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Abstract

Symmetric cone optimization subsumes linear optimization, second-order cone
optimization, and semidefinite optimization. It is of interest to extend the
algorithmic developments of symmetric cone optimization into the realm of un-
symmetric cones. We analyze the theoretical properties of some algorithms for
unsymmetric cone problems. We show that they achieve excellent worst-case
iteration bounds while not necessarily being practical to implement.

Using lessons from this analysis and inspired by the Mehrotra predictor-
corrector algorithm, we extend the homogeneous implementation ECOS to han-
dle problems modeled with Cartesian products of the positive orthant, second-
order cones, and the exponential cone, and we empirically validate its efficiency.

v
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Chapter 1

Introduction

Whenever we use a convex optimization algorithm, we wish to be certain of
the computational cost it will incur, the number of iterations it will take, the
precision it will achieve, and how these metrics will change as it solves larger
problems. The study of polynomial-time interior-point algorithms for convex
optimization has yielded some answers to these questions. For example, it is
known that when the convex minimization algorithm is written in the form

minimize ¢’z subject to Axr =b, x€ X,

where x € R™ is the decision variable, ¢ forms a linear objective, A € R"*"
has full row rank, X is a convex subset of R™ with non-empty interior, and
when there exists a cheaply computable strongly nondegenerate self-concordant
barrier f for the set X', then an algorithm exists with a guaranteed polynomial
bound on the number of iterations [43, 55, 48]. Defining an appropriate barrier
function for an arbitrary set X is in practice very difficult. However, when
X is a Cartesian product formed from certain proper cones, such a barrier is
known and particularly good algorithms can be defined. These algorithms are
the object of study of interior-point polynomial-time conic programming.

A cone K is a set closed under conic combinations (for any z1, ...z, € K, and
any 0 < ay,...,a, we have that > a;z; € K). Proper cones are topologically
closed sets that do not contain straight lines and have non-empty interiors.
The set of vectors normal to the supporting hyperplanes of a proper cone K
forms a second proper cone called the dual cone K£*. The existence of the dual
cone implies a classification of cones into those that are identical to their dual,
called self-dual cones, and those that are not equal to their dual, called non-
self-dual. A second classification of cones divides them into homogeneous and
non-homogeneous cones. The set of homogeneous and self-dual cones is the set
of symmetric cones. It is known that all symmetric cones are Cartesian products
of five basic symmetric cones [24].

The dual of a conic problem is again a conic problem with the dual cone
as conic constraint. Symmetric conic programs are those for which the cone is
symmetric. These include linear programming (where the cone is the positive
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orthant), second-order cone programming (where the cone is the Lorentz cone),
and semidefinite programming (where the cone is the set of positive semidefi-
nite matrices). Symmetric cone problems can also be defined from Cartesian
products of these previously listed cones.

The homogeneous self-dual embeddings from linear programming, which
solve the primal and dual problem simultaneously and can detect infeasible
and unbounded problems, also generalize to conic programming. However, join-
ing the primal and dual problems into one will double the number of variables.
Since each iteration of an interior-point method solves a linear system of size
proportional to the number of variables, doubling them can increase the com-
putational cost by up to a factor of eight. However, techniques exist to define
search directions from smaller more manageable systems. As it turns out, when
the cones are symmetric, a type of self-concordant barrier called self-scaled
exists. And for any ordered pair of points x,s € K in the symmetric cone (en-
dowed with a self-scaled barrier) a Nesterov-Todd scaling point can be defined.
These Nesterov-Todd points are used to define smaller Newton-like systems and
cheaper search directions [44].

Whenever the cones are not symmetric, Nesterov-Todd scaling points do not
exist and other strategies must be used [42, 40]. Yinu Ye and Anders Skajaa
[61] suggest using an alternative set of search directions, defined by the solution
of a small system, that do not use the Nesterov-Todd points. In that work the
authors analyze the behavior of these directions for the simplified homogeneous
embedding and define a predictor-corrector algorithm that has good theoretical
guarantees as well as good empirical behavior. In this work we study these
directions further and show that they can be used to define path-following algo-
rithms and also to define an algorithm akin to a potential reduction algorithm,
both for the full homogeneous embedding. These alternative directions are guar-
anteed to work only when the iterates are in a small region of the feasible set
defined in terms of a measure of distance to the central path. We show that a
predictor-corrector algorithm with the same theoretical guarantees as the one
defined by Ye and Skajaa can be defined for a different measure of distance to
the central path for the simplified homogeneous embedding.

It is of particular interest to develop a conic optimization code that can solve
problems modeled from Cartesian products of the positive orthant, second-order
cones, and the exponential cone. The first two of these are symmetric cones while
the exponential cone is unsymmetric. For the symmetric cones, exceptionally
good barriers are known. For the exponential cone a barrier that satisfies all
requirements is defined in the work of Chares [12].

For conic programming problems one can define a merit function (also called
a potential function) that diverges toward co as the iterates approach a sub-
optimal boundary of the feasible set, and diverges to —oc as the iterates ap-
proach the solution of the problem. This merit function is used for the theoreti-
cal analysis of the complexity, and in the implementation of the algorithms as a
way to measure progress and select step-lengths. However, this merit function
is defined in terms of a conjugate pair of barriers for the primal and dual cones.
As it turns out, given a barrier for the primal cone, it might not be simple to
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define a computable conjugate barrier for the dual cone. In this work we define
the conjugate pair for the Chares [12] barrier of the exponential cone and show
that it is cheap to compute and so are its gradient and Hessian.

The Mehrotra predictor-corrector algorithm is one of the most successful
primal-dual interior-point methods for symmetric cones. This algorithm uses
linear combinations of predictor directions (tangent to the central path) and
corrector directions (toward the central path) while dynamically defining the
coefficients of the linear combination. In this work we extend the implemen-
tation of an open-source implementation of the Mehrotra predictor-corrector
algorithm called ECOS [16] to support problems modeled with Cartesian prod-
ucts of the positive orthant, the Lorentz cone, and the exponential cone. Even
though the heuristics we use prevent us from proving the complexity bounds
for the final form of our algorithm, we are able to show that we achieve good
empirical behavior.

The area of polynomial-time interior-point algorithms for conic program-
ming has been active for decades and thoroughly explored. The discovery of
polynomial-time algorithms for linear programming [29, 47, 22, 30, 35, 20], their
extension to conic programming [21, 27, 39, 44, 2, 3, 37, 44], and the defini-
tion of primal-dual and homogeneous versions of conic programming problems
[33, 52, 6, 28, 1, 32] has yielded robust, efficient, and precise methods that
have become essential tools for science and engineering. The extension of these
methods to new cones will yield valuable algorithms for diverse applications.

This work is structured as follows. Chapter 2 covers the basic definitions of
cones and some essential facts from convex analysis. Chapter 3 defines conic
programming problems, defines the dual conic problem, covers the theory used
to detect infeasible and unbounded problems, and defines the full and simplified
homogeneous embedding. Chapter 4 describes self-concordant functions and
barriers and visits some implications of the definition. Chapter 5 describes al-
gorithms that achieve state-of-the-art polynomial bounds for unsymmetric conic
programming but are not necessarily practical to implement because they solve
linear systems that are too large to be practical. In this chapter we also describe
how Nesterov-Todd scaling points are used to define algorithms that are more
practical and solve linear systems of more moderate size. Chapter 6 studies
search directions analogous to those defined by Ye and Skajaa but used in the
context of the full homogeneous embedding. In this chapter, path-following and
potential-reduction-like algorithms are defined. Chapter 7 defines a predictor-
corrector algorithm for the simplified homogeneous embedding but using an
alternative measure of centrality. Chapter 8 defines the conjugate barrier for
the Chares [12] barrier for the exponential cone. Chapter 9 describes how to
transform several important types of convex problems into exponential cone
problems. Chapter 10 describes ECOS, our extension, and the numerical exper-
iments to validate its behavior. Finally in Chapter 11 we state our conclusions
and present future avenues for exploration.



Chapter 2

Preliminaries

2.1 Proper cones, their duals, and theorems of
the alternative

A cone K is a subset of the Euclidean space with the property that for all
vectors x € K and all nonnegative scalars o > 0 the scaled vector axz € K. A
convex cone is a cone that is also a convex set. When a cone is convex, any
weighted sum of its elements with arbitrary positive scalars is contained in the
cone. These weighted sums are called conic combinations. The converse is also
true:if all conic combinations of I belong to K then the set is a convex cone.

Lemma 2.1.1. If {z1,...,2,} C K and a1,...,a, are positive scalars, then
S oaux; € K. And conversely if all Y ax; € K then K is a convex cone.

Proof. Because K is convex, the conver combination
z = E —=x; €K,
Z @
and since I is a cone,

(Z aj)z = Z(azxz) ek.

So any conic combination of elements in the cone is also in the cone.

To show the converse, assume that all conic combinations belong to K; then
for any x € K and any a > 0 the product ax is a conic combination and therefore
K is a cone. Finally, if . «; = 1 then the convex combination z = ), a;; is
itself a conic combination and therefore z € IC, which implies K is convex. [

For the purposes of conic programming, we require the cones to be proper.
Such cones have characteristics necessary for the existence of barriers for their
interior. Specifically, proper cones are topologically closed, have non-empty
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interiors, and contain no straight lines. Cones with no straight lines are called
pointed. Containing no straight lines is equivalent to the statement: x € K
implies —x ¢ K. For example, the positive orthant is a pointed cone while a
half-space is not pointed.

Because proper cones are convex, they have a dual representation as the
intersection of all half-spaces that contain them. The union of all normals to
these half spaces forms another cone called the dual cone, denoted K*. More
precisely, let K be a proper cone and let (, ) be an inner-product.

Definition 2.1.1. Theset K* = {s| 0 < (s,z) ¥V x € K} is called the dual cone
of K.

