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Abstract

Consider estimating the mean vector � from data Nn(�; �
2I) with lq norm loss,

q � 1, when � is known to lie in an n-dimensional lp ball, p 2 (0;1). For large

n, the ratio of minimax linear risk to minimax risk can be arbitrarily large if p < q.

Obvious exceptions aside, the limiting ratio equals 1 only if p = q = 2. Our arguments

are mostly indirect, involving a reduction to a univariate Bayes minimax problem.

When p < q, simple non-linear co-ordinatewise threshold rules are asymptotically

minimax at small signal-to-noise ratios, and within a bounded factor of asymptotic

minimaxity in general. Our results are basic to a theory of estimation in Besov spaces

using wavelet bases (to appear elsewhere).
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1 Introduction: l2 error

Suppose we observe y = (yi)
n
i=1 with yi = �i + zi, zi i.i.d. N(0; �2), with � = (�i)

n
i=1 an

unknown element of the convex set �. Sacks and Strawderman (1982) showed that, in some

cases, the minimax linear estimator of a linear functional L(�) could be improved on by a

nonlinear estimator. Speci�cally, they showed that for squared error loss, the ratio R�L=R
�
N

of minimax risk among linear estimates to minimax risk among all estimates exceeded 1+�

for some (unknown) � > 0 depending on the problem. This raised the possibility that

nonlinear estimators could dramatically improve on linear estimators in some cases.

However, Ibragimov and Hasminskii (1984) established a certain limitation on this

possibility by showing that there is a positive �nite constant bounding the ratio R�L=R
�
N for

any problem where � is symmetric and convex. Donoho, Liu, and MacGibbon (1990) have

shown that the Ibragimov-Hasminskii constant is not larger than 5/4. Moreover, Donoho

and Liu (1988) have shown that even if � is convex but asymmetric, still R�L=R
�
N < 5=4

{ provided inhomogeneous linear estimators are allowed. It follows that for estimating a
single linear functional, minimax linear estimates cannot be dramatically improved on in

the worst case.
For the problem of estimating the whole object �, with squared l2-loss k �̂ � � k2=P

(�̂i � �i)
2, one could ask again whether linear estimates are nearly minimax. Pinsker

(1980) discovered that if � is an ellipsoid, then R�L=R
�
N ! 1 as n ! 1. Donoho, Liu,

and MacGibbon(1990) showed that if � is an lp-body with p � 2 then R�L=R
�
N � 5=4,

nonasymptotically. Thus there are again certain limits on the extent to which nonlinear
estimates can improve on linear ones in the worst case.

However, these limits are less universal in the case of estimating the whole object than
they are in the case of estimating a single linear functional. In this paper we show that there
are cases where the ratio R�L=R

�
N may be arbitrarily large. Let �p;n denote the standard

n-dimensional unit ball of lp, i.e. �p;n = f� :Pn
1 j�ijp � 1g.

Theorem 1 Let n�2 = constant and � = �p;n. Then as n!1

R�L
R�N

!
(

1 p � 2

1 p < 2
(1)

This re
ects the phenomenon that in some function estimation problems of a linear

nature, the optimal rate of convergence over certain convex function classes is not attained
by any linear estimate (Kernel, Spline, : : : ). Compare also Sections 7, 8, and 9 in Donoho,
Liu, and MacGibbon (1990), and the discussion in section 3 below.

Our technique sheds some light on Pinsker's phenomenon, as mentioned above. It

establishes

Theorem 2 Let p be �xed, and set � = �p;n. Suppose that we can choose �2 = �2(n) in

such a way that R�L=R
�
N ! 1. There are 3 possibilities:

a. R�N=n�
2 ! 1 (Classical case).

b. p = 2 (Pinsker's case).
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c. R�L=n�
2 ! 0 (trivial case).

In words, if the minimax linear estimator is nearly minimax, then: either (case a) the

raw data y is nearly minimax, or (case c) the trivial estimator 0 is nearly minimax, or else

we are in the case p = 2 covered by Pinsker (1980). Put di�erently, Pinsker's phenomenon

happens among lp constraints only if p = 2.

Theorems 1 and 2 show that improvement on minimax linear estimation is possible

without showing how (or by how much). A heuristic argument suggests that a non-linear

estimator that is near optimal has the form

�̂i = sgn(yi)(jyij � ��)+ (2)

where � = �(n; �; p). Consider, for example, the case p = 1 and � = cn�1=2. Then, on

average j�ij � n�1. Therefore most of the coordinates �i are of order n�1 in magnitude.

But for Theorem 1, � = O(n�1=2). The nonlinear estimator with � = 5 �� will be wrong in

most coordinates by only OP (n
�1), and the case of the few others by only OP (n

�1=2). As
the minimax linear estimator is wrong in every coordinate by OP (n

�1=2), the result (1) for
p < 2 might not be surprising.

In fact, for an appropriate choice of �, the estimator (2) is asymptotically minimax,
and the improvement R�N=R

�
L can be calculated.

Theorem 3 Assume 0 < p < 2, with n�p ! 1 and �2 log n�p ! 0. Let �2 = 2 log n�p.
Then (i)

R�N = sup
�2�p;n

E�

nX
1

(�̂i;� � �)2(1 + o(1)) (3)

= �2�p(2 log n�p)1�p=2(1 + o(1)) as n�p !1: (4)

(ii) R�L=R
�
N = (1 + n�2)�1n�p(2 log n�p)�1+p=2 as n�p !1

Suppose for example that � = n�1=2. Then n�p = n1�p=2, R�L = 1=2 and

R�N � (
(2� p) log n

n
)1�p=2

Thus, in the special case p = 1, R�N � (log n=n)1=2.

The estimator (2) can be said to use soft thresholding , since it is continuous in y. An

alternative hard threshold estimator is

�
(h)
�;i = yiIfjyij > �g: (5)

(When needed, we use the notation �
(s)
� to distinguish soft threshold estimators.)

Corollary 4 Results (3), (4) hold also for hard threshold estimators so long as �2 =
2 log n�p + � log(2 log n�p) for some � > p � 1.

These results will be derived as special cases of those for lq losses, to which we now

turn.
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2 Results for lq loss functions

The general situation we study has, as before, y � Nn(�; �
2I), but with estimators evaluated

according to lq-loss jj�̂� �jjqq =
Pn

1 j�̂i� �ijq. We need convexity of the loss function, and so

require that q � 1. Thus the class of possible `shapes' (p; q) for parameter space and loss

function is given by S = (0;1)� [1;1). In applications, interest usually centers on p or

q = 1, 2, or 1, but for the theory it is instructive to study also intermediate cases. This

is especially true here as we do not explicitly allow p or q =1 (though p =1 is an easy

extension).

In addition, it is natural (and important for the applications in Donoho and Johnstone

(1992)) to allow balls of arbitrary radius: �p;n(r) = f� : P j�ijp � rpg. Consider therefore
the minimax risk

R�N = R�N;q(�; �p;n(r)) = inf
�̂

sup
�p;n(r)

E�

nX
1

j�̂i � �ijq: (6)

The subscript `N ' indicates that non-linear procedures �̂(y) are allowed in the in�num.

Our object is to study the asymptotic behavior of R�N as n, the number of unknown
parameters, increases. We regard the noise level � = �(n) and ball radius r = r(n) as
functions of n. This framework accommodates a common feature of statistical practice: as
the amount of data increases (here thought of as a decreasing noise level � per parameter),
so too does the number of parameters that one may contemplate estimating.

If there were no prior constraints, � = Rn, then the unmodi�ed raw data would give a
minimax estimator �̂(y) = y. In that case, the unconstrained minimax risk equals E�jY �
�jq = n�qcq, where cq = EjZjq = 2q=2��1=2�((q + 1)=2), and Z denotes a single standard
Gaussian deviate.

Asymptotically, R�N depends on the size of �p;n(r) through the dimension-normalized

radius �n = n�1=p(r=�). This may be interpreted as the maximum scalar multiple in stan-
dard deviation units of the vector (1; : : : ; 1) that lies within �p;n(r). Alternatively, it can be
thought of as the average signal to noise ratio measured in the lp- norm: (n�1

P
(�i=�)

p)1=p �
n�1=p(r=�).

The asymptotic behavior of R�N will be expressed in terms of a standard univariate

Gaussian location problem in which we observe X � N(�; 1) and seek to estimate �

using loss function j�(x) � �jq. Write �F (x) for the Bayes estimator corresponding to a

prior distribution F (d�), and �q(F ) = inf�(x)
R
E�j�(x)� �jqF (d�) for the Bayes risk. Let

Fp(�) denote the class of probability measures F (d�) satisfying the moment conditionR j�jpF (d�) � �p. An important role is played by the largest Bayes risk over Fp

�p;q(�) = sup
Fp

�q(F ): (7)

A distribution Fp;q = Fp;q(�) maximising (7) will be called least favorable. Usually the
least favorable distribution Fp;q(�) cannot be described analytically, but when �n ! 0, it

is sometimes possible to �nd an asymptotically least favorable sequence of simple structure
~Fp;q;n 2 Fp(�n) such that �q( ~Fp;q;n) � �p;q(�n). We use �̂N(y) to denote an asymptotically
minimax rule, which of course need not be unique.
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Theorem 5 Let (p; q) 2 (0;1) � [1;1). If either (i) p � q or (ii) 0 < p < q and

(�=r)2 log n(�=r)p ! 0, then

R�N � n�q�p;q(�n) as n!1: (8)

In speci�c instances, more can be said:

1. �n !1. R�N � n�qcq; �̂N(y) = y:

2. �n ! � 2 (0;1). R�N � n�q�p;q(�) �̂N;i(y) = ��Fp;q(�
�1yi):

3a. �n ! 0; p � q: R�N � n�q�qn; �̂N (y) = 0:

The two point distributions ~Fn = (���n + ��n)=2 are asymptotically least favorable.

