
ALGORITHMS FOR UNSYMMETRIC CONE OPTIMIZATION
AND AN IMPLEMENTATION FOR PROBLEMS WITH THE

EXPONENTIAL CONE

A DISSERTATION
SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL
ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Santiago Akle Serrano
March 2015

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/sn367tt9726

© 2015 by Santiago Akle Serrano. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/sn367tt9726

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Saunders, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Yinyu Ye, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Margot Gerritsen

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Symmetric cone optimization subsumes linear optimization, second-order cone
optimization, and semidefinite optimization. It is of interest to extend the
algorithmic developments of symmetric cone optimization into the realm of un-
symmetric cones. We analyze the theoretical properties of some algorithms for
unsymmetric cone problems. We show that they achieve excellent worst-case
iteration bounds while not necessarily being practical to implement.

Using lessons from this analysis and inspired by the Mehrotra predictor-
corrector algorithm, we extend the homogeneous implementation ECOS to han-
dle problems modeled with Cartesian products of the positive orthant, second-
order cones, and the exponential cone, and we empirically validate its efficiency.

iv

Acknowledgements

To my family, my friends, and my teachers.

I thank Michael Saunders for his patience, encouragement and mentorship.
Yinyu Ye for his guidance and for introducing me to this area of research.
Margot Gerritsen for being a great inspiration and source of moral support for
all ICME students.

I’m very grateful to my parents Ana and Luis for lovingly encouraging me to
follow my desire for scientific enquiry, and to Sebastian for being an ally in this
exploration. To Therese for her love and companionship, for all the support,
encouragement, and patience that made this work possible.

I also want to thank my friends in ICME, my good friends in Mexico, Victor,
my teachers at ITAM, and the people of Mexico for the CONACYT funds.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Preliminaries 4
2.1 Proper cones, their duals, and theorems of the alternative 4

2.1.1 Recession directions . 7
2.1.2 Theorem of the alternative 8

3 Conic Programming 9
3.1 Conic programming problems . 9
3.2 Conic duality . 10

3.2.1 Strong duality . 12
3.2.2 Conditions for strong duality 12
3.2.3 Certificates of infeasibility and unboundedness 13

3.3 Self-dual problems . 14
3.4 Homogeneous embedding and certificates of infeasibility 15

3.4.1 The self-dual embedding 15
3.4.2 A note on ill-formed problems 18
3.4.3 The simplified homogeneous embedding 18
3.4.4 Interior solutions . 19

4 Interior point theory 20
4.1 Self-concordant functions . 20
4.2 Newton’s method on self-concordant functions 24
4.3 Barrier functions . 26
4.4 Self-dual cones and self-scaled barriers 29

5 Homogeneous primal-dual interior-point algorithms for general
conic programming 31
5.1 The barrier problems and the central path 32

5.1.1 An alternative characterization of the central path 34
5.2 Potential reduction algorithms for conic programming problems . 36

vi

5.2.1 Newton direction for the barrier problem 36
5.2.2 The potential function . 37

5.3 A primal-dual potential reduction algorithm 39
5.4 Reducing the system size using the Nesterov-Todd scaling point . 44

6 Algorithms for the full homogeneous embedding with small lin-
ear systems 47
6.1 A substitute for the dual barrier and the unsymmetric centering

directions . 50
6.2 A short-step path-following algorithm for the unsymmetric ho-

mogeneous self-dual formulation 53
6.3 Moving the barrier parameter continuously 57

7 Linearly infeasible algorithms and the simplified homogeneous
embedding 61

7.0.1 A predictor-corrector algorithm for the simplified homo-
geneous embedding and the functional proximity measure 65

8 Conjugate barriers for the exponential cone 69
8.1 The Wright Omega function . 69
8.2 The conjugate function . 70
8.3 A second pair of conjugate functions 71
8.4 Evaluating the Wright Omega function 72

8.4.1 Numerical evaluation of the Wright Omega Real imple-
mentation . 72

9 Modeling convex problems with the exponential cone 74
9.1 Conically representable functions 74

9.1.1 Sums of conically representable functions 75
9.1.2 Affine transformation of the arguments 75
9.1.3 Sums of functions defined over different variables 75
9.1.4 Multiple by positive constant 76
9.1.5 Maxima of conically representable functions 76

9.2 Examples of conically representable functions 76
9.2.1 Negative Entropy . 76
9.2.2 Kullback-Leibler divergence 77
9.2.3 Logarithm of sum of exponentials 77
9.2.4 Negative logarithm . 77
9.2.5 Two norm . 77
9.2.6 Two norm squared . 78
9.2.7 One norm . 78
9.2.8 Linear functions . 78

9.3 An alternative standard form . 78
9.4 Conic programming problems . 79

9.4.1 Logistic regression . 80
9.4.2 Sparse logistic regression 81

vii

9.4.3 Minimum Kullback-Leibler divergence 81
9.4.4 Geometric programming 82

10 Extending ECOS to solve problems with the exponential cone 83
10.1 ECOS for symmetric cones . 84
10.2 ECOS for the exponential cone 87

10.2.1 The barriers for the exponential cone 90
10.2.2 Initializing ECOS-Exp . 90
10.2.3 Stopping criteria . 91

10.3 Empirical evaluation of ECOS . 92
10.3.1 Growth in iteration count as a function of complexity . . 93
10.3.2 Detection of unbounded problems 95
10.3.3 Detection of infeasible problems 96

10.4 Negative entropy problems . 97
10.5 Geometric programming problems 104

11 Conclusions and future directions 108
11.1 Contributions . 108

11.1.1 Predictor-corrector algorithms with small Newton systems 108
11.1.2 The conjugate pair of functions 109
11.1.3 Proofs and alternative interpretations 109
11.1.4 Extension of ECOS . 109

11.2 Future work . 109
11.2.1 Conjugate pairs of barriers for other cones 110
11.2.2 An automatic scaling for the exponential cone 110

viii

List of Tables

10.1 Problems where ECOS-Exp was unable to achieve the requested
precision . 100

10.3 Iteration counts, result status, and linear residuals for ECOS-
Exp, PDCO, and Mosek . 104

10.2 Negative entropy problems where ECOS-Exp found a certificate
of infeasibility . 105

10.4 Iteration counts, result status and problem size for a set of Geo-
metric programming problems . 105

ix

List of Figures

10.1 Average iteration count versus complexity. ECOS with second-
order path-following and Mehrotra initialization vs ECOS-Exp. . 95

10.2 log10 of average iteration count versus complexity. ECOS with
second-order path-following and Mehrotra initialization vs ECOS-
Exp . 96

10.3 Average iteration count versus complexity for ECOS (with second-
order path-following and Mehrotra initialization, with second-
order path-following and ι-initialization) and ECOS-Exp 97

10.4 Average iteration count versus complexity for ECOS (with first-
order path-following, Mehrotra initialization, with first-order path-
following and ι-initialization) and ECOS-Exp (with first-order
path-following for the symmetric variables and second-order path-
following for the symmetric variables) 98

10.5 Average iteration count versus complexity. ECOS and ECOS-
Exp, unbounded problems . 99

10.6 Average iteration count versus complexity. ECOS and ECOS-
Exp, infeasible problems . 100

10.7 Convergence history of the linear residuals for problem lp agg . 101
10.8 Convergence history of the homogeneous variables τ and κ for lp

agg . 102
10.9 Convergence history of the homogeneous residuals for lp agg . . . 106
10.10Convergence history of the linear residuals for problem lp agg

after re-scaling . 106
10.11Convergence history of the homogeneous variables τ and κ for lp

agg after re-scaling . 107
10.12Perfomance profile for iteration count of ECOS-Exp, PDCO and

MOSEK over the 72 negative-entropy problems 107

x

Chapter 1

Introduction

Whenever we use a convex optimization algorithm, we wish to be certain of
the computational cost it will incur, the number of iterations it will take, the
precision it will achieve, and how these metrics will change as it solves larger
problems. The study of polynomial-time interior-point algorithms for convex
optimization has yielded some answers to these questions. For example, it is
known that when the convex minimization algorithm is written in the form

minimize cTx subject to Ax = b, x ∈ X ,

where x ∈ Rn is the decision variable, c forms a linear objective, A ∈ Rm×n
has full row rank, X is a convex subset of Rn with non-empty interior, and
when there exists a cheaply computable strongly nondegenerate self-concordant
barrier f for the set X , then an algorithm exists with a guaranteed polynomial
bound on the number of iterations [43, 55, 48]. Defining an appropriate barrier
function for an arbitrary set X is in practice very difficult. However, when
X is a Cartesian product formed from certain proper cones, such a barrier is
known and particularly good algorithms can be defined. These algorithms are
the object of study of interior-point polynomial-time conic programming.

A cone K is a set closed under conic combinations (for any x1, . . . xn ∈ K, and
any 0 ≤ α1, . . . , αn we have that

∑
αixi ∈ K). Proper cones are topologically

closed sets that do not contain straight lines and have non-empty interiors.
The set of vectors normal to the supporting hyperplanes of a proper cone K
forms a second proper cone called the dual cone K?. The existence of the dual
cone implies a classification of cones into those that are identical to their dual,
called self-dual cones, and those that are not equal to their dual, called non-
self-dual. A second classification of cones divides them into homogeneous and
non-homogeneous cones. The set of homogeneous and self-dual cones is the set
of symmetric cones. It is known that all symmetric cones are Cartesian products
of five basic symmetric cones [24].

The dual of a conic problem is again a conic problem with the dual cone
as conic constraint. Symmetric conic programs are those for which the cone is
symmetric. These include linear programming (where the cone is the positive

1

2 1. Introduction

orthant), second-order cone programming (where the cone is the Lorentz cone),
and semidefinite programming (where the cone is the set of positive semidefi-
nite matrices). Symmetric cone problems can also be defined from Cartesian
products of these previously listed cones.

The homogeneous self-dual embeddings from linear programming, which
solve the primal and dual problem simultaneously and can detect infeasible
and unbounded problems, also generalize to conic programming. However, join-
ing the primal and dual problems into one will double the number of variables.
Since each iteration of an interior-point method solves a linear system of size
proportional to the number of variables, doubling them can increase the com-
putational cost by up to a factor of eight. However, techniques exist to define
search directions from smaller more manageable systems. As it turns out, when
the cones are symmetric, a type of self-concordant barrier called self-scaled
exists. And for any ordered pair of points x, s ∈ K in the symmetric cone (en-
dowed with a self-scaled barrier) a Nesterov-Todd scaling point can be defined.
These Nesterov-Todd points are used to define smaller Newton-like systems and
cheaper search directions [44].

