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Abstract

We attempt to recover an unknown function from noisy, sampled data. Using

orthonormal bases of compactly supported wavelets we develop a nonlinear method

which works in the wavelet domain by simple nonlinear shrinkage of the empirical

wavelet coe�cients. The shrinkage can be tuned to be nearly minimax over any

member of a wide range of Triebel- and Besov-type smoothness constraints, and

asymptotically minimax over Besov bodies with p � q. Linear estimates cannot

achieve even the minimax rates over Triebel and Besov classes with p < 2, so our

method can signi�cantly outperform every linear method (kernel, smoothing spline,

sieve, : : :) in a minimax sense. Variants of our method based on simple threshold

nonlinearities are nearly minimax. Our method possesses the interpretation of spatial

adaptivity : it reconstructs using a kernel which may vary in shape and bandwidth

from point to point, depending on the data. Least favorable distributions for certain of

the Triebel and Besov scales generate objects with sparse wavelet transforms. Many

real objects have similarly sparse transforms, which suggests that these minimax

results are relevant for practical problems. Sequels to this paper discuss practical

implementation, spatial adaptation properties and applications to inverse problems.

Key Words. Minimax Decision theory. Minimax Bayes estimation. Besov, H�older,

Sobolev, Triebel Spaces. Nonlinear Estimation. White Noise Model. Nonparametric re-

gression. Orthonormal Bases of Compactly Supported Wavelets. Renormalization. White
Noise Approximation.

Acknowledgements. This work was completed while the �rst author was on leave

from U.C. Berkeley, where his research was supported by NSF DMS 88-10192, by NASA

Contract NCA2-488, and by a grant from ATT Foundation. The second author was sup-
ported in part by NSF grants DMS 84-51750, 86-00235, and NIH PHS grant GM21215-12.

Presented as an IMS Special Invited Lecture at the Annual Meeting of the Institute of
Mathematical Statistics, Atlanta, Georgia, August 19,1991.

Supersedes an earlier version, titled \Wavelets and Optimal Function Estimation",

dated November 10, 1990, and issued as Technical reports by the Departments of Statistics
at both Stanford and at U.C. Berkeley.

It is a pleasure to acknowledge friendly conversations with G�erard Kerkyacharian,
Catherine Laredo, and Dominique Picard.

1



Contents

1 Introduction 2

2 Wavelets and Function Spaces 5

3 Estimation in Sequence Space 9

4 Minimax Estimation over Besov Bodies 10

4.1 Minimax Bayes Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.2 Minimax Bayes Risk with Bounded p-th Moment : : : : : : : : : : : : : : 12

4.3 Separable Rules are Minimax : : : : : : : : : : : : : : : : : : : : : : : : : 12

4.4 Dyadic Renormalization : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.5 Asymptotic Equivalence : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5 Near-Minimax Threshold Estimates. 19

5.1 Minimax Theorem for Thresholds : : : : : : : : : : : : : : : : : : : : : : : 20

5.2 Minimax Bayes, Bounded p-th Moment (Encore). : : : : : : : : : : : : : : 22
5.3 Near Minimaxity among all estimates : : : : : : : : : : : : : : : : : : : : : 23

6 Minimax Linear Risk 24

7 Minimaxity over Triebel Bodies 24

7.1 Separability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
7.2 Risk Asymptotics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
7.3 Asymptotic (Near-)Equivalence : : : : : : : : : : : : : : : : : : : : : : : : 26
7.4 Minimax Threshold Risk : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

7.5 Minimax Linear Risk : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

8 Function Estimation in White Noise 27

8.1 Functions of Bounded Variation : : : : : : : : : : : : : : : : : : : : : : : : 28

8.2 Spaces of Smooth Functions : : : : : : : : : : : : : : : : : : : : : : : : : : 29

9 Nonparametric Regression and White Noise 30

10 The Estimator is Spatially Adaptive 33

10.1 A Locally Adaptive Kernel Estimate. : : : : : : : : : : : : : : : : : : : : : 33

10.2 Over�tted Least-Squares with Backwards Deletion : : : : : : : : : : : : : : 34

10.3 Interpretation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

11 The Least Favorable Prior is Sparse if p < 2 35

12 Discussion 36

12.1 Re�nements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36
12.1.1 Precise Constants : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

12.1.2 Other problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

12.2 Relation to Other Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

2



1 Introduction

Suppose we are given n noisy samples of a function f :

yi = f(ti) + zi; i = 1; : : : ; n; (1)

with ti = i=n, zi iid N(0; �2). Our goal is to estimate f with small mean-squared-error,

i.e. to �nd an estimate f̂ depending on y1; : : : ; yn with small risk R(f̂ ; f) = Ejjf̂ � f jj22 =
E
R 1
0 (f̂(t) � f(t))2. In addition, we know a priori that f belongs to a certain class F

of smooth functions, but nothing more. We seek an estimator f̂ attaining the minimax

risk R(n;F) = inf f̂ supf R(f̂ ; f). When F is an L2-Sobolev class or a H�older class, such

problems have been well-studied: Ibragimov and Has'minskii (1982), Stone (1982), Nuss-

baum(1985), Speckman(1985), ...

In this paper we consider minimax estimation where F is a ball in one of two large
scales of function classes { the Triebel and Besov scales. These are three-parameter scales

F �
p;q and B�

p;q of function spaces to be described in more detail in section 2. � measures
degree of smoothness, p and q specify the type of norm used to measure the smoothness.
These scales contain the traditional H�older and L2-Sobolev smoothness classes, by setting
parameters p = q =1 and p = q = 2, respectively. With other choices of parameters, one
gets interesting function classes unlike those traditional ones.

As an example, consider the Bump Algebra (Meyer, 1990, Chapter VI.6, pages 186{
189). Let gt;s(x) = exp (� (x� t)2=2s2) denote a Gaussian \bump," normalized to height
1 rather than area 1. The Bump Algebra B is the class of all functions f : IR! IR which
admit the decomposition

f(x) =
1X
i=0

�ig(si;ti)(x) (2)

for some sequence of triplets (�i; ti; si), i = 0; 1; 2; : : :, which satisfy
P1

i=0 j�ij <1. [Such a
representation need not be unique.] The B-norm of such a function is the smallest `1-norm
of the coe�cients (�i) in any such representation:

jjf jjB = inf
X
j�ij such that (2) holds: (3)

Under this norm B is a Banach space; in fact, a Banach algebra, since g(t1;s1) � g(t2;s2) =
�g(t3;s3), � < 1.

This algebra possesses two properties which might spark the interest of readers.

(A) It serves as an interesting caricature of certain function classes arising in scienti�c
signal processing. Functions f obeying (2) with only �nitely many nonzero �i are

evidently models for polarized spectra i.e., their graph consists of a set of \spectral
lines" located at the (ti) with \line widths" (si), \polarities" sgn(�i) and \amplitudes"

j�ij. Thus estimating functions in B corresponds to recovery of polarized spectra
with unknown locations of the lines, unknown line widths, unknown amplitudes, and

unknown polarities.

(B) B contains functions with considerable spatial inhomogeneity. In fact, a single func-

tion in B may be extremely spiky in one part of its domain and extremely 
at or
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smooth in another part of its domain. This would not be possible, for example, in

a H�older class, where functions must obey the same local modulus of continuity at

each point.

The Bump Algebra is the (homogeneous) Besov Space B1
1;1 (Meyer, 1990). It is not a

member of the usual Sobolev or H�older scales.

The Besov and Triebel scales also nearly include other function spaces of interest. Con-

sider the ball F of functions of Bounded Variation: F = f f : TV (f) � C g. This is

contained in a ball of the Besov space B1
1;1 and contains a ball of B1

1;1 (Peetre, 1976); see

also section 8.1 below. It will turn out that for our purposes this is just as good as if F
were properly a member of the Besov scale.

F possesses two properties which again may spark the reader's interest:

(A) Scienti�c Interest. For example, the key geophysical parameter in the acoustic theory
of re
ection seismology is the acoustic impedance, a function which is necessarily non-

smooth, because it has jumps at certain changes in media, may be modelled as an
object of �nite variation.

(B) Spatial Inhomogeneity. Functions of bounded variation may have jumps localized to

one part of the domain and be very 
at elsewhere.

The Bump Algebra and (essentially) Total Variation are instances of spaces in the scale
of Besov and Triebel spaces with index p < 2. Such spaces exhibit a phenomenon which
is unexpected on the basis of previous theoretical experience with linear estimation over

L2-Sobolev or H�older classes. Combining Theorems 4,5,10,11,13,14,15,and 16 below, we
have

Corollary 1 Let F be a ball of Besov space B�
p;q or Triebel space F �

p;q with � > 1=p and

1 � p; q � 1. Let R(n;F) denote the minimax risk from observations (1), and let RL(n;F)
devote the minimax risk when estimators are restricted to be linear in the data (yi). Then

R(n;F) � n�r; n!1;

RL(n;F) � n�r
0

; n!1;

with rate exponents

r =
2�

2� + 1
;

r0 =
� + (1=p� � 1=p)

� + 1=2 + (1=p� � 1=p)
;

where p� = max(p; 2). The same conclusion holds for Besov balls � = 1 and p = q = 1
(the Bump Algebra), and also for Bounded Variation balls, with parameters set to � = 1

and p = 1.

Hence, in the Besov and Triebel scales, whenever p < 2, traditional linear methods

are unable to compete e�ectively with nonlinear estimates: RL(n;F)=R(n;F) ! 1. For
example, with both the BumpAlgebra and Total Variation, we have r = 2=3 while r0 = 1=2.
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Our interpretation: this phenomenon is due to the spatial variability of functions in

spaces p < 2. Linear estimators are based in some sense on the idea of spatial homogeneity

of the estimand f ; this is most apparent for �xed bandwidth kernel estimates, but may

be seen for trigonometric series and for least-squares smoothing splines by examining the

equivalent kernels. Spatially variable functions contain spiky/jumpy parts and smooth

parts. Linear estimates are unable to behave optimally in spatially inhomogeneous settings:

either they will oversmooth the spiky part or they will undersmooth the 
at part|or both.

Our slogan: to be minimax in such spatially variable cases, one must be spatially adaptive.

We feel con�dent in proposing such interpretations because our proof of Corollary 1

derives from a machinery which solves the minimax problem precisely (in a certain sense).

The theory of wavelets (see section 2) provides an orthogonal decomposition for L2

which is an alternative to the usual orthogonal decompositions based on Fourier analysis

or orthogonal polynomials. In this paper we use very recent results about the wavelet

transform to map the problem of minimax estimation of functions known to lie in certain
Besov (Triebel) balls isomorphically to a sequence-space problem of estimating sequences
known to lie in certain convex sets which we call Besov (Triebel) bodies. By applying recent
work of the authors on certain Minimax Bayes problems (Donoho and Johnstone, 1990),
hereafter [DJ90], we are able to give an asymptotically minimax solution to this sequence

space problem. This has the following consequence:

Corollary 2 We may equivalently renorm the Besov spaces with p � q covered by Corollary

1 so that an asymptotically minimax estimator results from applying certain special non-

linearities coordinatewise to the empirical wavelet coe�cients, and inverting the wavelet

transform.