3b. �n ! 0; p < q; and assume also that (�=r)2 log n(�=r)p ! 0. Let �2n = 2 log n(�=r)p.

R�N � n�q�pn(2 log �
�p
n )(q�p)=2; �̂N;i(y) = sgnyi(jyij � �n�=r)+ (9)

� (2(�=r)2 log n(�=r)p)(q�p)

The three point distributions ~Fn = (1� �)�0+ �(��+ ���)=2 are asymptotically least
favorable, where � = �n; � = �n � (2 log ��1n )1=2 are determined from the equations

��p = �pn and �(an + �) = ��(an) (10)

where an = a(�n) " 1 but a2n = o(log ��pn ).

The proof of Theorem 5 is the subject of Sections 4 through 7. The asymptotically

minimax estimators given in (9) are the same as in (2) except that now the choice of
the threshold parameter is speci�ed: it is noteworthy that this does not depend on the
loss function. Another sequence of asymptotically minimax estimators in this case would,
of course, be the Bayes estimators corresponding to an asymptotically least favorable se-
quence of distributions. In a sense made more precise in Section 6, these Bayes estimators

approximately have the form � ~Fn(x) _=�nsgn(x)Ifjxj > �n + ang. Since an = o(�n) and

�2n � �2n � 2 log ��pn it follows that ~�N;i(y) = �� ~Fn
(��1yi) has approximately the same zero

set as the simpler threshold rule �̂N;i(y). Hard threshold rules of the form (5) are also

asymptotically minimax in the setting 3.(b) of Theorem 5, so long as �2 is chosen equal to

2 log n�p + � log(2 log n�p) for � > p � 1.
The threshold estimators of the previous section have a more general asymptotic near-

optimality property that holds whenever (8) is valid.

Theorem 6 Let (p; q) 2 (0;1)� [1;1). There exist constants �s(p; q);�h(p; q) 2 (1;1)
such that if either (i) p � q or (ii) 0 < p < q and (�=r)2 log n(�=r)p ! 0, then

inf
�

sup
�p;n(r)

E�jj�(s)� � �jjqq � �s(p; q)R
�
N(�;�p;n(r))(1 + o(1))

and the corresponding property holds for �
(h)
� (with bound �h(p; q)).
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The theorem is proved in Section 8, where de�nitions of �(p; q) are given in terms of

a univariate Bayes minimax estimation problem. In fact �s(p; 2) and �h(p; 2) are both

smaller than 2.22 for all p � 2 and computational experiments indicate that �s(1; 2) � 1:6.

We turn now to the minimax linear risk R�L = R�L;q(�; �p;n(r)), obtained by restricting

attention to estimators that are linear in the data y. Because of the symmetry of �, this

e�ectively means estimators of the form �̂(y) = ay for a 2 [0; 1], or equivalently, of the

form y=(1 + b) for b 2 [0;1].

Call a set � loss-convex if the set f(�qi ); � 2 �g is convex (cf. the notion of q-convexity

in Lindenstrauss and Tza�ri (1979)). Clearly �p;n is loss-convex exactly when p � q. If

p < q then the loss-convexi�cation of �p;n, namely the smallest loss-convex set containing

�p;n, is �q;n. The size of the loss-convexi�cation of �p;n turns out to determine minimax

linear risk, and so in analogy with �n we de�ne ��n = n�1=p_q(r=�). Finally, we use �̂L(y)
to denote an asymptotically minimax linear rule, again not necessarily unique.

Theorem 7 Let (p; q) 2 S = (0;1) � [1;1). The limiting behavior of R�L depends on
that of ��n = n�1=p_q(r=�) as follows.

1. ��n !1: R�L � n�qcq; �̂L;i(y) = yi:

2. ��n ! � 2 (0;1): R�L � n�qcp;q(�): �̂L;i(y) = a�yi:

(a) If p < q or p = q � 2, then

cp;q(�) =

(
c1 ^ � a� = If� > c1g q = 1

cq[1 + b�]
�(q�1) b� = c1=(q�1)q ��q

0

q > 1

where (1 + b�)
�1 = a� and 1=q0 + 1=q = 1.

(b) If p > q or p = q � 2, then

cp;q(�) = inf
b�0

(1 + b)�q~s(bp�p);

where ~s(
) is the least concave majorant of s(
) = EjZ + 
1=pjq on [0;1). If b�
attains the minimum in cp;q(�), then �̂L;i(y) = yi=(1 + b�).

3. ��n ! 0. R�L � n�q��qn = rqn(1�q=p)+; �̂L;i(y) = 0:

The proof appears in Section 9. The following corollary describes the possible limiting

behaviors for R�L=R
�
N . Note that by passing to subsequences, we may always assume that

�n converges.

Corollary 8 Suppose (p; q) 2 S and �n ! � 2 [0;1]. Then

lim
R�L
R�N

=

8><
>:

1 if (i)�n !1; (ii)�n ! 0; p � q; or (iii)p = q = 2

2 (1;1) if �n ! � 2 (0;1); p; q not both equal to 2:
1 if �n ! 0; p < q and (�=r)2 log n(�=r)p !1:
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Thus, among lp ball constraints and lq losses, exact asymptotic optimality of linear

estimators occurs in \non-trivial" cases only for Euclidean norm constraints and squared

error loss. If � is loss-convex, the ine�ciency of linear estimates is always bounded. If �

is not loss-convex, and is asymptotically 'small' (�n ! 0), then the ine�ciency becomes

in�nite at a rate which can be explicitly read o� from Theorems 5 and 7.

In summary, if � is large (�n � 1), then the prior information conferred by restriction

to � is weak and the raw data is nearly minimax. On the other hand, if � is small

(�n � 0), then prior information is strong, but it is the shape of � that is decisive: if

� is loss convex, then the trivial zero estimator is near minimax, whereas in the non loss

convex cases, threshold rules successfully capture the few non-zero parameters and are near

minimax. In the intermediate � cases (�n � � > 0), one might say that prior information

is partially decisive: linear rules are rate optimal, but not e�cient, except for the isolated

(but important!) case of Hilbertian norms on parameter space and loss function.
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3 Discussion and Remarks

1. Constraints on the lp norm of � can arise naturally in various scienti�c contexts. Hy-

percube constraints (a � �i � b) correspond to a priori pointwise bounds; l2 constraints to

energy bounds, and l1 constraints to bounds on distribution of total mass. As p ! 0, the

lp balls become cusp-like; so that only a small number of components can be signi�cantly

non-zero. Formally

lim
p!o

�p;n((n�)
1=p) = �n;0(�) = f� : n�1

X
If�i 6= 0g � �g:

The latter \nearly-black" condition has been used by Donoho et. al. (1990) to study

behavior of non-linear estimation rules such as maximum entropy, using the methods of

this paper.

2. In addition to works already mentioned, there exist a number of papers that exhibit
function classes over which non-linear estimators have dramatically better performance in

the sense of worst case risk than the best linear estimators. Nemirovskii et. al. (1985)
show that non-parametric M -estimates (including constrained least squares) achieve faster
fates of mean-squared error convergence than best linear over function classes described
by monotonicity or total-variation constraints (for which p = 1), or more generally, over
norm-bounded sets in Sobolev spaces W k

p for 1 � p < 2. Related results are given by van

de Geer (1990) and Birg�e and Massart (1990).
This paper's consideration of such highly symmetric parameter spaces and Gaussian

white noise amounts to imposing very restrictive assumptions. However this symmetry
permits reduction to simple one-dimensional estimation problems and thus avoids the ap-
peal to approximation theoretic properties of function classes that is useful in treating

problems of more direct practical relevance. (see, for example, Ibragimov and Hasminskii,
(1990), van de Geer (1990) and Donoho (1990).) The basic dichotomy between p < q and
p � q, as expressed in the loss-convexity condition, appears already in our very simple
setting.

3. It turns out, however, that the idealised considerations of this paper can be made

the basis of a discussion of estimation over a wide class of function spaces, namely the

Besov family. This allows one to treat the familiar H�older and Hilbertian Sobolev spaces
in addition to other classes of scienti�c relevance, such as bounded total variation and the

\bump algebra". On these latter spaces, non-linear methods and local bandwidth adaptiv-
ity are essential for optimal minimax estimation. The connection comes via orthonormal

bases of compactly supported wavelets (e.g. Meyer, 1990, Daubechies, 1988), which permit

an identi�cation, in an appropriate sense, of estimation over Besov spaces with estimation
over sequence spaces. The relevant least-favorable subsets in sequence space are given by
cartesian products of lp-balls corresponding to the various resolution levels of the wavelet

expansion. A more complete account appears in Donoho and Johnstone (1992).
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4 A Bayes-minimax Approximation

A standard way to study the minimax risk R�N is to use Bayes rules. By usual arguments

based on the minimax theorem, R�N = sup�2� �(�), where �(�) denotes the Bayes risk

E�E�jj�̂� � �jjqq, with � random, � � �; �̂� denotes the Bayes estimator corresponding to

prior � and lq loss, and � denotes the set of all priors supported on �.

To obtain an approximation to R�N with simpler structure, consider a Bayes-minimax

problem in which � is a random variable that is only required to belong to � on average.

De�ne

R�B(�;�n;p(r)) = inf
�̂
sup
�

(
E�E�jj�̂ � �jjqq; for � : E�

nX
1

j�ijp � rp
)
:

Since degenerate prior distributions concentrated at points � 2 �n;p(r) trivially satisfy the

moment constraint, the Bayes-minimax risk is an upper bound for the non-linear minimax

risk
R�N � R�B:

The moment constraint depends on � only through its univariate marginal distributions
�i. If �̂ is a co-ordinatewise estimator, that is, one for which �̂i depends only on yi, then
the integrated risk E�E�jj�̂ � �jjqq depends on � only through the marginals �i. This leads

to a description of R�B in terms of a simpler univariate Bayes-minimax estimation problem
and will be the subject of this section.