Whenever the cones are not symmetric, Nesterov-Todd scaling points do not
exist and other strategies must be used [42, 40]. Yinu Ye and Anders Skajaa
[51] suggest using an alternative set of search directions, defined by the solution
of a small system, that do not use the Nesterov-Todd points. In that work the
authors analyze the behavior of these directions for the simplified homogeneous
embedding and define a predictor-corrector algorithm that has good theoretical
guarantees as well as good empirical behavior. In this work we study these
directions further and show that they can be used to define path-following algo-
rithms and also to define an algorithm akin to a potential reduction algorithm,
both for the full homogeneous embedding. These alternative directions are guar-
anteed to work only when the iterates are in a small region of the feasible set
defined in terms of a measure of distance to the central path. We show that a
predictor-corrector algorithm with the same theoretical guarantees as the one
defined by Ye and Skajaa can be defined for a different measure of distance to
the central path for the simplified homogeneous embedding.

It is of particular interest to develop a conic optimization code that can solve
problems modeled from Cartesian products of the positive orthant, second-order
cones, and the exponential cone. The first two of these are symmetric cones while
the exponential cone is unsymmetric. For the symmetric cones, exceptionally
good barriers are known. For the exponential cone a barrier that satisfies all
requirements is defined in the work of Chares [12].

For conic programming problems one can define a merit function (also called
a potential function) that diverges toward ∞ as the iterates approach a sub-
optimal boundary of the feasible set, and diverges to −∞ as the iterates ap-
proach the solution of the problem. This merit function is used for the theoreti-
cal analysis of the complexity, and in the implementation of the algorithms as a
way to measure progress and select step-lengths. However, this merit function
is defined in terms of a conjugate pair of barriers for the primal and dual cones.
As it turns out, given a barrier for the primal cone, it might not be simple to

1. Introduction 3

define a computable conjugate barrier for the dual cone. In this work we define
the conjugate pair for the Chares [12] barrier of the exponential cone and show
that it is cheap to compute and so are its gradient and Hessian.

The Mehrotra predictor-corrector algorithm is one of the most successful
primal-dual interior-point methods for symmetric cones. This algorithm uses
linear combinations of predictor directions (tangent to the central path) and
corrector directions (toward the central path) while dynamically defining the
coefficients of the linear combination. In this work we extend the implemen-
tation of an open-source implementation of the Mehrotra predictor-corrector
algorithm called ECOS [16] to support problems modeled with Cartesian prod-
ucts of the positive orthant, the Lorentz cone, and the exponential cone. Even
though the heuristics we use prevent us from proving the complexity bounds
for the final form of our algorithm, we are able to show that we achieve good
empirical behavior.

The area of polynomial-time interior-point algorithms for conic program-
ming has been active for decades and thoroughly explored. The discovery of
polynomial-time algorithms for linear programming [29, 47, 22, 30, 35, 20], their
extension to conic programming [21, 27, 39, 44, 2, 3, 37, 44], and the defini-
tion of primal-dual and homogeneous versions of conic programming problems
[33, 52, 6, 28, 1, 32] has yielded robust, efficient, and precise methods that
have become essential tools for science and engineering. The extension of these
methods to new cones will yield valuable algorithms for diverse applications.

This work is structured as follows. Chapter 2 covers the basic definitions of
cones and some essential facts from convex analysis. Chapter 3 defines conic
programming problems, defines the dual conic problem, covers the theory used
to detect infeasible and unbounded problems, and defines the full and simplified
homogeneous embedding. Chapter 4 describes self-concordant functions and
barriers and visits some implications of the definition. Chapter 5 describes al-
gorithms that achieve state-of-the-art polynomial bounds for unsymmetric conic
programming but are not necessarily practical to implement because they solve
linear systems that are too large to be practical. In this chapter we also describe
how Nesterov-Todd scaling points are used to define algorithms that are more
practical and solve linear systems of more moderate size. Chapter 6 studies
search directions analogous to those defined by Ye and Skajaa but used in the
context of the full homogeneous embedding. In this chapter, path-following and
potential-reduction-like algorithms are defined. Chapter 7 defines a predictor-
corrector algorithm for the simplified homogeneous embedding but using an
alternative measure of centrality. Chapter 8 defines the conjugate barrier for
the Chares [12] barrier for the exponential cone. Chapter 9 describes how to
transform several important types of convex problems into exponential cone
problems. Chapter 10 describes ECOS, our extension, and the numerical exper-
iments to validate its behavior. Finally in Chapter 11 we state our conclusions
and present future avenues for exploration.

Chapter 2

Preliminaries

2.1 Proper cones, their duals, and theorems of
the alternative

A cone K is a subset of the Euclidean space with the property that for all
vectors x ∈ K and all nonnegative scalars α ≥ 0 the scaled vector αx ∈ K. A
convex cone is a cone that is also a convex set. When a cone is convex, any
weighted sum of its elements with arbitrary positive scalars is contained in the
cone. These weighted sums are called conic combinations. The converse is also
true:if all conic combinations of K belong to K then the set is a convex cone.

Lemma 2.1.1. If {x1, . . . , xn} ⊂ K and α1, . . . , αn are positive scalars, then∑
αixi ∈ K. And conversely if all

∑
αixi ∈ K then K is a convex cone.

Proof. Because K is convex, the convex combination

z =
∑
i

αi∑
j αj

xi ∈ K,

and since K is a cone,

(
∑
j

αj)z =
∑
i

(αixi) ∈ K.

So any conic combination of elements in the cone is also in the cone.
To show the converse, assume that all conic combinations belong to K; then

for any x ∈ K and any α ≥ 0 the product αx is a conic combination and therefore
K is a cone. Finally, if

∑
i αi = 1 then the convex combination z =

∑
i αixi is

itself a conic combination and therefore z ∈ K, which implies K is convex.

For the purposes of conic programming, we require the cones to be proper.
Such cones have characteristics necessary for the existence of barriers for their
interior. Specifically, proper cones are topologically closed, have non-empty

4

2. Preliminaries 5

interiors, and contain no straight lines. Cones with no straight lines are called
pointed. Containing no straight lines is equivalent to the statement: x ∈ K
implies −x /∈ K. For example, the positive orthant is a pointed cone while a
half-space is not pointed.

Because proper cones are convex, they have a dual representation as the
intersection of all half-spaces that contain them. The union of all normals to
these half spaces forms another cone called the dual cone, denoted K?. More
precisely, let K be a proper cone and let 〈 , 〉 be an inner-product.

Definition 2.1.1. The set K? = {s | 0 ≤ 〈s, x〉 ∀ x ∈ K} is called the dual cone
of K.

The following results about dual cones are presented without proof. For a
detailed analysis see [11] or [43].

Lemma 2.1.2. 1. If K is a cone then K? = {s | 0 ≤ 〈s, x〉 ∀x ∈ K} is a
closed cone.

2. If K̄ denotes set closure, then K̄ = (K?)?. Hence if K is closed, then
K = (K?)?.

3. If K is a proper cone, then so is K?.

The definition of dual cone depends on the choice of inner product. For a
given cone, two different inner products yield different dual cones. For most of
this work the selected inner product is the Euclidean dot product; however, all
examples of semidefinite programming are more natural when the inner product
between two matrices X and S is defined as 〈X,S〉 = tr(XTS), where tr denotes
trace. Semidefinite programming does not play an important role in this work
except for a few examples, so this exception should not create much confusion.

The definition of dual cone yields a classification of cones into those that are
identical to their dual, called self-dual, and those that differ from their dual,
called non-self-dual. Symmetric cones are a subset of self-dual cones that are
also homogeneous. Homogeneous cones are defined by the following property.
For each pair x, s of elements in the cone K there exists a linear mapping A such
that Ax = s and (also) the image of the cone under the map is again the cone.
The set of symmetric cones has been completely characterized [44, 24], yielding
five different elementary cones from which all symmetric cones are constructed
by Cartesian products.

We will restrict ourselves to the real Euclidean space. Of all elementary
symmetric cones only two are subsets of the real Euclidean space: the Lorentz
cone (also called the second-order cone) and the cone of positive definite matrices
(semidefinite cone). The positive orthant of Rn is algebraically equivalent to
the Cartesian product of n semidefinite cones of size 1. However it makes sense
to talk about the positive orthant as one cone and not the product of trivial
semidefinite cones.

Conic optimization problems defined in terms of the nonnegative orthant are
called linear optimization problems, those defined in terms of the Lorentz cone

6 2. Preliminaries

are called second-order cone programs (SOCPs), and those defined in terms
of the positive semidefinite cone are called semidefinite programs (SDP). The
exponential cone (a non-self-dual cone) can transform some problems with ex-
ponentials in the objective function and constraints into the conic programming
formalism. These problems include entropy functions, geometric programming
problems, logistic regression, and others.

Definition 2.1.2. The exponential cone Ke ⊆ R3 is the 3-dimensional cone

Ke = cl
{

(x, y, z) | z > 0, exp
(x
z

)
≤ y

z

}
,

where cl denotes the closure of the set.

The exponential cone is also the union

Ke =
{

(x, y, z) | z > 0, exp
(x
z

)
≤ y

z

}
∪ {(x, y, z) | x ≤ 0, y ≥ 0, z = 0} .

The dual for this cone is the set

Ke? = cl
{

(u, v, w) | u < 0, exp
(w
u

)
≤ −ev

u

}
,

where e = exp(1). The dual cone is also the union

Ke? =
{

(u, v, w) | u < 0, exp
(w
u

)
≤ −ev

u
,
}
∪{(u, v, w) | u = 0 v ≥ 0, w ≥ 0} .

For a proof of the duality of the pair Ke and Ke? and the representation of the
closure see [12, Section 4.3]. The exponential cone and its dual are an example
of a non-self-dual cone pair.

We now show that the nonnegative orthant Rn+, the Lorentz cone Ln, and
the cone of positive semidefinite matrices Sn+ are self-dual.

Lemma 2.1.3. Let Rn+ ⊆ Rn be the nonnegative orthant (vectors of nonnegative
entries in Rn). Then (Rn+)? is again the nonnegative orthant.

Proof. If s ∈ Rn has some negative entry, say si < 0, then x = ei satisfies
sTx < 0, and s can’t be in (Rn+)?. Therefore (Rn+)? ⊆ Rn+. On the other hand
if s ∈ Rn+, all weighted sums

∑
i sixi with nonnegative coefficients xi will yield

positive values and therefore sTx ≥ 0, so Rn+ ⊆ (Rn+)?.