In the Besov case, the minimax nonlinearities derive from a scalar Minimax Bayes prob-
lem studied in [DJ90]. However, [DJ90] also has the consequence that brutal thresholding
nonlinearities, which simply set to zero coe�cients below some multiple of the noise level,
are also reasonable. By applying Theorem 7 below and the results that go to make up
Corollary 1 above, we get:

Corollary 3 A nearly-minimax estimate can be constructed for any of the F covered by

Corollary 1 (no restriction on p or q) by appropriate thresholding of the empirical wavelet

coe�cients of the object, and inverting the wavelet transform.

In other words, a simple new \universal" type of nonlinear estimator conveniently sub-

sumes new and existing results on minimax rates of convergence. For example, wavelet

thresholding can achieve the minimax rate in cases p � 2 where linear methods could; and

it can also achieve the minimax rate in cases p < 2 where linear methods cannot.

Our minimax solutions furnish two interesting interpretations. First, as discussed above,
wavelet shrinkage methods have representations as adaptive kernel estimators which change
locally |in both shape and bandwidth| in response to the data. Hence they are spatially

adaptive. [In a separate article (Donoho and Johnstone, 1992b) (hereafter [DJ92b]) we

develop a theory of ideal spatial adaptation, relate it to e�orts mentioned above, and

show that, when properly tuned, nonlinear wavelet shrinkage provides near-ideal spatial
adaptation.]
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Second, the solutions give implicit expressions for least-favorable priors. Using [DJ90],

we can see that least favorable distributions in the case p < 2 have sparse random wavelet

transforms: only a few randomly scattered wavelet coe�cients are nonzero at �ne scales

of resolution. [This sparsity is of course the reason that a good estimator must be spa-

tially adaptive.] Much informal experimentation with wavelet transforms reveals that real

objects (1-d wavelet transforms of NMR spectra, 2-d wavelet transforms of digitized im-

ages) have this type of randomly scattered nonzero structure. In contrast, least favorable

distributions in the p � 2 case, which contains the cases of L2-Sobolev and H�older classes

where minimaxity has previously been studied, do not have this character. Thus practical

evidence points to the relevance of the new theory.

Of course, theory alone is of limited value. In a separate article (Donoho and Johnstone

1992a) (hereafter [DJ92a]), we discuss the computer implementation of wavelet shrinkage on

data. The development of practical algorithms requires that one choose the thresholding

of wavelet coe�cients empirically. Wavelet methods allow one to automatically choose
the thresholding simply and naturally, using decision-theoretic criteria based on Stein's
Unbiased Estimate of Risk. The algorithm WaveShrink proposed in [DJ92a] runs fully
automatically in n log(n) time where n is the dataset size, and achieves the optimal speed
of estimation for the object under consideration.

The paper to follow gives, in sections 2-3, a discussion of wavelet orthonormal bases
and how they connect minimax estimation over Besov and Triebel spaces with a sequence-
space estimation problem. The sequence-space problem is solved in sections 4-7 by Minimax
Bayes techniques. In sections 8 and 9 the sequence space results are applied to the function
estimation problem. Sections 10 and 11 provide interpretations of our estimator and of the

least favorable prior that result. Section 12 provides a discussion of possible re�nements,
and of the relation of our results to important work of Pinsker, Efroimovich and Nussbaum
in exact asymptotic minimaxity; of Nemirovskii, Polyak, and Tsybakov in improving on
linear methods by nonlinear ones, and of Kerkyacharian and Picard (and Johnstone) in
density estimation over the Besov scale.

2 Wavelets and Function Spaces

The theory of wavelets has been enthusiatically developed in recent years by a large number
of workers. Our point of entry into this literature was the books of Y. Meyer (1990a, b).

Synthesizing a large body of super�cially di�erent work in �elds ranging from Fourier anal-

ysis to operator theory to image compression, Meyer develops the idea of multiresolution
analysis and its use in the study of function spaces and integral operators. The research

articles of Daubechies (1988), Mallat (1989 a,b,c), and the monograph of Frazier, Jawerth,
and Weiss (1991) are also extremely helpful. Many books are scheduled to appear in 1992.

First, notation. A dyadic subinterval of [0; 1] is an interval of the form Ij;k = [k=2j ; (k+

1)=2j ] where j � 0 and k = 0; :::2j � 1. We let I denote the collection of all such intervals,
and Ij denote the collection of 2j intervals of length 2�j . Henceforth j and k will always

refer to these parameters of dyadic subintervals; such subintervals will be denoted I, I 0,
Ij;k etc.

The Haar basis is an orthonormal basis of L2[0; 1]. Let ' = 1[0;1], and  (t) = 1[1=2;1] �
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1[0;1=2]. De�ne  I(t) = 2j=2 (2jt � k), I 2 I. Note that  I is supported in the dyadic

interval I = [k=2j ; (k + 1)=2j ]. Let f 2 L2[0; 1] and put

�0 =
Z
'0f; �I =

Z
 If:

Then

f = �0 +
X
I2I

�I I

(convergence in L2). Moreover there is the extremely useful Parseval relation: if f̂ and f

are two functions in L2[0; 1] then

jjf̂ � f jj2L2[0;1] = (�̂0 � �0)
2 +

X
I

(�̂I � �I)
2:

This basis su�ers, however, from the defect that its elements are not smooth. Wavelet
bases preserve the dyadic structure, and use smooth functions in place of � and  . We
describe a particular wavelet basis for L2[0; 1] developed by Y. Meyer (1991), which is

closely connected with I. Daubechies' (1988) wavelet bases of L2(IR).

For parameters N > 0 and ` > 0 Meyer's construction furnishes a �nite set (�`;k)
2`+N�2
k=�N+1

of 2`+2N � 2 functions, and for each level j � `, 2j functions  I , I 2 Ij. The collection of
these functions forms a complete orthonormal system on the interval [0; 1]. Let J denote
the collection of all dyadic intervals of length jIj � 2�`. With this notation, the L2[0; 1]

reconstruction formula is
f =

X
k2K

�`;k�`;k +
X
I2J

�I I ;

where, naturally, the coe�cients are given by �`;k =
R 1
0 f(t)�`;k(t)dt and �I =

R 1
0 f(t) I(t)dt.

Here K = f�N + 1 � k � 2` +N � 2g.
At an intuitive level, the �`;k denote \gross structure terms" while the  I denote smooth

wiggly functions almost localized to the interval I.
These new functions derive from Daubechies wavelets at the interior of the interval and

are boundary-corrected wavelets at the \edges". For 0 � k � 2`�1, �`;k is the dilation and

translation 2`=2�(2`t�k) of a \father wavelet" �. This father has unit integral and compact

support. For N � 1 � k � 2j �N ,  I is a simple dilation and translation 2j (2jt� k) of a
\mother wavelet"  . This mother has zero integral and, in fact N vanishing moments. The
mother and father have a degree of regularity that increases with N (as does the support

width). The other functions are regular functions which can be explicitly computed. Each

 I with 0 � k � N � 2 is a dilation of a certain function  #
k ; similarly, each  j;2j�k with

0 � k � N � 2 is a dilation and translation of a certain function  [
k, etc. There are 4N � 2

distinct functions in the analysis on the interval; all other functions derive from these by
dilation and/or translation. See Y. Meyer (1991) for details.

We say that such a wavelet analysis has regularity r if the functions used in the analysis

are of compact support and all have r continuous derivatives. By selecting the parameter

N large, and using the most regular wavelets from Daubechies' construction for that N , one

gets analyses of high regularity. The existence of such regular wavelet bases is a nontrivial
matter: witness the fact that the Haar system was developed before 1910, while the system
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we just described is less than two years old. We urge the reader to know the complete story

and consult articles of Daubechies and Meyer.

Coe�cients from a regular wavelet analysis can be used to measure quite precisely

the smoothness properties of a function. Consider �rst the local smoothness properties.

Suppose we have an r-regular wavelet analysis, r > 1. Ja�ard (1989) shows that if f is

locally H�olderian at x0, with exponent �, then �I = O(2�(1=2+�)j) for every sequence (I)

with jIj ! 0, x0 2 I. Meyer (1990) points out that if f is di�erentiable at x0 then

�I = o(2�3=2j) for every sequence (I) with jIj ! 0, x0 2 I. Moreover, both results have

near-converses.

Wavelet coe�cients can also measure global smoothness. Let �
(r)
h f denote the r-th

di�erence
Pr

k=0

�
r

k

�
(�1)k f(t+ kh). The r-th modulus of smoothness of f in Lp[0; 1] is

wr;p(f ;h) = jj�(r)
h f jjLp[0;1�rh]:

The Besov seminorm of index (�; p; q) is de�ned for r > � by

jf jB�
p;q

=

 Z 1

0

 
wr;p(f ;h)

h�

!q
dh

h

!1=q

if q <1, and by

jf jB�
p;1

= sup
0<h<1

wr;p(f ;h)

h�

if q = 1. The Besov Space B�
p;q is the set of all functions f : [0; 1] ! IR with f 2 Lp

and jf jB�
p;q
<1. See De Vore and Popov (1988). For information about Besov spaces on

the line, see Peetre (1976), Bergh and L�ofstrom (1976), Triebel (1983), and Frazier and
Jawerth (1985).

This measure of smoothness includes, for various settings (�; p; q), other commonly used
measures. For example let C� denote the H�older class of functions f with jf(s) � f(t)j �
cjs � tj� for some c > 0. Then f has for a given m = 0; 1; : : : a distributional derivative
f (m) satisfying f (m) 2 C�, 0 < � < 1, if and only if jf jBm+�

1;1
< 1. Similarly, f has a

distributional derivative f (m) 2 L2, i� jf jBm
2;2

< 1. Finally, f belongs to B, the Bump

algebra, i� jf jB1
1;1

< 1. See Meyer (1990a) Chapter VI. In view of these equivalences,

it is a signi�cant fact that the Besov seminorm is essentially a functional of the wavelet

coe�cients (�j;k).

Theorem 1 Let a wavelet analysis of regularity r > � be given, and let 1 � p �1. De�ne

j�j~bs
p;q

=

0
B@ 1X
j�`

0
B@2js

0
@X

Ij

j�I jp
1
A
1=p
1
CA
q1CA

1=q

[with the standard modi�cation of cases p; q =1]. Then with � = �(f) and � = �(f) we
have

(jjf jjp + jf jB�
p;q
) � (jj(�k)jj`p + j�j~bs

p;q
)

for every f 2 Lp[0; 1], where s = �+1=2� 1=p; the relation � means that the ratios of the

two sides are bounded between constants c and C, which here depend on ( ;'; p; q; r; �) but

not f .
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Compare Meyer (1991). Similar results for Besov spaces on the line (which are logically

and chronologically antecedent) can be found in Lemari�e and Meyer (1986), Meyer (1990,

Page 197, Proposition 4), and Frazier, Jawerth, and Weiss (1991). [For closely related

results see Frazier and Jawerth (1985, 1986), Gr�ochenig (1987), De Vore and Popov (1988),

Feichtinger and Gr�ochenig(1989); in some sense those papers work with expansions in terms

of \wigglets", that is to say, wavelet-like expansions without the orthogonality properties

of wavelet analysis.]