In view of the permutation invariance of the problem, it is enough to use estimators
�n(y) = (�(y1); : : : ; �(yn)) constructed from a single univariate estimator �. From the co-
ordinatewise nature of �n, and the i.i.d. structure of the errors fzig,

E�E�jj�n � �jjqq =
X
i

Z
E�i j�(yi)� �ijq�i(d�i)

=
Z
E�1 j�(y1)� �1jq

�X
�i
�
(d�1)

= nEF�E�1 j�(y1)� �1jq (11)

where F�(d�1) = n�1
P
�i(d�1) is a univariate prior. The moment condition on � can also

be expressed in terms of F�, since

E�

X
i

j�ijp =
X
i

Z
j�ijp�i(d�i) = n

Z
j�1jpF�(d�1): (12)

Thus EF� j�1jp � n�1rp. De�ne a univariate Bayes-minimax problem with pth moment

constraint � and noise level �:

�p;q(�; �) = inf
�
sup
F

fEFE�1 j�(y1)� �1jq : EF j�1jp � � pg: (13)

The dependence on p and q will usually not be shown explicitly.

Proposition 9 R�B(�;�n;p(r)) = n�(rn�1=p; �).
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Proof. This is easily completed from (11) and (12). Indeed, let (F 0; �0) be a saddlepoint

for the univariate problem (13): that is, �0 is a minimax rule, F 0 is a least favorable prior

distribution and �0 is Bayes for F 0. (Existence is discussed in Section 4.1 below.) Let

F 0n denote the n-fold cartesian product measure derived from F 0: from (12) and (11), it

satis�es the moment constraint for R�B, and

EF 0nE�jj�0n � �jjqq = n�(rn�1=p; �):

To establish the Proposition, it is enough to verify that (F 0n; �0n) is a saddlepoint for R�B,

which would follow from the inequality

E�E�jj�0n � �jjqq � EF 0nE�jj�0n � �jjqq:

But (11) and (12) reduce this to the saddlepoint property of (F 0; �0).

4.1 Properties of the univariate Bayes minimax problem

We focus now on the univariate Gaussian location problem implicit in (13) in which we
observe X � N(�; �2). Assume that � is a random variable with distribution belonging to
Fp(� ), the collection of distributions F on R satisfying

R j�jpF (d�) � � p.

First some preliminary observations. For any given q � 1 and prior distribution F (d�),
the Bayes estimator �F (x) is uniquely determined for Lebesgue-almost-all x. This follows
easily from strict convexity of the loss function when q > 1 and also, with some extra
argument, when q = 1 1. (Where indicated by footnotes, extra details are given
in the Appendix.) The Bayes risk function, F ! �q(F ) is concave and weakly upper
semicontinuous, and hence attains a maximum on the weakly compact set Fp(�). [We

conjecture that this maximum is unique, admittedly only with the case q = 2 discussed
below as direct support.] If Fa(d�) = F (a�1d�), then �q(Fa) � aq�q(F ) for a >= 1 2 .

Let us summarize now some properties of the minimaxBayes risk (13). Setting �(F; �) =
EFE�j�(x)� �jq, we have

�(�; �) = inf
�

sup
Fp(�)

�(F; �):

The minimax theorem guarantees that

�(�; �) = sup
Fp(�)

�(F ) = sup
Fp(�)

inf
�
�(F; �) (14)

and the existence of a minimax rule �� such that

sup
F

�(F; ��) = �(�; �):

Let F� be a distribution maximizing �(F ) over Fp(� ). Since �(F� ; ��) � �(�; �) = �(F� ; �F� ),
it follows from the essential uniqueness of Bayes rules that �� = �F� and hence that �� is

Bayes for the least favorable distribution F� . The pair (F� ; ��) is thus a saddlepoint for
�(F; �).
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Proposition 10 The function �(�; �) satis�es the invariance

�(�; �) = �q�(�=�; 1);

and the inequality

�(a�; �) � aq�(�; �); a � 1:

It is continuous, monotone increasing in � , concave in � p and has �(�; �) ! �qcq as

�=�!1.

Proof The invariance follows by a simple rescaling, and thus all remaining properties may

be derived by considering the reduced function �(� ) = �(�; 1). The inequality follows from

the corresponding inequality for Fa noted above. Monotonicity is clear from the de�nition.

For concavity, set t = � p, eF(t) = fF :
R j�jp dF � tg, and ~�(t) = �(� ). Since eF(t) = Fp(� ),

(14) shows that ~�(t) = supf�(F ) : F 2 eFp(t)g. Concavity (and hence continuity) follows
immediately, because (1� �)F1 + �F2 2 eF((1� �)t1 + �t2) whenever Fi 2 eFp(ti) i = 1; 2.

To show that �(� )% cq as � %1, we note that appropriately scaled zero mean Gaus-
sian priors satisfy the moment constraints, so that lim�!1 �(� ) � lim�!1 �(��) where ��

denotes theN(0; �2) distribution. Since the posterior is also Gaussian ���
(x) = �2x=(�2+1)

for all q � 1, and a simple calculation using the formulas (41) and (41) for linear rules in
Section 9 shows that lim� �(��) = cq.

Let t = � p, s = �p. For use in Donoho and Johnstone (1992) we record here some
properties of the function

r(t; s) = supfEFE�j�t � �jq : F s.t. EF j�jp � sg:

Proposition 11 a) r(t; t) = �(�; �),

b) s! r(t; s) is concave,

c) r1(s; s) = 0.

Part a) simply restates that �t is minimax for eFp(t). Part b) is proved in exactly the
same manner as for concavity of t ! ~�(t). If we assume that t ! r(t; s) is di�erentiable,

part c) is a simple consequence of the fact that �s is minimax for eFp(s), and hence t = s

minimises t! r(t; s).

4.2 Squared error loss and optimization of Fisher information

An identity of Brown (1971) connecting Bayes risk with Fisher information simpli�es the

study of the Bayes-minimax risk (13) for Gaussian data with unit variance under squared

error loss, q = 2. Indeed, if I(G) =
R
(g0(x))2=g(x)dx denotes the Fisher information for a

distribution with absolutely continuous density g, then

�2(F ) = 1 � I(F ��); (15)
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where � denotes the standard Gaussian distribution function. The results below are not

strictly necessary for the development in this paper, being special cases of the previous

work (except for Lemma 13 below). We include them because of the importance of squared

error loss and the connections to other work that (15) establishes.

In view of (15), the Bayes-minimax risk �p;2(�; 1) = 1� Ip(� ), where

Ip(� ) = inffI(F � �) : F 2 Fp(� )g: (16)

As I is lower-semicontinuous with respect to vague convergence of distributions (Port

and Stone, 1974), and Fp(� ) is tight { hence vaguely compact { the in�mum in (4.1) is

attained for every p 2 (0;1) and every � 2 (0;1). In fact as the density of � � F must

be strictly positive on the whole real line, an argument of Huber (1964) (see also Huber

(1974)) shows the solution to (16) is unique. Call the solution Fp;� .

The quantity Ip is probably new (but see also Feldman (1991)), but existing work does

supply some information about it. Recall the well-known inequality I(F )V ar(F ) � 1, with
equality only at the Gaussian. This implies that for p = 2 we have

I2(� ) = (1 + � 2)�1 (17)

and that the solution F2;� is the Gaussian distribution N(0; � 2). The limiting case p!1
is of interest; we get

I1(� ) = inffI(� � F ) : supp(F ) 2 [��; � ]g
This has arisen before in the study of estimating a single bounded normal mean (Casella
and Strawderman (1981), Bickel (1981); see Donoho et al. (1990) for further references and

information). The case p! 0 may also be considered; for � 2 (0; 1) put

I0(�) = inffI(� � F ) : F (0) � 1� �g
then Ip(�

1=p) ! I0(�) as p ! 0. I0 has arisen before in the study of robust estimation
(Mallows, 1979), and also in the study of estimating a normal mean which is likely to be

near zero (Bickel, 1983).

Lemma 12 Let p 2 (0;1]. Then Ip(� ) is continuous and monotone decreasing in � and

lim
�!0

Ip(� ) = 1

lim
�!1

Ip(� ) = 0

0 < Ip(� ) < 1; � 2 (0;1)

Lemma 13 The unique solution Fp;� to the optimization problem (16) is Gaussian if and

only if p = 2.

The proof of these lemmas is omitted. Lemma 12 is a special case of Proposition 10,

while Lemma 13 is proved when p is an integer in Feldman (1991). We note an interesting

consequence of (17): �2(� ) = � 2(1+� 2)�1 equals the minimax linear risk infa;b supfE�(ax+
b� �)2 : j�j � �g. From Donoho, Liu and MacGibbon (1990) now follows

�2(� )=�1(� ) � ��
:
= 1:25:

12



5 Univariate threshold rules

In this section, we study two families of threshold estimates that o�er simple, near-optimal

alternatives to the minimax-Bayes estimator in the univariate model y = �+z, z � N(0; �2)

in which � is known to satisfy EF j�jp � �p. These families are useful because explicit

expressions for the minimax Bayes estimator are available only when p = q = 2.