The second example of a self-dual cone is the set of positive definite matrices
Sn+ interpreted as a subset of all symmetric matrices Sn of size n. To resolve the
apparent conflict in definition between subsets of Rn and subsets of Sn, observe
that the space of symmetric matrices Sn is in fact Rn(n+1)/2, where one linear
isomorphism from s ∈ Rn(n+1)/2 to S ∈ Sn is simply filling the upper triangular
part of S column-wise and then completing the lower triangular part minus the
diagonal for symmetry. Then, the inner product 〈x, s〉 between members of
Rn(n+1)/2 can be defined as tr (STX). Then by definition the cone dual to Sn+
is

K? =
{
S | tr (STX) > 0 ∀ X ∈ S+

n

}
.

2. Preliminaries 7

Lemma 2.1.4. The cone K? dual to Sn+ is again Sn+.

Proof. Assume that S /∈ Sn+. Then S is a symmetric indefinite matrix with
eigensystem S = V ΛV T , where at least one eigenvalue λi is negative. The
positive semidefinite matrix X = −λiViV Ti will be such that trace (STX) =
−λ2

i < 0 and therefore S /∈ K?, so K? ⊆ Sn+.
On the other hand, if S /∈ K? then there exists some X ∈ Sn+ for which

trace (STX) < 0. If X1/2 is defined as the matrix X1/2 = V Λ1/2V T , where
Λ1/2 is the diagonal matrix with

√
λi for λi > 0 and zero otherwise, then

X = X1/2X1/2T . Because of the property

tr(STX) = tr(X1/2T STX1/2),

the equivalence tr (STX) =
∑
xTi S

Txi holds (here xi are the columns of X1/2).
Then tr (STX) < 0 ⇐⇒

∑
xTi S

Txi < 0 ⇐⇒ xTi S
Txi < 0 for some i, and

therefore S /∈ Sn+.

The third and last example of a self-dual cone is the Lorentz cone or second-
order cone, defined by the inequality

Ln+1 =
{

(x0, x) | x0 > 0, x2
0 > ‖x‖22

}
. (2.1)

Lemma 2.1.5. The cone L? dual to L is again L.

Proof. Define L? =
{

(u, u0) | uTx+ u0x0 ≥ 0
}

and assume u /∈ L, so that ‖u‖ >
u0. For the choice (x, x0) = (−u, ‖u‖) ∈ L the bound xTu + x0u0 = −‖u‖2 +
‖u‖u0 < 0 holds. Therefore (u, u0) /∈ L?, which implies that L? ⊆ L.

Now assume that (u, u0) /∈ L? but (u, u0) ∈ L. Then for some (x, x0) ∈
L, uTx + u0x0 < 0. However since (x, x0) ∈ L and (u, u0) ∈ L, we have
0 ≤ −‖u‖‖x‖ + u0x0 ≤ uTx + u0x0, whereas both inequalities imply that 0 ≤
−‖u‖‖x‖ + u0x0 ≤ uTx + u0x0 < 0, which is contradictory. Therefore no such
(u, u0) exists and L = L?.

Cartesian products of cones are again cones and Cartesian products of proper
cones are proper cones themselves. A Cartesian product of two cones K1 and
K2 is denoted by K1 × K2 and defined as the set of all x = (x1, x2) ∈ Rn1+n2

with x1 ∈ K1 and x2 ∈ K2. Since the product of two cones is again a cone,
this definition can be extended to define a product of any number of cones. As
expected, the dual of a product of cones K = K1×· · ·×Kp is the product of the
corresponding dual cones K? = K?1 × · · · ×K?p. So, whenever all the constituent
cones are self-dual, the resulting product cone is itself self-dual.

2.1.1 Recession directions

A recession direction d ∈ Rn of a closed set C is a vector for which the half
line that points in the recession direction and starts at any x ∈ C is entirely

8 2. Preliminaries

contained in C. Recession directions of closed convex sets form a convex cone,
and closed convex cones coincide with their set of recession directions.

The following lemma will be useful in the sequel when we define certificates
of unboundedness and infeasibility of conic programming problems. Denote by
0+(C) [9] the set of all recession directions of a convex set C.

Lemma 2.1.6. If K is a closed convex cone, then 0+(K) = K.

Proof. Suppose x ∈ K and d ∈ K. Then for any α ≥ 0 the conic combination
x+αd is inK, and therefore d ∈ 0+(K) andK ⊆ 0+(K). Conversely if d ∈ 0+(K),
for all α ≥ 0, we have 0 + αd = αd ∈ K and therefore d ∈ K and 0+(K) ⊂ K.
Here we used that 0 is a member of any closed cone.

Any non-empty set contains at least 0 ∈ 0+(C) in its recession directions;
however, if a set closed, convex, and unbounded then 0+(C) contains more
directions. We state without proof the following result that relates unbounded
convex sets and recession directions.

Lemma 2.1.7. A non-empty closed convex set C is unbounded iff 0+(C) 6= 0.

The proof for this lemma can be found in [49, Thm 8.4].

2.1.2 Theorem of the alternative

Minkowski’s separating hyperplane theorem (2.1.8) is an essential tool in convex
analysis that we use to prove a theorem of the alternative for conic programming
problems.

Theorem 2.1.8. Let B ⊆ Rn and C ⊆ Rn be convex subsets of Rn with disjoint
intersection. Then there exists a vector y 6= 0 and a scalar β such that

bT y ≤ β ≤ cT y,

for all b ∈ B and c ∈ C.

Proof. See [49, Theorem 11.3].

In the sequel, the following theorem of the alternative helps show that
Slater’s constraint qualification implies strong duality.

Theorem 2.1.9. Suppose A ∈ Rm×n, and let K be a closed convex cone. Either
there exists x ∈ intK such that Ax = 0 or there exists y such that AT y ∈ K?.

Proof. Since A is linear, the image of K under A (denoted A[K]) is convex.
From the separation theorem (2.1.8), if intA[K] does not contain 0 then there
exists a separating hyperplane defined by y with 0 ≤ β ≤ yTATx for all x ∈ K.
However, if 0 ∈ intA[K] then it is easy to see that no such hyperplane exists.
It is also evident that if the separating hyperplane exists, then β = 0, for if
x ∈ intK, the sequence 1

nx ∈ intK satisfies 1
nx

T y → 0 for any y.
This in turn implies that either Ax = 0 has a solution with x ∈ intK or

there exists a nonzero yTAx ≥ 0 for all x ∈ K; in other words, AT y ∈ K?.

Chapter 3

Conic Programming

3.1 Conic programming problems

In this section we loosely follow the exposition of Renegar [48] and Nesterov and
Ye [45]. We formalize the definition of a conic problem, state the definition of
the dual problem, and cite some useful results on weak and strong duality. For
a more complete treatment of conic programming and conic duality we refer to
[48, 8, 11, 34]. For a more general treatment of duality in the context of convex
programming see [48]. We begin with the definition of a conic programming
problem.

A cone problem is a convex optimization problem where the objective func-
tion is linear in the decision variables and the constraints are formed by the
intersection of an affine set and a cone. More precisely: if K is a proper cone
then a cone problem is a problem of the form

minimize
x∈Rn

cTx

subject to Ax = b, (PC)

x ∈ K,

where A ∈ Rm×n and b ∈ Rm.
If F denotes the feasible set of problem (PC), then F is formed by the

intersection of the affine space {x : Ax = b} with the cone K. The relative
interior of F (denoted rintF) is the intersection of the affine space {x : Ax = b}
with intK. If the feasible set is empty then the problem is called infeasible; if
the feasible set is non-empty then the problem is feasible; if rintF is not empty
the problem is strictly feasible; and finally if the problem is feasible but the
objective is unbounded below, the problem is called unbounded.

We make the simplifying assumption that A has full row rank and therefore
AT defines an injective map. This assumption does not restrict the theoretical
applicability of the methods. For any problem one can always remove redundant

9

10 3. Conic Programming

rows from A to form a smaller system (Â, b̂) with full row rank and the same

solution set {x : Âx = b̂} = {x : Ax = b}.

3.2 Conic duality

Weak duality refers to the observation that the dual objective values are lower
bounds for the primal objective values. This is true for all convex optimization
problems, but because of the special structure of conic programming problems
we can derive an explicit form of the dual function and show that the dual
problem is also a conic optimization problem.

The Lagrangian for problem (PC) is

L(x, y, s) = cTx+ yT (b−Ax)− sTx,

with x ∈ K and s ∈ K?. For all feasible x, y ∈ Rm and s ∈ K?, the inequality

L(x, y, s) = cTx− sTx ≤ cTx (3.1)

holds. Therefore the dual function defined by

f?(y, s) = inf
x
{L(x, y, s)}

will satisfy

f?(y, s) = inf
x
{L(x, y, s)} ≤ inf

x
{L(x, y, s), x ∈ F} ≤ inf

x

{
cTx, x ∈ F

}
= p?,

where p? is the primal optimal value. This implies

f?(y, s) ≤ p? ≤ cTx, (3.2)

which in words means that any dual objective value will be a lower bound for
all primal objective values.

Observe that if c−AT y−s = 0 then L(x, y, s) = bT y. However if c−AT y−s 6=
0, then ∆x = −c + AT y + s satisfies L(α∆x, y, s) = bT y − α‖∆x‖22 and as
α → ∞, L(α∆x, y, s) → −∞. In this case L(x, y, s) is unbounded below and
we can conclude that

f?(y, s) =

{
bT y c−AT y − s = 0,

−∞ otherwise.

The dual problem in standard form incorporates constraints for the region
where f?(y, s) is finite and has the form

maximize
x∈Rn

bT y

subject to AT y + s = c,

s ∈ K?. (DC)

3. Conic Programming 11

A consequence of weak duality is that, when the primal is unbounded it
admits no lower bound, and therefore there can be no feasible dual point. On
the other hand, unboundedness of the dual implies that the dual objective values
admit no upper bound and there can be no feasible primal point. Conversely if
there is a feasible primal point the dual must be bounded, and if there is a dual
feasible point the primal must be bounded.

It is important to understand not only when problems are solvable but when
the solution set is bounded, for this has algorithmic consequences. We can show
that whenever there exists a strictly feasible primal point, the optimal set of the
dual problem is bounded, and conversely when there exists a strictly feasible
dual point, the optimal set of the primal problem is bounded. To show this we
need the following lemma, which shows that a problem is unbounded if and only
if there exists a recession direction along which the objective is reduced.