Wavelet analysis is also connected with a second scale of functional spaces: the Triebel-

Lizorkin spaces (Triebel,1983). These spaces may be de�ned in terms of wavelet coe�cients

as follows (Frazier and Jawerth, 1990). Let �j;k denote the indicator function of [k=2
j ; (k+

1)=2j). Let j�j~fsp;q denote the seminorm

j�j~fsp;q = jj(
X
J

(2jsj�I j�I)q)1=qjjLp[0;1]:

and de�ne the seminorm on functions f with wavelet coe�cients � = �(f) via

jf j~F�
p;q

= j�j~fsp;q ;

with s = � + 1=2. The seminorm for ~f sp;q coincides with the seminorm for ~bs�1=pp;p along the

diagonal p = q, but o� the diagonal adds new possibilities. The case ~Fm
p;2 corresponds to

the Sobolev smoothness kf (m)kLp[0;1], which (except for p = 2) lie outside the Besov scale.

Theorem 2 Let a wavelet analysis of regularity r > m be given and let 1 < p <1. Then

we have the equivalence

(jjf jjp + kf (m)kp) � (jj(�k)jj`p + j�j~fmp;2)

valid for every f 2 Lp[0; 1].

For such results with wavelet expansions on the line, see Lemari�e and Meyer(1986), Frazier

and Jawerth (1986,1990), Meyer (1990), Frazier, Jawerth, and Weiss (1991).

In sum, wavelet analysis gives us a transformation from continuous function space into
a sequence space with two fundamental properties

[ISO1] If f̂ and f are two functions,

jjf̂ � f jj2 =
X
K

(�̂k � �k)
2 +

X
j�`

X
Ij

(�̂I � �I)
2 (4)

so there is an exact isometry of the L2 errors. This, of course, follows from the

orthonormality of the wavelet basis.

[ISO2] Let � denote the collection of all wavelet expansions ((�k)k2K; (�I)I2J ) of functions

in the ball F de�ned by kfkB�
p;q
� 1. Let �0 = IR#(K) and let ~�s

p;q(C) denote the
collection of coe�cients (�I)I2J satisfying j�j~bs

p;q
� C. Then for positive constants c

and C,

f0g � ~�s
p;q(c) � � � �0 � ~�s

p;q(C): (5)
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Similarly, let F denote the ball of functions satisfying kf (m)kp � 1, and let � denote

the collection of corresponding wavelet expansions. De�ne sets ~�s
p;q(C) of wavelet

coe�cients satisfying j�j~fsp;q � C, s = m+ 1=2. Then for positive constants c and C

we have

f0g � ~�s
p;q(c) � � � �0 � ~�s

p;q(C):

Thus, modulo an initial �nite-dimensional segment, there is an isomorphism (but not

precise isometry) at the level of smoothness measures.

3 Estimation in Sequence Space

Suppose we observe sequence data

yI = �I + zI I 2 I: (6)

where zI are i.i.d. N(0; �2) and � = (�I)I2I is unknown. We wish to estimate � with small
squared error loss jj�̂ � �jj22 =

P
(�̂I � �I)

2. Although � is in detail unknown, we do know

that jj�jjbs
p;q
� C, where

jj�jjbs
p;q

=

0
B@X
j�0

0
B@2js

0
@X

Ij

j�Ijp
1
A
1=p
1
CA
q1CA

1=q

: (7)

Thus we have a problem of estimating � when it is observed in a Gaussian white noise,
and is known a priori to lie in a certain convex set �s

p;q(C) � f� : jj�jjbs
p;q
� Cg. We will

call such a set a Besov Body. We often put for short �s
p;q = �s

p;q(C).
The di�culty of estimation in this setting is measured by the minimax risk

R�(�; �s
p;q) = inf

�̂

sup
�s
p;q

Ejj�̂ � �jj22 (8)

and by the minimax linear risk

R�L(�;�
s
p;q) = inf

�̂
linear

sup
�s
p;q

Ejj�̂ � �jj22 (9)

where estimates are restricted to be linear. (\*" always labels minimax risks in this sequence

space model).
The same problem makes sense in the Triebel scale; one observes data (6) where the

vector � lies in the convex set �s
p;q = �s

p;q(C) de�ned by

jj�jjfsp;q � C

where f sp;q refers to the norm

jj�jjfsp;q = k(
X
I2I

2jsqj�I jq�I)1=qjjLp[0;1]:
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We call the set �s
p;q a Triebel body and measure di�culty of estimation in this problem by

the minimax risk R�(�;�s
p;q) and R

�
L(�;�

s
p;q).

A connection between minimax estimation in this model and the regression model (1)

will be developed in sections 8 and 9 below. Let F be a class of functions on the interval

and let � denote the set in sequence space consisting of all wavelet coe�cients of functions

in F . The properties [ISO1] and [ISO2] have the following consequences.

[EQ1] Because of [ISO1], the minimax risk from sampled data is asymptotically equivalent

to the minimax risk in the sequence space:

R(n;F) � R�(�=
p
n;�); n!1;

RL(n;F) � R�L(�=
p
n;�); n!1:

[EQ2] Because of [ISO2], if F is a Besov or Triebel class, the body � is risk-equivalent to

a Besov or Triebel Body, and we get

R�(�;�) � R�(�;�s
p;q); �! 0;

R�L(�;�) � R�L(�;�
s
p;q); �! 0:

Moreover, given good estimators in the sequence model, we can construct good estimators

in the nonparametric regression model.
Due to this correspondence, a complete knowledge of minimax estimation in the se-

quence space model will allow us to understand minimax estimation in the function space
model. We now turn to a thorough treatment of the sequence model; we will return to the
function space model, and its correspondence with sequence space, in sections 8 and 9.

4 Minimax Estimation over Besov Bodies

4.1 Minimax Bayes Estimation

Consider the following Minimax Bayes estimation problem. We observe data according to

the sequence model (6), only now (�I) is a random variable, which may be arbitrary except
for the single constraint that

jj� jjbs
p;q
� C; (10)

where � is a moment sequence de�ned by

�I = (Ej�I jp^q)1=p^q I 2 I:

(if p ^ q = 1 we put �I = ess sup j�I j.) In short, we replace the \hard" constraint that

jj�jjbs
p;q
� C by the \in mean" constraint jj� jjbs

p;q
� C. We de�ne the minimax Bayes risk

B�(�; �s
p;q) = inf

�̂

sup
�2�s

p;q

Ejj�̂ � �jj2: (11)

As \hard" constraints are more stringent than \in mean" constraints, B� � R�.

In this section, we develop three main results. First, we show that minimax estimators

for B� are separable nonlinearities.

11



Theorem 3 A minimax estimator for B�(�) has the form

�̂�I = ��j (yI); I 2 I;

where ��j (y) is a scalar nonlinear function of the scalar y. In fact there is a 3-parameter

family �(�;�;p) of nonlinear functions of y from which the minimax estimator is built:

��j = �(t�
j
;�;p^q) j = 0; 1; : : :

for a sequence (t�j)
1
j=0 which depends on s, p, q, C, and �.

Second, we develop the exact asymptotics of B�.

Theorem 4 Let p; q > 0 and s+ 1=p > 1=(2 ^ p ^ q); then B�(�) <1 and

B�(�;�s
p;q) � 
(�)C2(1�r)�2r; �! 0; (12)

where

r =
s+ 1=p � 1=2

s+ 1=p
;

and 
(�) = 
(�;C; s+ 1=p; p ^ q; q) is a continuous, periodic function of log2(�=C) de�ned
at (33).

Third, we establish asymptotic equivalence of R� and B�.

Theorem 5 For s+ 1=p > 1=2, s; p; q > 0,

R�(�; �s
p;q) � ~
(�)C2(1�r)�2r � �2; � > 0; (13)

where r is as above, and ~
(�) = 
(�;C; s+ 1=p;1; q) is a continuous, periodic function of

log2(�=C). If q � p, then

R�(�; �s
p;q) = B�(�)(1 + o(1)); �! 0: (14)

Combining Theorems 3{5, we have in the case p � q that the estimator �̂� is asymptotically

minimax for R� as �! 0. In short: a separable nonlinear rule is asymptotically minimax.

In the case p > q, the Bayes-Minimax estimator is within a constant factor of minimax.
The proof of these results is not primarily a technical matter; instead, it relies on a

variety of concepts which we introduce and develop in the subsections below.

4.2 Minimax Bayes Risk with Bounded p-th Moment

Consider now a very special problem. We observe

v = � + z; (15)
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where � is a random variable, and z is independent of � with distribution N(0; �2). We do

not know the distribution � of �, but we do know that � satis�es (E�j�jp)1=p � � . We wish

to estimate � with small squared-error loss. De�ne the minimax Bayes risk

�p(�; �) = inf
�

sup
(E�j�jp)1=p��

E�E�(�(y)� �)2: (16)

This quantity has been analyzed in [DJ90]. There we �nd that �p satis�es the invariance

�p(�; �) = �2�p(�=�; 1); (17)

the bound

�p(a�; �) � a2�p(�; �); a > 1; (18)

and the asymptotic relation

�p(�; 1) �
(
� 2 p � 2

� p(2 log(��p))
2�p

2 p < 2
(19)

as � ! 0. The function �p is continuous, is monotone increasing in � , is concave in � p and

has �p(�; �)! �2 as �=�!1.
There exists a rule �(�;�;p) which is minimax for �p(�; �); it is odd, monotone, and satis�es

the invariance �(�;�;p)(y) = ��(�=�;1;p)(y=�). Thus the three-parameter family mentioned in
Theorem 3 reduces to a two-parameter family.

4.3 Separable Rules are Minimax

We record two structural facts about Besov Bodies, which the reader may �nd instructive

to verify.

[BB1] For q < 1, J sp;q(� ) = k�kq
bs
p;q

is a convex functional of the moment sequence � =

(� p^qI ). For q =1, the functional J sp;1(� ) = k�kbs
p;1

has nested convex level sets.

[BB2] If (�I) is an arbitrary positive sequence, and we set �� p^qI = AveI2Ij(�
p^q
I ), then

k��kbs
p;q
� k�kbs

p;q
: (20)

Our proof of Theorem 3 amounts to working out the statistical implications of these

facts. Let Ms
p;q = f� : J sp;q(� (�)) � Cqg denote the set of prior measures � which are

feasible for the Bayes-Minimax problem (11). By property [BB1] of Besov Bodies,Ms
p;q is a

convex set of measures; it is weakly compact for weak convergence of probability measures;

the `2 loss yields lower-semicontinuous risk functions. Hence the Minimax Theorem of

Statistical Decision Theory (e.g. Le Cam 1986) implies that the Bayes rule of a least
favorable prior is a minimax rule. Thus, we begin by searching for a least favorable prior.

