (13)

where s00 = s � 1=p > 0 and 1=q + 1=q0 = 1. Consequently, when f 2 Fspq(M), the bound

(12) may be written

Ej
̂jk � 
jkjm � cbhn
�m=2: (14)

where cbh depends as shown at (12) and (13) on s; p; q;M; jjgjj1 and m.

Large deviations. The terms ebs and esb below are bounded using large deviations inequal-

ities for the event j�̂jk � �jkj > (K=2)
q
j=n: We therefore recall Bernstein's inequality:

If Y1; : : : ; Yn are i.i.d. bounded random variables such that EYi = 0; EY 2
i = �2; jYij �

jjY jj1 <1, then

P (jn�1
X

Yij > �) � 2 exp(� n�2

2(�2 + jjY jj1�=3)):

Applying this to Yi =  jk�Ef jk(Xi) and noting that �2 � jjf jj1 �M , we conclude that
if j2j � n, then for all 
 � 1, there exists K = c(M; )
 such that

Pfj�̂jk � �jkj > (K=2)
q
j=ng � 2�
j : (15)

For example, the choice c2(M;
) = 2jj jj1M su�ces if jj jj1 � 1 and M � 2jj jj1.

Norm inequalities. We begin with some useful inequalities for Lp0-norms (p0 � 1) of a
(random) function

f̂ =
j0X
j1

X
k

f̂jk jk:

Using the inclusions B0;p0;p0^2 � Lp0 and Lemma 1, we have, for � = p0 ^ 2 � 1

jjf̂ jjp0p0 � Cp0(
j0X
j1

jjDj f̂ jj�p0)p
0=� (16)

jjDj f̂ jjp
0

p0 � Cp02j(p
0=2�1)

X
k

jf̂jkjp0: (17)

Here, and throughout, C denotes a constant that is not necessarily the same at each

appearance. De�ne

S(
) =
j0X
j1

2j
 �
(
c
2

max(j0
;j1
) 
 6= 0
(j0 � j1) 
 = 0:

(18)

From (16), and setting a = p0=(p0 � 2), we may derive the bound

Ejjf̂ jjp0p0 �
(

Cp0Pj0
j1
2j(p

0=2�1)P
k Ejf̂jkjp0 1 � p0 � 2

Cp0S(�a)(p
0=2�1)+

Pj0
j1
2j(p

0=2�1��p0=2)P
k Ejf̂jkjp0 p0 > 2

(19)

11



The �rst inequality is immediate from (16) and (17). When p0 > 2, we �rst apply H�older's

inequality in (16) to obtain

(
X
jjDj f̂ jj2p0)p

0=2 � (
j0X
j1

2j�p
0=(p0�2))

p0

2
�1

j0X
j1

2�j�p
0=2jjDj f̂ jjp

0

p0: (20)

Combining (20) with Lemma 1 yields the second inequality in (19). If we adopt the purely

formal convention that S0 = 1, then the second inequality in (19) with � = 0 reduces to

the �rst, and so with this convention, we use (19) for all p0 � 1 below.

Completion of proof. The estimator TW in (8) has two parts: a linear piece Êj1(n)

and a detail term D̂j1 ;j0. Along with a corresponding decomposition of f this yields

Ef jjTW�f jjp0p0 � 3p
0�1(Ef jjÊj1(n)�Ej1(n)f jjp

0

p0+Ef jjD̂j1j0�Dj1j0f jjp
0

p0+jjf�Ej0(n)f jjp
0

p0): (21)

where

Ejf(x) =
Z X

k2Z

�jk(y)�jk(x)f(y)dy

Dj1j0f(x) =
Z j0X

j1

X
k2Z

 jk(y) jk(x)f(y)dy:

The third and �rst terms in (21) are easily estimated. We start with the approximation
error. Using the second or fourth characterizations of Besov spaces and the Sobolev em-
beddings Bspq � Bs0p0q, it is easy to see that

jjf � Ej0(n)f jjp
0

p0 � C(s; p; q;M)2�j0(n)s
0p0: (22)

From the choice of j0(n), this bound has the rate of convergence speci�ed in (10) if � >
0; p0 = p; or � = 0; p0=2p � 1=q; or � < 0 and is negligible otherwise.

We turn now to the linear term Ef jjÊj1(n) � Ej1f jjp
0

p0. Using Lemma 1, (14) and the
compact support of �, this term is bounded by

jj��jjp
0

p02
j1(n)(

p0

2
�1)

X
k2Z

Ej�̂j1(n)k � �j1(n)kjp
0 � Ccbh(T +A)(

2j1(n)

n
)p

0=2; (23)

From the choice of j1(n), this bound has the speci�ed rate of convergence if � > 0 or

� = 0; p0=2p � 1=q and is negligible otherwise.