Lemma 3.2.1. The primal problem is unbounded iff there exists a recession
direction ∆x for the feasible set F such that cT∆x < 0.

Proof. If such a direction exists then the problem is unbounded, for if x is a
feasible point, the half-line x + α∆x for α > 0 is feasible and cT (x + α∆x) =
cTx+ α(cT∆x)→ −∞ as α→∞.

To show the converse, assume that the primal problem is unbounded. Choose
an arbitrary point x0 ∈ F and for every k ∈ N form the set Ck = F ∩ {cTx ≤
−k} and the set Ĉk = { x−x0

‖x−x0‖ x ∈ Ck}. The sets Ĉk are nonempty bounded

and closed and the sequence Ĉk+1 ⊆ Ĉk is monotonically decreasing. The
Cantor intersection theorem states that there exists a d such that d ∈ ∩∞i=0Ĉk.
Therefore there exists a sequence of βk > 0 such that x+ βkd ∈ Ck ⊆ F .

The sequence βk admits no upper bound, for −k > cT (x0 + βkd) > cTx0 −
βk‖d‖‖c‖ implies that βk >

k−cT x0

‖d‖‖c‖ and therefore x0 + βd ∈ F for all β > 0.

This establishes that d is a recession direction. Finally if cTx0 = p0 and cT d ≥ 0
then cT (x0 + βkd) ≥ p0 for all βk reaching a contradiction. This implies that d
is a recession direction with cT d < 0.

With this result it is simple to prove that if primal strictly feasible points
exist then the dual problem is bounded, and that if dual strictly feasible points
exist then the primal is bounded.

Lemma 3.2.2. If the dual problem is strictly feasible, then no recession di-
rection ∆x with cT∆x ≤ 0 exists and the dual is bounded. If furthermore the
primal problem is feasible, then the solution exists and the dual solution set is
bounded.

Proof. Assume there exists a strictly feasible dual AT ŷ + ŝ = c and that there
is a recession direction for the primal feasible set ∆x such that cT∆x ≤ 0.
Since A∆x = 0, we have ŷTA∆x = cT∆x − ŝT∆x = 0 and therefore cT∆x =
ŝT∆x > 0, which contradicts the existence of the recession direction. The strict
inequality is due to the strict feasibility of ŝ. This result also implies that if the
solution set exists, it must be bounded, otherwise there must exist a recession

12 3. Conic Programming

direction for the feasible set where (x? + α∆x)T c = p? for all α ≥ 0 with
∆xT c = 0.

3.2.1 Strong duality

Denote by p? = cTx? (the primal objective value at the solution), and by d? =
bT y? (the dual objective value at a solution of the dual problem). A primal-dual
pair is said to satisfy strong duality if the equality d? = p? holds. Strong duality
has several consequences, one of them being the condition that at the solution
s?Tx? = 0.

Observe that

d? = f?(y?, s?) ≤ L(x?, y?, s?) = cTx?−y?T (b−Ax?)−s?Tx? = p?−s?Tx? ≤ p? = d?,

so that
p? − s?Tx? = p?,

and s?Tx? = 0. The condition s?Tx? = 0 is called complementarity and as we
will now show, is a sufficient condition for a primal dual feasible point to be
optimal.

Lemma 3.2.3. If (x, y, s) is primal and dual feasible and if xT s = 0, then
(x, y, s) is primal and dual optimal.

Proof. Assume x, y, s are primal and dual feasible, and that xT s = 0.

xT (AT y + s) = xT c (3.3)

=⇒ bT y = xT c (3.4)

=⇒ f?(y, s) = f(x). (3.5)

Therefore f(x) = p? and f?(y, s) = d?.

3.2.2 Conditions for strong duality

For linear optimization problems strong duality always holds, but for conic
programming the picture is more complicated. However, if there exist strictly
feasible primal and dual points, then strong duality holds at all solutions.

Theorem 3.2.4. If there exists a strictly feasible primal-dual point, then the
primal and dual are solvable and strong duality will hold at all optimal pairs
x?, s?.

Proof. Since the dual problem is strictly feasible, Lemma 3.2.2 implies that the
primal is bounded. However, the primal problem is feasible by assumption and
therefore the primal is solvable. The same argument with the role of primal
and dual reversed shows that the dual is also solvable. Furthermore, from
Lemma 3.2.2 it follows that the solution sets of the primal and dual problem
are bounded.

3. Conic Programming 13

To show that strong duality holds we construct the somewhat artificial sys-
tem

Ã =

(
A −b
−cT p? − 1

)
,

where p? is the primal optimal value, and let K̃ be the cone K̃ = K×R+×R+.
By the theorem of the alternative (2.1.9) one of the two following statements
must be true:

1. There exists x ∈ intK, τ > 0, κ > 0 such that

(
A −b
−cT p? −1

)xτ
κ

 = 0.

2. There exists

(
−y
−η

)
such that

 AT −c
−bT p?

−1

(−y
−η

)
∈ K? ×R+ ×R+.

The first case never holds because if it did, we would have Ax
τ = b, p? > cT xτ and

x
τ is a primal feasible point with a lower objective value than p?. Therefore, a

solution
(
−yT , −η

)T
must exist for the second system. Observe that η 6= 0 for

if η = 0 then AT y + s = 0 for some s ∈ K? and bT y ≥ 0, so (y, s) is a recession
direction with bT y ≥ 0, which contradicts the strict feasibility of the primal.
Finally observe that the equations AT yη + s

η = c, s
η ∈ K

?, and bT yη ≥ p? hold.

Therefore y
η ,

s
η is a feasible dual point and weak duality implies that bT yη = p?.

This establishes the existence of a dual feasible point that achieves the primal
optimal value. Therefore the dual optimal value d? has to be equal to the primal
optimal value p?.

3.2.3 Certificates of infeasibility and unboundedness

Assume that there exists a dual direction with

bT∆y > 0, AT∆y + ∆s = 0, ∆s ∈ K?. (CI)

If (y, s) is a dual feasible point, we know from (2.1.6) that the point (y +
α∆y, s+ α∆s) is feasible. Also along this direction the dual objective

f?(y + α∆y, s+ α∆s) = −bT (y + α∆y)

can be increased arbitrarily. This implies that the dual problem is unbounded,
and from weak duality we can conclude that the primal is infeasible.

14 3. Conic Programming

On the other hand, if there exists a direction ∆x that satisfies

A∆x = 0, cT∆x < 0, x ∈ K, (CU)

then x+α∆x is feasible for all α > 0 and along ∆x the objective can be decreased
arbitrarily. This implies the primal is unbounded and the dual infeasible.

A certificate of unboundedness is a direction ∆x that satisfies (CU) and a
certificate of infeasibility is a direction ∆y,∆s that satisfies (CI).

3.3 Self-dual problems

A problem P with dual D is self-dual if P is identical to D except maybe for a
simple permutation of the variables. We now derive the construction of a self
dual problem to set the stage for the discussion of the self-dual embedding and
its variations.

Let (P) be a general conic problem

minimize cT1 x1 + cT2 x2, (3.6)

subject to A11x1 +A12x2 − b1 ∈ K1, (3.7)

A21x1 +A22x2 − b2 = 0, (3.8)

and x1 ∈ K2. (P)

The Lagrangian for this problem is given by

L(x1, x2, z1, z2, z3) = cT1 x1 + cT2 x2,

− z1(A11x1 +A12x2 − b1)

− z2(A21x1 +A22x2 − b2)

− zT3 x1,

where z1 ∈ K?1 and z3 ∈ K?2. The Lagrangian is bounded below if

∇x1L = c1 −AT11z1 −AT21z2 − z3 = 0, and (3.9)

∇x2
L = c2 −AT12z1 −AT22z2 = 0. (3.10)

Therefore the dual problem (D) has the form

minimize −bT1 z1 − bT2 z2,

subject to −AT11z1 −AT21z2 + c1 ∈ K?2,
−AT12z1 −AT22z2 + c2 = 0,

and z1 ∈ K?1.

(D)

If we require that the matrices A11 = −AT11, A22 = −AT22, A12 = −AT21, that
the vectors c1 = −b1 and c2 = −b2, and that the cones K1 = K?2 and K2 = K?1,

3. Conic Programming 15

then (P) = (D). Therefore a conic programming problem that can be written
as

minimize cT1 x1 + cT2 x2

subject to

(
A1 A2

−AT2 A3

)(
x1

x2

)
−
(
s1

0

)
=

(
−c1
−c2

)
,

x1 ∈ K and s1 ∈ K?,

(SD)

with A1 and A3 skew-symmetric, is self-dual.
When a self-dual problem has a strictly feasible point, it automatically has a

strictly feasible dual point. Then, any self-dual problem with a strict interior is
solvable, with a bounded solution set and strong duality holding at its solutions.
By the symmetry of the objective functions, whenever strong duality holds the
optimal value is zero.

Lemma 3.3.1. If P is self-dual and strong duality holds, the optimal value
p? = 0.

Proof. Observe that for any feasible point x we have −cTx < d? = p? < cTx,
and at the optimal x? we have −cTx? = cTx?, and therefore cTx? = 0.

3.4 Homogeneous embedding and certificates of
infeasibility

The self-dual embedding is a construction initially defined for linear program-
ming [56, 53], and then extended to general conic programming [46, 15, 33, 45].
The self-dual embedding extends a conic programming problem into a larger self-
dual problem for which an initial strictly feasible point is known. This larger
primal-dual problem is always solvable and strong duality holds at its solution.
When this larger problem is solved it can yield one of three things: a solution
for the original problem, a certificate that proves the problem is not solvable,
or information that the problem is badly formed and strong duality does not
hold at the solution and neither a certificate of optimality nor a certificate of
infeasibility or unboundedness can be found.

3.4.1 The self-dual embedding

To construct the self-dual embedding, the primal and dual problem are com-
bined and three artificial variables τ, κ and θ are added. Additionally, two
non-negativity constrains τ > 0 and κ > 0 are imposed. Given an initial point
z0 = (y0, x0, τ0, s0, κ0, θ0) with x0 ∈ intK, s0 ∈ intK?, τ0 > 0, κ0 > 0 and

θ0 = 1, the initial complementarity is defined as µ0 =
xT0 s0+τ0κ0

ν+1 where for now
ν is some positive constant.

We also define the primal and dual residuals

pr = −Ax0 + τ0b, dr = AT y0 + s0 − τ0

16 3. Conic Programming

and denote by gr the residual

gr = cTx0 − bT y0 + κ0.