Let B(�) denote the Bayes risk for estimating (�I) with squared `2 loss from data (6).
A least favorable prior �� satis�es

B(��) = supfB(�) : � 2 Ms
p;qg: (21)

13



Property [BB2] allows us to show that a least favorable distribution makes the coor-

dinates independent. Suppose that � is an arbitrary prior distribution for the vector (�I)

and let �I denote the prior distribution of the scalar component �I . We derive from this

prior another prior distribution � which makes the coordinates (�I) independent random

variables, the distribution of �I being the average �j = AveIj(�I ). This prior makes the �I
i.i.d. within one resolution level, with j �xed.

The derived prior � is less favorable than �. Indeed, the Bayes risk of � is the sum of

coordinatewise risks:

B(�) =
X
I2I

E�(E(�Ij(yI 0)I 02I)� �I)
2

but it is no easier to estimate the parameter �I using just information about yI than using

information about all the (yI 0)I 02I , so

E�(E(�I j(yI 0)I 02I)� �I)
2 � E�(E(�I jyI)� �I)

2: (22)

Let b(�) denote the Bayes risk in the scalar problem of estimating � from data v = � + z

with z � N(0; �2) and � � �. Then the right side of (22) is just b(�I) and we conclude that

B(�) �
X
I2I

b(�I): (23)

Bayes risk is concave, so

AveI2Ij (b(�I)) � b(AveI2Ij(�I )):

We conclude that
B(�) �

X
j

2jb(�j) = B(�); (24)

i.e. � is less favorable than �.
Now the moment sequence of � is given by:

E�j
j�Ij;k jp^q = AveI2Ij (E�I j�Ijp^q)

= AveI2Ij (�
p^q
I ) = �

p^q
I :

Hence, (20) applies, and

� 2 Ms
p;q =) � 2 Ms

p;q: (25)

Hence from any candidate � for a least favorable prior we derive � which is less favorable,

but still feasible for the problem (21). In short, [BB2] implies that a least favorable measure
may be found within the subclass of measures having independent coordinates that are i.i.d.

within each resolution level.

For any prior � on the scalar � obeying E�j�jp^q � � p^q, we have by (16) that

b(�) � �p^q(�; �);

and so by (23)

B(�) �
X
I

�p^q(�I ; �): (26)
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Hence no prior in Ms
p;q can obtain a larger Bayes risk than

sup
X
I

�p^q(�I ; �) subject to � 2 �s
p;q: (27)

The supremum is �nite when s + p�1 > (2 ^ p ^ q)�1 or when p = q = 2, s = 0; the

supremum is attained by a sequence which we call � � (see Lemma 1 in section 4.4 below).

Equality is attained in (26) if the prior on coordinate I is chosen to be least-favorable for

�p^q(�I ; �). Choosing coordinate priors in this way from the sequence � � yields a sequence

prior �� which is least favorable.

The Bayes rule for �� is

�̂�I = �(��
I
;�;p^q)(yI); I 2 I:

Because of (24) and (25), all the � �I are equal within one resolution level, this has exactly
the form required by Theorem 3, whose proof is complete.

4.4 Dyadic Renormalization

We now derive the risk asymptotics (12) of Theorem 4. By formula (27) we have B�(�;�s
p;q) =

val(P�;C) where (P�;C) denotes the optimization problem

(P�;C) sup
1X
j=0

2j�(tj; �) subject to
1X
j=0

(2sj(2jtpj)
1=p)q � Cq;

with obvious reformulation if p =1 or q =1. Here � = �p^q.

At �rst glance, solution of this problem would appear to be beyond reach, owing to the
fact that we have no closed form expression for �p(�; �) when p 6= 2. However, a certain
\renormalizability" of the problem provides a tool to get qualitative insights.

De�ne the following optimization problem (Q�;C) on the space of bilateral sequences
T = f(tj)1j=�1g

(Q�;C) sup
1X

j=�1

2j�(tj; �) subject to
1X

j=�1

(2�jtj)
q � Cq: (28)

Setting � = s+1=p, this problem is very closely related to (P�;C). If the unilateral sequence

(tj)
1
j=0 is feasible for the unilateral problem (P�;C) then the extension to a bilateral sequence

(~tj) de�ned by setting ~tj = 0; j < 0 and ~tj = tj, j > 0, is feasible for the bilateral problem

(Q�;C). We conclude that

val(P�;C) � val(Q�;C) 8� > 0; C > 0:

On the other hand, if the bilateral sequence (tj) is feasible for (Q�;C) then the unilateral
sequence ~tj formed by dropping the j < 0 portion from (tj) is feasible for (P�;C). Moreover,
the part of the objective function which is lost in dropping the negative indices is at most

�2, since �p(tj; �) � �2 implies
P

j<0 2
j�(tj; �) � �2. Hence

val(Q�;C) � val(P�;C) + �2 8� > 0; C > 0:
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Of course a discrepancy of order �2 between the value of the two problems is asymptotically

negligible. Hence val(P�;C) � val(Q�;C), as �! 0.

Asymptotics of val(P�;C), and (12) therefore follow immediately from

Theorem 6 If � > 1=(2 ^ p ^ q) then
val(Q�;C) = 
(�; C)C2(1�r)�2r; � > 0; (29)

where r = ��1=2
�

> 0, and 
(�;C) is a continuous, periodic function of log2(�=C).

To prove this set

J�;�(t) = �2
1X
�1

2j�(tj=�; 1)

Jq;�(t) = (
1X
�1

2j�qtqj)
1=q:

Then recalling the invariance (17) we have

val(Q�;C) = supJ�;�(t) subject to Jq;�(t) � C:

Theorem 6 follows from a certain homogeneity with respect to scaling and translation of
the functionals involved. Let (Ua;ht)j = atj�h. Then by a simple change of variables

J�;�(U�;ht) = �22hJ�;1(t): (30)

Also
Jq;�(U�;ht) = �2�hJq;�(t): (31)

These scaling relations imply at once that if � is of the special form �h = 2��h for h an
integer, and if (tj) is a solution to the noise-level 1 problem (Q1;C) then the renormalized
sequence ~t = U�;ht is a solution to the noise-level � problem (Q�;C), and that

val(Q�h;C) = J�;�(~t) = �2h2
hJ�;1(t) = (�2h)

r val(Q1;C);

(note that �2h2
h = (�2h)

r). More generally, for any choice of � > 0, and integer h,

val(Q�;C) = �22h val(Q1;C
�
2��h): (32)

Choose the integer h = h(�; C) so that C
�
2��h exceeds 1 by as little as possible:

C

�
2��h = 2�� 2 [1; 2�):

Thus h = b��1 log2(C=�)c, � is the corresponding fractional part, and �22h = �2(C=�)�
�1

2�1.

Combining with (32) and noting that 2 � ��1 = 2r yields

val(Q�;C) = �2rC2(1�r)2�� val(Q1;2��):

Now (32) shows that 2�x val(Q1;2�x) = 2k�x val(Q1;2�(x�k)) for each integer k, so


(�;C; �; p; q) = 2��(�;C) val(Q1;2��) (33)

is a periodic function of � and hence of log2(C=�) (for �xed �). Finiteness and continuity
of 
 follow from:
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Lemma 1 Let TC denote the class of bilateral sequences (tj) such that Jq;�(t) � C. If

� � (2 ^ p ^ q) > 1, then the class of sequences f(2j�(tj)) : t 2 TCg is a compact subset of

l1; the maximum
P1
�1 2j�(tj) over t 2 TC is �nite, and the maximum is attained by some

t 2 TC . The maximum value of J1;� over TC is continuous in C.

We omit the proof, the key idea of which is to apply (18) and (19).

4.5 Asymptotic Equivalence

Now we prove Theorem 5. By the Minimax Theorem, the Minimax Risk R�(�; �s
p;q) is

the supremum of Bayes risks for priors supported in �s
p;q. Let � 2 �s

p;q, and consider the

prior with independent coordinates having law in coordinate I given by the prior which

attains the minimax risk �1(�I ; �) in the scalar bounded normal mean problem. This prior

is supported in �s
p;q, and it has Bayes risk

P
I �1(�I ; �). This risk is a lower bound on the

minimax risk. The best bound of this form is given by solving the optimization problem

supf
X
I

�1(�I ; �) : � 2 �s
p;qg:

Except for the substitution of �1 for �p^q, this is the same as (27). Hence this optimization
problem is of the same type as (P�;C), and its renormalizable version satis�es the same
invariances. The risk bound (13) follows, by the same arguments as in the last subsection.

We now turn to (14). By the MinimaxTheorem, this amounts to the assertion that there
exist priors supported in �s

p;q which are almost least favorable for the enlarged minimax
Bayes problem. We will show below that for each � > 0 we may construct a sequence of
priors �(h), h = 1; 2; : : : such that along special dyadically generated sequences

�h = 2�h(s+1=p); h = 1; 2; : : :

we have, for large enough h,

B(�(h)) � B�(�h;C)(1� �): (34)

Moreover, the prior is supported in �s
p;q(C � (1 + �)). We can conclude that

R�(�h;C � (1 + �)) � B�(�h;C)(1� �); h!1:

Because of the asymptotics for B� established above, this will imply

R�(�h;C) � B�(�h;C)(1 + o(1)) h!1:

The argument for other dyadic sequences c �2�h(s+1=p), c 6= 1, is similar; Theorem 5 follows.

We know already that

val(Q�h;C) = val(Q1;C)(�
2
h)

r (35)

Consider now the optimization problem (Q1;C). Section 4.4 (implicitly) de�nes a countable

sequence of prior distributions �j which satisfy
P1
�1 2jb1(�j) = val(Q1;C), where b1 stands

for the Bayes risk in the \� = 1" scalar problem v = � + z with z standard normal. By

renormalization we get a prior distribution which attains (Q�h;C) for h = 1; 2; :::.

For � > 0, we can �nd a near-solution to (Q1;C) with certain additional support prop-
erties. Speci�cally, we can �nd �nite positive integers J and M so that
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[Q1] For �J � j � J , there is a prior distribution �j for a scalar random variable �;

[Q2] Each �j is supported in [�M;M ];

[Q3] The moment sequence tp^qj = E�j j�jp^q obeys
PJ
�J 2

j�qt
q
j � Cq.

[Q4] The coordinatewise Bayes risks obey
PJ
�J 2

jb1(�j) � val(Q1;C) � (1� �).

De�ne, for �J � j � J an in�nite sequence of random variables (Xj;k)
1
k=0 with Xj;k iid �j.

Suppose that h > J and de�ne random variables (�I) by

�I = �h �Xj;k; I 2 Ij+h
for �J � j � J , and �I = 0 otherwise. Let �(h) denote the distribution of the sequence

(�I) just de�ned.

For estimating (�I) from sequence data (6), the joint independence of �I and zI makes
the Bayes Risk add coordinatewise, and so

B(�(h)) = �2h

JX
�J

2j+hb1(�j);

= (�2h)
r

JX
�J

2jb1(�j);

� (�2h)
r � val(Q1;C)(1� �) (36)

where we used �2h2
h = (�2h)

r and [Q4]. By comparison with the renormalization equations
(35), we see that this prior for � is almost least favorable.

