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ABSTRACT

We employ a simple modification to the conventional time of flight
mass spectrometry (TOFMS) where a variable and (pseudo)-random
pulsing rate is used which allows for traces from different pulses to
overlap. This modification requires little alteration to the currently
employed hardware. However, it requires a reconstruction method
to recover the spectrum from highly aliased traces. We propose and
demonstrate an efficient algorithm that can process massive TOFMS
data using computational resources that can be considered modest
with today’s standards. Our approach can be used to improve duty
cycle, throughput, and mass resolution of TOFMS at the same time.
We expect this to extend the applicability of TOFMS to new do-
mains.

1. INTRODUCTION

Mass spectrometry (MS) refers to a family of techniques used to an-
alyze the constituent chemical species in a sample. The applications
abound in science and technology and new fields of scientific investi-
gations have evolved around these techniques. Time of flight (TOF)
mass spectrometry was introduced in the 1940s by Stephens [1]. A
basic TOF mass spectrometer consists of three parts: a source re-
gion, a drift region, and a detector. In the source region, the input is
ionized and subsequently accelerated by a static electrical field into
the drift region. Ideally, the ions entering the drift region have ki-
netic energy proportional to their charge. Hence, the time that takes
for an ion to reach the detector is proportional to /m/z where m is
the mass of the ion and z is its net charge.

TOFMS offers two major benefits over alternative techniques. It
has essentially unlimited mass range and high repetition rate. These
properties along with the recent advances in available hardware and
ionization techniques have made TOFMS an appealing choice for
the analysis of samples with wide mass range [2], biological macro-
molecules [3] and in combination with other mass spectrometers
[4]. However, there exists an intrinsic trade-off between throughput
(number of samples that can be analyzed in a given time) and duty
cycle (fraction of ions accelerated into the drift region from a con-
tinuous ion source) on one hand, and mass resolution (the smallest
difference in m/z that can be resolved) and mass range on the other
hand. Furthermore, some applications have stringent requirements
in terms of throughput and duty cycle, e.g., when spectrometers are
used in tandem, or preceded by chromatographic separation. There-
fore, simultaneous improvement of the throughput, duty cycle, and
mass resolution is of fundamental interest in TOFMS [5].

TOFMS is a pulsed technique, i.e., ions are formed in an ion-
ization stage and subsequently accelerated as a packet into the drift
region. The ion species in each packet travel through the drift region
with different speeds and arrive at the detector at different times.
As the ions impact the detector they generate a continuous electri-
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cal signal which is then sampled resulting in a discrete signal. The
result of this process, which we call an acquisition, is a noisy sam-
ple of the \/m/z spectrum. A single acquisition is often too noisy
and this process is repeated from hundreds to a few thousands times
and averaged to obtain an accurate estimate of the spectrum. In con-
ventional TOFMS, the time between consecutive pulses is set to be
long enough to avoid overlap between different acquisitions, i.e., for
the slowest ion in an acquisition to arrive at the detector before the
fastest ion of the next acquisition. This fact ties the mass resolving
power of TOFMS to the duty cycle and throughput; a longer drift
region results in higher mass resolution but decreases the throughput
and duty cycle.

There has been previous work trying to alleviate this problem.
One approach, called Fourier transform TOF, is to modulate a con-
tinuous ion beam at the source using a periodic waveform and subse-
quently accelerate it into the drift region [6]. The detected signal is
then demodulated to obtain the spectrum. Another approach, called
Hadamard transform TOF (HT-TOF) [7], is based on modulation
(gating) of a continuous ion source by a 0/1 pulse. The spectrum
is obtained by a deconvolution that can be implemented efficiently
using the fast Hadamard transform.

One drawback of these methods is that they treat the recon-

struction process as a deterministic inversion problem and ignore
the noisy nature of the observations. Furthermore, they require
substantial modification to the hardware of a conventional TOFMS.
In this paper, we describe a different method, called Accelerated
TOF (A-TOFMS ), which simultaneously achieve mass resolution,
duty cycle, and throughput improvement using essentially the same
hardware as a conventional TOFMS. Our reconstruction scheme
acknowledges the stochastic nature of the observation. Simulation
results using real data confirm the performance improvement of this
scheme.
Notations and Terminology: Let x[t],t = 1,2,...,n be the out-
put of the detector for a single acquisition. We refer to x[t] as to a
transient. Typically a TOFMS experiment consists of many acquisi-
tions which are later processed (simply averaged) to obtain a more
accurate estimate of the spectrum. Let () [t] be the I*" transient.
Define the true spectrum, Z[t], as the average of infinitely many tran-
sients, i.e., Z[t] = lim o0 T ZlL:1 x(D[t]. Each transient 2V [{]
is therefore a noisy version of &[t]. We define the trace, y[t], to
be the observed detector response for multiple, possibly overlapping
acquisition. Given an observed trace y|[t], the goal is to find a good
estimate Z[t] of Z[t]. In what follows we treat the discrete signals as
column vectors, and we let v* denote the transpose of v and (u, v)
denote the dot product of u and v.