Let G be the matrix

G =


A −b pr

−AT c dr
bT −cT gr
−pTr −dTr −gTr

 (3.11)

and define the problem

minimize µ0(ν + 1)θ

subject to G


y
x
τ
θ

−


0
s
κ
0

 =


0
0
0

−µ0(ν + 1)


x ∈ K, s ∈ K?, 0 ≤ τ, 0 ≤ κ.

(HSD)

Lemma 3.4.1. Problem (HSD) is self dual.

Proof. A simple permutation of the variables allows us to write (HSD) as

minimize µ0(ν + 1)θ

subject to


c −AT dr

−cT bT gr
A −b pr
−dTr −gTr −pTr



x
τ
y
θ

−

s
κ
0
0

 =


0
0
0

−µ0(ν + 1)

 ,

(x, τ) ∈ K × R+, (s, κ) ∈ K? × R+m
(3.12)

which is clearly of the form of (SD).

Lemma 3.4.2. For any feasible point, xT s+ τκ = µ0(ν + 1)θ.

Proof. Since the matrix G in (3.11) is skew-symmetric, we have(
y, x, τ, θ

)T
G
(
y, x, τ, θ

)
− sTx− τκ = −µ0(ν + 1)θ,

so that

sTx+ τκ = µ0(ν + 1)θ. (3.13)

Lemma 3.4.3. The point z0 is primal and dual strictly feasible. Therefore
(HSD) is solvable and strong duality holds.

3. Conic Programming 17

Proof. By assumption the elements x0, τ0, s0 and κ0 are strictly feasible with
respect to their cones; therefore we only need to show that z0 is feasible with
respect to the linear constraints.

Observe that, by the definition of the residuals, the first three linear con-
straints are trivially satisfied. Therefore we can write A −b

−AT c
bT −cT

y0

x0

s0

+

prdr
gr

−
 0
s0

κ0

 = 0. (3.14)

Since the above matrix is skew-symmetric, by multiplying the above by
(
y0 x0 s0

)
on the left, we conclude thaty0

x0

s0

T prdr
gr

− xT0 s0 − τ0κ0 = 0, (3.15)

which is equivalent to 
−pr
−dr
−gr

0


T 

y0

x0

s0

1

 = −µ0(ν + 1)

and the last linear constraint of (HSD) holds.

Because (HSD) is self-dual and because it is strictly feasible, strong duality
holds and at the solution the optimal value is zero. Therefore θ? = 0 and at the
solution the equations A −b

−AT c
bT −cT

y?x?
τ?

−
 0
s?

k?

 =

0
0
0

 (3.16a)

(s?)T (x?) + τ?κ? = 0 (3.16b)

hold (here we used (3.13) for (3.16b)).

From a solution of (HSD), we can (in most cases) construct either a solution
for both (PC) and (DC) or a certificate of either infeasibility or unboundedness.
Observe that if we find a solution with τ? > 0 we can form the tripletx̂ŷ

ŝ

 =

x?/τ?y?/τ?

s?/τ?

 ,

which is primal and dual feasible and for which x̂T ŝ = 0 and is therefore optimal.
On the other hand, if there is a solution with κ? > 0, from constraint (3.16a)

we conclude that bT y? − cTx? > 0.

18 3. Conic Programming

From the rest of the constraints of (HSD), the equations

Ax? = 0, AT y? + s? = 0, x? ∈ K, s? ∈ K?

hold. Therefore whenever cTx? < 0, the vector x? is a certificate of unbound-
edness, and whenever −bT y? < 0, the pair of vectors (y?, s?) is a certificate of
infeasibility.

3.4.2 A note on ill-formed problems

Since by construction the homogeneous embedding has a strictly primal feasible
point and by self-duality this is also a dual strictly feasible point, it is solvable
and by Theorem 3.2.4 strong duality holds at the solution.

So what happens if for the original primal-dual pair strong duality does not
hold? We can discard a few possibilities. At the solution, τ = 0, for otherwise
x/τ, y/τ, s/τ is a solution for which x

τ
T s
τ = 0, which is contradictory.

Neither cTx < 0 nor bT y > 0 can be true, for otherwise the problem would
be infeasible or unbounded. This implies that −cTx + bT y − κ = 0 and κ =
0. Therefore, if a problem is feasible but strong duality does not hold at the
solution, then both τ = 0 and κ = 0.

3.4.3 The simplified homogeneous embedding

The simplified homogeneous embedding [53] removes the variable θ from the self-
dual embedding and must be solved by a method that reduces the infeasibility
of the linear constraints at the same time as it proceeds towards optimality. The
simplified homogeneous self-dual embedding is the problem of finding a nonzero
feasible point for the equations

Ax = τb, (3.17)

AT y + s = τc, (3.18)

cTx− bT y + κ = 0, (3.19)

x ∈ K, s ∈ K?, (3.20)

τ, κ ≥ 0. (sHSD)

The following lemma is important for understanding some properties of the
feasible points of problem (3.19).

Lemma 3.4.4. For any solution of the feasibility problem (sHSD), the comple-
mentarity relations x?T s? and τ?κ? hold.

Proof. Let G̃ be the skew-symmetric matrix

G̃ =

 A −b
−AT c
bT −cT

 . (3.21)

3. Conic Programming 19

Observe that the feasibility problem can be written as

G̃

yx
τ

−
0
s
κ

 =

0
0
0

 , (3.22)

x ∈ K, s ∈ K?, (3.23)

τ, κ ≥ 0. (3.24)

Therefore, for any feasible point,yx
τ

T  A −b
−AT c
bT −cT

yx
τ

−
yx
τ

T 0
s
κ

 = 0

and by the skew symmetry of G̃ we can conclude thatyx
τ

T 0
s
κ

 = 0.

Since both products xT s and τκ are positive, we have xT s = 0 and τκ = 0.

Since the equations for the simplified homogeneous embedding are iden-
tical to the optimality conditions of the homogeneous embedding (3.16), we
can extract solutions for the original problem and certificates of infeasibility or
unboundedness in exactly the same manner as for the homogeneous self-dual
embedding.

3.4.4 Interior solutions

It is entirely possible that a well-formed problem embedded in either of the ho-
mogeneous embeddings contains a solution where both τ = 0 and κ = 0. If this
were to happen for a well-formed original (pre embedding) problem, we would
not be able to draw any conclusion. To take advantage of the homogeneous em-
beddings, the optimization problem has to be solved with a method that finds
interior solutions when they exist. As it turns out, interior-point methods are
ideally suited for this task [25].

Chapter 4

Interior point theory

4.1 Self-concordant functions

Nesterov and Nemirovski showed that whenever there exists a computable strongly
nondegenerate self-concordant barrier for the feasible set of a convex problem
in standard form, then a polynomial-time algorithm exits. Nesterov and Ne-
mirovski also showed [43] that every cone admits a strongly nondegenerate self-
concordant barrier, the so-called universal barrier. This would seem to imply
that conic programming is of polynomial complexity. However it is not the case
because conic programs formulated with the copositive cone have been shown
to generalize some NP-complete problems [18]. This apparent contradiction
does not show that P=NP, but rather that a barrier function computable in
polynomial time does not exist for the copositive cone (unless P=NP).

The existence of nondegenerate self-concordant barriers is responsible for
the polynomial-time behavior of interior-point methods for conic programming
problems. This is because self-concordant functions are very similar to their
quadratic approximation, making Newton’s method very efficient.

We now state two equivalent definitions of self-concordant functions and
derive some bounds for the function value. These bounds allow us to analyze
the behavior of Newton’s method on them. The results from this section will
be essential for the analysis of the computational complexity of primal-dual
interior-point methods in the following sections.

Let f(x) be a twice-differentiable, strictly convex function with open domain
Df ⊆ Rn, and denote by g(x) its gradient and by H(x) its Hessian. Denote by

‖y‖x the norm of y induced by the Hessian of f , i.e. ‖y‖x =
√
yTH(x)y.

Denote by Bx(x, r) ⊆ Rn the open ball about x with radius r in the norm
induced by H(x) i.e. Bx(x, r) = {y | ‖y − x‖x < r}. This set is of particular
importance and is called the Dikin ellipsoid.

Definition 4.1.1. A convex function f : Df ⊆ Rn → R is said to be (strongly
nondegenerate) self-concordant if for all x ∈ Df ,

Bx(x, 1) ⊂ Df , (4.1)

20

4. Interior point theory 21

and for any y ∈ Bx(x, 1) and all v ∈ Rn\ {0} ,

1− ‖y − x‖x ≤
‖v‖y
‖v‖x

≤ 1

1− ‖y − x‖x
. (4.2)

This definition differs from that initially made by Nesterov and Nemirovski in
[43]; however, Renegar [48] shows it to be equivalent for all important purposes.

The following local upper bound is valid only within the Dikin ellipsoid of
radius one.

Theorem 4.1.1. Suppose x ∈ intDf and ‖y − x‖x ≤ 1. Then

f(y) ≤ f(x) + g(x)T (y − x) + ω?(‖x− y‖H(x)),

with ω?(t) = −t− log(1− t).
Proof. From the fundamental theorem of calculus the equality

f(y) = f(x) + g(x)T (y − x) +

∫ 1

0

∫ τ

0

‖y − x‖2x+η(y−x) dη dτ

holds. Using the upper bound from (4.2) we get the bound

f(y) ≤ f(x) + g(x)T (y − x) +

∫ 1

0

∫ τ

0

‖y − x‖2x
(1− η ‖y − x‖H(x))

2
dη dτ,

and integrating yields

f(y) ≤ f(x) + g(x)T (y − x)− ‖y − x‖H(x) − log
(

1− ‖y − x‖H(x)

)
.

Lemma 4.1.2. For any x ∈ Df and y ∈ Bx(x, 1),∣∣∣‖y − x‖2x+τ(y−x) − ‖y − x‖
2
x

∣∣∣ ≤ ‖y − x‖2x(1

(1− ‖y − x‖x)2
− 1

)
.

Proof. To simplify notation denote β = ‖y − x‖x and βτ = ‖y − x‖x+τ(y−x). If

βτ ≥ β then from the upper bound of (4.2) we conclude that∣∣β2
τ − β2

∣∣ ≤ β2

(1− τβ)2
− β2 = β2

(
1

(1− τβ)2
− 1

)
.