To decompose the details term, de�ne

B̂j = fk : j�̂klj > K
q
j=ng; Ŝj = B̂c

j

Bj = fk : j�jkj > K=2
q
j=ng; Sj = Bc

j

B0
j = fk : j�jkj > 2K

q
j=ng; S0j = B0c

j :

12



We may then write

D̂j1j0f �Dj1j0f =
Pj0

j1

P
k(�̂jk � �jk) jk [Ifk 2 B̂j \ Sjg + Ifk 2 B̂j \ Bjg]

+
Pj0

j1

P
k �jk jk [Ifk 2 Ŝj \B0

jg + Ifk 2 Ŝj \ S0jg]
= ebs + ebb + esb + ess:

For the term ebs, we set f̂jk = j�̂jk � �jkjIfk 2 B̂jSjg. Clearly B̂jSj � Djk = fj�̂jk �
�jkj > (K=2)

q
j=ng, the large deviation event studied in (15). We �rst calculate using this,

H�older's inequality, and (14) thatX
k

Ejf̂jkjp0 �
X
k

Efj�̂jk � �jkjp0;Djkg

� X
k

(Ej�̂jk � �jkjp0r)1=rP (Djk)
1=r0

� cbh(T + 2A)n�p
0=22j(1�
=r

0):

Applying (19) gives

Ejjebsjjp
0

p0 � Cp0 � cbhn�p0=2 � S(�a)(p0=2�1)+S((1� �)p0=2 � 
=r0): (24)

Using the notation of (18), we note that (when p0 > 2)

S(�a)rS(b) � cr�acb2
(ra+b)js; ra = p0=2

where js = j1(n) if a; b < 0 and js = j0(n) if a; b > 0. Since 
 can be chosen arbitrarily large
and the choice of � is free (when p0 > 2), we may arrange that the appropriate arguments

of S(�) in (24) ( i.e. both when p0 > 2 and the second when 1 � p0 � 2) are negative. Thus
for p0 � 1,

Ejjebsjjp
0

p0 � C2j1(p
0=2�
=r0)n�p

0=2:

For any choice of 
 > 0, this bound is smaller than the linear term in (23) and so is

asymptotically negligible.

For the term esb, apply (19) and (18) to f̂jk = �jkIfk 2 ŜjB0
jg. Again ŜjB0

j � Djk and

so using the large deviations bound and the inclusion Bs0p0q � Bs0p01,X
k

Ejf̂jkjp0 � X
k

j�jkjp0P (Djk) � jj�j:jjp
0

p02
�
j

� Cjjf jjp0s0p012�j(s
0p0+p0=2�1+
): (25)

Thus

Ejjesbjjp
0

p0 � CS(�a)(
p0

2
�1)+S(�p0(�=2 + s0)� 
)Mp0

� C2�j1(n)(
+s
0p0); (26)

after choosing � and 
 as described for ebs and exploiting the embedding Bs;p;1 � Bs0;p0;1.
This term also is seen to be negligible by taking 
 large. For example, the choice 
 =
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0 = (�=(1� 2�)� s0)p0 makes (26) of exactly the same order as (22). The constant K0 in

Theorem 3 may then be taken as c(M; )
0, speci�ed in (15).

For the term ebb, apply (19) to f̂jk = j�̂jk � �jkjIfk 2 B̂jBjg. In this case, using (14)

X
k

Ejf̂jkjp0 � cbhn
�p0=2

X
k2Bj

j2�jk
K

s
n

j
jp (27)

� Cjj�jjjpp j�p=2n�(p
0�p)=2

� Cjjf jjpsp12�j(s+1=2�1=p)pj�p=2n�(p
0�p)=2:

In the case � 6= 0, we have, as before from (19) and (18)

Ejjebbjjp
0

p0 � CMp

n(p
0�p)=2

S(�a)(
p0

2
�1)+S(��� �p0=2)

� C

n(p
0�p)=2

(
2�j1� � > 0
2�j0� � < 0:

Comparison with the bound (29) below shows that these powers are negligible. In the case
� = 0, we have

Ejjebbjjp
0

p0 � CMp (j0 � j1)
(p0�2)+=2

n(p
0�p)=2

j0X
j1

j�p=2

� CMpj
(p0_2�p)=2
0

n(p0�p)=2
; (28)

since j0(n)=j1(n) � p0=(p0 � 2) in the case when p0 > 2.

Finally, we consider the important and rate determining case ess, in which f̂jk =

�jkIfk 2 ŜjS
0
jg. When p0 > 2, instead of (20), we use (17), and obtain the sharper

inequality

X
j

jjDj f̂ jj2p0 � C
X
j

2j(1�2=p
0)(
X
k2S0

j

j�jkjp0)2=p0

� C(2K)(2=p
0)(p0�p)

X
j

2j(1�2=p
0)(j=n)(p

0�p)=p0jj�jjj2p=p0p ;

where we have put j�jkjp0 = j�jkjp0�pj�jkjp and noted that k 2 S0j implies j�jkj � 2K(j=n)
1
2 .