When an ion impacts the detector it generates a bell-shaped
pulse in the output of the detector. We refer to an observed pulse in
the trace as an impact event, or event for short. Usually the sampling
rate of the detector response is such that an event spans multiple
samples. For pedagogical reasons, we will describe the algorithm as



if each event could occupy only one sample and there was no time
jitter, i.e., all the ions of the same species were observed in the same
bin. The algorithm can be applied without this assumptions with
some minor modifications and all the results presented here are for
the general case.

2. MEASUREMENT SCHEME AND THE
RECONSTRUCTION ALGORITHM

A TOF measurement from a single acquisition is commonly very
sparse (after removing the additive electrical noise through prepro-
cessing, c.f. Section 4). Furthermore, a single measurement of
the whole spectrum is not expensive and it can be viewed as be-
ing performed in parallel as all ions are flying in the drift region at
the same time. However, the observed signal from a single acqui-
sition is too noisy and many repetitions of the same measurement
are necessary to obtain an accurate estimate of the spectrum. In a
conventional TOFMS setting the observed trace can be expressed as
ylt] = Zlel 2O [t — In] where 2 is the detector response to the
1" acquisition and @[t] is understood to be zero for t < 0 or t > n.

We incorporate a simple, yet powerful, modification to this
scheme [8]. Define 7, the firing time, to be the starting time of the
I*" transient, i.e., the time when the [*" ion packet is accelerated
into the drift region. Define A7, = 741 — 7;. In conventional
TOFMS A71; = AT > n to avoid overlapping between consecutive
transients. We relax this condition and let A7; be a random variable
with E[A7;] = an, for some o < 1. As is the case with the HTI-TOF
we assume that the detector response to overlapping acquisitions is
the superposition of the individual responses,

L
yt] => =Vt — 7). (1)
=1

In this case at each time ¢, y[t] is the superposition of multiple over-
lapping transients. Assume there are a total of L transients and
let0 = 7 < T2 < --- < 71 be the firing times. For a given
7T = (11, 72,...,7L), define the adjacency matrix A € RT*™ as

1

Then, y[t] can be considered as a noisy version of linear measure-
ments of &, (A¢, ), with A, the ¢" row of A. In this notation, the
conventional TOFMS is a special case where each row of A has only
one nonzero element, i.e., measurement y[¢] corresponds to a noisy
observation of &[¢] for some bin ¢. The structure of matrix A reveals
the difference between A-TOFMS and conventional TOFMS.
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Given the trace y and adjacency matrix A one can attempt to solve
for  using an ordinary least squares, &5 = argmin|| Az — y||2
or ¢1-regularized least squares &£ ass0 = argmin|Az — y||2 +
Allz||1. However, simulation results demonstrate poor performance
for both these methods. The reason lies in the choice of the objec-
tive function. Sum of square residuals approximates the negative
log likelihood when the measurement noise is additive Gaussian.

However, TOFMS is dominated by shot-noise which is signal de-
pendent and non-additive. Similar issues arises in applications like
photon-limited imaging where the observation are again shot-noise
limited. Regularized maximum likelihood approaches proved effec-
tive in these settings [9]. Here we propose a stochastic model for
the observation y and present an algorithm that optimizes the ¢;-
regularized log likelihood.

Define w € R" such that w|¢] is the average number of ions that
impact the detector at bin ¢ for a single acquisition. It is natural to
assume that the number of ions that impact the detector at time 7 fol-
lows a Poisson distribution with mean w/[i]. However, experimental
results indicate that a Poisson model for vy is inadequate. Hence, we
assume each ion impact generates an ADC count which itself is an
exponentially distributed random variable. Therefore, conditioning
on k ions impacting the detector at a certain time the ADC count
has an Erlang distribution with the shape parameter k. This model
conforms both with experimental data and current understanding of
the underlying mechanism by which ion detectors function.

Let p be the mean of the exponential random variable describ-
ing the detector response. Given w and A the probability density
function of y[t] is

oo
—(A¢,w
P(y(t]lw, A) = e~ 5(ylt]) + > Er(ylt]) Prag ) (k)
k=1
where Ey () and Px(-) are the Erlang pdf and Poisson pmf de-
y"exp(-¥) xp(—A)A
fined as Ek,u(y) = W, PA(k‘) = %, and 6( . )
is the Dirac delta representing a probability mass at zero. Assuming
that each ion impact is observed in only one element of the trace, dif-
ferent trace elements are the result of different ion impacts. Hence,
given w and A the observed responses in different times can be
considered independent, namely P(y|w, A) = [[_, P(y[t]jw, A).
Hence the negative log-likelihood function takes the form

ty.a(w) = (1, Aw) - 3 log { (A, w) Il(zy[ﬂj;“‘”)}
3)

where I is the modified Bessel Function of type 1 and we dropped
the term 1 (log(y[t]) — log(1t)) which does not depend on w. We
note that the negative log-likelihood function (3) is strictly convex in
w which is remarkable given the existence of the hidden variable k.