On the other hand, this prior is almost supported in �s
p;q(C � (1 + �)).

Lemma 2 De�ne the event

A� = fjj�jjbs
p;q
� C � (1 + �)g:

Then

�(h)(A�)! 1; h!1: (37)

This lemma will be proved later. First we show that it implies our theorem. Essentially

the idea is that if �(�) = �(�jA) then, provided �(Ac) is small, � and � have almost the

same Bayes risks.
For the remainder of this subsection, let � be a prior distribution for the vector param-

eter � = (�0; �1; :::), and let �(�) denote the Bayes risk for the problem of estimating �0
with squared error loss from data vi = �i + zi, i = 0; 1; 2; 3; :::, where zi �iid N(0; 1).

Lemma 3 Let �0 be a bounded Random Variable: j�0j �M . Let ! be the conditioned prior

distribution

!(�) = �(�jA)
where A is an event. Then

j�(!)� �(�)j � 8M2 � �(Ac):
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The lemma is proved by noting that the Bayes rules are bounded a.e. by M , and

their squared errors are bounded a.e. by (2M)2. The Bayes risks are thus expectations of

squared errors that are bounded a.e. by (2M)2; the L1 distance between � and ! is 2P (Ac).

The expectation of an a.e. bounded random variable under two di�erent measures has a

di�erence that is controlled by L1 distance between the measures, times the bound on the

random variable.

To apply the lemma, let �(h) be the conditional prior �(h)(�jA�). Then �
(h) is supported

in �s
p;q(C � (1 + �)). The Bayes risk is

B(�(h)) =
JX
�J

2j+hX
k=0

~bj;k

where
~bj;k = inf

�̂

E�(h)(�̂(y)� �Ij;k)
2:

Let Jj;k(i); i = 0; 1; 2; : : : be an enumeration of the dyadic intervals beginning with Jj;k(0) =
Ij;k. Let �0 = �Ij;k=�, and �i = �Jj;k(i)=�. Let �j;k be the prior induced on � by the prior �

on �; and let !j;k be the prior induced on � by �(h). Then chasing de�nitions

~bj;k = �2h � �(!j;k):

We have
!j;k(�) = �j;k(�j� 2 �s

p;q):

Applying Lemma 3,
�(!j;k) � �(�j;k) � 8M2�(h)(Ac

�):

Now since the coordinates are independent, and i.i.d. within one level of the prior �,

�(�j;k) = b1(�j); 0 � k < 2j+h:

It follows immediately that

�(!j;k)! b1(�j); h!1;

uniformly in 0 � k < 2j+h. Combining the above with �2h2
h = (�2h)

r and �h ! 0, (36) gives

B(�(h)) � �2h

JX
�J

2j+hb1(�j)(1 + o(1))

= (�2h)
r

JX
�J

2jb1(�j)(1 + o(1))

� (�2h)
r � (val(Q1;C)(1� �))(1 + o(1)):

As this is true for each � > 0 we get (34) and its various implications.

It remains to prove Lemma 2. We give the argument for the case p; q <1 only; the other
cases are the same or simpler. De�ne random variables Lj;h = 2(j+h)s(

P2j+h�1
k=0 j�j+h;kjp)1=p.

The event A� is equivalent to f(
P

j L
q
j;h)

1=q � C � (1 + �)g. Because �h2hs = 2�h=p, Lj;h =
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2j(s+1=p)Vj;h where V
p
j;h = Ave0�k<2(j+h) jXj;kjp. As the Xj;k are bounded random variables,

and Vj;h is therefore the mean of i.i.d. bounded random variables,

ProbfV p
j;h > E(V

p
j;h) + �jg ! 0; h!1:

for any positive constant �j > 0. Now E(V
p
j;h) = E�j jXj;kjp, and (�j) is de�ned so thatPJ

j=�J 2
j(s+1=p)q(E�j jXj;kjp)q=p = Cq. (It is here that the assumption p � q is used to set

p ^ q = p). We conclude, by setting �j su�ciently small, that

Probf(
X
j

L
q
j;h)

1=q � C � (1 + �)g ! 1; h!1:

This completes the proof of Theorems 3{5.

5 Near-Minimax Threshold Estimates.

We have derived an asymptotically minimax estimator for �s
p;q built out of coordinatewise

nonlinearities from the family �(�;�;p). Unfortunately, these nonlinearities are not available
to us in closed form. We now show that simple \threshold" nonlinearities provide near-

minimax behavior. We consider two possibilities: �rst, the \soft" nonlinearity

��(y) = sgn(y)(jyj � �)+

which is continuous and Lipschitz; second, the \hard" nonlinearity ��(y) = y1fjyj��g which

is discontinuous. [We adopt the convention that � refers to a scalar nonlinearity whose
type depends on the lexicography of the subscript: (�; �; p), �, and � referring to di�erent
nonlinearities.]

Suppose we are in the Minimax-Bayes model of Section 4.1, so our data are yI = �I+zI
with �I random variables satisfying the moment constraint � 2 �s

p;q. Consider the use of

separable estimators built out of thresholds, i.e. set � = (�I) and

�̂�I = ��I(yI) I 2 I:
The minimax risk among soft-threshold estimates is de�ned

B��(�;�) = inf
(�I)

sup
�2�

Ejj�̂� � �jj22:

For hard thresholds �̂�I = ��I (yI), the minimax risk B��(�;�) is de�ned similarly. In this

section, we establish

Theorem 7 There are constants �(p), M(p), both �nite, with

B��(�;�s
p;q) � �(p ^ q)B�(�;�s

p;q)

B��(�;�s
p;q) � M(p ^ q)B�(�;�s

p;q):

There exist thresholds which attain these performances; they have the form

�I = � � `(t�j ; �; p) I 2 I:
and

�I = � � m(t�j ; �; p) I 2 I
for certain functions ` and m and certain sequences t� and t�.
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In short, with optimal choice of threshold, we obtain nearly Bayes-minimax behavior.

�(1) � 1:6, so the near-minimaxity is numerically e�ective.

Finally, if p � q, by (14), these estimates are within a factor �(p) (resp. M(p)) of being

asymptotically minimax for the frequentist criterion R�(�). This leads to a more precise

statement of Corollary 3:

Corollary 3. If p � q and thresholds (�I) are chosen as in Theorem 7, then

sup
�s
p;q

Ek�̂� � �k � �(p)R�(�; �s
p;q)(1 + o(1)) as �! 0:

The obvious parallel statement holds for hard thresholding, with constant M(p).

5.1 Minimax Theorem for Thresholds

Return now to the sequence experiment: the problem of estimating � when the measure �
is known to lie in Ms

p;q. Suppose that we use thresholds � = (�I ). Let r(�; �) denote the
risk E�(��(v) � �)2 of the estimator �� in the scalar problem y = � + z with � � � and

z � N(0; �2). Then the risk of the threshold estimator is

L(�; �) =
X
I

r(�I ; �I);

and the minimax threshold risk is

B��(�; �s
p;q) = inf

�
sup

�2Ms
p;q

L(�; �):

To calculate this, we need the following minimax theorem.

Theorem 8

inf
�

sup
�2Ms

p;q

L(�; �) = sup
�2Ms

p;q

inf
�
L(�; �) (38)

We give the formalities of the proof, assuming that certain objects (e.g. Di�erentials)

exist and are continuous but without stopping to explain why.
To begin, set ��(�) = inf� r(�; �), and let ��(�) denote the minimizing �. Hence

inf� L(�; �) =
P

I ��(�I ) Hence the right-hand side of (38) is equal to

sup f
X
I

��(�I ) : � 2 Ms
p;qg

By a semi-continuity and weak compactness argument, the indicated supremum is attained,
by some measure ��. This is a least-favorable prior for threshold estimates.

There is a corresponding sequence �� = (��(�
�
I)) of thresholds which are optimal in case

�� is nature's strategy.

We claim that (��; ��) is a saddlepoint of L.
Let lI(�I) = r(��I ; �I). Then

L(��; �) =
X
I

lI(�I ):
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Now as ��I is �xed, lI is a�ne in �I , and we may write

lI(�I) = lI(�
�
I) +

_lI(�I � ��I);

where _lI is a linear functional. We have

L(��; �) = L(��; ��) +
X
I

_lI(�I � ��I): (39)

Let m(�I) denote the nonlinear functional ��(�I). Then inf� L(�; �) =
P

I m(�I). The

fact that �� is least favorable for thresholds may be written as

X
I

m(��I) = sup
�2Ms

p;q

X
I

m(�I):

If we follow a path (1 � t)�� + t� away from �� towards � 2 Ms
p;q, the objective must

decrease, so the pathwise derivative of the objective is nonpositive. With _mI the Gâteaux

di�erential of m at ��I , X
I

_mI(�I � ��I ) � 0: (40)

Comparing (39) with (40) shows that if

_lI(�I � ��I) � _mI(�I � ��I ) I 2 I; (41)

we would have
L(��; �) � L(��; ��)

which establishes (38). Therefore (41) serves as a Deus Ex Machina. Here is how it may
be proved.

Consider a two person game with payo� �(�1; �2) = r(��(�1); �2). This corresponds to

a game in which Player I chooses a threshold and Player II chooses a prior distribution.
The payo� to II is the mean squared error su�ered by I in the scalar problem v = � + z

with squared error loss. � describes the situation where Player I assumes that Player II

uses prior �1 and is behaving optimally for that prior; but Player II actually has a prior �2.
Let [�; �]t denote the measure (1� t)�+ t� a fractional distance t along the path from

� to �. By de�nition �(�2; �2) � �(�1; �2); hence the arcwise derivative

0 � @

@t
�([�; �]t; �)jt=0+

for every prior �. It follows formally that the arcwise total di�erential

d

dt
�([�; �]t; [�; �]t)jt=0+ =

@

@t
�([�; �]t; �)jt=0+ +

@

@t
�(�; [�; �]t)jt=0+

� @

@t
�(�; [�; �]t)jt=0+:

Chasing a few de�nitions,

m(�I) = �(�I ; �I)
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and

lI(�I) = �(��I ; �I);

hence

_mI(�I � ��I) =
d

dt
�([��I ; �I ]t; [�

�
I ; �I ]t)jt=0+

and
_lI(�I � ��I) =

@

@t
�(��I ; [�

�
I; �I ]t)jt=0+:

The inequality for the total di�erential gives (41) and completes the formal aspects of the

proof.

5.2 Minimax Bayes, Bounded p-th Moment (Encore).

Return brie
y to the scalar situation (15). To measure the performance of threshholds in
this situation, we de�ne

��;p(�; �) = inf
�2[0;1]

sup
(Ej�jp)1=p��

E(��(y)� �)2

and
��;p(�; �) = inf

�2[0;1]
sup

(Ej�jp)1=p��

E(��(y)� �)2;

under our typographical convention, these are worst case risks for soft (�) and hard (�)

thresholds, respectively.
To compare these performances with the Bayes Minimax estimates we de�ne

�(p) � sup
�;�

��;p(�; �)

�p(�; �)
; M(p) � sup

�;�

��;p(�; �)

�p(�; �)
: (42)

[DJ90] shows that for p 2 (0;1], �(p) <1 and M(p) <1. In short, the minimax ��
is within a factor �(p) of minimax, and the minimax �� is within a factorM(p) of minimax.