We consider both `soft' and `hard' threshold rules:

�
(s)
� (y) = sgn(y)(jyj � �)+; �

(h)
� (y) = yIfjyj > �g � 2 (0;1):

The `hard' threshold is a discontinuous estimator of the `pretest' type. The `soft' threshold

is continuous, and goes also by the names of Hodges-Lehmann, limited translation, or `1-

estimator. The latter terminology arises because �
(s)
� (y) is the minimising value of � in

(y � �)2 + �j�j.
We shall be interested in how an optimally-chosen threshold rule performs in comparison

with the Bayes-minimax rule. De�ne

�s(�; �) = inf
�
sup

n
EFE�j�(s)� (y)� �jq : EF j�jp � �p

o
(18)

with a corresponding quantity �h(�; �) for the hard-threshold rules. We note the invariances

�s(�; �) = �q�s(�=�; 1) ; �h(�; �) = �q�h(�=�; 1) (19)

which again ensure that it su�ces to assume � = 1. As was shown in Proposition 10 for
�(�; 1), the functions �s(�; 1) and �h(�; 1) are continuous, monotonic in � and concave in
�p.

For the comparison with Bayes-minimax estimators, de�ne

�s(p; q) = sup
�;�

�s(�; �)

�(�; �)
> 1;

and �h(p; q) similarly.

Theorem 14 For (p; q) 2 (0;1) � [1;1), �s(p; q) <1 and �h(p; q) <1.

Because of the invariance (19) and since �(�; 1) > 0 and �s(�; 1) are continuous on

(0;1), it su�ces to consider limiting behavior as �! 0 and1. In fact we will show more,
namely that optimally chosen threshold rules are asymptotically Bayes minimax in these
limiting cases.

Theorem 15
�s(�;1)

�(�;1)
and

�h(�;1)

�(�;1)
! 1 as �! 0 and 1;

The limits as � ! 1 are trivial since both threshold families include �(x) = x which
has risk equal to cq. Thus �s(�; 1) and �h(�; 1) � cq, whereas Proposition 10 showed that

�(�; 1)% cq.

The argument for � ! 0 is broken into two steps. First Proposition 16 below provides
upper bounds for �s(�; 1) and �h(�; 1) by specifying certain choices of �. Of course, these
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serve also as upper bounds for �(�; 1). In the next section, separate arguments are used to

provide lower bounds (Theorem 18) for �(�; 1) that agree asymptotically with the upper

bounds and so complete the proof of Theorem 15 and so of Theorem 14.

We �rst establish some notation for risk functions of estimators in the case � = 1. Write

x for an N(�; 1) variate and r(�; �) = E�j�(x)��jq. Explicit formulas for the risk functions

of the thresholds �
(s)
� and �

(h)
� are given in the Appendix. 3 We note here only that

both risk functions are symmetric about � = 0, and that r(�
(s)
� ; �) increases monotonically

on [0;1) to a bounded limit, whereas the risk of �
(h)
� rises from � = 0 to a maximum at

�� o(�) (as �!1) before decreasing to cq as �!1.

The average risk of an estimator � under prior F will be written r(�; F ) =
R
r(�; �)F (d�),

and the worst average risk over Fp(�) is

�r(�; �) = supfr(�; F ) : F 2 Fp(�)g:

Thus �s(�; 1) = inf� �r(�
(s)
� ; �) and similarly for �h(�; 1).

Proposition 16 Let � = �(�) be chosen such that

a) for soft thresholds, �2 = 2 log ��p + � for j�j � c0,

b) for hard thresholds �2 = 2 log ��p + � log(2 log ��p) for � > p� 1. Then

�r(��; �) � �p�q�p as � ! 0:

Remarks. 1. An heuristic argument for the choice of � goes as follows. The estimator �̂�
is clearly related to the problem of deciding whether j�ij is larger than ��. The parameter
space constraint limits the number of �i that can equal �� to at most n�, where n�(��)p = 1.
Consider the hypothesis testing problemwith Y � N(�; �), withH0 : � = 0 andH1 : � = ��

and assign prior probabilities �(H0) = 1� � and �(H1) = �. The estimator �� is related to
the decision rule �(y) = Ifjyj > ��g. The value of � which makes the error probabilities
approximately equal solves

P (� = 0; Y > ��) = P (� = ��; Y < ��);

i:e: (1� �)~�(�)
�
= �=2: (20)

If p = 1, the constraint n��� = 1, together with the approximation ~�(�) � �(�)=� and

the de�nition ��p = n� implies that �2 � 2 log ��1 + 2 log
q
2=�. For general p, equation

(20) becomes approximately

�(�) =
�

2
�p�1�p = �p�1�p=2

with solution �2 � 2 log ��p + (p � 1) log(2 log ��p + c)� log(�=2) � 2 log ��p.

2. The optimal hard thresholds are slightly larger than the corresponding optimal soft

cuto�s. One reason for this is seen by considering behavior of the risk functions near
� = 0 in the squared error case q = 2. Indeed for �xed �, r(�

(h)
� ; 0) = 2[��(�) + e�(�)] �
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2��1�(�) = r(�
(s)
� ; 0). The risk of the hard threshold is larger because of the discontinuity

at �, and can only be reduced by increasing �.

Proof. We give only an outline, spelling out the extra details needed in Lemma 17

below. Let r(�) denote either r(�
(h)
� ; �) or r(�

(s)
� ; �). Since r(�) is increasing on [0;1) (for

�
(s)
� ) and on [0; �0(�)] (for �

(h)
� , with �0(�) "), it follows that for su�ciently small �, the

relevant extreme points of F+
p (�) are two point distributions F = (1��)�a0+��a1 for which

(1� �)apo + �a
p
1 = �p. For such distributions,

r(��; F ) = (1 � �)r(a0) + �r(a1):

The �rst term turns out to be negligible, regardless of the choice of � and a0, so we are led

to study the function

s(�) = (
�

�
)pr(�) � � �:

A simpler approximation to r(�) which is adequate for calculation (see Lemma 17

below) is provided by using the risk function r+(�) = E�j�+� (X)��jq of the one sided rules
�s;+� (x) = (x��)+ and �h;+� = xIfx > �g in the soft and hard threshold cases respectively.

In the case of soft thresholds, choose � so that j�2 � 2 log ��pj � c0 for some c0 > 0.
By comparing coe�cients of �q in �p+1��ps

0

+(�), it transpires that s
0
+(�) has a zero at

approximately �p = �+ ~��1(p=2) = �+ zp, say. Calculation shows that

s(� + zp) � �p�q�p as � ! 0: (21)

For hard thresholds, one proceeds similarly to �nd that the zero of s
(�)
+ occurs at approxi-

mately �pq = �� (2 log �c�11 )1=2 with c1 = (q � p)
p
2�, and (21) remains true for s(�pq).

To complete the outline for Proposition 16, we now collect the steps required to show
that (21) maximises s(�).

Lemma 17 (a). The risk function � ! r(��; �) is increasing in � 2 [0;1) (resp for �

in a �xed neighborhood of zero for su�ciently large �.) If 0 � a0 � �, and � = �(�)

as speci�ed in Proposition 16, then r(��; a0) � r(��; �) � r(��; 0) = o(�p�q�p). Indeed

r(�
(s)
� ; 0) � 2�(q + 1)��q�1�(�), while r(�

(h)
� ; 0) � 2�q�1�(�) ).

(b). Let �(�) = r(�)�r+(�). On [0;1), 0 � �(�) � �(0) = r+(0) = r(0)=2 = o(�p�q�p).
(c). For su�ciently large d0 > jzpj (resp. su�ciently small c1 > 0 and large c2 > 0)

and su�ciently small �, s(�) has a unique global maximum on [�;1), which is contained

in [�� d0; �+ d0] (resp [��
q
2 log �c�11 ; ��

q
2 log �c�12 ] ).

(d). s(�) � �p�q�p uniformly in [��d0; �+d0], (resp in [��
q
2 log �c�11 ; ��

q
2 log �c�12 ].
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6 Asymptotics for �p;q(�) for small �

This section is devoted to obtaining the exact rates (and constants) at which the univariate

Bayes-minimax risk �p;q(�) decays as � ! 0. A basic dichotomy emerges: when p � q,

the asymptotically least favorable distributions put all their mass at �� and �p;q(�) decays

like �q. This rate is independent of the particular value of p � q. When p < q, the

priors may have fewer moments than the order of the loss function. In this case, the

asymptotically least favorable distributions are \nearly black", and put most mass at 0,

with a vanishing fraction of mass at two large values ��(�). In addition, �p;q(�) has a

slower rate of convergence.

Theorem 18 As � ! 0

�p;q(�) �
(
�q p � q

�p(2 log ��p)(q�p)=2 0 < p < q

Proof. Upper Bounds. The Bayes risk �q(F ) is the minimal value of EF jd(x) � �jq
over all estimators d. Choosing d = 0 gives the upper bound �q(F ) � EF j�jq = jF jqq. If
q � p, and F 2 Fp(�), then jF jq � jF jp � �, and so

�p;q(�) = inf
Fp

�q(F ) � inf
Fp

EF j�jq � �q: (22)

For 0 < p < q, we use the bounds derived for threshold rules in the previous section.

Indeed, from the minimax theorem, and choosing � as in Proposition 16, we obtain

�p;q(�) = sup
Fp(�)

inf
�
R(�; F ) = inf

�
sup
Fp(�)

R(�; F )

� sup
Fp(�)

R(��; F ) = �p(2 log ��p)(q�p)=2(1 + o(1)):

Lower bounds. It su�ces to evaluate �q(F ) for distributions F approximately least
favorable for Fp(�). As �! 0, discrete priors supported on two or three points are enough.

Consider �rst two point priors F� = (�� + ���)=2. By symmetry, dF (�x) = �dF (x),
and if we write dF (x) = �eq;�(x), then

�q(F�) = EF jdF (x)� �jq = �q
Z
j1 � eq;�(x)jq�(x� �)dx:

By minimising the posterior risk, the Bayes rule is found to be

dF (x) =

(
� tanh �x=(q � 1) q > 1

�sign(x) q = 1

from which it follows that �q(F�) � �q for q � 1. Since jF�jp = � for all p, this asymptotic

lower bound for �p;q(�) establishes the theorem for p � q.