3. ALGORITHM

Define the regularized negative log-likelihood cost function Cy, 4, x (w) =

L(wly, A) + Al|jw]|1. Our algorithm attempts to solve the following
optimization problem.

minimize fy 4(w) + A|jw|1, st w >0, 4)
where [|wl|[y = >}, |w[¢]| is the regularization penalty and A is a
parameter. For a doubly differentiable function f : D C R" — Rlet
V f and V2 f be the gradient and Hessian of f respectively. Assume
that there exist a constant v > 0 such that || V24 a(w)|2 < v7*
for w in some set of interest. We call the parameter ~y the step size
as we use it to scale the steps the algorithm takes in each iteration.
Let w®) be our estimate of w at step k. Then we can compute an
upper bound for the cost function Cy, a,x(w) as follows.

Cyan(w) < by a(w™) + w0 Ve, a(w™)
+9 7 Mlw — w3 + w1 ®)



Equation (5) provides an approximation for Cy, 4,x (w) when w is
in a small neighborhood of w®, Minimizing the right-hand-side of
Eq. (5) with respect to w as a surrogate for the actual cost function
results in

w ) =y (w(k> - ’yVEy,A('wUC))) . (6)

where 7¢( - ) is the soft thresholding function, ne (z) = sgn(z)(|z|—
)+ with (-) being the positive part and § o A~*. From Eq. (3),
V{4, a(w) can be calculated as
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Given the gradient of the log-likelihood the algorithm is as follows.

Jr

Algorithm
Input: trace y, firing times 7, and constants (0o, 61, 1)
Output: estimated spectrum w
1: Calculate the adjacency matrix A as in Eq. (2).
2: Setw® = 0,0 =0y + 64.
2: Repeat until stopping criterion is met
0« 0o+ 3 L6,

w D (wac) _ waﬁA(wm)) .
= uw““).

3: Return @

4. EXPERIMENTAL EVALUATION

In this section we present performance evaluation results for the A-
TOFMS algorithm. We obtain 10, 000 transients for a high con-
centration multimode chemical sample using conventional TOFMS
technique. Each transient is 100 ps in length sampled at 25 ps inter-
vals. Therefore, in our notation n = 4 x 10°. The average of these
ten thousand transients is considered as the ground truth.

For evaluation, we use a random subset of 1, 000 transients and
simulate A-TOFMS using these transients as follows. First, we con-
struct a vector of firing times, 7 = (70, 71,...,7—1) by setting
70 = 0 and choosing A7; = 7; — 7,—1 uniformly at random from
the interval [ATmin, ATmax]. Given 7, the trace is constructed using
unaliased transients as prescribed by Eq. (1).

In addition to the aliasing effect, the trace is corrupted by noise.
Henceforth, we preprocess the trace before applying the reconstruc-
tion algorithm by setting the trace to zero unless it is likely to be the
result of an ion impact. As mentioned before, the detector response
to each ion impact is a bell shaped pulse which spreads across mul-
tiple samples. These pulses are corrupted by electrical noise that can
be modeled as additive noise. However, the electrical noise level is
significantly smaller in magnitude compared to the detector response
to an ion impact and henceforth ion impacts can be marked with high
confidence.

We select the potential ion impacts through the following pro-
cedure. Define three constants hg, h.,, and dmin and label a pulse
as a potential ion impact event if the width of the pulse at hight A,
is greater than dmin. If an event satisfies this criterion the support
interval of the event is determined by thresholding the signal at level
ho. Figure 4 demonstrates this procedure through an example. In
this figure there are four pulses that exceed the threshold h,, in peak
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Fig. 1. Preprocessing the data. There are four pulses that exceed the
threshold h,, from which three pass the minimum width condition
d; > dmin (1, 2, and 4). The markers at the hg level indicate the
start and end of each marked event. 1
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Fig. 2. False negative rate (dashed) and false discovery rate (solid)

vs. iteration.

magnitude. From these pulses di, dz2, and d4 satisfy the minimum
width condition of d; > dmin at height h,,. Henceforth, after the
preprocessing there are three valid events with the start and end times
marked at level hg. We set the trace equal to zero wherever it does
not support a valid event. After the preprocessing step, the trace can
be represented as a list of events whereby each event describes a
single pulse in the trace.