Now set 
j = 2j(s+1=2�1=p)jj�jjjp : since f 2 Fspq(M), jj
jjq � J 0spq(f) � M < 1. Using
(16), we obtain

Ejjessjjp
0

p0 � C(
j0

n
)
p0�p

2 (
j0X
j1

j
jj2p=p02�j�2=p0)p0=2

� C(
j0

n
)
p0�p
2

8<
:
C jj
jjp1 2maxf�j0�;�j1�g � 6= 0

jj
jjpq j
p( p

0

2p
� 1

q
)+

0 � = 0:
(29)
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where for � = 0, we have used monotonicity of lp(Z) norms and H�older's inequality, accord-

ing as q � 2p=p0 or q > 2p=p0. That these rates correspond to those announced in Theorem

3 follows from the de�nitions (9) and the equalities

(p0 � p)=2 + �(1� 2�) = �p0 if � � 0;

(p0 � p)=2 + ��=s0 = �p0 if � � 0:

When 1 � p0 � 2, we have from (19) that

Ejjessjjp
0

p0 � Cp0
j0X
j1

2j(p
0=2�1)

X
k2S

0

j

j�jkjp0

� C(
j0

n
)(p

0�p)=2
j0X
j1

2�j�j
jjp:

where 
j is as above. Arguing using monotonicity of `p(Z) norms, etc. as above, we obtain

Ejjessjjp
0

p0 � C(
j0

n
)(p

0�p)=2

( jj
jjp12max(�j0�;�j1�) � 6= 0

jj
jjpqj(1�p=q)+0 � = 0:

5 Quadratic loss and Gaussian approximation

We turn now to the speci�c case of squared error loss, p0 = 2. In this case, we can
exhibit estimators having the exact rate of convergence described by the lower bound of

Theorem 2. The approach is via white noise approximation, taking advantage of the results
of Donoho & Johnstone (1992).

We begin by recalling the Gaussian white noise model in sequence space:

yjk = �jk + "zjk j = 0; 1; � � � ; k = 0; 1; � � � ; 2j � 1 (30)

where zjk are i:i:d:N(0; 1) and � = (�jk) is unknown. Suppose that it is desired to estimate

� with squared error loss jj�̂ � �jj22 =
P
(�̂jk � �jk)

2 and it is known that � 2 �spq(M) =
f� : jj�jjs;p;q �Mg where, in this section,

jj�jjqs;p;q =
X
j�0

(2js
0 jj�j:jjp)q (31)

and s0 = s + 2�1 � p�1, jj�j:jjpp =
P2j�1

k=0 j�jkjp. From Donoho and Johnstone (1992), it is
known that

R�
N (�n

�1=2;�s;p;q(M)) � 
(�n�1=2)(M�2=n)2s=(2s+1) (32)

where 
(") = 
("; s; p; q;M) is a continuous, periodic function of log2 " with period 1.

We recall also that co-ordinate-wise threshold estimators can be chosen to be within

a bounded factor of being asymptotically minimax. De�ne a soft threshold rule �̂� by

f�s(yjk; �j); j = 0; 1; : : : ; k = 0; 1; : : : ; 2j � 1g. Then DJ (1991) show that in model (30),
there exist absolute constants Aspq such that

inf
�=(�j)

sup
�spq(M)

E�jj�̂� � �jj2 � AspqR
�
N (";�spq(M))(1 + o(1)) (33)
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Theorem 4 Suppose that either p � 1 and s > p�1 or that s = p�1; p > 1: Then there

exists � = �(s; p; q;M), c = c(s; p; T ) and C6 = C6(s; p; q;M) such that

inf
f̂n

sup
Fspq(M;T )

Ef jjf̂n � f jj22 � C6R
�
N (�n

�1=2;�spq(cM))(1 + o(1)): (34)

Estimators of the form (42) below attain the bound, for choices of j1; j2 and f�jg to be

described below.

The following approximation lemma is the basic tool in bounding the density estimation

risk by a corresponding white noise model risk. It is proved in the appendix.

Lemma 2 Let the i:i:d: variables Y1; � � � ; Yn satisfy EYi = 0; EY 2
i = 1; jYij � M and set

Sn =
Pn

1 Yi: Then there exist absolute constants c1; c2 and a standard Gaussian variable Z

such that whenever M2n�1 log3 n � c1,

E(n�1=2Sn � Z)2 � c2M
2n�1: (35)

The following lemma, also proved in the appendix, describes a bound on the risk of soft

threshold estimators in the Gaussian white noise model as the noise variance is increased.
This will be used to bound a heteroscedastic model by a homoscedastic one.

Lemma 3 Let E�;�2 denote expectation when Y � N(�; �2): If � < ��, then

E�;�2[�s(Y; �)� �]2 � 2E�;��2[�s(Y; �)� �]2: (36)

To apply the lemmas, �x (j; k) and note that �̂jk has mean �jk and variance n�1�2jk,
where �2jk = �2jk(f) = Varf  jk(X): We use Lemma 2 to construct an approximation 
̂jk
having an exact Gaussian distribution with the same mean and variance. To this end, let
Yi = ( jk(Xi) � �jk)=�jk, and note that jYij � 2jj jj12j=2=�jk = Mjk say. We construct

̂jk = �jk + n�1=2�jkZjk by the following recipe.