When 0 < p < q, we employ three point priors putting most mass at zero and a small
fraction vanishing at 1.
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Proposition 19 Let F�;� = (1 � �)�0 + �(�� + ���)=2. Fix a > 0, and for all su�ciently

small �, de�ne � = �(�) by

�(a+ �) = ��(a) (23)

Then

�q(F�;�) � ��q�(a) as �! 0: (24)

Before proving Proposition 19, we use it to complete the proof of Theorem 18. Clearly

jF�;�jpp = ��p, while from (23) it follows that �(�) � (2 log ��1)1=2. If we connect � and � by

the relation �p = ��p, then F�;� belongs to Fp(�) and so from (24)

�p;q(�) � �q(F�;�) � ��p:�q�p�(a) � �p(2 log ��p)(q�p)=2�(a) as � ! 0: (25)

The lower bound needed for Theorem 18 follows by taking a large.

Proof of Proposition 19 . Let dF (x) denote the Bayes rule for estimation of � from
data x � N(�; 1) and prior distribution F�;�(d� ). Since the posterior distribution of � given
x is concentrated on f0;��g, we may write dF (x) = �eq;�(x), where jeq;�(x)j � 1 and in
addition eq;�(x) is an odd function of x. Thus the Bayes risk

�q(F�;�) = 2(1 � �)�q
Z 1

0
jeq;�(x)jq�(x)dx+ ��q

Z
j1� eq;�(x)jq�(x� �)dx:

We complete the proof by showing, separately for q > 1 and q = 1, that as �! 0,

Z 1

0
jeq;�(x)jq�(x)dx = o(�); and (26)

eq;�(�+ z)! Ifz > ag: (27)

First, for q = 1, dF (x) is the posterior median, and thus for positive x, eq;�(x) = Ifx �
x0g, where x0 solves p(�jx) = 1=2. Thus, x0 solves

��(x� �) = 2(1 � �)�(x) + ��(x+ �):

Substituting de�nition (23) for �, we �nd that x0 = a + � + ��1 log 2(1 � �) + o(1). The

integral in (26) is thus bounded by ~�(x0) � ~�(a + �) � �(a + �)=(a + �) = o(�) from
de�nition (23). Relation (27) is immediate from the form of x0.

For q > 1, dF (x) is the minimiser of a! E[ja� �jqjx]. If x > 0, then 0 � dF (x) � �,
and di�erentiation shows that dF (x) is the solution of the equation

�(�� a)q�1p+ = 2(1 � �)aq�1p0 + �(�+ a)q�1p� (28)

where p� = �(x� �) and p0 = �(x).
Using (23) one veri�es that for x > 0 and � large, �(� + a)q�1p� < �aq�1p0 and hence

that dF (x) 2 [d�=2;�(x); d�;�(x)], where d�;�(x) is the solution of the simpler equation

�(�� a)q�1p+ = 2(1 � �)aq�1p0:
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Using (23), p0=�p+ = �(x)=��(x� �) = e��(x���a), and thus

d�;�(x) = �[1 + 2p(1 � �)�e���(x���a)]�1; � = 1=(q � 1): (29)

Making the substitution z = x���a and using (23), the integral in (26) is bounded above

by

��(a)
Z 1

�1
[1 + e���z]�qe�z��za�z

2=2dz = o(�);

as may be seen by arguing separately for positive and negative z. The convergence required

for (27) follows readily from the representation (29).
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7 Asymptotic sharpness of the Bayes-minimax risk

bound

The purpose of this section is to show that the upper bound R�N � R�B is often asymp-

totically an equality: nothing is lost by replacing the n-variate problem by n univariate

problems.

Theorem 20 If either (i) p � q; or (ii) 0 < p < q and (�=r)2 log n(�=r)p ! 0, then

R�N(�; �p;n(r)) = R�B(�; �p;n(r))(1 + o(1): (30)

In case (ii), the condition that (�=r)2 log n(�=r)p ! 0 cannot be completely removed: if,

for example, �=r = n�, � > 0 and (30) holds, then in combination with R�L � 1 (Theorem

7, part 3) and Theorem 18 we would conclude that R�L=R
�
N ! 0 which is absurd.

The approach is to show that certain nearly least favorable priors on �p;n(r) can be
approximated by i.i.d priors. Recall from Proposition 9 that R�B = n�q�(�n). Let Fn be a
sequence of prior distributions on � 2 R1, to be chosen so that

rn(Fn) = �(Fn)=�(�n)

is close to 1. Denote by Pn the prior on � which makes �i=�; i = 1; :::; n; i.i.d. Fn. The
i.i.d. structure implies that

�(Pn) = n�q�(Fn):

Thus rn(Fn) = �(Pn)=R
�
B also. Now let �n be the conditional distribution of Pn restricted

to �n
def
= �p;n(r) : thus �n(A) = Pn(Aj� 2 �n). Clearly,

R�N
R�B

� �(�n)

�(Pn)
rn(Fn); (31)

and the idea is to show that �(�n)=�(Pn) � 1 + o(1) for the sequence fFng.
Given a prior �(d�) and estimator �̂(x), we denote the integrated risk of �̂ over the joint

distribution of (�; x) by E�j�̂� �jq: of course for �xed �, the minimum over �̂ is �(�), which
is attained by the Bayes rule �̂�. From the de�nition of �n , we obtain

�(Pn) � EPn j�̂�n � �jq (32)

= EPnfj�̂�n � �jq j �ngPn(�n) + EPnfj�̂�n � �jq;�c
ng (33)

� �(�n)Pn(�n) + 2qEPnfj�̂�njq + j�jq; �c
ng: (34)

The argument now splits into cases according as �n ! � 2 (0;1] or �n ! 0. [Of course,

by passing to subsequences, we may assume that such a limit exists.] In the latter case, the

manner in which the approximately least favorable distributions Fn converge to 0 depends
on whether � is loss-convex. What remains to be shown follows the same pattern in each

situation: Choose Fn so that (i) rn(Fn) is close to 1, (ii) Pn(�n)! 1 and (iii) that the �nal

term in (34) is negligible relative to �(Pn).
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Case (a). Assume �rst that �n ! � 2 (0;1]. Choose � > 0 and a sequence of

distributions F(k)(d�) 2 Fp(� � �) such that �(F(k)) ! �(� � �) and suppF(k) � [�k; k].
Now �x k and let Fn = F(k) for all n. The event f� 2 �ng = fn�1Pn

1 j�ijp � �png
has probability approaching 1 as n ! 1 since Ej�jp � (� � �)p < �p = lim�pn. Since

suppF(k) � [�k; k],
EPnfj�̂�njq + j�jq; �c

n] � 2n�qkqP (�c
n):

which is therefore asymptotically negligible relative to �(Pn) = n�q�(F(k)). Thus �(�n)=�(Pn) �
1+ o(1), and r(Fn) = r(F(k)) � �(F(k))=�(�). The proof is completed by taking � small and

k large.

Case (b). Now assume that �n ! 0 and p � q. The priors F�n = (��n + ���n)=2 are

asymptotically least favorable (Section 6), and thus rn(F�n)! 1. In addition, Pn(
Pn

1 j�ijp �
rp) = 1, since

Pn
1 j�ijp � n�p�p = rp, so that in this case �n = Pn and the equivalence (30)

follows immediately from (34).

Case (c). Finally, if p < q, and �n ! 0, we use the symmetric three point priors F�;�

studied in Proposition 19. Fix �; a > 0, and de�ne � = �n implicitly by the relation

��p = (1� �)�pn = (1� �)n�1(r=�)p: (35)

(� = �(�; a) is already de�ned by equation (23) ). Let Fn = F�n;�n. From Proposition 19
and (25),

�(Fn) � ��q�(a) � (1� �)�pn(2 log �
�p
n )(q�p)=2�(a); (36)

while from Theorem 18, �p;q(�) � �p(2 log ��p)(q�p)=2. Thus r(Fn) � (1 � �)�(a).
Let Nn count the number of non-zero �i: clearly Nn is distributed as Binomial(n; �) and

(35) implies that ENn = n� = (1� �)(r=�)p��p. The event �n equals

f
X
j�ijp � (r=�)pg = fNn � (r=�)p��p = ENn=(1 � �)g:

In view of (35), ENn = n�!1 exactly when �p(�=r)p ! 0. But (�=r)2�2 � 2(�=r)2 log ��1 �
2(�=r)2 log n(�=r)p ! 0 by the hypothesis of case (ii) of the theorem. Now apply Cheby-
chev's inequality to get

Pn(�
c
n) = Pf(Nn � ENn)=ENn � �=(1� �)g � ��2(1 � �)2=n�! 0:

Similarly, EPn jNn � ENnj=ENn ! 0:
The Bayes estimator may be bounded 4 in terms of the posterior moment:

j�̂�njq � 2qE�n(j�jqjx): (37)

Since �n is concentrated on �n, the corresponding bound on the posterior law of Nn

implies that
E�n(j�jqjx) = �q�qE�n(Nnjx) � �q�qENn=(1� �):

Thus,

EPn [j�̂�njq + j�jq;�c
n] � 2q+1�q�qEPnfENn +Nn;�

c
ng
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while from (36)

�(Pn) � n�q��q�(a) = �q�q�(a)ENn:

The ratio of these two expressions is bounded by a constant multiple of

P (�c
n) + EPn(

Nn

ENn

;�c
n) � 2P (�c

n) + E
jNn � ENnj

ENn

! 0:

Returning to (34), we �nd therefore that �(Pn) � �(�n)(1 + o(1)). Since � and a may be

chosen arbitrarily small and large respectively, this establishes the lower bound part of (23)

in this case.
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8 Threshold rules over lp balls

In this section we use the Bayes-minimax approach and the results for univariate threshold

rules of the previous section to prove Theorem 6 on the asymptotic near-optimality of

threshold rules.