If on the other hand βτ < β, then from the lower bound of (4.2) and
0 < 1− τβ < 1 we conclude that∣∣β2

τ − β2
∣∣ = β2 − β2

τ

≤ β2
(
1− (1− τβ)2

)
≤ β2

(
1

(1− τβ)2

)(
1− (1− τβ)2

)
= β2

(
1

(1− τβ)2
− 1

)
.

(4.3)

22 4. Interior point theory

The controlled variation of the Hessian implies a useful bound on the error
of a quadratic approximation within the Dikin ellipsoid. Using the previous
lemma we can prove the following bound.

Theorem 4.1.3. Let qx(y) = f(x) + g(x)T (y − x) + 1
2 ‖y − x‖

2
H(x). For all

y ∈ Bx(x, 1)

|f(y)− qx(y)| ≤
‖y − x‖3x

3 (1− ‖y − x‖x)
.

Proof. Let φ(τ) = f(x+ τ(y − x)) be a univariate functional. From the funda-
mental theorem of calculus we can write

φ(1) = φ(0) + φ′(0) +
1

2
φ′′(0) +

∫ 1

0

∫ τ

0

φ′′(η)− φ′′(0)dη dτ.

Therefore∣∣∣∣φ(1)− φ(0)− φ′(0)− 1

2
φ′′(0)

∣∣∣∣ ≤ ∫ 1

0

∫ τ

0

|φ′′(η)− φ′′(0)| dη dτ

Using Lemma 4.1.2 we derive the inequality

|φ′′(η)− φ′′(0)| =
∣∣∣‖y − x‖2x+η(y−x − ‖y − x‖

2
x

∣∣∣ ≤ β2

(
1

(1− ηβ)2
− 1

)
,

where β is as defined in (4.1.2). Integrating yields the bound∫ 1

0

∫ τ

0

β2

(
1

(1− ηβ)2
− 1

)
dη = β3

∫ 1

0

τ2

(1− τβ)
dτ ≤ β3

(1− β)

∫ 1

0

τ2dτ =
β3

3 (1− τβ)
,

which implies the desired result∣∣∣∣φ(1)− φ(0)− φ′(0)− 1

2
φ′′(0)

∣∣∣∣ ≤ β3

3 (1− τβ)
.

We derive a global lower bound for the value of f(y) in terms of f(x), its
gradient g(x), and the distance ‖x− y‖x. We follow the argument in [41] for
which we introduce the original definition of self-concordant functions. We omit
the proof of equivalence between definitions and refer to [48] for details.

Suppose f : Rn → R, with f ∈ C3 a strictly-convex function, choose x ∈ Df

and an arbitrary direction v ∈ Rn. Define the univariate function φ(t) = f(x+
tv).

Definition 4.1.2. f(x) is a self-concordant function iff there exists a constant
Mf ≥ 0 such that

|φ′′′(t)| ≤Mfφ
′′(t)

3
2 ,

for any x ∈ Df and any v.

4. Interior point theory 23

Any self-concordant function can be scaled so that Mf = 2. Observe that if

φ̄(t) = Cφ(t) then |φ̄′′′(t)| ≤Mf
1√
C
φ̄′′(t)

3
2 , so that f̄(x) = (Mf/2)2f(x) will be

self-concordant with constant Mf̄ = 2.

Lemma 4.1.4. Let f be a self-concordant function with Mf = 2 and let φ be
defined as above. Then the function ψ(t) = 1√

φ′′(t)
satisfies |ψ′| ≤ 1.

Proof. Clearly

ψ′(t) =
−φ′′′(t)

2
√
φ′′(t)

3 ,

and from Definition 4.1.2 we conclude that |ψ′(t)| ≤ 1.

Lemma 4.1.5. For any pair x, y ∈ Df ,

‖x− y‖y ≥
‖x− y‖x

1 + ‖x− y‖x
.

Proof. Define ψ as in Lemma 4.1.4 with v = y − x. Then ψ(0) = 1
‖y−x‖x

and

ψ(1) = 1
‖y−x‖y

. Now observe that

ψ(1) = ψ(0) +

∫ 1

0

ψ′(τ)dτ ≤ ψ(0) + 1, (4.4)

so that
1

‖y − x‖y
≤ 1 +

1

‖y − x‖x
.

We are now in a position to prove the lower bound.

Theorem 4.1.6. If x ∈ Df , then for any y ∈ Df

f(x) + g(x)T (y − x) + ω (‖y − x‖x) ≤ f(y),

with ω(t) = t− log(1 + t).

Proof. From the fundamental theorem of calculus,

f(y) = f(x) + g(x)T (y − x) +

∫ 1

0

∫ τ

0

‖y − x‖2x+η(y−x) dη dτ.

Using the lower bound from Lemma 4.1.5 we get the bound

f(y) ≥ f(x) + g(x)T (y − x) +

∫ 1

0

∫ τ

0

‖y − x‖2x
(1 + η ‖y − x‖x)2

dη dτ,

and integrating yields

f(y) ≥ f(x) + g(x)T (y − x) + ‖y − x‖H(x) − log (1 + ‖y − x‖x) .

24 4. Interior point theory

The global lower bound in Theorem 4.1.6 and the local upper bound of
Theorem 4.1.1 are written in terms of the scalar functions ω(t) = t− log(1 + t)
and ω?(t) = −u− log(1− u). The following lemma from [41] relates the two.

Lemma 4.1.7. For any t > 0, ω(t) = max0≤z≤1 {zt− ω?(z)} and for any
0 ≤ τ < 1, ω?(τ) = max0≤z {zτ − ω(z)}.

Proof. It is simple to see that the minimizing z for any τ > 0 is given by
z = τ

1−τ . Substituting into τz? − ω(z?) yields the desired expression for ω?.
The second equality is deduced by a similar reasoning.

Lemma 4.1.8. If ‖g(y)− g(x)‖H−1(y) < 1 then

f(y)− g(x)T (y − x)− f(x) ≤ ω?
(
‖g(y)− g(x)‖H−1(y)

)
.

Proof. Let φ(z) = f(z)−g(x)T z. Since it is the sum of a self-concordant function
and a linear function, φ(z) is self-concordant and admits the global lower bound

φ(z) ≥ φ(y) +∇φ(y)T (y − z) + ω(‖y − z‖y). (4.5)

Since ∇φ(x) = g(x) − g(x) = 0, x is its minimizer and therefore minimizing
both sides yields the bound

φ(x) = min
z∈Df

{φ(z)} ≥ min
z∈Df

{
φ(y)−∇φ(y)(y − z) + ω(‖y − z‖y)

}
≥ min
z∈Df

{
φ(y)− ‖∇φ(y)‖H−1(y) ‖(y − z)‖y + ω(‖y − z‖y)

}
= φ(y)− ω?

(
‖∇φ(y)‖H−1(y)

)
,

(4.6)
where for the last equality we used (4.5). The desired bound follows.

4.2 Newton’s method on self-concordant func-
tions

From the bounds of the previous section we gain some insight on the behavior of
Newton’s method for self-concordant functions. We are also able to understand
the regime of quadratic convergence and derive some results used to bound
the computational complexity of primal-dual methods for conic programming
problems. We only state the results that are necessary for the analysis of the
following sections. For a more thorough description see [11, 43, 48].

We start by bounding the reduction attainable along the Newton direction
in terms of the Newton decrement.

Definition 4.2.1. Let f be a nondegenerate self-concordant function, H be its
Hessian, and g its gradient. The Newton direction ∆x is the solution to the
system H(x)∆x = −g(x). The Newton decrement is the value λ = ‖∆x‖x.

4. Interior point theory 25

The process of updating the iterate x with the rule x+ = x+ 1
1+λ∆x is called

the damped Newton method and it is a useful theoretical tool to understand the
behavior of Newton’s method. Using the bound from Theorem (4.1.1) we can
show that along the Newton direction we can reduce the function value by at
least λ− log(1 + λ).

Theorem 4.2.1. For the Newton direction ∆x, there exists α > 0 such that
x+ α∆x is feasible and

f(x+ α∆x) ≤ f(x)− λ+ log(1 + λ).

Proof. Choose α = 1
1+λ , so that ‖x+ α∆x− x‖x = λ

1+λ < 1 and
x+ α∆x ∈ Bx(x, 1) ∈ K. For the second statement observe that (4.1.1) implies
that

f(x+ α∆x) ≤ f(x) + αg(x)T (∆x)− α ‖∆x‖x − log(1− α ‖∆x‖x)

= f(x)− αλ2 − αλ− log(1− αλ)

= f(x)− λ+ log(1 + λ).

(4.7)

Newton’s method on self-concordant functions allows us to detect when a
minimizer exists. The following lemma shows that if λ < 1 then f has a min-
imizer. A corollary is that if f is unbounded, then the Newton decrement is
bounded below and a guaranteed decrement can be achieved in every step.

Lemma 4.2.2. Let f be a self-concordant function. If λ(x) < 1 then f has a
minimizer x?.

Proof. We follow the proof from [41]. The strategy is to bound a level set of f ,
for if the level set Lf (f(x)) = {y | f(y) ≤ f(x)} is bounded then f must have
a minimizer.

From the global lower bound of (4.1.6), for all y ∈ Df

f(y) ≥ f(x) + g(x)T (y − x) + w(‖y − x‖x),

=⇒ f(y) ≥ f(x)− λ ‖y − x‖x + w(‖y − x‖x).

Therefore if y ∈ Lf (f(x)),

f(x) ≥ f(y) ≥ f(x) + g(x)T (y − x) + w(‖y − x‖x)

=⇒ f(x) ≥ f(x)− λ ‖y − x‖x + w(‖y − x‖x)
(4.8)

and

1 ≥ λ ≥ 1

‖y − x‖x
w (‖y − x‖x) = 1− 1

‖y − x‖x
log (1 + ‖y − x‖x) .

The function 1 − 1
t log(1 + t) is monotonically increasing and asymptotically

approaches 1 as the argument tends to infinity. Therefore for any λ < 1 there
exists a value t̄ such that ‖y − x‖x ≤ t̄ for all y ∈ Lf (f(x)) and the level set is
bounded.

26 4. Interior point theory

When λ is small enough, in particular λ < 1, there exists a minimizer and
also the difference between the function value and the optimal value is small, in
the following sense.

Lemma 4.2.3. Let λ(x) < 1. Then f(x)− f(x?) ≤ ω?(λ).

Proof. It suffices to let x = x? and y = x in Lemma 4.1.8, for then

f(x)− f(x?) ≤ ω?
(
‖g(x)‖H(x)−1

)
= ω? (λ) .