Firstly, if �2jk � 4jj jj212j log3 n=c1n; then use Lemma 2 to construct Zjk, and note that

T4 = E[�̂jk � 
̂jk]
2 = n�1�2jkE[n

�1=2Sn � Zjk]
2 (37)

� 4jj jj21c22jn�2: (38)

Secondly, if �2jk < 4jj jj212j log3 n=c1n; then choose an independent Zjk � N(0; 1) and
simply use the inequality

T4 � 2Var �̂jk + 2n�1�2jk = 4n�1�2jk < 16jj jj21c�11 2jn�2 log3 n: (39)

In either case, we have therefore for all j; k; n

T4 = E[�̂jk � 
̂jk]
2 � c42

jn�2 log3 n: (40)

To apply the Gaussian approximation to ~�jk = �s(�̂jk; �j), we �rst write

[�(�̂jk; �) � �jk]
2 � 2[�(�̂jk; �) � �(
̂jk; �)]

2 + 2[�(
̂jk; �)� �jk]
2: (41)
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We shall use the notation r(��; �;�) for the Gaussian mean squared error

E[�s(�+�Z; �)��]2 for estimation of � from a single Gaussian observation with mean � and

variance �2. In addition the mapping y ! �s(y; �) is a contraction: j�(y1; �) � �(y2; �)j �
jy1 � y2j regardless of the value of �. Thus,

E[ ~�jk � �jk]
2 � 2E[�̂jk � 
̂jk]

2 + 2r(��; �jk;n
�1=2�jk):

� 2c42
jn�2 log3 n; + 4r(��; �jk;�n

�1=2);

where we have used the approximation error bound (40), the variance bound (36), and �2

is any common upper bound on �2jk. For example, all densities f 2 F 0
spq(M) are uniformly

bounded, say by B0, and so �2jk �
R
 2
jk(x)f(x)dx � B0.

Proof of Theorem 6. It su�ces to restrict attention to estimators of the form

f̂ =
X
k

�̂j1k�j1k +
j2X
j1

X
k2Z

�s(�̂jk; �j) jk: (42)

where j1 is a �xed constant and j2 = j2(n) will be speci�ed below. Thus

Ejjf̂ � f jj22 =
X
k

E[ ^�j1k � �j1k]
2 +

j2X
j1

X
k

E[�s(�̂jk; �j)� �jk]
2 +

1X
j2+1

X
k

�2jk

= Ln(f) + Sn(f) + Tn(f):

Since j1 is �xed Ln � Cn�1 is negligible. A simple maximisation shows that

supfTn(f) ; f 2 Fspq(M;T )g =M22�2js
0

where s0 = s+ 1=2� 1=p. To bound Sn(f) let Sj = fk : j2�jkj < T +Ag, employ (42) and
note that

j2X
j1

X
k2Sj

2jn�2 log3 n � 4(T +A)22j2n�2 log3 n:

In summary,

Ejjf̂ � f jj22 � Cn�1 + 4
X
j

X
k2Sj

r(��j; �jk;�n
�1=2) + c52

2j2n�2 log3 n+M22�2js
0

: (43)

Choose j0 so that 2j0�1 � T +A < 2j0 . Using the identi�cation �j0k = �jk, j
0 = j + j0, and

��j0 = �j�j0 , the sum in (43) is bounded by

supf
1X

j0=j0

X
jkj�2j0

r(� ��j ; �j0k;�=
p
n) : � 2 �spq(2

j0s
0

M)g;

which for appropriate choice of ��j is bounded by AspqR
�
N (�n

�1=2;�spq(2
j0s

0

M))(1 + o(1)).

Thus for c = c(s; p; T ) we might take c = 2s
0

(T +A)s
0

.
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To complete the proof, it therefore remains to show that the cuto� j2 = j2(n) can be

chosen so that the �nal two right side terms in (43) are of smaller order than R�
N , namely

n�2s=(2s+1) (cf (32)). A su�cient condition for this is easily seen to be

s

2s + 1

1

s0
log2 n << j2(n) <<

s+ 1

2s+ 1
log2 n�

3

2
log2 log2 n (44)

where an << bn is to be interpreted as bn�an !1. In turn, a su�cient condition for this

is that s < (s+1)(s+2�1�p�1), which is certainly satis�ed if p � 1 and either s = p�1 < 1

or s > p�1.

6 Adaptation results

This section shows that a slight modi�cation of TW renders it adaptive, in the sense that
it either exactly or approximately achieves the rates of convergence of Theorem 3 without
the need to specify s; p; q. Fix an integer r0 and de�ne a class

S = f(s; p; q) : (1=p) < s � r0; p � p0; 1 � q � 1g
The modi�cation, denoted ATW , is obtained from compactly supported and (r0+1)�

regular functions �; in (8) simply by specifying C(j) =
p
j as before, and

2j1(n) ' n1=(1+2r0) ; 2j0(n) ' n= log n:

The constant K is chosen as c(M; )p0r0. Thus, ATW is constructed from TW by max-
imising over S the range of levels j over which thresholding occurs in (10).