The following results about dual cones are presented without proof. For a
detailed analysis see [11] or [43].

Lemma 2.1.2. 1. If K is a cone then K* = {s|0< (s,z) Ve € K} is a
closed cone.

2. If K denotes set closure, then K = (K*)*. Hence if K is closed, then
K= (K*)*.

3. If K is a proper cone, then so is KC*.

The definition of dual cone depends on the choice of inner product. For a
given cone, two different inner products yield different dual cones. For most of
this work the selected inner product is the Euclidean dot product; however, all
examples of semidefinite programming are more natural when the inner product
between two matrices X and S is defined as (X, S) = tr(X7S), where tr denotes
trace. Semidefinite programming does not play an important role in this work
except for a few examples, so this exception should not create much confusion.

The definition of dual cone yields a classification of cones into those that are
identical to their dual, called self-dual, and those that differ from their dual,
called non-self-dual. Symmetric cones are a subset of self-dual cones that are
also homogeneous. Homogeneous cones are defined by the following property.
For each pair x, s of elements in the cone K there exists a linear mapping A such
that Az = s and (also) the image of the cone under the map is again the cone.
The set of symmetric cones has been completely characterized [44, 24], yielding
five different elementary cones from which all symmetric cones are constructed
by Cartesian products.

We will restrict ourselves to the real Euclidean space. Of all elementary
symmetric cones only two are subsets of the real Euclidean space: the Lorentz
cone (also called the second-order cone) and the cone of positive definite matrices
(semidefinite cone). The positive orthant of R™ is algebraically equivalent to
the Cartesian product of n semidefinite cones of size 1. However it makes sense
to talk about the positive orthant as one cone and not the product of trivial
semidefinite cones.

Conic optimization problems defined in terms of the nonnegative orthant are
called linear optimization problems, those defined in terms of the Lorentz cone
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are called second-order cone programs (SOCPs), and those defined in terms
of the positive semidefinite cone are called semidefinite programs (SDP). The
exponential cone (a non-self-dual cone) can transform some problems with ex-
ponentials in the objective function and constraints into the conic programming
formalism. These problems include entropy functions, geometric programming
problems, logistic regression, and others.

Definition 2.1.2. The exponential cone K, C R? is the 3-dimensional cone

Ke :cl{(x,y,z) | z >0, exp (%) < %}7

where cl denotes the closure of the set.

The exponential cone is also the union

Ke = {($7y,z)|z>0, exp (E) < y}u{(x,y,z)|x§07 y>0, z=0}.
z z

The dual for this cone is the set
K= {(wv,w) |u<0, exp (L) <=2},
u

u
where e = exp(1). The dual cone is also the union
K = {vw) fu <o, exp (2) < == Ul v,w) [u=0020, w>0}.
U u
For a proof of the duality of the pair K, and K.* and the representation of the

closure see [12, Section 4.3]. The exponential cone and its dual are an example
of a non-self-dual cone pair.

We now show that the nonnegative orthant R’}, the Lorentz cone L, and
the cone of positive semidefinite matrices S7 are self-dual.

Lemma 2.1.3. Let R} C R" be the nonnegative orthant (vectors of nonnegative
entries in R™). Then (R})* is again the nonnegative orthant.

Proof. If s € R™ has some negative entry, say s; < 0, then x = e; satisfies
sTz <0, and s can’t be in (R%)*. Therefore (R7)* C R%. On the other hand
if s € R%, all weighted sums ), s;z; with nonnegative coefficients z; will yield
positive values and therefore s”z > 0, so R7 C (R7)*. O

The second example of a self-dual cone is the set of positive definite matrices
! interpreted as a subset of all symmetric matrices S™ of size n. To resolve the
apparent conflict in definition between subsets of R” and subsets of S™, observe
that the space of symmetric matrices S™ is in fact R™"*1/2 where one linear
isomorphism from s € R™"*t1/2 to § € §” is simply filling the upper triangular
part of S column-wise and then completing the lower triangular part minus the
diagonal for symmetry. Then, the inner product (z,s) between members of
R™"+1/2 can be defined as tr (STX). Then by definition the cone dual to S7
is
K*={S|tr(S"X)>0V X eSt}.
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Lemma 2.1.4. The cone K* dual to S is again S7.

Proof. Assume that S ¢ S?. Then S is a symmetric indefinite matrix with
eigensystem S = VAVT, where at least one eigenvalue )\; is negative. The
positive semidefinite matrix X = —X;V;V;T' will be such that trace (STX) =
—\? < 0 and therefore S ¢ K*, so K* C S%.

On the other hand, if S ¢ K* then there exists some X € S? for which
trace (STX) < 0. If X'/2 is defined as the matrix X'/2 = VAY2V7T where
A'/? is the diagonal matrix with /X; for \; > 0 and zero otherwise, then
X = X1/2X1/2" Because of the property

tr(STX) = tr(X /2 STX1/2),

the equivalence tr (ST X) = 3" 27 ST x; holds (here ; are the columns of X1/2).
Then tr (STX) <0 < Y 2757z, <0 < 2I'STx; <0 for some i, and
therefore S ¢ S7. O

The third and last example of a self-dual cone is the Lorentz cone or second-
order cone, defined by the inequality

L1 = {(zo,z) | mo >0, x2 > ||x||§} (2.1)
Lemma 2.1.5. The cone L* dual to L is again L.

Proof. Define £* = {(u,uo) | u"x + uowo > 0} and assume u ¢ L, so that ||ul| >
ug. For the choice (z,z0) = (—u, ||u|) € £ the bound zTu + zgug = —||ul|® +
|lul|uo < O holds. Therefore (u,uo) ¢ L£*, which implies that £* C L.
Now assume that (u,ug) ¢ L£* but (u,ug) € L£. Then for some (z,z¢) €
L, uT'x + upzg < 0. However since (z,7¢) € £ and (u,ug) € L, we have
0 < —||ulll|z|| + uowo < uTw + ugxo, whereas both inequalities imply that 0 <
—|Ju||[|2]| + wozo < uTx + upxo < 0, which is contradictory. Therefore no such
(u,up) exists and L = L*.
O

Cartesian products of cones are again cones and Cartesian products of proper
cones are proper cones themselves. A Cartesian product of two cones K; and
K5 is denoted by K1 x Ko and defined as the set of all x = (z1,25) € R "2
with 7 € K1 and x5 € Ky. Since the product of two cones is again a cone,
this definition can be extended to define a product of any number of cones. As
expected, the dual of a product of cones K = Ky x - - - x ICp, is the product of the
corresponding dual cones K* = K7 x --- x K. So, whenever all the constituent
cones are self-dual, the resulting product cone is itself self-dual.

2.1.1 Recession directions

A recession direction d € R™ of a closed set C is a vector for which the half
line that points in the recession direction and starts at any = € C' is entirely
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contained in C. Recession directions of closed convex sets form a convex cone,
and closed convex cones coincide with their set of recession directions.

The following lemma will be useful in the sequel when we define certificates
of unboundedness and infeasibility of conic programming problems. Denote by
07 (C) [9] the set of all recession directions of a convex set C'.

Lemma 2.1.6. If K is a closed convex cone, then 07 (K) = K.

Proof. Suppose x € K and d € K. Then for any @ > 0 the conic combination
z+ad is in K, and therefore d € 07 (K) and K C 07 (K). Conversely if d € 01 (K),
for all @ > 0, we have 0 + ad = ad € K and therefore d € K and 07 (K) C K.
Here we used that 0 is a member of any closed cone. O

Any non-empty set contains at least 0 € 07 (C) in its recession directions;
however, if a set closed, convex, and unbounded then 0% (C) contains more
directions. We state without proof the following result that relates unbounded
convex sets and recession directions.

Lemma 2.1.7. A non-empty closed convex set C is unbounded iff 07 (C) # 0.
The proof for this lemma can be found in [49, Thm 8.4].

2.1.2 Theorem of the alternative

Minkowski’s separating hyperplane theorem (2.1.8) is an essential tool in convex
analysis that we use to prove a theorem of the alternative for conic programming
problems.

Theorem 2.1.8. Let B C R™ and C' C R"™ be convex subsets of R™ with disjoint
intersection. Then there exists a vector y # 0 and a scalar B such that

by <p<cly,
for allbe B and c € C.
Proof. See [49, Theorem 11.3]. O

In the sequel, the following theorem of the alternative helps show that
Slater’s constraint qualification implies strong duality.

Theorem 2.1.9. Suppose A € R™*" and let IC be a closed convex cone. FEither
there exists x € int IC such that Ax = 0 or there exists y such that ATy € IC*.

Proof. Since A is linear, the image of K under A (denoted A[K]) is convex.
From the separation theorem (2.1.8), if int A[K] does not contain 0 then there
exists a separating hyperplane defined by y with 0 < 8 < yT ATz for all z € K.
However, if 0 € int A[K] then it is easy to see that no such hyperplane exists.
It is also evident that if the separating hyperplane exists, then § = 0, for if
x € int K, the sequence %l’ € int IC satisfies %a:Ty — 0 for any y.

This in turn implies that either Az = 0 has a solution with = € int IC or
there exists a nonzero y” Az > 0 for all € K; in other words, ATy € K*. O



Chapter 3

Conic Programming

3.1 Conic programming problems

In this section we loosely follow the exposition of Renegar [48] and Nesterov and
Ye [45]. We formalize the definition of a conic problem, state the definition of
the dual problem, and cite some useful results on weak and strong duality. For
a more complete treatment of conic programming and conic duality we refer to
[48, 8, 11, 34]. For a more general treatment of duality in the context of convex
programming see [48]. We begin with the definition of a conic programming
problem.

A cone problem is a convex optimization problem where the objective func-
tion is linear in the decision variables and the constraints are formed by the
intersection of an affine set and a cone. More precisely: if K is a proper cone
then a cone problem is a problem of the form

minimize ¢! x
TER™
subject to Az =, (PC)
z €K,

where A € R™*" and b € R™.