In fact, �(p) and M(p) are both smaller than 2:22 for all p � 2; and computational

experiments indicate �(1) � 1:6. Quantitatively, �(p) tends to be somewhat smaller than

M(p), which says that \soft" thresholding o�ers a quantitative superiority. (Compare the

conclusions of Bickel (1983) in a di�erent Bayes-minimax problem).

Introduce the notation

r�;p(�; � ; �) = sup
Ej�jp��p

E(��(v)� �)2:

This denotes the worst-case risk of using threshold � when the parameter has p-th mean
less than � p and the noise variance is �2. [DJ90] shows the function rp(�; �; �) to be concave
in � p for each �xed � and �. Also, let

`(�; �; p) = arg min�r�;p(�; � ; �)

stand for the minimax threshold in this problem.

The quantities r�;p and m(�; �; p) are de�ned similarly.
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5.3 Near Minimaxity among all estimates

Combining the last two sections we can now derive the near-minimaxity of thresholds among

all estimates. Let � � = (� �I ) be the moment sequence associated with ��. As �� 2 Ms
p;q,

� � 2 �s
p;q. By de�nition of r�;p,

��(�
�
I) � r�;p^q(�

�
I ; �):

But of course, by the optimizing character of ��I , equality holds. Hence

B��(�;�s
p;q) =

X
I

��(�
�
I ) by (38)

=
X
I

��;p^q(�
�
I ; �)

� �(p ^ q)
X
I

�p^q(�
�
I ; �) by (42)

� �(p ^ q)B�(�; �s
p;q) by (27) :

An additional argument shows that � �I = t�j does not depend on k.
This proves the part of Theorem 7 dealing with soft thresholds. The part for hard

thresholds is similar.

6 Minimax Linear Risk

We now show that thresholds and other nonlinear procedures cannot generally be replaced
by linear procedures. More precisely, in cases where p < 2, linear methods cannot achieve

the minimax rate of convergence described above. In such cases, nonlinear methods must
be used.

We need the notion of quadratic hull introduced in Donoho, Liu, and MacGibbon (1990),
hereafter [DLM90]. Let � be a set of sequences. Let �2

+ be the set of sequences �2 � (�2I )I2I
arising from � 2 �. Then

QHull(�) = f� : �2 2 Hull(�2
+)g:

For the case at hand, one can show that

QHull(�s
p;q) = �s

max(p;2);max(q;2) (43)

We omit the proof for reasons of space. [DLM90] showed that

R�L(�; �) = R�L(�;QHull(�)); (44)

and

R�(�;QHull(�)) � R�L(�;QHull(�)) �
5

4
R�(�;QHull(�)) (45)

for a general class of sets �; their class may be seen to include the Besov and Triebel

bodies.
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Equations (43)-(44) show that linear methods can only attain suboptimal rates of con-

vergence when p < 2. For example, suppose that p � q < 2. Then we have

R�L(�;�
s
p;q) = R�L(�;QHull(�

s
p;q))

= R�L(�;�
s
2;2)

� R�(�;�s
2;2)

� Const (�2)r
0

�! 0:

Here r0 = r0(s; p; q) = r(s; 2; 2). As r(s; 2; 2) < r(s; p; q) for p < 2, linear estimators cannot

attain the optimal rate of convergence. Thus, for example, over �
1=2
1;1 , we have the optimal

rate r = 2=3, but the minimax linear rate r0 = 1=2.

7 Minimaxity over Triebel Bodies

We now study the minimax risk over Triebel Bodies �s
p;q. We again use the Minimax Bayes

model. So, we let B�(�;�s
p;q) stand for the Minimax Bayes risk over the familyMs

p;q of priors

satisfying � 2 �s
p;q, where again � is the moment sequence de�ned by � p^qj;k = Ej�j;kjp^q.

The results are so similar in statement and in proof to the Besov case that we mention
only the di�erences in what follows.

7.1 Separability

Theorem 9 A minimax estimator for B�(�;�s
p;q) has the form

�̂�I = ��j (yI); I 2 I;

where ��j (y) is a scalar nonlinear function of the scalar y. In fact ��j = �(t�
j
;�;p^q) j = 0; 1; : : :

for a sequence (t�j)
1
j=0 which depends on s, p, q, C, and �.

The proof depends on the following two properties of Triebel bodies. The proof follows
word-by-word the proof in section 4.3, only substituting these properties for those of Besov

bodies.

[TB1] J sp;q(� ) = k�kp
fsp;q

is a convex functional of the moment sequence (� p^qI ) (p; q <1).

[TB2] If (�j;k) is an arbitrary positive sequence, and we set �� p^qI = AveI2Ij(�
p^q
I ), then

k��kfsp;q � k�kfsp;q : (46)

The �rst property is evident by inspection. The second property may be proved by

considering the cases p � q and p � q separately.

In the case p � q, de�ne fj =
P
Ij 2

jsp� pI �I . Then, with r = q=p � 1, we have

k�kp
fsp;q

=
Z 1

0
(
X
j�0

f rj )
1=rdt: (47)
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As fj � 0 and tr is convex,

Z 1

0
(
X
j�0

fj(t)
r)1=rdt � (

X
j�0

(
Z 1

0
fj(t)dt)

r)1=r

Now Z 1

0
fj(t)dt = 2jspAveI2Ij(j�I jp) = 2jsptpj ;

say. The average measure �� as in section 4.2 has moment sequence ��I = tj, so

k��kp
fsp;q

= (
X
j�0

(2jsptpj )
r)1=r

and property [TB2] follows by combining the above chain of inequalities.

In the case q � p, de�ne fj =
P
Ij 2

jsq�
q
I �I and set r = p=q � 1. Then

k�kp
fsp;q

=
Z 1

0
(
X
j�0

fj)
rdt: (48)

As fj � 0 and tr is convex, Jensen's inequality gives

Z 1

0
(
X
j�0

fj(t))
rdt � (

Z 1

0

X
j�0

fj(t)dt)
r

Now Z 1

0
fj(t)dt = 2jsq AveI2Ij (j�I jq) = 2jsqtqj ;

say. The average measure �� as in section 5.2 has moment sequence ��I = tj, so

k��kp
fsp;q

= (
X
j�0

2jsqtqj)
r

and property [TB2] follows by combining the above chain of inequalities.

The remainder of the proof runs entirely as in section 4.2.

7.2 Risk Asymptotics

Theorem 10 Let p; q > 0 and s > 1=(2 ^ p ^ q). Then

B�(�;�s
p;q) � 
(�)C2(1�r)�2r; �! 0; (49)

where r = s�1=2
s

, and 
(�) = 
(�;C; s; p ^ q; q) is the continuous, periodic function of

log2(�=C) de�ned in section 4.4.

The Minimax Bayes risk is B�(�;�s
p;q) = val(P�;C) where (P�;C) denotes the optimization

problem

(P�;C) sup
1X
j=0

2j�(tj; �) subject to
1X
j=0

(2sjtj)
q � Cq:

The corresponding renormalizable problem (Q�;C) is of the form (28), with parameter

� = s. Theorem 6 immediately gives the above result.

26



7.3 Asymptotic (Near-)Equivalence

Theorem 11 For s > 1=2, p; q > 0,

R�(�; �s
p;q) � ~
(�)C2(1�r)�2r � �2; � > 0; (50)

where again r = s�1=2
s

, and ~
(�) = 
(�;C; s;1; q) is the continuous, periodic function of

log2(�=C) de�ned in section 4.4.

The hardest rectangular subproblem argument is entirely parallel to section 4.5.

7.4 Minimax Threshold Risk

Theorem 12 Let p; q > 0.

B��(�;�s
p;q) � �(p ^ q)B�(�;�s

p;q)

B��(�;�s
p;q) � M(p ^ q)B�(�;�s

p;q):

There exist thresholds which attain these performances; they have the form

�I = � � `(t�j ; �; p) I 2 I:

and

�I = � � m(t�j ; �; p) I 2 I
for certain functions ` and m and certain sequences t� and t�.

The proof follows that of Theorem 7 word-by-word except that in one place it uses the
convexity [TB1] rather than [BB1].

7.5 Minimax Linear Risk

One can show that

QHull(�s
p;q) = �

s+(1=p
�
�1=p)

max(2;p);max(2;q): (51)

The immediate implication is

R�L(�;�
s
p;q) � (�2)r

0

where

r0 =
s+ (1=p� � 1=p) � 1=2

s+ (1=p� � 1=p)
:

This is again smaller than the minimax rate in case p < 2.
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8 Function Estimation in White Noise

At this point, we have a rather complete understanding of minimax and near-minimax

estimation in the sequence model. We now turn to the correspondence with Nonparametric

Regression. We establish this in two steps.

In the �rst step, which we take in this section, we consider a problem of estimation in

the white noise model. Suppose we observe the stochastic process Y (t), t 2 [0; 1] where

the process Y is characterized by

Y (dt) = f(t) dt+ �W (dt) t 2 [0; 1] (52)

with W a standard Wiener process, and f the function of interest. We wish to estimate

f on the basis of these data and the a priori information that f 2 F a convex class of

functions. We use squared-error loss, and are interested in the minimax risk

R�(�;F) = inf
f̂

sup
F
Ejjf̂ � f jj22 (53)

as well as the minimax linear risk

R�L(�;F) = inf
f̂ linear

sup
F
Ejjf̂ � f jj22: (54)

This type of problem is called \function estimation in white noise". It will be related to

data (1) in section 9. In this section we will show the asymptotic equivalence of the function
space risks (53)-(54) with certain sequence space risks R�(�; �), R�L(�; �).

8.1 Functions of Bounded Variation

As a warmup, suppose that F is the class of functions f supported in [0; 1] and of total
variation TV (f) � 1. The Haar basis is the appropriate wavelet basis for this case.

Let � denote the set of all Haar coe�cients (�I)I2I of functions f 2 F . This is nearly
a Besov Body. In fact:

�
1=2
1;1 (1=2) � � � �

1=2
1;1(1); (55)

the reader may �nd it instructive to verify this.

Consider now the data

b0 =
Z
'0Y (dt); yI =

Z
 IY (dt) I 2 I:

>From properties of the Wiener process,

b0 = �0 + z0; yI = �I + zI; I 2 I;

with z0, zI iid N(0; �2).
Suppose now that we treat the data yI as sequence data (6), and form empirical esti-

mates (�̂I) of the corresponding (�I). Then the series reconstruction f̂

f̂(t) = b0 +
X

�̂I I
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has the loss

jjf̂ � f jj2L2[0;1]
= (b0 � �0)

2 +
X
I

(�̂I � �I)
2:

In words, there is an exact isometry between estimating error in one domain and in the

other. As the isometry goes in both directions, we conclude in an obvious notation that

R�(�;F) = �2 +R�(�; �)

R�L(�;F) = �2 +R�L(�; �);

here the terms on the left hand side represent minimax risks for the problem in function

space (52){(54) and those on the right for the problem (6){(8) in sequence space. Evidently,

the term �2 is of negligible importance, compared to the minimax risks. Hence we get the

asymptotic equivalence of minimax risks.