De�ne a Bayes minimax quantity analogous to R�B except that attention is restricted

to threshold rules:

R�s(�; �p;n(r)) = inf
�
fsup

�
E�E�jj�̂(s)� � �jjqq : E�

nX
1

j�ijp � rpg: (38)

(with a similar de�nition of R�h for hard thresholds). Clearly

inf
�

sup
�2�p;n(r)

E�jj�̂(s)� � �jjqq � R�s:

We may relate R�s to the univariate threshold problem (18) of Section 5 exactly as
Proposition 9 did for R�B.

Lemma 21 R�s(�;�p;n(r)) = n�s(n
�1=pr; �).

The proof is entirely analogous: if (F o; �o�) is a saddlepoint for problem (18), then
(F on; �on� ) is a saddlepoint for problem (38). Theorem 6 now follows from the bounded
ine�ciency of �s(�; �) relative to �(�; �) (Theorem 14 ), and from Theorem 20:

R�s(�;�p;n(r)) = n�s(n
�1=pr; �)

� �s(p; q)n�(n
�1=pr; �)

= �s(p; q)R
�
B(�;�p;n(r))

� �s(p; q)R
�
N (1 + o(1)):

Note also that
R�s
R�B

=
�s(n

�1=pr; �)

�(n�1=pr; �)
=

�s(�n; 1)

�(�n; 1)

where �n = n�1=p(r=�), so that if �n ! 0,

R�s � R�N

and threshold rules are asymptotically e�cient .

9 Linear Minimax Risk

We now turn to the minimax risk amongst linear estimators of the form �̂(y) = Ay + c for

n � n matrix A, and n � 1 vector c. As noted earlier, the estimation problem is invariant

under the action of the group G corresponding to permutation of indices. It follows then

(using convexity of the loss functions lq; q � 1) that the minimax linear estimator is itself

invariant : �̂(gy) = g�̂(y) for g 2 G. Thus �̂ has the form �̂abc;i(x) = axi+ b(
P

j 6=i xj)+ c. A
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further convexity argument 5 using orthosymmetry of � = �p;n(r) shows that �̂a00(x) = ax

has smaller maximum risk over �p;n(r) than �̂abc. Finally, �̂jaj dominates �̂a for a negative,

and �̂1 dominates �̂a for a > 1. Thus

R�L(�; �p;n(r)) = inf
0�a�1

sup
�p;n(r)

E�jjaY � �jjqq: (39)

Converting to variables Xi = Yi=� and �i = �i=�, and recalling that �pn = n�1(r=�)p,

we obtain

sup
�p;n(r)

E�jjaY � �jjqq = n�q supfn�1
nX
1

E�ijaXi � �ijq : n�1
X
j�ijp � �png: (40)

The risk function in the univariate location problem that appears on the right side of (40)

can be expressed in terms of a single standard Gaussian deviate Z:

rq(a; �) = E�jaX � �jq = aqEjZ + b�jq
= aqs(bpj�jp);

where b = a�1 � 1 2 [0;1), and we have introduced the function

s(
) = EjZ + 
1=pjq; 
 2 [0;1):

Since s(
) is increasing in 
, there is no harm in replacing the inequality in the supremum
in (40) by equality. We obtain

R�L = n�q inf
a
aq supfn�1

X
s(
i) : n

�1
X


i = bp�p; 
i � 0g (41)

= n�q inf
b�0

(1 + b)�qs�n(b
p�p): (42)

Remark. The function s�n implicitly de�ned in (42) is closely related to the concave majorant

of s, the smallest concave function pointwise larger than s. The empirical distribution of

a vector (
1; : : : ; 
n) with 
i � 0; n�1
P

i = � belongs to the class F (n)

1 of probability

measures supported on [0; n� ] with mean equal to � . Thus

s�n(� ) � ~sn(� )
def
= supf

Z
s(
)F (d
); F 2 F (n)

1 g: (43)

The extreme points of the convex set F (n)
1 are two point distributions with mean � , so that

~sn(� ) = supf�s(
1) + (1� �)s(
2) :

�
1 + (1 � �)
2 = �; 0 � � � 1; 0 � 
i � n�g

which shows that ~sn is indeed the concave majorant of s on the interval [0; n� ] (e.g. Rock-

afellar, 1970, Corollary 17.1.5 ).
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To evaluate (41), we �rst study the convexity properties of s(
) = EjZ + 
1=pjq, chie
y
using sign change arguments. Let c = 
1=p and v denote an N(c; 1) variate, so that

s(
) = Ecjvjq. Some calculus shows that

q�1p
1�1=ps0(
) = Ecvjvjq�2; (44)

and, more importantly, that

q�1p2
2�1=ps00(
)
def
= F (c; p; q) (45)

=

(
(q � 1)Eccjvjq�2 � (p � 1)Ecvjvjq�2 q > 1

2c�(c)� (p � 1)[2�(c)� 1] q = 1
(46)

A useful representation 6 is

ec
2=2F (c) = 2

Z 1

0
g(v)vq�3�(v) sinh cvdv q > 1; (47)

where g(v) = (q � p)v2 � (q� 1)(q� 2) has at most one sign change on [0;1). The kernel
(c; v) ! sinh cv is totally positive of order 2 on [0;1), and so, according to the variation
diminishing property of totally positive kernels, F (c) has no more sign changes than g(v).
By examining particular cases, we are led to a partition of S according to the convexity

behavior of s(
). Formally 7 ,

X = S \ fp � q; p � 2g = f(p; q) : s is convex on [0;1)g
V = S \ fp � q; p � 2g = f(p; q) : s is concave on [0;1)g

XV = S \ fp > q; p < 2g = f(p; q) : s is convex on [0; 
0]; concave on [
0;1]g
V X = S \ fp < q; p > 2g = f(p; q) : s is concave on [0; 
0]; convex on [
0;1]g

In the last two cases 
0 = 
0(p; q) satis�es 0 < 
0 <1.

Lower bound based on a spike image While this argument is generally valid for (p; q) 2
S, it is most useful when p � q. Fix � = (r; 0; : : : ; 0), which corresponds to � =
(r��1; : : : ; 0), to obtain the lower bound

R�L � n�q inf
a

(1� n�1)E0jaXjq + n�1Er��1 jaX � r��1jq (48)

= n�q inf
a

(1� n�1)aqcq + ~�qn(1� a)qt(a; �); (49)

where we have introduced the abbreviations ~�qn = n�1(r=�)q and t(a; �) = Eja(1�a)�1�Z�
1jq. Note that when q � p, ~�n = ��n = n�1=(p_q)r��1 . Consider now the function

f(a; �) = aqcq + �q(1� a)q; q � 1; � 2 (0;1):

For q > 1, f(�; �) has unique minimizer and minimum given by

a�(�) = (1 + bq�
q0)�1; f(a�; �) = cqa

q�1
� (�)
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where q0 = q=(q� 1) is the conjugate exponent to q, and bq = c1=(q�1)q . When q = 1, f(�; �)
is linear and the corresponding values are

a� = Ifc1 < �g f(a�; �) = c1 ^ �:

Some technical work shows that

inf
a

(1� n�1)aqcq + ~�qn(1� a)qt(a; �) � f(a�(~�n); ~�n) as n!1: (50)

Combining these results with the lower bound in (49) yields

R�L � (1 + o(1))

8><
>:

n�qcq ~�n !1 (a)

n�qf(a�(�); �) ~�n ! � 2 (0;1) (b)

rq ~�n ! 0: (c)

(51)

Upper bounds. It is now necessary to consider the various cases in the decomposition of

Figure 1 in turn. We begin by making various choices of a in (39). The choice a = 1 leads
to

R�L � sup
�p;n(r)

E�jY � �jq = n�qcq;

which is sharp when ~�n ! 1 (cf. (51a)), and so establishes case 1 of Theorem 7. The
choice a = 0 gives

R�L � n�q sup
n�1

P
�
p

i
=n�1rp��p

n�1
nX
1

j�ijq

= n�q sup
n�1

P

i=�

p

n

n�1
nX
1



q=p
i ;

after setting 
i = �
p
i . When q � p, the function 
 ! 
q=p is convex on [0;1), so the least

favorable con�guration of 
i is (n�
p
n; 0; : : : ; 0) which implies that

R�L � n�q n�1(n�pn)
q=p = rq;

which is in turn sharp when ~�n ! 0. (cf. (51c) ).

Consider now the case ~�n ! � 2 (0;1). When q � p and p � 2 (i.e. (p; q) 2 X), s(
)
is convex and � = (r��1; 0; : : : ; 0) is a least favorable con�guration. Consequently, equality
holds in (49). When combined with (50), this shows that (51b) is sharp.

When q > p and p > 2 (i.e. (p; q) 2 V X), s(
) is concave near 0 but convex for large


. For �xed n, the con�guration � = (r��1; 0; : : : ; 0) is not exactly least favorable, but

it is asymptotically least favorable, and so again (51b) is asymptotically sharp 8 . This
completes the proof of Theorem 7 for the sets X and V X.

Let us now assume that s(
) is concave, i.e. that (p; q) 2 V = S \ fp � q; p � 2g. In
this case, the vector � = �n(1; : : : ; 1) is least favorable, and from (41), we obtain

R�L = n�q inf
b�0

s(bp�pn)

(1 + b)q
: (52)
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It turns out 9 that there is a unique minimax linear estimator �(x) = x=(1 + b�), where

b� = b�(q; �n) 2 (0;1) if �n 2 (0;1). If �n !1, then b�(�n) � ��2n and R�L � n�qcq. On

the other hand, if �n ! 0, then b� � (q � 1)��2n and R�L � n�q�qn. We believe that b�(�)

decreases monotonically from 1 to 0 as � increases from 0 to 1, but have only veri�ed

this for loss functions with q = 1; 2 and 4.