If F denotes the feasible set of problem (PC), then F is formed by the
intersection of the affine space {z : Az = b} with the cone K. The relative
interior of F (denoted rint F) is the intersection of the affine space {z : Az = b}
with int IC. If the feasible set is empty then the problem is called infeasible; if
the feasible set is non-empty then the problem is feasible; if rint F is not empty
the problem is strictly feasible; and finally if the problem is feasible but the
objective is unbounded below, the problem is called unbounded.

We make the simplifying assumption that A has full row rank and therefore
AT defines an injective map. This assumption does not restrict the theoretical
applicability of the methods. For any problem one can always remove redundant
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rows from A to form a smaller system (A,b) with full row rank and the same
solution set {x : Az = b} = {z : Az = b}.

3.2 Conic duality

Weak duality refers to the observation that the dual objective values are lower
bounds for the primal objective values. This is true for all convex optimization
problems, but because of the special structure of conic programming problems
we can derive an explicit form of the dual function and show that the dual
problem is also a conic optimization problem.

The Lagrangian for problem (PC) is

L(x,y,s) =c 'z +y(b— Az) — sTx,

with x € K and s € K£*. For all feasible x, y € R™ and s € K*, the inequality

L(x,y,s)=c'o—ste <l (3.1
holds. Therefore the dual function defined by

F(4.5) = inf {£(x,y,5)}
will satisfy
fy,s) = igf {L(z,y,s)} < iI;f {L(z,y,s),x € F} < iI;f {CTJL‘, T € ]-"} = p*,
where p* is the primal optimal value. This implies
fr(y.s) <p* <clw, (32)

which in words means that any dual objective value will be a lower bound for
all primal objective values.

Observe that if c— ATy —s = 0 then L(z,y, s) = bTy. However if c— ATy—s #
0, then Az = —c + ATy + s satisfies L(aAz,y,s) = bTy — a||Az||3 and as
a = 00, L{aAx,y,s) = —oo. In this case L(x,y,s) is unbounded below and
we can conclude that

Vly ¢—ATy—s=0,

—oo otherwise.

[ (y,s) = {

The dual problem in standard form incorporates constraints for the region
where f*(y, s) is finite and has the form

maximize b’y
z€R™
subject to ATy +s=c¢,
se kK . (DC)
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A consequence of weak duality is that, when the primal is unbounded it
admits no lower bound, and therefore there can be no feasible dual point. On
the other hand, unboundedness of the dual implies that the dual objective values
admit no upper bound and there can be no feasible primal point. Conversely if
there is a feasible primal point the dual must be bounded, and if there is a dual
feasible point the primal must be bounded.

It is important to understand not only when problems are solvable but when
the solution set is bounded, for this has algorithmic consequences. We can show
that whenever there exists a strictly feasible primal point, the optimal set of the
dual problem is bounded, and conversely when there exists a strictly feasible
dual point, the optimal set of the primal problem is bounded. To show this we
need the following lemma, which shows that a problem is unbounded if and only
if there exists a recession direction along which the objective is reduced.

Lemma 3.2.1. The primal problem is unbounded iff there exists a recession
direction Az for the feasible set F such that ¢T' Ax < 0.

Proof. If such a direction exists then the problem is unbounded, for if z is a
feasible point, the half-line x + aAx for a > 0 is feasible and ¢’ (z + aAz) =
'z + a(c’Az) = —o00 as a — oo.

To show the converse, assume that the primal problem is unbounded. Choose
an arbitrary point zg € F and for every k € N form the set Oy = F N {clz <
—k} and the set Cj, = {Hr T € Cr}. The sets Cy are nonempty bounded

and closed and the sequence Ck+1 C C is monotonically decreasing. The
Cantor intersection theorem states that there exists a d such that d € N2, Ch.
Therefore there exists a sequence of 8, > 0 such that = + Sxd € C}, C F.

The sequence S admits no upper bound, for —k > ¢¥'(zo + Brd) > cTap —

Brlld|||lc|| implies that S > W”f”“ and therefore zo + fd € F for all § > 0.

This establishes that d is a recession direction. Finally if ¢”2q = po and ¢'d > 0
then ¢T'(x¢ + Brd) > po for all B; reaching a contradiction. This implies that d
is a recession direction with ¢’'d < 0. O

With this result it is simple to prove that if primal strictly feasible points
exist then the dual problem is bounded, and that if dual strictly feasible points
exist then the primal is bounded.

Lemma 3.2.2. If the dual problem is strictly feasible, then no recession di-
rection Az with ¢ Az < 0 exists and the dual is bounded. If furthermore the
primal problem is feasible, then the solution exists and the dual solution set is
bounded.

Proof. Assume there exists a strictly feasible dual AT + 3 = ¢ and that there
is a recession direction for the primal feasible set Az such that ¢c’Az < 0.
Since AAz = 0, we have 7 AAx = ¢T' Az — 37 Az = 0 and therefore ¢ Az =
5T Az > 0, which contradicts the existence of the recession direction. The strict
inequality is due to the strict feasibility of §. This result also implies that if the
solution set exists, it must be bounded, otherwise there must exist a recession
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direction for the feasible set where (z* + aAz)Tc = p* for all a > 0 with
AzTe=0. O

3.2.1 Strong duality

Denote by p* = c¢I'z* (the primal objective value at the solution), and by d* =
bTy* (the dual objective value at a solution of the dual problem). A primal-dual
pair is said to satisfy strong duality if the equality d* = p* holds. Strong duality
has several consequences, one of them being the condition that at the solution
s*Tax = 0.

Observe that

d* = f*(y*,s*) < E(x*,y*,s*) _ ch*—y*T(b—Ax*)—s*Tx* :p*—s*Tx* < p* _

so that

p* _ S*TI* :p*’
and s*72* = 0. The condition s*Tz* = 0 is called complementarity and as we
will now show, is a sufficient condition for a primal dual feasible point to be
optimal.

Lemma 3.2.3. If (z,y,s) is primal and dual feasible and if xTs = 0, then
(x,y,s) is primal and dual optimal.

Proof. Assume z,y, s are primal and dual feasible, and that 27's = 0.

et (ATy +s) =2T¢c (3.3)
= by =2aTec .
— [*(y,s) = f(2). (3.5)
Therefore f(x) = p* and f*(y,s) = d*. O

3.2.2 Conditions for strong duality

For linear optimization problems strong duality always holds, but for conic
programming the picture is more complicated. However, if there exist strictly
feasible primal and dual points, then strong duality holds at all solutions.

Theorem 3.2.4. If there exists a strictly feasible primal-dual point, then the
primal and dual are solvable and strong duality will hold at all optimal pairs
T*, s*.

Proof. Since the dual problem is strictly feasible, Lemma 3.2.2 implies that the
primal is bounded. However, the primal problem is feasible by assumption and
therefore the primal is solvable. The same argument with the role of primal
and dual reversed shows that the dual is also solvable. Furthermore, from
Lemma 3.2.2 it follows that the solution sets of the primal and dual problem
are bounded.
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To show that strong duality holds we construct the somewhat artificial sys-

tem
~ A —b
A= <—CT p* -1 ) ’

where p* is the primal optimal value, and let K be the cone K = K x Rt x R™.
By the theorem of the alternative (2.1.9) one of the two following statements
must be true:

1. There exists € int IC, 7 > 0, x > 0 such that

2. There exists <:Z) such that

AT —¢ B
T p* ( y) € K*x RT x RT.
_1 -n

The first case never holds because if it did, we would have AZ = b, p* > ch and

Z is a primal feasible point with a lower objective value than p*. Therefore, a

solution (—yT, —n)T must exist for the second system. Observe that n # 0 for
if n = 0 then ATy + s = 0 for some s € K* and by > 0, so (y, s) is a recession
direction with 7y > 0, which contradicts the strict feasibility of the primal.
Finally observe that the equations AT% + % =c, % € K*, and bT% > p* hold.
Therefore £, £ is a feasible dual point and weak duality implies that b7 % = p*.
This establishes the existence of a dual feasible point that achieves the primal
optimal value. Therefore the dual optimal value d* has to be equal to the primal

optimal value p*. O

3.2.3 Certificates of infeasibility and unboundedness

Assume that there exists a dual direction with
bI'Ay >0, ATAy+ As =0, As e K*. (CI)

If (y,s) is a dual feasible point, we know from (2.1.6) that the point (y +
aly, s + als) is feasible. Also along this direction the dual objective

Fy+aly,s + als) = —bT (y + aly)

can be increased arbitrarily. This implies that the dual problem is unbounded,
and from weak duality we can conclude that the primal is infeasible.
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On the other hand, if there exists a direction Ax that satisfies
AAz =0, Az <0, z €K, (CU)

then z+aAz is feasible for all « > 0 and along Az the objective can be decreased
arbitrarily. This implies the primal is unbounded and the dual infeasible.

A certificate of unboundedness is a direction Az that satisfies (CU) and a
certificate of infeasibility is a direction Ay, As that satisfies (CI).

3.3 Self-dual problems

A problem P with dual D is self-dual if P is identical to D except maybe for a
simple permutation of the variables. We now derive the construction of a self
dual problem to set the stage for the discussion of the self-dual embedding and
its variations.

Let (P) be a general conic problem

minimize clay + cLay, (3.6)
subject to A1x1 + Aoxo — by € Ky, (3.7)
A1y + Ay — b =0, (3.8)
and r1 € Ks. (P)
The Lagrangian for this problem is given by
L(x1, 3,21, 22, 23) = €] T1 + €5 T2,
— z1(Anzy + Ajaze — by)
— 22(A2171 + Agox2 — b2)
— Zg;l'l,
where z; € K7 and z3 € K35. The Lagrangian is bounded below if
Ve, L=cy — AT 2y — AL 25 — 23 = 0, and (3.9)
szll = C9 — A?2Z1 — A%;Zg =0. (310)
Therefore the dual problem (D) has the form
minimize —bT 2 — b 2,
subject to  —AT 2 — AL 2 + ¢ € K3, (D)

T T
—A1221 — A2222 +cy =0,

and z; € K7.