We get from (55) immediately that

�2 +R�(�;�
1=2
1;1 (1=2)) � R�(�;F) � �2 +R�(�;�

1=2
1;1(1)): (56)

As risk asymptotics depend on p rather than q, both sequence space terms go to zero at
the rame rate (�2)2=3. Similar results hold for the minimax linear risk.

Corollary 4 Let F denote the class of functions with TV (f) � C. Then

R�(�;F) � (�2)2=3

R�L(�;F) � (�2)1=2

I.e. Linear estimators cannot attain the minimax rate of convergence.

Using (56) and detailed studies of the optimization problem (Q1;1) for the cases (s; p; q) =
(1=2; 1; 1) and (1=2; 1;1), we can get muchmore precise information about the asymptotics
of the minimax risk. We do not pursue this here for reasons of ecological concern.

8.2 Spaces of Smooth Functions

We now consider general classes of smooth functions, such as the Bump Algebra B or one
of the Sobolev Spaces Wm

p .

Theorem 13 Let the wavelet basis be of regularity r > �. Let F denote the class of all

functions with jf jB�
p;q[0;1]

� 1. There exist c and C depending on the wavelet basis so that

R�(�;�s
p;q(c))(1 + o(1)) � R(�;F) � R�(�;�s

p;q(C))(1 + o(1)): (57)

Moreover, an estimator nearly attaining the minimax risk for the sequence problem yields

an estimator nearly attaining the risk in the function problem.
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First, we relate the risk in function space to the risk for estimation in sequence space.

De�ne

xk =
Z 1

0
�`;kY (dt); k 2 K;

yI =
Z 1

0
 IY (dt); I 2 J :

Then

xk = �`;k + �zk; k 2 K
and

yI = �I + �zI ; I 2 J :
Let � denote the collection of inhomogeneous wavelet expansions ((�`;l)k2K; (�I)I2J ) aris-

ing from functions f 2 F . The Parseval relation for the wavelet basis, [ISO1] gives

immediately
R(�;F) = R�(�;�):

We now apply [ISO2]. By additivity of coordinate risks and independence of noise, if
�0 = IR#(K) then

R�(�;�0 ��1) = R�(�;�0) +R�(�;�1)

= #(K)�2 +R�(�;�1):

We conclude from (5) that

R�(�; ~�s
p;q(c)) � R�(�;�) � #(K)�2 +R�(�; ~�s

p;q(C)):

Now of course
f0g � ~�s

p;q(C) � �s
p;q(C) � IR2` � ~�s

p;q(C):

so
R�(�; ~�s

p;q) � R�(�;�s
p;q) � R�(�; ~�s

p;q) + 2`�2: (58)

Combining these inequalities, and noting that terms O(�2) are negligible asymptotically,
we have (57).

Of course, one can attain this risk asymptotically by shrinking wavelet coe�cients using

the minimax Bayes estimator for the sequence model; speci�cally

�̂`;k = xk; k 2 K;

�̂I = ��j (yI); I 2 J :
If we used instead the optimal soft (hard) thresholding of Section 5 we would get that the

corresponding estimator has a risk within a factor �(p) (M(p)) of the minimax risk.

A similar result holds for function classes F de�ned by Triebel seminorms. The most

interesting special case is for Sobolev spaces:
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Theorem 14 Let the wavelet basis be of regularity r > m and let 1 < p < 1. Let F
denote the class of f with kf (m)kLp[0;1] � 1. There exist c and C, depending on the wavelet

basis, so that

R�(�;�m
p;2(c))(1 + o(1)) � R(�;F) � R�(�;�m

p;2(C))(1 + o(1)): (59)

Moreover, an estimator attaining (or nearly attaining) the minimax risk for the sequence

problem yields an estimator attaining (or nearly attaining) the asymptotic minimax risk in

the function problem.

The proof is parallel to Theorem 13, only using the Triebel equivalence in [ISO2].

Corollary 5 Let F denote the class of functions in the Bump Algebra of B-norm not

exceeding 1. Then

R�(�;F) � (�2)2=3; �! 0;

R�L(�;F) � (�2)1=2; �! 0:

Hence linear estimators cannot attain the minimax rate of convergence.

The proof consists in remarking that the B norm is equivalent to the B1
1;1 norm, and

applying results on �
1=2
1;1 .

9 Nonparametric Regression and White Noise

We now connect the above results to the nonparametric regression model (1). De�ne the
regression process fYn(t) : t 2 [0; 1]g via t0 = 0, Yn(0) = 0 and

Yn(ti) =
1

n

X
t�ti

yi; i = 1; :::; n;

with interpolation between the ti by independent Brownian Bridges W0;i: for ti � t � ti+1
set

Yn(t) = Yn(ti) + (t� ti)yi+1 +
�

n
W0;i(n(t� ti)):

The regression process Yn and the white noise process Y of the previous section are quan-

titatively quite close. Indeed, de�ning the step function

fn(t) =
nX
i=1

f(ti)1fti�1�t<tig

we have

Yn(dt) = fn(t)dt+ �W (dt)

where W is a Wiener process and � = �p
n
. Hence, on a common probability space, we have

that Yn di�ers from Y precisely by the di�erence between fn and f .
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In an important paper, Brown and Low (1992) study the degree of approximation of

the experiments (Yn,F) by (Y ,F). For a class F of functions, set

Dn(F) = sup
F
jjf � fnjj22:

They show that if Dn = o( 1
n
), then the experiments (Yn,F) and (Y ,F) are asymptotically

indistinguishable by any statistical tests; in consequence, if ` is any bounded function and

f̂ any measurable estimator the worst-case risk

sup
F
E`(nrjjf̂ � f jj22)

has the same asymptotic limit in both experiments. This says that results in the white

noise model furnish results in the nonparametric regression model and vice versa. For

example, the problems have the same asymptotic minimax risks and an estimator good in
one model is good in the other.

In the present setting, we can improve on the conclusions of the Brown-Low theorem,
because we have special information: estimators are de�ned by coordinatewise nonlinear-
ities in the wavelet basis; and Besov, Triebel, or Sobolev F . This allows us to get results

even for the unbounded risk Ejjf̂ � f jj22 and for classes where Dn(F) 6= o( 1
n
). We start

with a lower bound.

Theorem 15 Let F consist of all functions in a B�
p;q ball or an F �

p;q ball, � > 0. Then

R(n;F) � R�(
�p
n
;F)(1 + o(1)); n!1

so that nonparametric regression is at least as hard as the white noise model.

For upper bounds, let a wavelet basis for the interval [0; 1] be given, let ~yI denote
the empirical I-th wavelet coe�cient of Yn and let yI denote the empirical I-th wavelet
coe�cient of Y . These are related by

~yI =
Z 1

0
 IYn(dt)

=
Z 1

0
 Ifn(t)dt+ �

Z 1

0
 IW (dt)

= yI +�I ;

say, where �I =
R 1
0  I(t)(fn(t) � f(t))dt. For estimators based on simple coordinatewise

nonlinearities which are contractions (for example the soft thresholds), it is evident that

provided Dn(F) is small compared to the worst case risk in the white noise model, then
the quadratic risk in the two models is asymptotically equivalent. In short risk equivalence

requires only Dn = o(n�r) where r is the optimal rate; this holds in greater generality than

the Brown-Low condition Dn = o(n�1).
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Theorem 16 If F is a Besov or Triebel ball with either � > 1=p, or with � = 1, p; q � 1;

or if F is a ball of functions of bounded variation, then

R(n;F) � R�(
�p
n
;F)(1 + o(1)); n!1

A wavelet shrinkage estimator for the white noise model can be adapted to the nonparametric

regression model with equivalent worst-case risk.

Note that this is a stronger conclusion than the Brown and Low theorem, since it covers

for example all the H�older conditions C� with � > 0 and not just those with � 2 (1=2; 1].

The adaptation referred to is the following.

1. Fit by least-squares a function of the form b̂(t) =
P

k2K �̂`;k�`;k, using the principle

b̂ = arg min
X
i

(b(ti)� yi)
2

where the minimum is over all sums
P

k2K �`;k�`;k.

2. Let y0i = yi � b̂(ti) + w(ti), where w(t) =
P

k2K z`;k�`;k with z`;k i.i.d. N(0; �2).

3. Construct the regression process Yn as earlier, only using the data y0i rather than yi.

4. Act precisely as if Yn furnished white noise data Y of the type used in the last section.
Let f̂0 be the resulting estimate.

5. Report f̂ = b̂+ f̂0.

The purpose of this minor adjustment is as follows. Sets jjf (m)jjp � 1 are not compact,
as they contain all polynomials of degree m� 1. If m > 1 we actually get Dn(F) = +1.
The solution is to study the subset F0 of F which is orthogonal to polynomials, and develop
polynomially-equivariant estimators. De�ne f0 = f � b̂. Then f0 is orthogonal to every

polynomial of degree less than N , both with respect to the counting measure
P

i f0(ti)�(ti)
and also with respect to the Lebesgue measure

R 1
0 f(t)�(t)dt. One derives bounds from this

which imply the required results.

For reasons of space, we omit both proofs.

10 The Estimator is Spatially Adaptive

The reconstruction method developed so far represents two di�erent aspects of the smooth-

ing problem. Symbolically, we have

f̂ = f̂GROSS + f̂DETAIL

where

f̂GROSS =
X
k

�̂k'`;k

f̂DETAIL =
X
I

�̂I I :
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f̂GROSS is a traditional estimate of the orthogonal series type. It involves a reconstruction

using the empirical series coe�cients corresponding to the low-resolution or gross-structure

terms in a certain series expansion. f̂GROSS is linear in the data.

f̂DETAIL is a detail correction for f̂GROSS. It is formed by a nonlinear processing of

the high-resolution wavelet coe�cients. We now give an interpretation of the methods as

spatially adaptive.

10.1 A Locally Adaptive Kernel Estimate.

Note that the \gross structure" term in the wavelet reconstruction is obtained by a kernel

estimates:

f̂GROSS(s) =
X
k2K

�̂k'`;k(s) =
X

'`;k(s)
Z
'`;k(t)Y (dt)

=
Z X

'`;k(s)'`;k(t)Y (dt)

=
Z
KG(s; t)Y (dt)

where KG(s; t) �
P

k2K '`;k(s)'`;k(t) and Y is a white noise process.
Turning to \Detail Structure," de�ne wj(y) so that the identity �j(y) = ywj(y) holds.