4.3 Barrier functions

Interior point methods remove the conic constraints from the problem formula-
tion by incorporating them into the objective. This is done by adding a barrier
function to guarantee that iterates that reduce the objective value will stay
within the barrier function’s domain. The prototypical example is the logarith-
mic barrier function for the positive orthant: f(x) = −

∑
log(xi), used in linear

programming. Aside from ‘blowing up’ as an iterate approaches the boundary
of the positive orthant, this barrier is also self-concordant and ν-logarithmically
homogeneous with ν = n, where the latter means that any scaling of the vari-
ables by τ > 0 will result in a change in function value of exactly −ν log(τ) in
the following way:

f(τx) = −ν log(τ) + f(x).

For linear programming, ν equals the dimensionality of the cone n. This does
not hold for all cones and barriers; for example, the barrier for the semidefi-
nite cone f(X) = − log(|X|) for matrices of size n × n is also logarithmically
homogeneous and self-concordant. In this case f(τX) = −n log(τ) + f(X) but
symmetric matrices form a subspace of dimension n(n + 1)/2. Another exam-
ple is the self-concordant 2-logarithmically homogeneous barrier for the Lorentz
cone f(x, x0) = − log

(
x2

0 − ‖x‖22
)
. In this case the dimension of the cone does

not change the value of ν, and this barrier has parameter ν = 2 for all dimen-
sions.

The coefficient ν is called the complexity of the barrier and as Nesterov and
Nemirovski have shown, complexity bounds for interior point methods must be
derived in terms of this number. Between two different barriers for the same
cone, the barrier with the smaller complexity parameter will yield an algorithm
with a lower worst-case complexity.

In [43, Theorem 2.3.6] Nesterov and Nemirovski show that n is the mini-
mum parameter for any ν-logarithmically homogeneous barrier for the positive
orhtant and therefore this barrier is optimal for that geometry. They also show
that in general no useful barrier can have a parameter smaller than 1 [43, Corol-
lary 2.3.3].

4. Interior point theory 27

Definition 4.3.1. Let f be a nondegenerate self-concordant function with do-
main K. If f(τx) = −ν log(τ) + f(x) for all τ > 0, then f is a ν-logarithmically
homogeneous barrier for K.

Logarithmic homogeneity yields some useful algebraic properties that we
now list.

Lemma 4.3.1. If f is a ν-logarithmically homogeneous barrier function, then
the following hold:

1. g(τx) = 1
τ g(x)

2. H(τx) = 1
τ2H(x)

3. g(x) = −H(x)x

4. g(x)Tx = −ν

5. xTH(x)x = ν

6. g(x)H−1(x)g(x) = ν

Proof. 1. Differentiating f(τx) = −ν log(τ) + f(x) with respect to x yields
the first equality.

2. Differentiating the first property with respect to x yields the second equal-
ity.

3. From property 1 it follows that

H(x)x = limα→0

(
g(x+αx)−g(x)

α

)
= limα→0

(
−1

1+α

)
g(x) = −g(x).

4. Using property 1 again it follows that

g(x)Tx = limα→0

(
f(x+αx)−f(x)

α

)
= limα→0

(
−ν log(1+α)

α

)
= −ν.

5. This follows trivially from 3 and 4.

6. This also follows trivially from 3 and 4.

Barriers for product cones are constructed from barriers for their constituent
cones in the following way.

Lemma 4.3.2. If K = K1×K2 and f1 and f2 are self-concordant logarithmically-
homogeneous barriers with parameters ν1 and ν2 then f1(x1) + f2(x2) is a self-
concordant logarithmically-homogeneous barrier for K with parameter ν1 + ν2.

This fact is trivial and we leave it without proof.

28 4. Interior point theory

The dual barrier function

The most efficient primal-dual interior-point methods for conic programming
are defined in terms of barriers for the primal and dual cones that satisfy a
particular property called conjugacy. If f is a proper convex function, then

f?(s) = − inf
x∈Df

{
f(x) + xT s

}
is its convex conjugate. Conjugation of continuous convex functions is a sym-
metric operation in the sense that a continuous convex function is its biconjugate
f??(x) = f(x).

We wish to note that the definition we use of a Legendre transform is
consistent with that used by Renegar in [48] but different from the one used

by Nesterov and Nemirovski [43], where f̂(s) of f(x) is defined as f̂(s) =

supx∈Df
{
−f(x) + xT s

}
. It is trivial to show that f̂(−s) = f?(s). However,

the domain for f? is the cone dual to K, while the domain of f̂(s) is its anti-
dual, namely −K?. The difference between definitions is merely cosmetic and
Renegar’s definition is more useful for our purposes.

The conjugate pair of a function f is in some sense its dual. This charac-
teristic will be important for deducing properties of the central path. We now
state some of the properties of conjugate pairs and specializations of these for
ν-logarithmically homogeneous barrier functions. We refer to [8, Lecture 3] and
[43] for more details on the Legendre transformation.

Definition 4.3.2. Let f(x) be a closed convex function with domain Df and
denote by

f?(s) = − inf
x∈Df

{
f(x) + xT s

}
the function conjugate to f(x).

Theorem 4.3.3. Fenchel-Moreau The conjugation of convex and continuous
functions is a symmetric operation in the sense that (f?)? = f .

Since −f?(s) is the infimum over a family of linear functions (in s), it is a
concave function and f?(s) is convex. However, when f is a strongly nonde-
generate self-concordant ν-logarithmically homogeneous barrier for the proper
cone K a stronger result holds, and in fact the function f? will have the same
properties and the same parameter ν, but will be a barrier for K?.

Theorem 4.3.4. If f is a ν-logarithmically homogeneous self-concordant barrier
for the proper cone K then f? is a ν-logarithmically homogeneous self-concordant
barrier for the cone K?.

Proof. See [43, Theorem 2.4.4].

Finally we list the following properties that hold for conjugate pairs of ν-
logarithmically homogeneous barriers.

4. Interior point theory 29

Lemma 4.3.5. Let f be a barrier for the cone K with parameter ν, and let f?

be the conjugate to f . Let g and g? denote the gradient of f and f? respectively,
and let H and H? denote the Hessians of f and f? respectively.

1. g?(s) = arg minx∈Df
{
f(x) + xT s

}
2. g?(−g(x)) = x

3. H?(−g(x)) = H−1(x)

4. f(−g?(x)) = −f?(x)− ν

Proof. See [48, Theorem 3.3.4].

4.4 Self-dual cones and self-scaled barriers

In [44] Nesterov and Todd analyze the specializations of interior-point methods
to self-dual cones and define the concept of self-scaled barrier. These barriers,
which exist only for self-dual cones, generalize some useful properties of the
logarithmic barrier for the positive orthant. The definitions from this section
have important algorithmic implications, one of them being that the search
directions used are computed from smaller linear systems than when the cone
is not self-dual and the barriers self-scaled.

Definition 4.4.1. A ν-logarithmically homogeneous self-concordant barrier f
for a cone K that satisfies

H(y)x ∈ intK

and
f?(H(y)x) = f(x)− 2f(y)− ν

for all y and x ∈ intK is a self-scaled barrier.

In particular it can be shown that for every ordered pair x, s ∈ K×K there
exists a scaling point, which is an element w ∈ intK such that H(w)x = s and
H(w)g(s) = g(x) [44, Theorem 3.2].

Self-concordant self-scaled barriers admit a stronger upper bound than self-
concordant functions. The former can only be bounded within the Dikin ellip-
soid. The latter can be bounded up to a constant of the distance to the boundary
of the cone. This measure of distance is defined as follows [44, Section 4]: For
a direction ∆x and a point x ∈ intK the function σx(∆x) is defined as

σx(∆x) =
1

sup{α | x− α∆x ∈ K}
.

That is, the reciprocal to the largest step length that keeps the line from x along
−∆x in the cone. When the largest step size is very small then σx(∆x) takes
very large values, and conversely when the step size is large then σx(∆x) takes
small values.

30 4. Interior point theory

With this measure of distance the bound, [44, Theorem 4.2] gives

f(x+α∆x) ≤ f(x)+αg(x)T∆x+
‖∆x‖2x

σx(−∆x)2
(−ασx(−∆x)− ln(1− ασx(−∆x)) .

Observe that for this case the upper bound tends to infinity as α → 1
σx(−∆x)

and not as α ‖∆x‖x → 1, which is the case for the self-concordant bound of
Theorem 4.1.1. This together with the inequality σx(−∆x) ≤ ‖∆x‖x implies
that the bound is valid in a larger set.

Chapter 5

Homogeneous primal-dual
interior-point algorithms for
general conic programming

In this chapter we describe the primal-dual potential reduction algorithms for
general convex programming with the homogeneous embedding and prove worst-
case iterations bounds. We also describe how Nesterov-Todd scaling points
are used to define algorithms with the same worst-case iteration bounds while
solving smaller linear systems at every iteration.

We introduce the concept of the barrier problem for the homogeneous em-
bedding and the idea of the central path. We show that because the central
path is the set of minimizers for the family of all barrier problems it can be
defined as a set of nonlinear equations. We use the special structure of the
self-dual problem to show that these nonlinear equations have a particularly
simple form. We introduce a measure of centrality: a function that is positive
on the feasible set and takes the value zero on the central path and prove some
basic facts about it. We also introduce the concept of a potential function: A
merit function that can be used to find the solution of a conic programming
problem, and will be essential for proving the worst-case iteration bounds for
the potential reduction algorithm.

The original variants of these algorithms were developed by Nesterov and
described in [40]. Versions of these algorithms using the homogeneous embed-
dings are also described by Nesterov and Ye [45] and by Strum et al. [33]. The
versions we describe here are variations on these algorithms.

This section deals with the homogeneous embeddings. Because the variables
τ and κ make the notation cumbersome, we use the following definitions: the
symbol z = (y, x, τ, s, θ) represents the concatenation of all variables, so a se-
quence of iterates can be succinctly written as {zk}. We redefine the symbol
x to represent the concatenation of the primal variables x = (x, τ), while the

31

32 5. Homogeneous algorithms for general conic programming

symbol s = (s, κ) represents the concatenation of the dual variables. With this
notation the linear constraints of the homogeneous embedding can be written
as

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 , (5.1)

where G is the skew symmetric matrix defined in (3.11).
We refer to the feasible set defined by (5.1) as L, so an iterate z is be linear

feasible iff z ∈ L. Whenever we write f(x) we mean the barrier of the cone for

the new definition of x: f(x) = f̂(x) − log(τ), where f̂ is the barrier for the

cone K. Similarly f?(s) = f̂?(s) − log(κ), where f̂? is the barrier for K?. We
override the symbol K to denote the new cone K × R+. We also override the
symbol K? to denote K? × R+ and the definition of ν to correspond with the
new definition of the barrier, ν + 1.