If we require that the matrices A1 = —AT}, Agy = —AL, Ay = —AL), that
the vectors ¢; = —b; and co = —bg, and that the cones K1 = K3 and Ko = K7,
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then (P) = (D). Therefore a conic programming problem that can be written
as

minimize clT;L"l + charg

. Al A2 I S1 [
subject to <_A%1 A3) <x2> - <O> = (_02> , (SD)
x1 € K and 87 € K¥,

with A; and A3 skew-symmetric, is self-dual.

When a self-dual problem has a strictly feasible point, it automatically has a
strictly feasible dual point. Then, any self-dual problem with a strict interior is
solvable, with a bounded solution set and strong duality holding at its solutions.
By the symmetry of the objective functions, whenever strong duality holds the
optimal value is zero.

Lemma 3.3.1. If P is self-dual and strong duality holds, the optimal value
p*=0.
T

Proof. Observe that for any feasible point = we have —cT2 < d* = p* < Tz,
0. O

and at the optimal z* we have —cTz* = ¢ 2*, and therefore ¢Tz* =

3.4 Homogeneous embedding and certificates of
infeasibility

The self-dual embedding is a construction initially defined for linear program-
ming [56, 53], and then extended to general conic programming [46, 15, 33, 45].
The self-dual embedding extends a conic programming problem into a larger self-
dual problem for which an initial strictly feasible point is known. This larger
primal-dual problem is always solvable and strong duality holds at its solution.
When this larger problem is solved it can yield one of three things: a solution
for the original problem, a certificate that proves the problem is not solvable,
or information that the problem is badly formed and strong duality does not
hold at the solution and neither a certificate of optimality nor a certificate of
infeasibility or unboundedness can be found.

3.4.1 The self-dual embedding

To construct the self-dual embedding, the primal and dual problem are com-
bined and three artificial variables 7,k and 6 are added. Additionally, two
non-negativity constrains 7 > 0 and x > 0 are imposed. Given an initial point
zZ0 = (yo,l'o,To,So,}ﬁlo,go) with xy € il’lt]C, So € il’lt’C*, 70 > 0, kg > 0 and

T
g So+Toko

where for now
v+1

0y = 1, the initial complementarity is defined as pg =
v is some positive constant.

We also define the primal and dual residuals

pr = —Azg + 10b, d = ATyo + 50 — 7o
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and denote by g, the residual

Gr = chO — bTyo + Ko.

Let G be the matrix

A —b Pr
—AT c d,
G=|"p _a o (3.11)
-pr —dp =gy
and define the problem
minimize po(v + 1)4
Y 0 0
. T s| 0
subject to G Ll = 0 (HSD)
0 0 —po(v+1)

zekK, sekK, 0<T1, 0<k.
Lemma 3.4.1. Problem (HSD) is self dual.
Proof. A simple permutation of the variables allows us to write (HSD) as

minimize po(v + 1)0

c —AT 4, x s 0
. —cT vl g, T K 0
subject to A b o y| 1ol = 0 ,
—dl —g' —p 0 0 —po(v+1)
(x,7) € K xRY,(s,r) €K* x Rtm
(3.12)
which is clearly of the form of (SD). O
Lemma 3.4.2. For any feasible point, s + 7k = po(v + 1)6.
Proof. Since the matrix G in (3.11) is skew-symmetric, we have
(y, xT,T, 9)T G (y,x, T, 9) — Ty — 7k = —po(v +1)0,
so that
sta +7h = po(v +1)6. (3.13)

O

Lemma 3.4.3. The point zg is primal and dual strictly feasible. Therefore
(HSD) is solvable and strong duality holds.
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Proof. By assumption the elements xq, 79, sg and kg are strictly feasible with
respect to their cones; therefore we only need to show that zy is feasible with
respect to the linear constraints.

Observe that, by the definition of the residuals, the first three linear con-
straints are trivially satisfied. Therefore we can write

A —b Yo Dr 0
-AT c zo |+ |d- | —|s0| =0 (3.14)
N 50 9r KQ

Since the above matrix is skew-symmetric, by multiplying the above by (yo o so)
on the left, we conclude that

T

Yo Dr
T dr | —at'so — om0 =0, (3.15)
S0 gr
which is equivalent to
T
—Pr Yo
—dr Zo
= —po(v+1
—gr 50 o ( )
0 1
and the last linear constraint of (HSD) holds. O

Because (HSD) is self-dual and because it is strictly feasible, strong duality
holds and at the solution the optimal value is zero. Therefore * = 0 and at the
solution the equations

A =b y* 0 0
- AT c x| —-[s ] =10 (3.16a)
bT e T k* 0
()T (@x*) + 76> =0 (3.16b)

hold (here we used (3.13) for (3.16Db)).

From a solution of (HSD), we can (in most cases) construct either a solution
for both (PC) and (DC) or a certificate of either infeasibility or unboundedness.
Observe that if we find a solution with 7% > 0 we can form the triplet

Z x*/T*
gl =1{v/],
3 s*/T*

which is primal and dual feasible and for which 275 = 0 and is therefore optimal.
On the other hand, if there is a solution with k* > 0, from constraint (3.16a)
we conclude that b7 y* — cT'z* > 0.
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From the rest of the constraints of (HSD), the equations
Az* =0, ATy* + s =0, 2" € K, s* € K*

hold. Therefore whenever ¢ 'z* < 0, the vector z* is a certificate of unbound-
edness, and whenever —b”y* < 0, the pair of vectors (y*, s*) is a certificate of
infeasibility.

3.4.2 A note on ill-formed problems

Since by construction the homogeneous embedding has a strictly primal feasible
point and by self-duality this is also a dual strictly feasible point, it is solvable
and by Theorem 3.2.4 strong duality holds at the solution.

So what happens if for the original primal-dual pair strong duality does not
hold? We can discard a few possibilities. At the solution, 7 = 0, for otherwise
x/T,y/T,s/T is a solution for which %Tf = 0, which is contradictory.

Neither ¢’z < 0 nor b’y > 0 can be true, for otherwise the problem would
be infeasible or unbounded. This implies that —c'z + b7y — k = 0 and kK =
0. Therefore, if a problem is feasible but strong duality does not hold at the
solution, then both 7 = 0 and k = 0.

3.4.3 The simplified homogeneous embedding

The simplified homogeneous embedding [53] removes the variable 6 from the self-
dual embedding and must be solved by a method that reduces the infeasibility
of the linear constraints at the same time as it proceeds towards optimality. The
simplified homogeneous self-dual embedding is the problem of finding a nonzero
feasible point for the equations

Az = b, (3.17)

ATy + s =r7c, (3.18)

e —bvTy+k=0, (3.19)
zek,se k", (3.20)

7,k 2> 0. (sHSD)

The following lemma is important for understanding some properties of the
feasible points of problem (3.19).

Lemma 3.4.4. For any solution of the feasibility problem (sHSD), the comple-
mentarity relations z*T s* and 7*k* hold.

Proof. Let G be the skew-symmetric matrix

) A —b
G=|-AT c|. (3.21)

bT e
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Observe that the feasibility problem can be written as

[y 0 0
Glz|-|s|=10], (3.22)
T K 0
r ek, sekr, (3.23)
T, k> 0. (3.24)
Therefore, for any feasible point,
ne A =b\ [y v\ [0
x —AT c z|—|=z s] =0
T bT —cT T T K

and by the skew symmetry of G we can conclude that

T
Y

T s| =0.
-

T

Since both products 27's and 7k are positive, we have 7s = 0 and 76 = 0. O

Since the equations for the simplified homogeneous embedding are iden-
tical to the optimality conditions of the homogeneous embedding (3.16), we
can extract solutions for the original problem and certificates of infeasibility or
unboundedness in exactly the same manner as for the homogeneous self-dual
embedding.

3.4.4 Interior solutions

It is entirely possible that a well-formed problem embedded in either of the ho-
mogeneous embeddings contains a solution where both 7 = 0 and « = 0. If this
were to happen for a well-formed original (pre embedding) problem, we would
not be able to draw any conclusion. To take advantage of the homogeneous em-
beddings, the optimization problem has to be solved with a method that finds
interior solutions when they exist. As it turns out, interior-point methods are
ideally suited for this task [25].
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Interior point theory

4.1 Self-concordant functions

Nesterov and Nemirovski showed that whenever there exists a computable strongly
nondegenerate self-concordant barrier for the feasible set of a convex problem
in standard form, then a polynomial-time algorithm exits. Nesterov and Ne-
mirovski also showed [43] that every cone admits a strongly nondegenerate self-
concordant barrier, the so-called universal barrier. This would seem to imply
that conic programming is of polynomial complexity. However it is not the case
because conic programs formulated with the copositive cone have been shown
to generalize some NP-complete problems [18]. This apparent contradiction
does not show that P=NP, but rather that a barrier function computable in
polynomial time does not exist for the copositive cone (unless P=NP).

The existence of nondegenerate self-concordant barriers is responsible for
the polynomial-time behavior of interior-point methods for conic programming
problems. This is because self-concordant functions are very similar to their
quadratic approximation, making Newton’s method very efficient.

We now state two equivalent definitions of self-concordant functions and
derive some bounds for the function value. These bounds allow us to analyze
the behavior of Newton’s method on them. The results from this section will
be essential for the analysis of the computational complexity of primal-dual
interior-point methods in the following sections.

Let f(z) be a twice-differentiable, strictly convex function with open domain
Dy C R™, and denote by g(x) its gradient and by H(x) its Hessian. Denote by
lly||, the norm of y induced by the Hessian of f, i.e. ||y||, = \/yT H(x)y.