Theorem 5 Suppose that X1; : : : ;Xn are i.i.d with density f of compact support contained
in [�T; T ], and belonging to some class Fspq(M;T ), where (s; p; q) 2 S. If p0 � 1, then for

all (s; p; q) 2 S, there exists C7(s; p; q;M) such that

Ef jjATW � f jjp0p0 �
(
C7(log n=n)

�p0 � 6= 0

C7(log n)
(p0=2�p=q)+(log n=n)�p

0

� = 0:
(45)

Remark. Although the estimator does not depend on (s; p; q), it is not fully adaptive, since

its speci�cation still depends on M and p0. A fully adaptive estimator is possible in the

Gaussian white noise case, see ([DJKP]).

Proof. We modify that of Theorem 3. Consider f 2 Fspq(M) and de�ne indices ji(s; p; q)

by

2j1(s;p;q) ' (n(log n)�If�>0g)1�2� ; 2j0(s;p;q) ' (n(log n)�If��0g)�=s
0

:

The index j1(s; p; q) di�ers only slightly from that used in Theorem 3, which will be denoted

j�1(s; p; q).
On Fspq(M), the linear and bias terms have rates of convergence no worse than TW :

Ef jjÊj1 � Ej1f jjp
0

p0 � C(
2j1(n)

n
)p

0=2 � C(
2j

�
1
(s;p;q)

n
)p

0=2

Ef jjEj0f � f jjp0p0 � C2�j0(n)s
0p0 � C2�j0(s;p;q)s

0p0
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The asymptotic behavior of the large deviation terms esb; ebs is treated exactly as for

TW : for 
 � 
0(s; p; q) = (�=(1 � 2�) � s0)p0 they are bounded by C2�j0(s;p;q)s
0p0. In view

of the choice K = c(M; )p0r0, it su�ces to verify that 
0(s; p; q) � r0 over S. For � > 0,


0 = s� s0 � r0, whereas for � � 0, 
0 = 2s0=(p0 � 2) � 1=p � 1=p0 = s� s0 � r0.

For ess, we use a decomposition,

ess = (
j1(spq)X
j1

+
j0(spq)X
j1(spq)

+
j0X

j0(spq)

)
X

k2Ŝj\S
0

j

�jk jk = essa + essb + essc:

The second term is of the form studied in the proof of Theorem 3. When � � 0, the value

of j1 plays no role asymptotically, and so the �rst and second terms may be combined and

bounded as in Theorem 3. The third term is bounded as in (22), jjesscjjp
0

p0 � Cp02�j0(spq)s
0p0.

When � > 0, the value of j0 plays no role asymptotically, and so the second and third

terms may be combined and bounded by (29) as in Theorem 3. The slightly di�erent choice

of j1 made here leads to a bound in terms of (log n=n)�p
0

. For the �rst term, we have

Ejjessajjp0 �
j1(spq)X
j1

2j(1=2�1=p
0)k�j:kp0 �

j1(spq)X
j1

2j(1=2�1=p
0)2j=p

0

K

s
j

n

� C

s
2j1(spq)j1(spq)

n
� C(

logn

n
)�:

The behavior of the term ebb is a little more delicate. We look �rst at the case � � 0,
which, as noted earlier, arises only for p0 > 2. Applying (19) for � = 0 with (27) gives

Ejjebbjjp
0

p0 � Cp0(j0 � j1)
(p0�2)=2cbhn

�p0=2
j0X
j1

2j(p
0=2�1)

X
k

j2�jk
K

s
n

j
jp1

� Cp0(
j0

n
)(p

0�p1)=2

"
sup
j

2j(p
0�2)=2p1jj�jjjp1

#p1

We choose p1 2 (p; p0) so that (p0=p1)�1 = s+1=2�1=p; this choice also yields (p0�p1)=2 =
�p0. Since jj�jjjp increases as p decreases,

Ejjebbjjp
0

p0 � Cp0(
j0

n
)�p

0jjf jjsp1 � Cp0Mp1(
log n

n
)�p

0

:

When � > 0, we decompose

ebb = (
j1(spq)X

j1

+
j0X

j1(spq)

)
X
k

(�̂jk � �jk) jkIfk 2 B̂j \Bjg

= ebba + ebbb:

The term ebbb is bounded exactly as in the previous section since the upper limit j0 does

not a�ect the estimate. For the term ebba, we exploit (19) along with (23) (applied to �̂jk
instead of �̂jk ) to conclude that

Ejjebbajjp
0

p0 � Cp0S(�a)(p
0=2�1)+

j1(spq)X
j1

2�j�p
0=2cbh(T +A)(

2j

n
)p

0=2

� Cp0(
2j1(spq)

n
)p

0=2 � Cp0n��p
0

:
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7 Appendix.

7.1 Characterizations of Besov spaces

We list here three further characterisations of Besov spaces. The �rst explains their role in

linear minimax theory, the second their importance in approximation theory. The third is

the most usual de�nition in terms of modulus of continuity.

1. Minimax viewpoint . Let V be a set of densities incluced in a ball in Lp. We recall the

de�nitions and notations of Section 3 for linear estimators. In particular, let El; l = 1; 2 be

the kernels (4) and (5), and let El
j(f) =

R
El
j(x; y)f(y)dy.