We turn �nally to the exceptional case in which s(
) is convex-concave, i.e. when

(p; q) 2 XV = S \ fp > q; p < 2g. Consider �rst the simple case in which �n ! 0. The

right side of (52) is still a valid lower bound for R�L, and so from the discussion above, we

conclude that R�L � n�q�qn(1+o(1)). On the other hand, a natural upper bound is obtained

from the estimator with a = 0:

R�L � n�q sup
n�1

P

i=�

p

n

n�1
nX
i=1



q=p
i = n�q�qn;

since 
 ! 
q=p is concave. This establishes that R�L � n�q�qn = n1�q=prq when �n ! 0.
Now suppose that �n ! � 2 (0;1). An upper bound is derived form (42) and (43):

R�L � n�q inf
b
(1 + b)�q~s(bp�pn) (53)

where the least concave majorant ~s has the form

~s(
) =

(
cq +R
 
 � 
0
s(
) 
 � 
0

(54)

where R = [s(
0)� s(0)]=
0 and 
0 = 
0(p; q) 2 (0;1) is the solution to the equation

s0(
0) =
s(
0)� s(0)


0
:

As is shown in the Appendix 10 , the error involoved in the upper bound (53) is 0(n�qn�1).
Since this is negligible relative to the maximum value, the bound may be treated as an

asymptotic equality.
Again, it turns out 11 that there is a unique value b� = b�(p; q; �n) optimizing the right

side of (53). If the corresponding value of 
�(= bp��
p
n) exceeds 
0, then the least favorable

con�guration �� = �n(1; : : : ; 1) as in the concave case. However, if 
� < 
0, then the least
favorable distribution (in (43)) has the form (1 � �)�0 + ��
o, where �
0 = 
�. It turns out
that 
� < 
0 exactly when

�p(s(
o)� cq) + [p(s(
0)� cq)� qs(
0)]

1=p
0 > 0; (55)

which can always be ensured by taking � su�ciently large. Thus the set XV provides
examples where the least favorable con�guration is neither a spike image nor uniformly

grey.
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10 Appendix

1. Uniqueness and properties of the Bayes estimator. �F (x) = min�1a EF [ja � �jq j x].
When q > 1, this follows from strict convexity of a ! ja � �jq (e.g., Lehmann, 1983, p.

240). When q = 1, a standard argument shows that �F (x) may be taken as any posterior

median of �, i.e., as any member of the interval

I(x) = fa :
Z
(�1;a)

�(x� �)F (d�) =
Z
(a;1)

�(x� �)F (d�)g;

and let I(x) = [a1(x); a2(x)]. Let �(A) denote the Lebesque measure of a set A � RI . If

�F (x) is not unique for Lebesque almost all x, then

0 <
Z
�(I(x)) dx =

Z
d�

Z
dxIfa1(x) < �0 < a2(x)g;

so for some �0, the set A�0 = fx : a1(x) < �0 < a2(x)g has positive Lebesque measure
and hence positive probability under each distribution N(�; 1). It would then follow that
~�(x) = [a1(x) + a2(x)]=2 has strictly smaller Bayes risk than either a1(x) or a2(x), which
would contradict their de�nition.

We note also that if the posterior distribution of � is symmetric about some point, then
that point equals the posterior mean of � and �F (x) = EF [�jx] for all q � 1. In general,
of course, the value of �F (x) will depend on q.

2. Properties of F ! Bq(F ): Upper semi-continuity. Set R(�; �̂) = E�j�̂(X) � �jq
and B(F; �̂) =

R
R(�; �̂) dF (�): since � ! R(�; �̂) is continuous, F ! B(F; �̂) is weakly

continuous on Fp(�) when the risk function is also bounded. We recall that

Bq(F ) = inf
�̂
B(F; �̂):

Since the in�num includes estimators with unbounded risk function we de�ne an increasing

family of subclasses of estimators Dm = f�̂ : �̂(x) = x for jxj > mg, and let

Bqm(F ) = inf
�̂2Dm

B(F; �̂):

Since each estimator inDm has bounded risk, F ! Bqm(F ) is weakly upper semi-continuous
(usc). Since Bqm(F ) decreases as m %1 it has a limit, ~Bq(F ) say, and if we assume for

the moment that

Bq(F ) = ~Bq(F ) (56)

then Bq(F ) is the decreasing limit of a family of usc functions and is hence also usc.

To verify (56), note �rst that trivially Bq(F ) � ~Bq(F ). For the reverse inequality,

observe that for any estimator �̂ with �nite integrated risk,Z
R(�̂m; �)dF !

Z
R(�̂; �)dF; m!1

where �̂m 2 Dm is de�ned by

�̂m(x) =

(
�(x) jxj � m;

x jxj > m
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[because R(�̂m; �) ! R(�̂; �) uniformly on compact intervals]. This establishes upper

semicontinuity. Since Bq(F ) is the pointwise in�nim of linear functions, it is concave, and

Fp(�) is weakly compact because of the moment condition.

To verify that �q(F1+c) � (1 + c)q�(F ), �rst let �̂F denote the Bayes estimator of �

for prior F . Let � = (1 + c)�, and suppose that yj� � N(�; 1). We de�ne a randomized

estimator ~�(y; z) based on y and an independent variate Z � N(0; (2c + c2)=(1 + c2)) :

~�(y; z) = (1 + c)�̂F ((1 + c)�1y + z):

By construction, W = (1 + c)�1Y + Z � N(�; 1), and so

r(�; ~�) = E�j~�(Y;Z)� �jq
= (1 + c)qEj�̂F (W )� �jq
= (1 + c)qr(�; �̂F ):

By averaging over M � F , we obtain, as required,

�q(F ) � Er(�; ~�) = (1 + c)qEr(M; �̂F ) = (1 + c)q�q(F ):

3. Risk functions for soft and hard threshold rules. For reference, we record explicit
formulas for the risks of �

(s)
� and �

(h)
� when � = 1. Write x for an N(�; 1) variate and

r(�; �) = E�j�(x)� �jq. Then for � � 0

r
�
�
(s)
� ; �

�
= E�j(x� �)+ + (x+ �)� � �jq

=
Z ����

�1
jw + �jq�(w) dw + �q

Z ���

����
�(w) dw +

Z 1

���
jw � �jq�(w) dw

and
@

@�
r(�

(s)
� ; �) = q�q�1 [�(�� �) ��(�� � �)] � 0;

so that the risk function increases monotonically on [0;1) to a bounded limit. For hard
thresholds,

r(�
(h)
� ; �) =

Z ����

�1
jwjq�(w) dw + �q

Z ���

����
�(w) dw +

Z 1

���
jwjq�(w) dw;

but is no longer monotonic: indeed the risk function rises from � = 0 to a maximum at

�� o(�) (as �%1) before decreasing to cq as �%1.
For squared error loss (q = 2) more explicit expressions are available:

r(�
(s)
� ; �) = 1 + �2 + (�2 � �2 � 1) [�(� � �) � �(��� �)]� (�� �)�(� + �)

� (� + �)�(� � �)

r(�
(h)
� ; �) = 1 + (�2 � 1) [�(�� �)� �(�� � �)] + (� + �)�(� + �) + (� � �)�(� � �):
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4. Moment Inequality. Let F (dx) be a probability distribution on R and for q � 1,

de�ne �q(F ), the q-mean of F , as any minimizer of
R jx��jqF (dx):We have the inequality

j�qjq � 2q�1[EjXjq + Ej�q �Xjq] � 2qEjXjq: (57)

Equation (37) follows by taking for F the posterior distribution of �i given x under the

prior �n. [A re�ned version of (57) appears in Johnstone (1991).]

5. Structure of the linear minimax rule.

Lemma 22 Suppose that � � Rr is orthosymmetric. Let �̂abc;i(x) = axi + bx0i + c, where

x0i =
P

j 6=i xj. Then

sup
�

R(�; �̂abd) � sup
�

R(�; �̂a00):

where R(�; �̂) =
P

�

Pp
i=1 j�̂i � �ijq.

Proof. Consider �rst a single component and a �xed constant d. Convexity of the
function y! jx+ yjq implies

2jaX1 � �1jq � jaX1 � �1 + djq + jaX1 � �1 � djq
= jaX1 + d � �1jq + ja(�X1) + d + �1jq:

Let � = (�1; : : : ; �p) belong to f�1gp � Zp
2 . Since the components of X are independent,

one can apply this argument conditionally on x0 to obtain

2EjaX1 � �1jq �
X
�1

Eja�1X1 + d � �1�1 + b
X
j�2

�jXj jq

Now let �0 = (�2; : : : ; �p). Representing the random variables Xj explicitly in terms of the
constituent errors �j and exploiting symmetry leads to

2pEjaX1 � �1jq �
X
�1

X
�0

Eja(�1�1 + �1) + d� �1�1 + b
X
j�2

(�j�j + �j)jq

=
X
�

E��jaX1 + d + bX 0
1 � �1�1jq

=
X
�

E��j�̂abd;1 � �1�1jq:

Now add over i to get
2pR(�; �̂a00) �

X
�

R(��; �̂abd)

and so, using �R to denote maximum risk over �,

2p �R(�̂a00) �
X
�

�R(�̂abd) = 2p �R(�̂abd);

which completes the proof.

6. Convexity decompositions of loss functions and parameter spaces.
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Lemma 23 Fix (p; q) 2 S. The function c! F (c; p; q) of (46) has no more sign changes

than g(v) on [0;1).