Denote by B, (z,r) C R™ the open ball about = with radius r in the norm
induced by H(x) i.e. By(z,r) = {y| ||y —x||, <r}. This set is of particular
importance and is called the Dikin ellipsoid.

Definition 4.1.1. A convex function f: Dy C R™ — R is said to be (strongly
nondegenerate) self-concordant if for all € Dy,

Bx(l‘,l) - Df, (41)

20
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and for any y € B, (z,1) and all v € R™\ {0},

l[oll, 1
Tl T =Ny ==l
This definition differs from that initially made by Nesterov and Nemirovski in
[43]; however, Renegar [48] shows it to be equivalent for all important purposes.
The following local upper bound is valid only within the Dikin ellipsoid of
radius one.

(4.2)

L=y ==, <

Theorem 4.1.1. Suppose x € int Dy and ||y — x|, < 1. Then
Fy) < f2) +9(@)" (y = 2) + welllz = yll )
with wy(t) = —t — log(1 — t).

Proof. From the fundamental theorem of calculus the equality

1 T
() = f@) + 9@ Ty — )+ / / R —r

holds. Using the upper bound from (4.2) we get the bound

) < J(@) +9(2)(y @) // 1_Hy—xlu sdndr,

Ny =2l )

and integrating yields
7)< F@)+ 9@y = 2) = Iy = 2l ey —log (1= 1y = 2ll o) ) -

O
Lemma 4.1.2. For any € Dy and y € By(x,1),
2 2 1 )
Y= 2lirya — v — ol 3 — 1)
Iy = srn = (==
Proof. To simplify notation denote 3 = ||y — x|, and 8- = ||y — |, ,(,_p- If
B > B then from the upper bound of (4.2) we conclude that
2 1
2 g2 o B e 1 1)
= e
If on the other hand S8, < 8, then from the lower bound of (4.2) and
0 <1—178 <1 we conclude that
82— 5] = 2 - 2
<p(1-(1-78)?)
1
<B(——0)(1-(1-78)? (4.3)
<p (c1_75y> (1-(1=78)?)

= (= 1):
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The controlled variation of the Hessian implies a useful bound on the error
of a quadratic approximation within the Dikin ellipsoid. Using the previous
lemma we can prove the following bound.

Theorem 4.1.3. Let ¢,(y) = f(z) + g(2)T(y —2) + L |ly — :EHi((x). For all
y € B,(z,1)
ly — Iy
f W) = W) < o
31—y —=ll,)

Proof. Let ¢(7) = f(x + 7(y — x)) be a univariate functional. From the funda-
mental theorem of calculus we can write

5(1) = 6(0) +¢'(0) + £6"(0) /“/(w (0)dn dr.

Therefore

‘Mn¢m>dm> \ /"/|d' (0) dn dr

) 1
= (a=m 1)

where [ is as defined in (4.1.2). Integrating yields the bound

fﬁhwﬁjwv‘ngmluﬁim uTmK#“_<fim

which implies the desired result

Using Lemma 4.1.2 we derive the inequality

19" 1) = 6" O)] = |lly = 24y — 1y

63
S30-5)
O

We derive a global lower bound for the value of f(y) in terms of f(z), its
gradient g(z), and the distance ||z —y||,. We follow the argument in [41] for
which we introduce the original definition of self-concordant functions. We omit
the proof of equivalence between definitions and refer to [48] for details.

Suppose f : R" — R, with f € C? a strictly-convex function, choose x € Dy
and an arbitrary direction v € R™. Define the univariate function ¢(t) = f(x +
tv).

Definition 4.1.2. f(x) is a self-concordant function iff there exists a constant
My > 0 such that

3
2

6" (t)] < Myo"(t)?,
for any x € Dy and any v.
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Any self-concordant function can be scaled so that My = 2. Observe that if
B(t) = C¢(t) then |¢" ()] < Mf%é”(t)%7 so that f(z) = (M;/2)%f(z) will be
self-concordant with constant My = 2.

Lemma 4.1.4. Let f be a self-concordant function with My = 2 and let ¢ be

defined as above. Then the function () = ¢1”(t) satisfies [¢'] < 1.
Proof. Clearly
—¢" (¢
v =20
¢ (1)
and from Definition 4.1.2 we conclude that |[¢'(¢)| < 1. O
Lemma 4.1.5. For any pair x,y € Dy,
= —yll,
x—yl|, > ——E—
o=l = e
Proof. Define ¢ as in Lemma 4.1.4 with v = y — z. Then ¢(0) = Hy}w\l and
P(1) = m Now observe that
1
+/ Y'(r)dr < 4(0) + 1, (4.4)
0
so that
1 1

— <1l .
ly — |, ly —ll,

We are now in a position to prove the lower bound.

Theorem 4.1.6. If x € Dy, then for any y € Dy

f@) +9(@) (y —2) +w(ly —zl,) < fy),
with w(t) =t —log(1 +1).
Proof. From the fundamental theorem of calculus,

1) = 1)+ @ =)+ [ [ =l dnr

Using the lower bound from Lemma 4.1.5 we get the bound

ly —
102 1) oo+ [ [ 1+nuy—zu>d’7dT

and integrating yields

Fy) > f@) +9@) " (y = 2) + ly — 2]l gy — log (1 + [ly — |,.) -
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The global lower bound in Theorem 4.1.6 and the local upper bound of
Theorem 4.1.1 are written in terms of the scalar functions w(t) =t — log(1 4 ¢)
and w*(t) = —u —log(1 — u). The following lemma from [41] relates the two.

Lemma 4.1.7. For any t > 0, w(t) = maxg<.<1 {2zt —w*(2)} and for any
0 <7 <1, w(r) =maxo<, {27 —w(z)}.

Proof. Tt is simple to see that the minimizing z for any 7 > 0 is given by

z = 7. Substituting into 72* — w(z*) yields the desired expression for w*.

The second equality is deduced by a similar reasoning. O

Lemma 4.1.8. If [|g(y) — g(2)[l-1(,) <1 then

fly) — g(2)T(y — z) — flz) < w* (Ilg(y) - g(x)HH—l(y)) :

Proof. Let ¢(z) = f(2)—g(x)T 2. Since it is the sum of a self-concordant function
and a linear function, ¢(z) is self-concordant and admits the global lower bound

$(2) 2 d(y) + Vo(y)" (y — 2) +w(lly —zl,). (4.5)

Since V¢(z) = g(z) — g(x) = 0, z is its minimizer and therefore minimizing
both sides yields the bound

6() = min {6()} = min {6(y) — Vo(y)(y - 2) +w(lly - I,)}

z€Dy z€Dy
> min {00) ~ V61 16— 2, + ol — 21,) }
= 6(y) —w* (IV6Wll1(,))
(4.6)
where for the last equality we used (4.5). The desired bound follows. O

4.2 Newton’s method on self-concordant func-
tions

From the bounds of the previous section we gain some insight on the behavior of
Newton’s method for self-concordant functions. We are also able to understand
the regime of quadratic convergence and derive some results used to bound
the computational complexity of primal-dual methods for conic programming
problems. We only state the results that are necessary for the analysis of the
following sections. For a more thorough description see [11, 43, 48].

We start by bounding the reduction attainable along the Newton direction
in terms of the Newton decrement.

Definition 4.2.1. Let f be a nondegenerate self-concordant function, H be its
Hessian, and g its gradient. The Newton direction Ax is the solution to the
system H(xz)Az = —g(z). The Newton decrement is the value A = [|Az]| ..
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The process of updating the iterate x with the rule z* = 4+ + LAz is called
the damped Newton method and it is a useful theoretical tool to understand the
behavior of Newton’s method. Using the bound from Theorem (4.1.1) we can
show that along the Newton direction we can reduce the function value by at
least A — log(1 + A).

Theorem 4.2.1. For the Newton direction Ax, there exists o > 0 such that
x + oAz is feasible and

fz+ aAz) < f(z) — XA+ log(1+ N).

Proof. Choose a = 1+)\, so that ||z + oAz — x|, = 1+/\ <1 and
x + alAz € By(z,1) € K. For the second statement observe that (4.1.1) implies
that

f(o+ah) < f(z) + agla)T (Az) — a]|Az], — log(1 — a | Azl],)
() —aX? — aX —log(1 — a)) (4.7)
() — A +log(1+ A).

f
f
O

Newton’s method on self-concordant functions allows us to detect when a
minimizer exists. The following lemma shows that if A < 1 then f has a min-
imizer. A corollary is that if f is unbounded, then the Newton decrement is
bounded below and a guaranteed decrement can be achieved in every step.

Lemma 4.2.2. Let f be a self-concordant function. If Mx) < 1 then f has a
minimizer x*.

Proof. We follow the proof from [41]. The strategy is to bound a level set of f,
for if the level set Ly (f(z)) = {y | f(y) < f(z)} is bounded then f must have

a minimizer.
From the global lower bound of (4.1.6), for all y € Dy

f( ) > f(a) +9(@)" (y — 2) +w(lly — z,),

f) = f@) =My ==l + wllly — zll,)-

Therefore if y € Lf( (x)),
I

f(2) = fy) = f2) + 9(2)" (y = 2) + w(lly - 2|,)

— (@) 2 £(&) = Ay — all, +wly — <) (48)

and

1
1222w (ly—2ll,) =1 - ————log (1 + |ly — z|,) -
ly — =, ’ ly —=ll, ’
The function 1 — %log(l + t) is monotonically increasing and asymptotically
approaches 1 as the argument tends to infinity. Therefore for any A < 1 there
exists a value ¢ such that ||y — x|, < for all y € Ly (f(z)) and the level set is
bounded. O



26 4. Interior point theory

When X is small enough, in particular A < 1, there exists a minimizer and
also the difference between the function value and the optimal value is small, in
the following sense.

Lemma 4.2.3. Let AM(x) < 1. Then f(z) — f(a*) < w*(N).