Theorem 6 ([KP 1992b]) Let 2 � p � 1, and suppose that V is a set of densities

contained in a ball of Lp(R) such that

(1) There exists C2 > 0; s > 0 such that for all n,

inf
f̂2Fn

sup
f2V

Ef jjf̂ � f jjpp � C2n
� sp
1+2s ; (46)

where Fn is a set of estimators based on X1; : : : ;Xn containing at least the class of
linear estimators.

(2) There exists a kernel E1 with k integrable, or E2 with � localized and su�ciently
smooth, and a sequence j(n) such that (for l = 1 or 2)

sup
f2V

Ef jjÊl
j(n) � f jjpp < Cn�

sp

1+2s ; (47)

Then V is included in a ball B of Bs;p;1, and the problems have the same complexity: (46)

and (47) hold with V replaced by B.

To paraphrase the theorem: sets where linear estimators attain the minimax rate are
contained in Bs;p;1 balls.

2. Approximation theory.

Theorem 7 ([Pe],[KP 1992c]) Let s > 0; 1 � p � 1; 1 � q � 1: Suppose that s is not
an integer and set N = [s]. Assume that

(E1)
R
k(x)jxjsdx <1, and

Z
xjk(x)dx = �j;0 j = 0; : : : ; N

(E2) (a) For all u, j�(u)j � �(juj) and R �(x)jxjsdx <1. (b) �(N+1) exists and satis�es

X
k2Z

j�(N+1)(x� k)j < M for all x 2 R
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Then f 2 Bspq if and only if

f 2 Lp; and �j = 2jsjjEl
jf � f jjp 2 lq(N ): (48)

This characterisation in terms of approximation rates is one of the most important

properties of Besov spaces. For example, condition (48) is necessary but not su�cient for

membership in the classical Sobolev spaces.

3. Modulus of continuity (cf [BL], [M]). Suppose that 0 < s < 1, 1 � p; q � 1, and set

�hf(x) = f(x� h). Set


spq(f) =

 Z
R

 jj�hf � f jjp
jhjs

!q
dh

jhj

!1=q


sp1(f) = sup
h2R

jj�hf � f jjp
jhjs :

In the case s = 1, set


1pq(f) =

 Z
R

 jj�hf + ��hf � 2f jjp
jhj

!q
dh

jhj

!1=q


1p1(f) = sup
h2R

jj�hf + ��hf � 2f jjp
jhj :

For 0 < s � 1 and 1 � p; q � 1, set Bspq = ff 2 Lp : 
spq <1g, equipped with the norm
jjf jjspq = jjf jjp + 
spq(f). For s > 1, set s = n+ �, with n 2 N and 0 < � � 1. Let f (m)

denote the m�th derivative of f , and set f 2 Bspq whenever f
(m) 2 B�pq for all m � n.

This space is equipped with the norm

jjf jjspq = jjf jjp +
X
m�n


spq(f
(m)):

Remarks. (1) It is easy to see from the de�nitions that Bs11 for s � 0 and Bs1q for
s > 0; q > 1 are contained in the space of bounded continuous functions.

2. There are other characterisations of Besov spaces (for example as Lions-Peetre inter-

polations of Sobolev spaces, or using Littlewood-Paley decompositions, cf [P], [BL] ) that
we will not need here.

7.2 Lower bound for linear estimators.

We consider a subclass of densities:

~Vj = fg0 +
X
k2Kj

�jk jk; �jk � �(j; s; p;M)g:

Choose 
 > 0 such that fk = g0 + 
 jk and f
0
k = g0 � 
 jk belong to ~Vj .
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Lemma 4 Suppose that fL is such that Ef f̂L(x) <1 for all f 2 ~Vj and x 2 R. Then

2

@

@�jk
[Ef f̂L(x)] = Efk f̂L(x)� Ef 0

k
f̂L(x)

Proof.

Efk f̂L(x)� Ef 0
k
f̂L(x) =

nX
i=1

EfkTi(Xi; x)� Ef 0
k
Ti(Xi; x) = 2


Z nX
i=1

Ti(y; x) jk(y)dy:

On the other hand, in ~Vj ,

Ef f̂L(x) =
nX
i=1

Z
Ti(y; x)(g0(y) +

X
k

�jk jk(y))dy

and
@

@�jk
Ef f̂L(x) =

Z nX
i=1

Ti(y; x) jk(y)dy:

This establishes the lemma.

Let us observe that neither @
@�jk

[Ef f̂L(x)] nor ajk :=
R

@
@�jk

[Ef f̂L(x)] jk(x)dx depends

on the choice of f 2 ~Vj .
We apply an L1 version of the Cramer-Rao inequality in the model in which X1; : : : ;Xn

is an i.i.d. sample from f 2 ~Vj, � = �jk and

T̂ =
Z
f̂L(x) jk(x)dx = �̂jk:

Indeed,
@

@�
E�T̂ = E�T̂L � (sup jLj) �E�jT̂ j;

where

L =
X
i

1

f�(xi)

@

@�
f�(xi) =

X
i

 jk(xi)

f�(xi)
; and

jLj � njj jj1=C:
Thus for p0 � 1,

E�jT̂ jp0 � (E�jT̂ j)p0

� Cjajkjp0n�p0=2: (49)