Then �̂I = wj(yI)
R
 IY (dt) and

f̂DETAIL(s) =
X
I2J

�̂I I(s)

=
X
j

X
Ij

wj(yI) I(s) � yI

=
Z X

j

X
Ij

wj(yI) I(s) I(t)Y (dt)

=
Z
KD(s; t)Y (dt); say:

We have symbolically

f̂ =
Z
(KG +KD)(s; t)Y (dt)

where the \pieces" are orthogonalZ Z
KG(s; t)KD(s; t) ds dt = 0:

However KD depends on y, through the wj(yI) weights. Consequenty, KD is an adaptively

designed kernel: it is constructed by adaptively summing kernels  I(s) I(t) of di�erent

bandwidths, using weights based on the apparent need for inclusion of structure at level j

and spatial position k.
In detail, put Q(I) = suppf Ig. For a constant S depending on the speci�c wavelet

basis, Q(I) � [2�j(k � S); 2�j(k + S)], so it has width of order 2�j . Also, set WI(s; t) =

 I(s) I(t). Then

KD(s; t) =
X

s2Q(I)

wj(yI)WI(s; t) :
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a sum of kernelsWI with weights. The kernelWI is supported in Q(I)�Q(I); consequently
its bandwidth is � 2�j .

Suppose now that �j is chosen from the family of soft thresholds. The weights wj(yI)

are then 0 if jyI j < �j ; as jyIj ! 1, they tend to 1. Hence, a small empirical coe�cient yI
leads to omission of the term WI from the detail kernel; a large empirical coe�cient leads

to inclusion, with full weight 1.

Consequently, if jyIj � �j , then for (s; t) 2 Q(I) � Q(I) the kernel KD(s; t) contains

terms of bandwidth � 2�j . In short, our proposal represents a method of adaptive local

selection of bandwidth (and, indeed, kernel shape).

Parallel comments apply when the nonlinearities �j are chosen from the other families.

10.2 Over�tted Least-Squares with Backwards Deletion

The coe�cients yI represent the orthogonal projection of Y on the basis functions  I Thus
they represent the \least-squares estimated regression coe�cients" in the \linear model"

f =
X
k2K

�k'`;k +
X
I2J

�I I:

However, to build an estimate f̂ using all the  I terms with least-squares coe�cients

involved serious \over�tting" with the result that the reconstruction is extremely noisy. In
fact the \formula" X

�̂k2K'`;k +
X
I2J

yI I

de�nes an object so erratic that it can only be interpreted as a distribution, namely dY ,

not a function.
The spatially adaptive CART method (Breiman, Friedmen, Olshen, and Stone, 1983)

�ts large complete models based on Dyadic partitioning and then removes from consider-
ation those terms with \statistically insigni�cant" coe�cients. Our method has a parallel
interpretation, if hard thresholds (��) are employed for the nonlinearity. The standard

error of yI is � and �j = m(t�j =�; 1; p) � � = mj � �, say, so

�̂I =

(
yI jyI j � mj � �
0 jyI j < mj � �

Hence the reconstruction

f̂DETAIL =
X
J

�̂I I

includes only those terms yI with \Z-scores" yI=� exceeding mj in absolute value. Thus

mj is a \signi�cance threshold." However, observe that our signi�cance thresholds are
determined by a minimax criterion, and not, for example, by some conventional statistical

criterion (e.g. P < :05). In fact, mj !1 as j !1, which means that extreme statistical

signi�cance must be attached to a coe�cient at high resolution index j before that term is

incuded in the reconstruction.

35



10.3 Interpretation

There is considerable current interest in variable-bandwidth kernel estimation (M�uller and

Statdtmuller, 1987), and in over�tting of dyadically partitioned estimators combined with

backwards deletion (Breiman, Friedman, Olshen, and Stone, 1983). Our results show that

such e�orts might perhaps ultimately be found to have a minimax justi�cation. We have

shown that the minimax principle, applied to di�erent scales of spaces than the usual ones,

leads directly to estimates which have similar structure.

11 The Least Favorable Prior is Sparse if p < 2

The results of sections 4-7 allow us to describe least favorable distributions for estimation

over Besov and Triebel bodies. We brie
y describe the situation for soft thresholds.

An asymptotically least favorable distribution derives in the Besov case from renormal-
ization of the optimization problem

(Q�
1;C) sup

1X
j=�1

��;p(tj)2
j subject to

1X
j=�1

2j�qtqj � Cq;

where � = (s+1=p). To �x ideas, we study the Bump algebra, so that s = 1=2, p = q = 1.

By simple variational calculations, at an extremum of (Q�
1;C) we have

_�(tj) = c � 2j=2; j 2 Z

where � � ��;1 and _� � d
d�
�(� ). Now from [DJ90], we know that � is concave, that

_�(� ) �
q
2 log(��1), � ! 0, and that _�(� ) ! 0, � ! 1. Hence _� is one-to-one on (0;1)

and has a well-de�ned inverse function ( _�)�1. The solution t� of (Q�
1;C) must obey

t�j = ( _�)�1(c � 2j=2) j 2 Z

for some constant c chosen so that

1X
j=�1

2j�q(t�j )
q = Cq:

>From this we can read o� that t�j !1 as j ! �1 and t�j ! 0 as j !1.

The function �(� ) is attained by some threshold �(� ) and some prior distribution � =

(1 � �)�0 + �(��� + ��)=2, where � = �(� ), � = �(� ) satisfy �� = � and �� = Dirac mass at
�. In symbols,

�(� ) = E�r(�; �)

for this � and this �, where r(�; �) = E�(��(v)� �)2.

[DJ90] explore the risk function � 7! r(�; �), and show that there is a �0 > 0 such that

for � > �0, �(� ) = 1, �(� ) = � , while for 0 < � < �0, �(� ) < 1, �(� ) > � . In fact, as � ! 0,

�! 0 and � !1.
We interpret this as follows. Suppose we take a large random sample �1; : : : ; �k from the

prior � attaining �(� ). If � > �0, this sample is dense: all the �i are of the same amplitude
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� , with randomly chosen signs. On the other hand, if � � �0 then this sample is sparse:

very few of the �i are nonzero, and those few are relatively large in size.

We now apply these observations to the least favorable prior over �
1=2
1;1 . This coincides

asymptotically with renormalization from the solution to (Q�
1;C) above. As a result, we see

that there is an index j0 = j0(�; s; p; q; C) with the following property. For coarse resolution

levels j < j0, the corresponding t
�
j exceeds �0 � �, and the prior distribution is dense at such

levels: all the wavelet coe�cients are of the same size. For �ne resolution levels j � j0,

the corresponding t�j < �0 � �, and the prior distribution is sparse, with a few wavelet

coe�cients carrying all the energy. In fact, the wavelet coe�cients at sparsely-populated

high resolution levels can be individually much larger than those at the densely-populated

low resolution levels.

This result shows that the least favorable distribution generates objects with statistical

properties that resemble those of images analyzed by wavelet methods. Our experience

in wavelet transforms of images suggests that real objects often have wavelet transforms
that are dense at low resolution and sparse at high resolution. See �gures in [DJ92a],
[DJ92b], and in Mallat (1989b,c). Thus wavelet minimax estimators for the case p < 2
are optimized for a least-favorable situation which is qualitatively quite reasonable and
empirically motivated.

12 Discussion

12.1 Re�nements

We brie
y mention several avenues for re�nement of the results give above.

12.1.1 Precise Constants

Our approach, via Minimax-Bayes, has given the exact asymptotics of the risk only for the

Besov case with p � q. It actually requires a di�erent Minimax-Bayes problem to get the
exact asymptotics for the Besov case q < q and for the Triebel case p 6= q.

The results given here could be used to numerically determine minimax choices of

threshold. However, [DJ92a] shows that one can behave in a near-minimax way without
this numerical information. That paper implements a threshold estimate on noisy, sampled

data, with thresholding chosen empirically by Stein's Unbiased Risk Estimate. This gives
worst-case risks which are asymptotically just as good as if the minimax thresholds were

used.

12.1.2 Other problems

The theory presented here extends, at least as far as sections 2-8 are concerned, without

any di�culty to dimensions d > 1. Whether the results of Section 9 continue to hold is

more involved, and requires more study.

Johnstone, Kerkyacharian, and Picard (1992) have studied wavelet thresholding esti-

mates in density estimation problems. They showed that such estimates attain the minimax
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rate of convergence for a wide variety of losses and the entire scale of Besov spaces. Their

arguments are somewhat di�erent from those used here.

Donoho (1991) shows how wavelet thresholding ideas may be adapted to various ill-

posed inverse problems.

12.2 Relation to Other Work

The idea of studying minimax estimation in the scale of Besov spaces �rst arose in Kerky-

acharian and Picard (1992). In that work, Kerkyacharian and Picard studied the use of

linear estimators of wavelet coe�cients and showed that linear damping of wavelet coe�-

cients can achieve optimal rates of convergence for certain combinations of loss and Besov

space. After hearing of their results at the �Ecole d'�Et�e de Probabilit�es in Saint Flour,

July 1990, Donoho suggested to Kerkyacharian and Picard that the thresholding results

of [DLM90] and [DJ90], applied in a wavelet setting, might lead to minimax estimators
in those cases where linear estimators failed to achieve optimal rates. From this modest
suggestion, Johnstone, Kerkyacharian, and Picard (1992) have gone very far, and settled
all issues of minimax rates of convergence of density estimates in the Besov scale by apply-
ing wavelet thresholding techniques. The present article provides an understanding of why

wavelet thresholding ought to work in such cases, since the white noise model has close
connections with density estimation.

The phenomenon of nonlinear estimates achieving rates of convergence faster than any
linear estimates was discovered in two special cases by Nemirovskii, Tsybakov, and Polyak
(1984), and extended to the scale Wm

p of Sobolev spaces with p < 2 by Nemirovksii (1985).

As Wm
p = Fm

p;2, our results provide a generalization to a broader class of cases, and a much
more extensive understanding of the phenomenon and how to exploit it.

The �rst precise evaluation of asymptotic minimax risks in an in�nite-dimensional set-
ting was obtained M.S. Pinsker (1980). Pinsker's seminal work found asymptotically least-
favorable priors for the signal-plus-noise model in sequence space, when the signal was

known to belong to an ellipsoidal body in `2. This work implicitly inaugurated the Minimax
Bayes method for evaluating minimax risks in passing. This work initiated a long sequence
of developments in nonparametric estimation by �nding asymptotically least-favorable pri-

ors for the signal-plus-noise model in sequence space, when the signal was known to belong
to an ellipsoidal body in `2. Implications of Pinsker's work were developed in density es-

timation and spectral density estimation by Efroimovich and Pinsker (1981, 1982) and in
nonparametric regression by Nussbaum (1985).

Pinsker's asymptotically least favorable priors are Gaussian; his asymptoticallyminimax
rules are linear. Our results reduce to his in the special case p = q = 2, where Besov

and Triebel bodies become ellipsoidal. The case where p and q are not both 2 yields
nonGaussian priors and nonlinear estimates. Our results may therefore be considered a

nonlinear, nonGaussian generalization of Pinsker's theorem.
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