Proof. Tt suffices to let x = 2* and y = x in Lemma 4.1.8, for then

1@ = £t <0 (9@ ) =" ().

4.3 Barrier functions

Interior point methods remove the conic constraints from the problem formula-
tion by incorporating them into the objective. This is done by adding a barrier
function to guarantee that iterates that reduce the objective value will stay
within the barrier function’s domain. The prototypical example is the logarith-
mic barrier function for the positive orthant: f(z) = — > log(z;), used in linear
programming. Aside from ‘blowing up’ as an iterate approaches the boundary
of the positive orthant, this barrier is also self-concordant and v-logarithmically
homogeneous with v = n, where the latter means that any scaling of the vari-
ables by 7 > 0 will result in a change in function value of exactly —vlog(7) in
the following way:

flra) = —vlog(r) + f ().

For linear programming, v equals the dimensionality of the cone n. This does
not hold for all cones and barriers; for example, the barrier for the semidefi-
nite cone f(X) = —log(|X]) for matrices of size n x n is also logarithmically
homogeneous and self-concordant. In this case f(7X) = —nlog(r) + f(X) but
symmetric matrices form a subspace of dimension n(n + 1)/2. Another exam-
ple is the self-concordant 2-logarithmically homogeneous barrier for the Lorentz
cone f(x,z9) = —log (23 — [|#(|3) . In this case the dimension of the cone does
not change the value of v, and this barrier has parameter v = 2 for all dimen-
sions.

The coefficient v is called the complexity of the barrier and as Nesterov and
Nemirovski have shown, complexity bounds for interior point methods must be
derived in terms of this number. Between two different barriers for the same
cone, the barrier with the smaller complexity parameter will yield an algorithm
with a lower worst-case complexity.

In [43, Theorem 2.3.6] Nesterov and Nemirovski show that n is the mini-
mum parameter for any v-logarithmically homogeneous barrier for the positive
orhtant and therefore this barrier is optimal for that geometry. They also show
that in general no useful barrier can have a parameter smaller than 1 [43, Corol-
lary 2.3.3].
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Definition 4.3.1. Let f be a nondegenerate self-concordant function with do-
main K. If f(rz) = —vlog(r) + f(z) for all 7 > 0, then f is a v-logarithmically
homogeneous barrier for K.

Logarithmic homogeneity yields some useful algebraic properties that we
now list.

Lemma 4.3.1. If f is a v-logarithmically homogeneous barrier function, then
the following hold:

1. g(rz) = 2g(x)
2. H(rx) = L H(x)

Proof. 1. Differentiating f(rz) = —vlog(r) + f(z) with respect to x yields
the first equality.

2. Differentiating the first property with respect to x yields the second equal-
ity.

3. From property 1 it follows that
H(z)x = limg—0 (M) = lim,_0 (11—2) g(x) = —g(x).

4. Using property 1 again it follows that

9(2)Tz = limaso (f(eraZ)ff(w)) Vlog<1+a>> -

= 1imo¢~>0 <_ o
5. This follows trivially from 3 and 4.

6. This also follows trivially from 3 and 4.
O

Barriers for product cones are constructed from barriers for their constituent
cones in the following way.

Lemma 4.3.2. IfKC = K1 XKy and f1 and fo are self-concordant logarithmically-
homogeneous barriers with parameters vy and vy then f1(x1) + fo(x2) is a self-
concordant logarithmically-homogeneous barrier for IC with parameter v 4 vs.

This fact is trivial and we leave it without proof.
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The dual barrier function

The most efficient primal-dual interior-point methods for conic programming
are defined in terms of barriers for the primal and dual cones that satisfy a
particular property called conjugacy. If f is a proper convex function, then

f*(s) = —wien]gf {f(z)+2"s}

is its convex conjugate. Conjugation of continuous convex functions is a sym-
metric operation in the sense that a continuous convex function is its biconjugate
(@) = f(@).

We wish to note that the definition we use of a Legendre transform is
consistent with that used by Renegar in [48] but different from the one used
by Nesterov and Nemirovski [43], where f(s) of f(z) is defined as f(s) =
SUDP,ep, {—f(a:) + J:Ts}. It is trivial to show that f(—s) = f*(s). However,
the domain for f* is the cone dual to K, while the domain of f (s) is its anti-
dual, namely —K*. The difference between definitions is merely cosmetic and
Renegar’s definition is more useful for our purposes.

The conjugate pair of a function f is in some sense its dual. This charac-
teristic will be important for deducing properties of the central path. We now
state some of the properties of conjugate pairs and specializations of these for
v-logarithmically homogeneous barrier functions. We refer to [8, Lecture 3] and
[43] for more details on the Legendre transformation.

Definition 4.3.2. Let f(z) be a closed convex function with domain Dy and
denote by

f(s)=— inf {f(z)+2"s}

x€Dy

the function conjugate to f(x).

Theorem 4.3.3. Fenchel-Moreau The conjugation of convex and continuous
functions is a symmetric operation in the sense that (f*)* = f.

Since —f*(s) is the infimum over a family of linear functions (in s), it is a
concave function and f*(s) is convex. However, when f is a strongly nonde-
generate self-concordant r-logarithmically homogeneous barrier for the proper
cone K a stronger result holds, and in fact the function f* will have the same
properties and the same parameter v, but will be a barrier for /C*.

Theorem 4.3.4. If f is a v-logarithmically homogeneous self-concordant barrier
for the proper cone KC then f* is a v-logarithmically homogeneous self-concordant
barrier for the cone K*.

Proof. See [43, Theorem 2.4.4]. O

Finally we list the following properties that hold for conjugate pairs of v-
logarithmically homogeneous barriers.
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Lemma 4.3.5. Let f be a barrier for the cone K with parameter v, and let f*
be the conjugate to f. Let g and g* denote the gradient of f and f* respectively,
and let H and H* denote the Hessians of f and f* respectively.

1. g*(s) = argmingep, {f(z) + 27s}
2. g*(—9(@)) =z
3. H*(—g(z)) = H ' (x)
4. f(=g*(x)) = —f*(x) —v
Proof. See [48, Theorem 3.3.4]. O

4.4 Self-dual cones and self-scaled barriers

In [44] Nesterov and Todd analyze the specializations of interior-point methods
to self-dual cones and define the concept of self-scaled barrier. These barriers,
which exist only for self-dual cones, generalize some useful properties of the
logarithmic barrier for the positive orthant. The definitions from this section
have important algorithmic implications, one of them being that the search
directions used are computed from smaller linear systems than when the cone
is not self-dual and the barriers self-scaled.

Definition 4.4.1. A v-logarithmically homogeneous self-concordant barrier f
for a cone K that satisfies
H(y)x € int K

and
[ (H(y)z) = f(z) —2f(y) —v

for all y and x € int K is a self-scaled barrier.

In particular it can be shown that for every ordered pair x,s € K x K there
exists a scaling point, which is an element w € int K such that H(w)x = s and
H(w)g(s) = g(z) [44, Theorem 3.2].

Self-concordant self-scaled barriers admit a stronger upper bound than self-
concordant functions. The former can only be bounded within the Dikin ellip-
soid. The latter can be bounded up to a constant of the distance to the boundary
of the cone. This measure of distance is defined as follows [44, Section 4]: For
a direction Az and a point z € int K the function o, (Az) is defined as

1
sup{a |z — alAz € K}

o.(Azx) =

That is, the reciprocal to the largest step length that keeps the line from x along
—Az in the cone. When the largest step size is very small then o,(Ax) takes
very large values, and conversely when the step size is large then o, (Ax) takes
small values.
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With this measure of distance the bound, [44, Theorem 4.2] gives

2
Azl

flatada) < f(@)+ag(@) Aot =7t

(—ao,(—Az) — In(1 — ao,(—Ax)).
Observe that for this case the upper bound tends to infinity as o — ﬁ
and not as a||Az|, — 1, which is the case for the self-concordant bound of
Theorem 4.1.1. This together with the inequality o,(—Axz) < |Az||, implies
that the bound is valid in a larger set.



Chapter 5

Homogeneous primal-dual
interior-point algorithms for
general conic programming

In this chapter we describe the primal-dual potential reduction algorithms for
general convex programming with the homogeneous embedding and prove worst-
case iterations bounds. We also describe how Nesterov-Todd scaling points
are used to define algorithms with the same worst-case iteration bounds while
solving smaller linear systems at every iteration.

We introduce the concept of the barrier problem for the homogeneous em-
bedding and the idea of the central path. We show that because the central
path is the set of minimizers for the family of all barrier problems it can be
defined as a set of nonlinear equations. We use the special structure of the
self-dual problem to show that these nonlinear equations have a particularly
simple form. We introduce a measure of centrality: a function that is positive
on the feasible set and takes the value zero on the central path and prove some
basic facts about it. We also introduce the concept of a potential function: A
merit function that can be used to find the solution of a conic programming
problem, and will be essential for proving the worst-case iteration bounds for
the potential reduction algorithm.

The original variants of these algorithms were developed by Nesterov and
described in [40]. Versions of these algorithms using the homogeneous embed-
dings are also described by Nesterov and Ye [45] and by Strum et al. [33]. The
versions we describe here are variations on these algorithms.

This section deals with the homogeneous embeddings. Because the variables
7 and k make the notation cumbersome, we use the following definitions: the
symbol z = (y,z,T,s,0) represents the concatenation of all variables, so a se-
quence of iterates can be succinctly written as {z}. We redefine the symbol
x to represent the concatenation of the primal variables = (x,7), while the

31
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symbol s = (s, k) represents the concatenation of the dual variables. With this
notation the linear constraints of the homogeneous embedding can be written

Y 0 0
Glz]—|s]|= 0 , (5.1)
0 0 — oV

where G is the skew symmetric matrix defined in (3.11).