Observe now that if Dj = E2
j+1 � E2

j (namely, projection on Wj), then,

jjf̂L � f jjp0 � ap0jjDj(f̂L � f)jjp0

for some constant ap0, and hence, from Lemma 1

Ef jjf̂L � f jjp0p0 � a0p02
j( p

0

2
�1)Ef

X
k

j�̂jk � �jkjp0: (50)
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Recalling now the de�nition of the pyramid Pj from the proof of Theorem 2

R�
n(f̂L) = sup

f2Fspq(M)

Ef jjf̂L � f jjp0p0 �
1

card Pj

X
f2Pj

Ef jjf̂L � f jjp0p0

� 2�(j+1)
X
k2Kj

Efk jjf̂L � fkjjp
0

p0 + Ef 0
k
jjf̂L � f 0kjjp

0

p0

� a0p02
j(

p0

2
�1)2�(j+1)

X
k2Kj

f
X
k02Kj

k0 6=k

Efk j�̂jk0 jp
0

+ Ef 0
k
j�̂jk0 jp0

+Efk j�̂jk � 
jp0 + Ef 0
k
j�̂jk + 
jp0g (51)

using Lemma 1.

But

Efk j�̂jk � 
jp0 + Ef 0
k
j�̂jk + 
jp0 � jEfk �̂jk � 
jp0 + jEf 0

k
�̂jk + 
jp0

� 2�(p
0�1)jEfk �̂jk � Ef 0

k
�̂jk � 2
jp0

= 2
p
0 jajk � 1jp0: (52)

using Lemma 4.
Using (49), (51) and (52), we obtain

R�
n(f̂L) � Ca0p02

j( p
0

2
�2)fX

k2Kj


p
0jajk � 1jp0 + X

k2Kj

X
k`6=k

k02Kj

n�p
0=2jajk0jp0g

The double sum collapses to (2j � 1)n�p
0=2P jajkjp0, and after setting 
p

0

= (2j � 1)n�p
0=2,

we have

RL
n � a0p02

jp0=2n�p
0=22�j

X
k2Kj

(jajk � 1jp0 + jajkjp0) � c(
2j

n
)p

0=2:

Recall that 
 was constrained to be at most �(j; s; p;M), which, since s � 1=p, amounts

to requiring that 
 � (M=2)2�j(s+
1

2
� 1

p
). To maximise the lower bound subject to this

constraint, equate 2jn�p
0=2 and 2�j(s+

1

2
� 1

p
)p0. This leads to choosing j so that 2j � n1=(1+2s

0)

where s0 = s� 1=p + 1=p0. It follows that

(
2j

n
)p

0=2 � n
�

s0p0

1+2s0

which establishes the �rst part of Theorem 1.

7.3 Gaussian approximation for quadratic loss.

Proof of Lemma 3. Let us �rst note some easily veri�ed properties of soft thresholding:

a) for �; z > 0, j�s(� � z; �)� �j � j�s(� + z; �)� �j,
b) for � > 0, z ! j�s(� � z; �) � �j is increasing for 0 � z <1.
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That is, negative disturbances yield bigger errors than positive disturbances of the same

size, and the error is monotone in the size of a negative disturbance.

Write X = � + �Z for Z � N(0; 1), and drop explicit reference to � and s. We now

apply these properties in turn:

E�;�[�(X)� �]2 = Ef(�(� + �Z)� �)2; Z < 0g + Ef(�(� � �Z)� �)2; Z � 0g
� 2Ef(�(� + �Z)� �)2; Z < 0g
� 2Ef(�(� + �0Z)� �)2; Z < 0g
� 2E�;�

0 [�(X)� �]2:

Remark. Although the constant 2 in the statement of the lemma is not sharp, it cannot

be reduced to 1, as may be checked by explicit calculation with � = � and � varying from

0 to 1.

Proof of Lemma 2. We adopt the following conventions: the notation xn = yn + �rn
means jxn � ynj � rn; that is, � 2 C satis�es j�j � 1 and may di�er at each occurrence.

Secondly c1; c2; � � � denote absolute constants.

10: It su�ces to assume that the distribution function of theXi is absolutely continuous.
If not, let Ui be i.i.d uniform and independent of fXig such that EUi = 0; EU2

i = 1. The
variables Yi = Xi cos� + Ui sin� have absolutely continuous distributions with mean 0,
variance 1 and bound M(1 + �). Construct Z by applying the proposition to S1

n =
Pn

1 Yi.

Since E(S1
n � Sn)

2 � n�2; the choice � = n�1=2 ensures that E(n�1=2Sn � Z)2 � 2�2 +
2c2M

2(1 + �)2n�1 � c3M
2n�1:

20: Let Fn denote the distribution of Wn = Sn=
p
n. Since this is absolutely continuous,

the quantile transformation Z = ��1(Fn(Wn)) yields a standard Gaussian variable (here
� denotes the distribution function of an N(0; 1) variate). We show that Z has the desired

approximation by considering in turn large, moderate and small deviations, de�ned respec-
tively by sets A1 = fw : jwj > p

a log ng; A2 = f1 � jwj � p
a log ng and A3 = fjwj � 1g.