Our procedure to identify valid events also enables us to define
metrics for quantitative evaluation of different techniques. We take
the true spectrum & to be the average of all 10, 000 transients. Let Z
be an estimate of Z. For some constants ho, fw, and dmin define &=
{€1,82,...,8m},and & = {€1,€2,...,€m} to be the set of events
in & and 7 respectively, obtained through the procedure described
above. For two events €; and €; we say €; matches ¢; if &; overlap
with at least 50% of the width of € fej. For &; € £ we say éi is a false
negative if none of the events in & matches &;. For € ej € g we say €
is a true positive if there exist &; € £ such that €; matches &; and we
say €; is a false positive if it does not match any event in £.

Let TP, FP, and FN be the number of true positives, false pos-
itives and false negatives respectively. We consider false negative
rate (FNR = FN/(TP+FN)), true positive rate (TPR = TP/(TP+FN)),
and false discovery rate (FDR = FP/(FP+TP)) as the metrics of inter-
est. (The notion of a true negative is ill-defined in this problem and
hence we cannot use the false positive rate metric.)

Unless otherwise stated, the parameters used to obtain the results
of this section are as follows. p = 225, v = 2.5 x 1072, 6; =
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Fig. 3. True positive rate vs false discovery rate

2x1072, 0 = 5x10~%, A{™ = 2, "™ = 0.2, n = 4x 107,
L =10%, ATmin = 0, ATmax = 2 x 10°.

Note that EAT = %n implies that A-TOFMS is four times more
efficient compared to conventional TOFMS in terms of the time it
takes to collect the same number of transients. At the same time,
each event has on average 4 different position on the spectrum it can
be assigned to and the algorithm should be able to infer the correct
position with satisfactory accuracy.

Figure 2 shows the false negative rate and false discovery rate
as a function of the iteration for a randomsubset of 1, 000 transients
and Ay = 5 x 10~ . The algorithm starts with the all-zero spectrum.
Hence, the false negative rate is equal to 1 at iteration O and as the
algorithm proceeds the false negative rate decreases, converging to
a final value of 0.47. The false discovery rate on the other hand
increases as the algorithm proceeds settlling at a final value of about
0.085. Inspecting Fig. 2 suggest that the algorithm converges, in the
sense of establishing the existence of ions, in about 15 iterations.

To better understand the achieved accuracy, we compare A-
TOFMS and three other algorithms in Fig. 3 . The figure shows the
true positive rate vs. false discovery rate, as parameterized by 6o
for the estimated spectrum Z 4_roras obtained by the A-TOFMS
. Each data point is obtained by ten-fold crossvalidation. Namely,
we divide the 10, 000 transients into ten buckets of 1, 000 transients
each, reconstruct the trace using 1,000 transients from one bucket
and using the average of the other nine buckets as the ground truth.
Furthermore, for each bucket we construct 10 random traces by us-
ing different random firing times. Error bars indicate 26 confidence
intervals where & is the standard error estimate.

We Also plot the corresponding curves for three other algo-
rithms. The red curve corresponds to the dithered spectrum, obtained
by mapping each event to all possible positions on the spectrum,
Zali] = D ,cp %‘%Atjy[t], where A;; is the adjacency matrix de-
fined in Eq. (2) and deg; = >_7_, Ay; is the number of positions on
the spectrum that event ¢ can be mapped to. The dithered spectrum
is the most naive way of processing the trace where one assumes
each event to be equally likely to be caused by an ion from any of
its potentiall locations on the spectrum.

The green (TOF-1) and blue (TOF-2) curves correspond to con-
ventional TOFMS, i.e., the spectrum obtained by averaging the tran-
sients when there is no overlapping, Zave = % Zle 2. In TOF-
1, the number of transients is chosen such that the time which takes
to perform the TOFMS and A-TOFMS are the same; in this case

Lrorms = $La-rorus (corresponding to EAT = 1n). TOF-2
corresponds to TOFMS with the same number of transients, which
takes 4 times as long to perform compared to the A-TOFMS . Equiv-
alently, one can think of TOF-2 corresponding to the case where an
oracle is available for A-TOFMS experiment that to each event as-
signs its true position on the spectrum.

The dithered and conventional TOFMS curves are parameterized
by the thresholding parameter h., which is used to identify the events
in the estimated spectrum. Similar to 6o, h,, enables us to obtain a
trade off between true positive rate and false discovery rate.

This comparison shows that A-TOFMS significantly outper-
forms the conventional TOFMS. One the one hand, it allows for
a four-fold speed-up with essentially unchanged accuracy (com-
parison with TOF-2). On the other, it allows a two-fold increase
in true positive rate for FDR = 0.2 if the experiment duration is
unchanged (comparison with TOF-1). It also appears that averaging
is not the most effective approach to processing the data, and due
to its nonlinear nature A-TOFMS outperforms TOF-1 spectrum at
some region of the ROC curve.
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