We refer to the feasible set defined by (5.1) as L, so an iterate z is be linear
feasible iff z € L. Whenever we write f(z) we mean the barrier of the cone for
the new definition of z: f(z) = f(z) — log(r), where f is the barrier for the
cone K. Similarly f*(s) = f*(s) — log(k), where f* is the barrier for K*. We
override the symbol K to denote the new cone K x RT. We also override the
symbol K* to denote K* x Rt and the definition of v to correspond with the
new definition of the barrier, v + 1.

For future reference, the minimization problem for the homogeneous embed-
ding problem is

minimize porf

Y 0 0
subject to G [z | — | s | = 0 (HSD)
0 0 — MoV

zek, se K.

5.1 The barrier problems and the central path

The barrier problem arises from replacing the conic constraints by the barrier
functions in order to define a linearly constrained convex optimization problem:

minimize l;mu@ + f(x) + f*(s)
,u

Yy 0 0 (PDu)
Glx]|—-|s]| = 0
0 0 — oV

The barrier problem is parametrized by the barrier parameter p > 0 and weighs
the relative importance of the barriers with respect to the objective. For each
value of p a unique minimizer y(u), (1), s(u), 0(p) exists and at the minimizer
O(p) = ﬁ holds. Because each point in the central path is feasible, and as
@ — 0, 8 — 0 continuously, in the limit a solution with § = 0, s € K* and
x € K is reached. Because the homogeneous embedding problem is self-dual,
the solution has objective value 0 and this limiting point is the solution for the
embedding problem.

Contrary to some sources in the literature we incorporate the barrier pa-
rameter into the linear objective and not into the barriers. This is consistent
with the treatment in [48, 43, 45] and simplifies the arguments about potential
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functions. Since we are interested in the solution of problems in the homoge-
neous embedding we present the particular instance of the barrier problem for
the homogeneous embedding only.

We begin by showing that for any g > 0 the barrier problem is solvable.
Theorem 5.1.1. Problem (PD,,) is solvable.

Proof. The Lagrangian for (PD,,) is given by

T
1 Ay Y 0 0
L(y,z,0,s, Ay, Az, Ag) = —pov0+f(z)+f*(s)— | Ae Gla]—-1|s|+]| O
H Ao 0 0 LoV

Since the Lagrangian is convex on the primal variables and tends to infinity as
they approach the boundaries of the cones, any minimizer is in the interior of
the cones. In that region the Lagrangian is differentiable and therefore it has a
minimizer (which we denote y*,z*, 0%, s*) iff the optimality equations

—\, 0 0
GT _A:L’ + g(l‘*) =10 ;
— o +pov 0 (5.2)

Ao +97°(s%)=0

hold. When the Lagrangian has a finite minimizer the barrier problem is solv-
able. Therefore all that remains to do is show that there is a feasible point for
(5.2), for then the Lagrangian has a finite minimizer.

Let 4, z, 0, s be a primal feasible point, let § = —g(%x) and let = —g*(%s).
From (PD,,) the relation

1
—%y 01 0

GT _ﬁ‘r + 7;‘5 =10 (53)
—%6‘ l%,uol/ 0

holds. From the properties of the gradients of conjugate pairs, g(&) = —is and

g*(8) = —%x, and therefore the relations
2y 0 0
_lg iluol/ 0 (54)

hold. Observe that here & and § take the role of z* and s* in (5.2) and iy, ia:, i@

take the role of Ay, A, Ag. Therefore the point %y, %:v, %97 Z, § is a feasible point

for (5.2). O
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Lemma 5.1.2. For any p > 0 the minimizer of (PD,) is unique.

Proof. Since by definition f and f* are strictly convex, x(u) and s(p) are unique.
Lemma 3.4.2 implies that 6(u) is also unique. Finally the uniqueness of y(u)
follows from the first linear equation —ATy +d,.0 + 7c = 0 and the full row rank
assumption for A. O

From the uniqueness of the minimizer for each value of ; we can define a
map pu — z(p) = (y(p), x(w), 7(1), s(u), £(w),0(u)). It is not hard to show that
the objective function in the barrier problem varies continuously with p. From
this observation it is simple to show that the map p — z(u) is continuous. We
can therefore interpret the set of all minimizers z(u) as a path in the variable
space. This object is called the central path.

5.1.1 An alternative characterization of the central path

The central path is also the set of points z € L that satisfy the nonlinear
equation s + pug(x) = 0. This alternative representation of the central path is
the subject of Theorem 5.1.4 for which we first show the following lemma.

Lemma 5.1.3. Let z* be a minimizer of (PD,). Then the minimizer of

minimize pord + f(x) + f*(s)

y 0 0 (5.5)
Glz]|—-1s]| = 0
0 0 —i,uol/

s given by iz*.

Proof. It is simple to show that for any z € L, the point %z is feasible in (5.5).

Furthermore if ¢ denotes the objective function of (PD,,), and 1 the objective
function of (5.5), then (z) = 1[)(%2) For observe that

¢(Z):iuoue+f()+f() ouz+f< )+f*(%8)*2v10g(u):1l3( 2).

==

This implies that if z* minimizes (PD,) then %z* minimizes (5.5). O

Theorem 5.1.4. The minimizer of (PD,) is uniquely defined by the equations

s=0 (5.6a)

+

Y 0

Glz]—|s (5.6b)
0 0 — oV
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Proof. Since the problem (PD,) is bounded and feasible, it is solvable and
therefore there exist Lagrange multipliers A, Az, Ag for which the first-order
optimality conditions

Y 0 0
Glz]—-1|s|= 0 , (5.7a)
0 0 — oV
— ) 0 0
Gl |-\ | + g{(m*) =10], (5.7b)
- MoV 0
Az +97(s)=0 (5.7¢)

hold. Using the skew symmetry of G and the properties of the gradients of

conjugate pairs of functions, and defining A\; = —g(z), we can write (5.7) as
—y 0 0
Gl -z |+ 90)] =1|0],

HoV 0
0 0 (5.8)
As | = 0 )
0 _%/«LOV

x4+ g (Xs) =0.

Equations (5.8) are the optimality conditions for the minimization problem (5.5)
of Lemma (5.1.3) and therefore Ay, Az, As, Ag solve (5 5). Using Lemma 5.1.3
we can conclude that if z* minimizes (PD,, ) then fz minimizes (5.5) and the
Lagrange multipliers of (5.7) are equal to ﬁ Usmg (5.7¢) we conclude that
= —ug*(s*), that s* = ug(z*), and that at the minimizer (5.6) holds.
To show the converse, assume that at z equations (5.6) hold; then (5.6a) can
be written as

-y 0 0
G (= |+ | g | = o).
—59 MoV 0

and (5.6b) as

1
—z+g*(s) =0.
. (s)

Then, z together with A, = ix, Yy = i)\yﬁ = i)\g satisfy (5.7) and therefore z
minimizes (PD,,). O
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5.2 Potential reduction algorithms for conic pro-
gramming problems

Since the point x(u), y(i), s(u) on the central path is the minimizer of

minimize ~210 + fl@)+ f*(s)
w

) 0 0 (PDy)
Glxz|—-1|s] = 0 ,
0 0 — oV

and this problem is convex with self-concordant objective, Newton’s method is
efficient at finding points close to the central path.

This suggests the following strategy: For a fixed uj use Newton’s method to
approximately minimize (PD,,) in order to find a point z; close to the central
path. Then, reduce pg to pr11 and use Newton’s method starting from zj to
compute a new iterate zi41 that approximately minimizes (PD,), and so on.
This scheme forms a sequence that tracks the central path to the solution of the
conic programming problem.

The question of how to choose p at each iteration remains. Potential reduc-
tion methods set p = 275 gt every iteration, where p > v is a constant chosen
appropriately. At iteration k they solve for the Newton direction of the barrier

T
problem with = %% and choose a step size by doing a linesearch to reduce
a merit function (the potential function). Before we introduce the potential

function we argue why p > v is necessary.

ZDTS

Rk

Lemma 5.2.1. For any p > 0 the point on the central path satisfies p =

Proof. Since at the central path s + pug(z) = 0 and f is a v-logarithmically
homogeneous barrier, claim (4.3.1) gives #7s = pz?g(z) = pv. O

If the iterate is on the central path and p = xg% is chosen, then the barrier
problem will be at its minimizer and the Newton direction will have length
zero. This would cause the method to stall. A choice of p > v implies that the
barrier problem is never fully solved and that at each iteration the value of z”'s
is reduced. This in turn implies that 8 — 0. A choice of p < v is contradictory,
for this choice would result in the Newton direction for a barrier problem with
a larger p instead of a smaller one.

5.2.1 Newton direction for the barrier problem

The Newton direction for the barrier problem has the form

<v2§(z) BT) (ﬁz) _ (—Vg(@) 7 (5.9)
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where B is the matrix that encodes the linear equality constraints in (PD,,):

A —b Pr
—AT c d, -1
B - bT —CT gr _1 5 (510)

—pf  —dl —gF

r

and the function F(z) is the objective of the barrier problem, namely the self-
concordant convex function

F(z) = %ue + f(@) + f*(9)-

For future reference it is useful to expand (5.9) into the following systems of
equations. The first

0 )gy 0
H(x)Az | +GT | X\ | = [ —9*(s) (5.11)
0 )\_9 —%I/
corresponds to the primal barrier, the second
H*(s)As — A\, = —g*(s) (5.12)
corresponds to the dual barrier, and the third
Ay 0 0
GlAz ) —[As| =10 (5.13)
Al 0 0

enforces linear feasibility.

5.2.2 The potential function

Potential functions are a useful tool for analyzing conic programming algo-
rithms. With them it can be shown that a potential reduction primal-dual conic
programming algorithm achieves a precision of ¢ in O(y/vlog(1/e)) iterations.
This is the state of the art complexity bound for general conic programming.

