Supplementary information: Carrier-controlled ferromagnetism in SrTiO$_3$

Pouya Moetakef1, James R. Williams2, Daniel G. Ouellette3, Adam Kajdos1, David Goldhaber-Gordon2, S. James Allen3, and Susanne Stemmer1

1Materials Department, University of California, Santa Barbara, California, 93106-5050, USA
2Department of Physics, Stanford University, Stanford, California, 94305-4045, USA
3Department of Physics, University of California, Santa Barbara, California, 93106-9530, USA

Figure S1 shows the magnetoresistance of a 4 nm GdTiO$_3$/0.8 nm SrTiO$_3$/4 nm GdTiO$_3$/LSAT heterostructure at temperatures between 12 and 2 K. The carrier concentration for this sample at room temperature is 8.22×10^{14} cm$^{-2}$ and at 2 K it is 1.52×10^{15} cm$^{-2}$, corresponding to a 3D carrier concentration of 1.9×10^{22} cm$^{-3}$.

Figure S1: magnetoresistance of a 4 nm GdTiO$_3$/0.8 nm SrTiO$_3$/4 nm GdTiO$_3$/LSAT heterostructure at temperatures between 12 and 2 K. Hysteresis appears below ~ 10 K in sweeps with increasing and decreasing B, respectively (see arrows).

Figure S2: (a) Resistance and (b) carrier density as a function of temperature for two GdTiO$_3$/SrTiO$_3$ heterostructures.