Indeed, we write

E(Wn � Z)2 = Ef(Wn � Z)2; jWnj >
q
a log ng+

Z
A2[A3

[w � ��1(Fn(w))]
2Fn(dw)

= I1 + I2 + I3: (53)

30. Small deviations are easily handled by the Berry-Esseen Theorem, which implies

that jrn(x)j = jFn(x) � �(x)j � C�n�1=2 � CMn�1=2 since � = EjX1j3=(EX2
1 )

3=2 � M .

According to the mean value theorem

I3 �
Z 1

�1

r2n(w)

�2(u?(w))
Fn(dw) � c3M

2n�1; (54)

since u?(w) lies between w and ��1(Fn(w)), and the latter is bracketed by ��1(�(w) �
CMn�1=2), which in turn is bounded by an absolute constant in view of the assumption on
M2n�1 log3 n � c1.
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40. For large deviations, �rst use H�olders inequality to write

I1 � c4(EjWnj3 + EjZj3)2=3P 1=3fjWnj >
q
a log ng: (55)

Now use Bennett's inequality (see for example Pollard, 1984) to bound

P

�
jSnj >

q
an log n

�
� 2 expf�(1=2)a log nB(M

q
an�1 log n)g (56)

where the function B(�) = 2��2[(1 + �) log(1 + �) � �] is continuous and decreasing on

[0;1] with B(0+) = 1. By hypothesis, M2n�1 log n � c1, and so the right side is bounded

by

2 expf�a
2
B(
p
c1a) log ng � 2n�3 (57)

so long as we choose a large (= 10 say), and c1 small enough that aB(
p
c1a) � 6.

Finally, the Bretagnolle - Huber bound (11) shows that

EjWnj3 � c5(1 +Mn�1=2) � c5(1 + c
1=2
1 ); (58)

and hence that I1 � c4(c5 + EjZj3)2=3 21=3 n�1 = c6 n
�1.

50. For moderate deviations, it is su�cient, because of symmetry, to focus on

I+2 =
Z (a logn)1=2

1
[x� ~��1( ~Fn(x))]

2Fn(dx); (59)

where ~� = 1� �; ~Fn = 1� Fn. We exploit the following Lemma, whose proof we omit.

Lemma 5 If x � 1 and j ~F=~�(x)� 1j � e�3=2; then

jx� ~��1( ~F (x))j � x�1e3=2j( ~F=~�)(x)� 1j (60)

We use also a uniform version of the classical moderate deviations bound based on the

Cramer series ( cf. Feller (1971), Petrov (1975) ). The version we use, due to Sakhanenko

(1991), does not require explicit knowledge of the Cramer series 
(x). It is phrased in-
stead in terms of the Lyapunov exponent L(h) =

Pn
1 EjYij3max(ehYi ; 1), which may be

conveniently bounded in our application.

Proposition 2 (Sakhanenko, 1991) Let Wn =
Pn

1 Yi be the sum of independent, mean zero

random variables, V arWn = 1. Let x � 0, and ~Fn = P (Wn � x). If

16xL(2x) � 1; (61)

then the Cramer series 
(x) is well-de�ned and satis�es

j
(x)j � x3L(2x) (62)

je�
(x) ~Fn(x)� ~�(x)j � 32L(2x)�(x): (63)
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In our application, Yi = Xi=
p
n are bounded by Mn�1=2 and so

L(h) �Mn�1=2ehMn�1=2 : (64)

The restriction 1 � x � p
a log n implies that Mx3n�1=2 and hence Mxn�1=2 are both

bounded by (a3M2n�1 log3 n)1=2 � 103=2
p
c1. For a su�ciently small choice of c1, we may

ensure that jMx3n�1=2j � 1=18, say, and hence that condition (61) holds.

Let R = ~Fn(x)=~�(x) and 
 = 
(x); we exploit the bound

jR� 1j � e
je�
R � 1j+ je
 � 1j:

Combining (62) with (64), we conclude that

j
j �Mx3e2Mxn�1=2 � (1=18)e1=9 � 1=16:

From (63), we obtain

jR� 1j � 32e17=16L(2x)�(x)=~�(x) + 2j
(x)j:

The function �(x) = �(x)=x~�(x) is decreasing in x � 0, and so is bounded below in our
case by �(1). Combining this with (62) again yields, for 1 � x � p

a log n,

j ~Fn=~�(x)� 1j � c3(x+ x3)L(2x) � c4x
3Mn�1=2e2xMn�1=2

� c5x
3Mn�1=2 (65)

� c510
3=2pc1 � e�3=2;

again if c1 is chosen su�ciently small.
Thus Lemma 5 applies also, and from (65)

I+2 � e3
Z (a logn)1=2

1
x�2j( ~Fn=~�)(x)� 1j2Fn(dx) (66)

� c11EW
4
nM

2n�1 � c11(1 + c1)M
2n�1

since EW 4
n = n�2ES2

n � 1 +M2n�1 � 1 + c1. This yields the desired bound for I+2 and
completes the proof of Lemma 2.
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