We remark that sign changes are counted in the weak sense; whenever F (c) = 0, it is

assigned a sign in such a way as to minimise the total number of sign changes (cf. Karlin,

1968 or Brown, Johnstone and McGibbon, 1981).

We �rst note that for 0 � c < 1, the mapping (p; q) ! F (c; p; q) is continuous on

S. This is clear from (46), except possibly for q & 1. That continuity holds here also is

evident from the representations

(q � 1)Ecjvjq�2 =
Z 1

0

d

dv
(vq�1) [�(v � c) + �(v + c)] dv

= �
Z 1

0
vq�1

d

dv
[�(v � c) + �(v + c)] dv ! 2�(c)

and

Ecvjvjq�2 =
Z 1

0
vq�1 [�(v � c)� �(v + c)] dv ! 2�(c) � 1

as q& 1. This continuity implies that we need only establish the sign behavior of F (c; p; q)
on the interior of S; in particular, we will assume that q > 1 henceforth.

The representation (47) is obtained by combining the following identities in accordance
with (46).

Ecvjvjq�2 = 2e�c
2=2

Z 1

0
vq�1�(v) sinh cv dv;

cEcjvjq�2 = 2e�c
2=2

Z 1

0
vq�2�(v)c cosh cv dv;

= 2e�c
2=2

Z 1

0

h
vq�1 � (q � 2)vq�3

i
�(v) sinh cv dv:

Total positivity (or order 2) of sinh cv follows from the relation����� sinh cv
@
@c
sinh cv

@
@v
sinh cv @2

@c@v
sinh cv

����� = 1

2
[sinh(2cv)� 2cv] � 0

(cf. Karlin, 1968). In turn, it follows that the kernel (c; v) ! vq�3�(v) sinh cv is TP2

and the lemma is established by appealing to the variation diminishing property of totally

positive kernels (cf. Karlin or Brown, Johnstone, McGibbon op. cit.).

7. To classify the sign change behavior of g(v) for (p; q) 2 (0;1)�(1;1) and v 2 [0;1)

we �nd the following cases.

a) p � q � 2. g has no sign changes and is non-negative, so s(
) is convex.

b) p � q � 2. g has no sign changes and is non-positive, so s(
) is concave.

In the remaining cases, g has exactly one sign change, so the sign change behavior

of F (c) is determined by its limits at 0 and 1. From (46), one sees that F (c) �
(q � p)cq�1 as c%1. To determine behavior at 0, we note that for q > �1

cq = EjZjq = 2q=2p
�
�
�
q + 1

2

�
; and (q � 1)cq�2 = cq: (58)
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Substituting the expansion sinh cv = cv + (cv)3=6 + : : : into (47) yields

ec
2=2F (c) � c [(q � p)cq � (q � 1)(q � 2)cq�2] + (59)

+
c3

6
[(q � p)cq+2 � (q � 1)(q � 2)cq] + o(c3)

�
(

(2 � p)cqc p 6= 2

(q � 2)
cq
3
c3 p = 2; q 6= 2

(60)

[Of course, F (c) � 0 if p = q = 2.]

c) q > p, q > 2. Here F (1) > 0. If p � 2, then F (0+) > 0 so that s(
) is convex on

[0;1). However, if p > 2, then F (0+) < 0, and so there exists a value 
0 = cp0 =

cp0(p; q) such that s is concave on [0; 
0] and convex on [
0;1).

d) q < p, q < 2. Now F (1) < 0. If p � 2, then F (0+) < 0 also, so that s(
) is concave
on [0;1). However, if p < 2, then F (0+) > 0 and there exists 
0 such that s in
convex on [0; 
0] and concave on [
0;1).

Putting a){d) together yields the decomposition of Section 9.

8. Sharpness of (51b) when ~�n ! � 2 (0;1); q > p > 2.
Combining the equality (42) with the upper bound (43) we obtain

R�L � n�q(1 + b�)
�q~sn(b

p
��

p
n)

Since ~�qn = n�1(r=�)q ! � and q > p, it follows that r=� !1 and hence �pn = n�1(r=�)p !
0. Let �
n = bp��

p
n. Since s(
) is concave for 
 � 
0 and convex for 
 � 
0, it follows that

~sn(�
n) = (1� �n)s(
n) + �ns(n�
n) where �n and 
n are determined by the equations

(1� �n)
n + �nn�
n = �
n (61)

s0(
n) = [s(n�
n)� s(
n)] = [n�
n � 
n] : (62)

[For these equations to be valid, we must have 
n < �
n, but this is established below.]
Our goal is to show that

~sn(�
n) = (1� �n)s(
n) + �ns(n�
n) � (1 � n�1)s(0) + n�1s(n�
n); (63)

for this would imply that � = (r��1; 0; : : : ; 0) is an asymptotically least favorable con�gu-

ration. In turn, this implies that

R�L � n�q
h
(1 � n�1)E0ja�Xjq + n�1Er��1 ja�X � r��1jq

i
(1 + o(1))

� n�qf(a�(�); �)

as is shown following (48).
To establish (63), one sees from (61) that it really su�ces to show that 
n=�
n ! 0,

since n�
n = bp�(r=�)
p ! 1 and s(
) � 
q=p as 
 ! 1. This last relation, together with
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the approximation s0(
) � kp;q

2=p�1 as 
 ! 0 (c.f. (44) and an argument similar to (60) )

recasts (62) as the equation

k1

2�p

p

n = (n�
n)
q�p

p :

Expressing n and n�
n in terms of �=r, this leads to


n=�
n = k2(�=r)
2(q�p)=(p�2) ! 0

as required. [ki are constants whose values are unimportant here.]

9. Minimax estimation in the concave case.

According to (52),

R�L = n�q inf
b
w(b; �n);

where w(b) = w(b; �) = (1 + b)�qEjZ + b�jq for a standard Gaussian variate Z. We

verify that b ! w(b) has a unique minimum on [0;1). Introducing variables c = b� and

v � N(c; 1), one can verify that

r(b)
def
= q�1(1 + b)q+1w0(b) = Eck(v) k(v) = jvjq�2f�v � (q � 1)g: (64)

The function k(v) has at most one (weak) sign change on (�1;1). Since the Gaussian
location family is TP2, it follows that w

0(b) has at most a single sign change. However,
since r(0+) < 0 and r(1�) > 0, we deduce that w(b) has exactly one minimum b�(�),

located in the interior of [0;1).
Consider now the behavior of b�(�) as � ! 1. To study the asymptotic behavior of

equation (64), we note that

Ecvjvjq�2 = 2e�c
2=2

Z 1

0
vq�1�(v) sinh cv dv

= 2e�c
2=2

Z 1

0
vq�1�(v)

h
cv + (cv)3=6 + � � �

i
dv

= e�c
2=2[cqc+ cq+2c

3=6 + � � �]
and similarly

Eccjvjq�2 = e�c
2=2[cq�2c+ cqc

3=2 + : : :]:

Substituting leading terms into (64) and using the identity (58) yields c�(�) � ��1 and

hence b�(�) � ��2. Consequently w(b�(�); �) = (1 + ��2)�qEjZ + ��1jq � cq as �%1.
Turn now to the contrary case in which � ! 0. Now for c large, Eck(v) � �cq�1 �

(q � 1)cq�2, and the unique root of the right side occurs at c� = (q � 1)��1. Thus, for

small �, the unique minimum of w(b) is to be found at b�(�) � (q � 1)��2, and w(b�) =

(1 + (q � 1)��2)�qEjZ + (q � 1)��1jq � �q.

10. Discreteness error in (53).

Lemma 24 Suppose that s(
) is non-negative and convex-concave on [0;1). Let

~s(~
) = supf(1 � �)s(0) + �s(
) : �
 = ~
g
= (1� �0)s(0) + �0s(
0); and

~sn(~
) = supf(1 � �)s(0) + �s(
) : �
 = ~
; n� 2 Ng
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Then 0 � ~s(~
)� ~sn(~
) � Cn�1, C = s(
0) + ks0k1
0.

Proof. Let �1 = n�1dn�0e and 
1 = ~
=�1 = ~
n=dn�0e. Then

� = ~s(~
)� ~sn(~
) � [(1� �0)s(0) + �0s(
0)]� [(1 � �1)s(0) + �1s(
1)]

= (�1 � �0) [s(0)� s(
0)] + �1 [s(
0)� s(
1)] :

We note that �1 � �0 < n�1, s(0) < s(
0),

�1(
0 � 
1) � �1

"
~


�0
� n~


dn�0e

#
� �1

~


�0dn�0e
=


0

n
;

so that

� � n�1s(
0) + ks0k1n�1
0
as required.

11. Convex-concave case.
If we change variables to 
 = bp�p, the function on the right side of (53) becomes

r(
) = (1 + ��1
1=p)�q~s(
);

and one calculates that

�(
)
def
= p(1 + ��1
1=p)q+1r0(
) = p(1 + ��1
1=p)~s0(
)� q��1
1=p�1~s(
):

We now verify that �(
) has exactly one sign change on [0;1). For 
 � 
0, substitution

from (54) yields

�(
) = pR +
p� q

�
R
1=p � q

�
cq


1=p�1 (65)

and in particular, �(0) = �1 and �0(
) > 0 on [0; 
0]. It follows from the discussion of
the concave case (i.e., (p; q) 2 V ), that �(
) has at most one sign change on [
0;1), and

if a sign change occurs, then it is from negative to positive. Putting these observations

together with the analyticity of s(
) on (0;1), we conclude that �(
) has an isolated zero

� = 
�(p; q; �) 2 (1;1). This zero 
� < 
0 exactly when �(
0) > 0, and by substituting
the de�nition R = [s(
0)� cq] =
0 into (65), one veri�es that this occurs as described in

(55).
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