The usefulness of potential functions is not limited to theoretical aspects;
potential reduction algorithms have proven to be robust and computationally
efficient. Their merit lies in the fact that potential functions define a very
principled way to choose a step length, so that the next iterate will achieve a
sufficient reduction in the complementarity while staying centered enough.

The potential function we use in this work was first presented for linear
programming by Ye [54] and then generalized to conic programming by Nesterov
[43]. For a more detailed explanation of potential reduction in the context of
general conic programming see [40].

We now introduce the potential function ¥ and the functional prozimity
measure €2, and we visit some of their properties and those of a modified Newton
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method as applied to the reduction of W. This will lay the foundation for
the presentation of the standard computational complexity results on potential
reduction methods.

Define

U(z,s) = plog(zTs) + f(z) + f*(s) — viog(v) + v, (5.14)

where p > v is a scalar, f(z) is the barrier for the primal cone, and f*(s) is the
conjugate barrier for the dual cone.

Observe that if z; € L is a sequence that approaches a sub-optimal limit
on the boundary of the cones, the barrier term will tend to infinity and the
complementarity term plog(xzT's) will be bounded below (otherwise the com-
plementarity tends to zero, contradicting the sub-optimality of the limit), and
therefore ¥ will tend to infinity. On the other hand if the iterate approaches
an optimal point, the term plog(z”s) will tend to —oo, dominating the effect
of the barriers, and ¥ will tend to —oco. Potential reduction algorithms work by
following ¥ to —oo to find a solution to the problem.

The functional proximity measure Q(z,s) : K x K* — R defined by

Qz,s) = viog(z's) + f(z) + f*(s) —viog(v) +v (5.15)

is a useful way to evaluate the distance from a point to the central path. The

function € is positive in the feasible set and (z,s) = 0 iff the argument is on

the central path.

Lemma 5.2.2. The function Q(z,s) > 0 and Q(z,s) = 0 iff s+ pg(x) = 0 with
T

__z"s
= -

Proof. Let p = ””Zs. From the definition of the conjugate function we have that

s ) 2Ts

—f*()-—mf{+f@0}
I e | p
xTs
< — + /(@)
I

and then

S J?TS

OSf*(;)‘*‘T‘f’f(x)
0 < wlog(u) + f*(s) + f(x) +v
0 < wvlog(z"s) + f*(s) + f(x) — vlog(v) + v
0 < Q(z,s).
On the other hand if s + pg(z) = 0 then
Qz, s) = Dz, —pg(z))
— vlog(uv) + f*(—pg(x)) + f(x) — vlog(v) + v

=vlog(p) + vlog(v) — vlog(p) — f(z) — v + f(x) — viog(v) + v
=0.
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For the converse, if Q(z,s) = vlog(z?s) + f*(s) + f(x) — vlog(v) + v =
then the properties of v-logarithmically homogeneous barriers imply — f*(i)
T

I o

flx) + % > infg {f(i") + %} = f* (i) $0 & = x minimizes f(Z) + e

O .

which in turn implies that g(z) + & =0.
Now we can establish some results about the function ¥ in (5.14).

Lemma 5.2.3. The function ¥ is unbounded below in the feasible set.

Proof. Using (5.14) and (5.15) write ¥(z, s) = (p —v)log(z1's) + Q(z, s), there-
fore at the central path we then have U (z(u), s(u)) = (p —v) log(pr) and there-
fore ¥ — —o0 as . — 0. O

A converse result also holds because ¥ induces an upper bound on the com-
plementarity. Thus, reducing ¥ to —oo implies that 27's will tend to zero.

Lemma 5.2.4. If ¥(x,s) < (p —v)log(e) for some feasible x,s then a1s < ¢.

Proof. Since ¥(z,s) = (p —v)log(xzT's) + Q(x, s), the bound (p — v)log(z1's)
U(z, s) holds. Therefore ¥(xz,s) < (p—v)log(e) implies that (p —v)log(z”'s)
(p — v)log(g), which in turn implies z7's < ¢.

CIIAIA

The following is a rephrasing of the previous result that is useful to analyze
the computational complexity of the potential reduction algorithms.

Lemma 5.2.5. Any algorithm that produces a sequence of feasible iterates
{xk, sk} such that U(zyy1,Sk4+1) < U(zk, Sk) — 6 for some § > 0, will converge
to an ¢ accurate iterate in O ((p — v)log(2)) iterations.

Proof. Let xg, so be some starting iterate and denote ¥y = ¥(xq, so). Using the
bound (p — v)log(2Ts) < (p — v)log(xT's) + Q(z,s) = ¥(z, s), we get that

(p—v)log(xisg) < Wg — Ok,

which holds iff v
(xg, 50) +2 g Y log(1/e) < k.

O

5.3 A primal-dual potential reduction algorithm

The following is a potential reduction algorithm with a backtracking linesearch.
The search direction for the potential reduction algorithm is the solution to the
system of linear equations

0 Ay 0
H@) Az | + G [ X | = | =525 —g(2) |, (5.16)
0 Ao 0
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together with

H*(s)As — A, = —ﬁx —g*(s) (5.17)
and
Ay 0 0
GlAz ) —[As|=10]. (5.18)
Af 0 0

The above equations can be written in the form

CE N E (). e

where B is the matrix that encodes all the linear constraints:

A —b Pr
_AT c d, —I
B == bT —CT g,,, _1 . (520)

-p; —di —g!

And the function F(z) is the objective of the barrier problem, namely the self-
concordant convex function

F(2) = %ue + f(@) + [ (s).

The matrix V2F(z) is the Hessian of F(z), and —V,,V is the negative gradient
of the potential function.

It is clear that this is not the Newton direction for the potential function W,
for the Newton direction is the solution to

3 ) 6)-(78)

However, it is easy to see that the potential reduction direction Az coincides
with the Newton direction for the barrier problem (PD,,) with barrier parameter

5= aTs/p.

Lemma 5.3.1. The potential reduction direction is the Newton direction for
ZL’TS

the barrier problem with parameter p =

Proof. Let Ay, Az, Ag be the Lagrange multipliers in (5.16) and (5.17). If we
choose the new Lagrange multipliers

)gy Ay Y
Nl = ] -2 =],
\ =S

Ao Ao 0

then
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and
GT (x| =cT x|+ Lalz)=c 0| +2| s |,
S xT's zTs
Ao Ao 0 Y — oV

where in the second equality we used the skew-symmetry of G and in the third
the feasibility of w. Taken together the above imply that

0 Ay 0
H(z)Az | +GT A | = | —g%(s) |,
0 Ao — oy

H*(s)As — Ay = —g*(s),

and
Ay 0 0
Gl|Az | —|As|=1[0],
A6 0 0

which define the Newton direction for the barrier problem (5.11)—(5.13). O

Algorithm 1 Potential reduction algorithm for conic programming
Given wy, € (0,1) and B € (0,1)
while 275 > ¢ do
Solve for the search direction Aw
Set A (Ilaz]} + 1as]?)”
while ¥ (wy + aAw) > ¥(wy) + nar? do > Backtracking Linesearch
a = Ba
end while
Wiy1 ¢ W + cAw
k+—k+1
end while

We now show the worst-case iteration bounds for the primal-dual potential
reduction of Algorithm 1. We need to show that ¥ admits the upper bound

U(z 4+ alz) < U(2) — a(A2 + N) —log(l — a)),

1/2
where in this case A = (||A:L’Hi + ||A5HS) , that the backtracking linesearch

)
[EDY

7751)_‘%\. Finally we use the bounds derived in Chapter 4 to show that the choice
p = v+ /v implies that A is bounded below by A > 0.5, which implies a
worst-case computational complexity bound for Algorithm 1 of O (y/log(L)) .

selects a step size o > and that the decrease in W(z) along Az is at least

Claim 5.3.2. Along the potential reduction directions the function ¥ admits
the upper bound ¥ (z + alAx,s + als) < U(x,s) — a(A? + X) — log(1 — a).
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Proof. From (5.19), it is clear that AzTV?F(2)Az = —AzV¥(z), which implies
|Az|? + [|As|? = _% (sTAz + 2T As) — g(x)T Az — g*(s)TAs.  (5.21)

Since

zTs

T TA TA
Lp(x+an,s+aA8)—‘I’($a3):p10g<x s+a(s x+x S)) (522)

+f (@ + alz) — f(z) + [ (s + als) — f*(s),

and f(z) + f*(s) is a self-concordant function, we have

T TA TA
U(z 4+ alAx, s + alAs) — U(x, s) < plog acs+a( )
(5.23)
)

+a g

(2)" Az + g*(s)"As) — aX —log (1 — a\
Using the bound log(1 + z) < z, and using equality (5.21) we get the bound

U(z + oAz, s + alAs) — ¥(x,s) < ( (STAer:cTAs))
*ﬁ( (TAx+xTAs)) 2 _ax—log (1l —a)) (5.24)

= fa()\2 + A) —log(1l — a\).
O

Claim 5.3.3. Each iteration of Algorithm 1 will reduce ¥ by at least 7}[31{‘%\

Proof. 1t suffices to prove that the step size a = 14%\ is feasible and satisfies the
stopping condition. Then the smallest possible step size the algorithm will take
is Ba and the result follows.

If = then the distance ||w — (w + aAw)||,, satisfies

w

)\+1

1/2
Jw = (w+ adw)l,, = (ke + adz - al]2 + s + ads = s|?)

1/2
= a (Jlaa]? +[1As]?)

A
=ald=——<1.

Hence any step size smaller than 5 keeps the next iterate in the Dikin ellipsoid

centered at z, s and is therefore feasible. From Lemma 5.3.2 the damped Newton
step achieves the decrease

U(z + alz,s + aAs) — Uz, s) < —a(A? + A) —log(1 — al) (5.25)
=—-A+log(1+ M) (5.26)
)\2
< - 2
- 14 (5:27)
2
< -n = —an\’ (5.28)

14+ A
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