For future reference, the minimization problem for the homogeneous embed-
ding problem is

minimize µ0νθ

subject to G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν


x ∈ K, s ∈ K?.

(HSD)

5.1 The barrier problems and the central path

The barrier problem arises from replacing the conic constraints by the barrier
functions in order to define a linearly constrained convex optimization problem:

minimize
1

µ
µ0νθ + f(x) + f?(s)

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 .

(PDµ)

The barrier problem is parametrized by the barrier parameter µ > 0 and weighs
the relative importance of the barriers with respect to the objective. For each
value of µ a unique minimizer y(µ), x(µ), s(µ), θ(µ) exists and at the minimizer
θ(µ) = µ

µ0
holds. Because each point in the central path is feasible, and as

µ → 0, θ → 0 continuously, in the limit a solution with θ = 0, s ∈ K? and
x ∈ K is reached. Because the homogeneous embedding problem is self-dual,
the solution has objective value 0 and this limiting point is the solution for the
embedding problem.

Contrary to some sources in the literature we incorporate the barrier pa-
rameter into the linear objective and not into the barriers. This is consistent
with the treatment in [48, 43, 45] and simplifies the arguments about potential

5. Homogeneous algorithms for general conic programming 33

functions. Since we are interested in the solution of problems in the homoge-
neous embedding we present the particular instance of the barrier problem for
the homogeneous embedding only.

We begin by showing that for any µ > 0 the barrier problem is solvable.

Theorem 5.1.1. Problem (PDµ) is solvable.

Proof. The Lagrangian for (PDµ) is given by

L(y, x, θ, s, λy, λx, λθ) =
1

µ
µ0νθ+f(x)+f?(s)−

λyλx
λθ

T G
yx
θ

−
0
s
0

+

 0
0
µ0ν

 .

Since the Lagrangian is convex on the primal variables and tends to infinity as
they approach the boundaries of the cones, any minimizer is in the interior of
the cones. In that region the Lagrangian is differentiable and therefore it has a
minimizer (which we denote y?, x?, θ?, s?) iff the optimality equations

GT

−λy−λx
−λθ

+

 0
g(x?)
1
µµ0ν

 =

0
0
0

 ,

λx + g?(s?) = 0

(5.2)

hold. When the Lagrangian has a finite minimizer the barrier problem is solv-
able. Therefore all that remains to do is show that there is a feasible point for
(5.2), for then the Lagrangian has a finite minimizer.

Let y, x, θ, s be a primal feasible point, let ŝ = −g(1
µx) and let x̂ = −g?(1

µs).

From (PDµ) the relation

GT

− 1
µy

− 1
µx

− 1
µθ

+

 0
− 1
µs

1
µµ0ν

 =

0
0
0

 (5.3)

holds. From the properties of the gradients of conjugate pairs, g(x̂) = − 1
µs and

g?(ŝ) = − 1
µx, and therefore the relations

GT

− 1
µy

− 1
µx

− 1
µθ

+

 0
g(x̂)
1
µµ0ν

 =

0
0
0


λx =

1

µ
x = −g?(ŝ)

(5.4)

hold. Observe that here x̂ and ŝ take the role of x? and s? in (5.2) and 1
µy,

1
µx,

1
µθ

take the role of λy, λx, λθ. Therefore the point 1
µy,

1
µx,

1
µθ, x̂, ŝ is a feasible point

for (5.2).

34 5. Homogeneous algorithms for general conic programming

Lemma 5.1.2. For any µ > 0 the minimizer of (PDµ) is unique.

Proof. Since by definition f and f? are strictly convex, x(µ) and s(µ) are unique.
Lemma 3.4.2 implies that θ(µ) is also unique. Finally the uniqueness of y(µ)
follows from the first linear equation −AT y+drθ+ τc = 0 and the full row rank
assumption for A.

From the uniqueness of the minimizer for each value of µ we can define a
map µ→ z(µ) = (y(µ), x(µ), τ(µ), s(µ), κ(µ), θ(µ)). It is not hard to show that
the objective function in the barrier problem varies continuously with µ. From
this observation it is simple to show that the map µ→ z(µ) is continuous. We
can therefore interpret the set of all minimizers z(µ) as a path in the variable
space. This object is called the central path.

5.1.1 An alternative characterization of the central path

The central path is also the set of points z ∈ L that satisfy the nonlinear
equation s + µg(x) = 0. This alternative representation of the central path is
the subject of Theorem 5.1.4 for which we first show the following lemma.

Lemma 5.1.3. Let z? be a minimizer of (PDµ). Then the minimizer of

minimize µ0νθ + f(x) + f?(s)

G

yx
θ

−
0
s
0

 =

 0
0

− 1
µµ0ν

 (5.5)

is given by 1
µz

?.

Proof. It is simple to show that for any z ∈ L, the point 1
µz is feasible in (5.5).

Furthermore if ψ denotes the objective function of (PDµ), and ψ̂ the objective

function of (5.5), then ψ(z) = ψ̂(1
µz). For observe that

ψ(z) =
1

µ
µ0νθ + f(x) + f?(s) = µ0ν

θ

µ
+ f(

1

µ
x) + f?(

1

µ
s)− 2ν log(µ) = ψ̂(

1

µ
z).

This implies that if z? minimizes (PDµ) then 1
µz

? minimizes (5.5).

Theorem 5.1.4. The minimizer of (PDµ) is uniquely defined by the equations

µg(x) + s = 0 (5.6a)

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 . (5.6b)

5. Homogeneous algorithms for general conic programming 35

Proof. Since the problem (PDµ) is bounded and feasible, it is solvable and
therefore there exist Lagrange multipliers λy, λx, λθ for which the first-order
optimality conditions

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 , (5.7a)

GT

−λy−λx
−λθ

+

 0
g(x?)
1
µµ0ν

 =

0
0
0

 , (5.7b)

λx + g?(s) = 0 (5.7c)

hold. Using the skew symmetry of G and the properties of the gradients of
conjugate pairs of functions, and defining λs = −g(x), we can write (5.7) as

GT

−y−x
−θ

+

 0
g(λx)
µ0ν

 =

0
0
0

 ,

G

λyλx
λθ

−
 0
λs
0

 =

 0
0

− 1
µµ0ν

 ,

x+ g?(λs) = 0.

(5.8)

Equations (5.8) are the optimality conditions for the minimization problem (5.5)
of Lemma (5.1.3) and therefore λy, λx, λs, λθ solve (5.5). Using Lemma 5.1.3
we can conclude that if z? minimizes (PDµ) then 1

µz
? minimizes (5.5) and the

Lagrange multipliers of (5.7) are equal to 1
µz

?. Using (5.7c) we conclude that

x? = −µg?(s?), that s? = µg(x?), and that at the minimizer (5.6) holds.

To show the converse, assume that at z equations (5.6) hold; then (5.6a) can
be written as

GT

− 1
µy

− 1
µx

− 1
µθ

+

 0
g(x)
1
µµ0ν

 =

0
0
0

 ,

and (5.6b) as

1

µ
x+ g?(s) = 0.

Then, z together with λx = 1
µx, y = 1

µλy, θ = 1
µλθ satisfy (5.7) and therefore z

minimizes (PDµ).

36 5. Homogeneous algorithms for general conic programming

5.2 Potential reduction algorithms for conic pro-
gramming problems

Since the point x(µ), y(µ), s(µ) on the central path is the minimizer of

minimize
µ0

µ
νθ + f(x) + f?(s)

G

yx
θ

−
0

s
0

 =

 0
0
−µ0ν

 ,
(PDµ)

and this problem is convex with self-concordant objective, Newton’s method is
efficient at finding points close to the central path.

This suggests the following strategy: For a fixed µk use Newton’s method to
approximately minimize (PDµ) in order to find a point zk close to the central
path. Then, reduce µk to µk+1 and use Newton’s method starting from zk to
compute a new iterate zk+1 that approximately minimizes (PDµ), and so on.
This scheme forms a sequence that tracks the central path to the solution of the
conic programming problem.

The question of how to choose µ at each iteration remains. Potential reduc-

tion methods set µ = xT s
ρ at every iteration, where ρ > ν is a constant chosen

appropriately. At iteration k they solve for the Newton direction of the barrier

problem with µ =
xTk sk
ρ and choose a step size by doing a linesearch to reduce

a merit function (the potential function). Before we introduce the potential
function we argue why ρ > ν is necessary.

Lemma 5.2.1. For any µ > 0 the point on the central path satisfies µ = xT s
ν .

Proof. Since at the central path s + µg(x) = 0 and f is a ν-logarithmically
homogeneous barrier, claim (4.3.1) gives xT s = µxT g(x) = µν.

If the iterate is on the central path and µ =
xTk sk
ν is chosen, then the barrier

problem will be at its minimizer and the Newton direction will have length
zero. This would cause the method to stall. A choice of ρ > ν implies that the
barrier problem is never fully solved and that at each iteration the value of xT s
is reduced. This in turn implies that θ → 0. A choice of ρ < ν is contradictory,
for this choice would result in the Newton direction for a barrier problem with
a larger µ instead of a smaller one.

5.2.1 Newton direction for the barrier problem

The Newton direction for the barrier problem has the form(
∇2F (z) BT

B

)(
∆z
λz

)
=

(
−∇F (z)

0

)
, (5.9)

5. Homogeneous algorithms for general conic programming 37

where B is the matrix that encodes the linear equality constraints in (PDµ):

B =


A −b pr

−AT c dr −I
bT −cT gr −1
−pTr −dTr −gTr

 , (5.10)

and the function F (z) is the objective of the barrier problem, namely the self-
concordant convex function

F (z) =
µ0

µ
νθ + f(x) + f?(s).

For future reference it is useful to expand (5.9) into the following systems of
equations. The first 0

H(x)∆x
0

+GT

λ̄yλ̄x
λ̄θ

 =

 0
−g?(s)
−µ0

µ ν

 (5.11)

corresponds to the primal barrier, the second

H?(s)∆s− λ̄x = −g?(s) (5.12)

corresponds to the dual barrier, and the third

G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 (5.13)

enforces linear feasibility.

5.2.2 The potential function

Potential functions are a useful tool for analyzing conic programming algo-
rithms. With them it can be shown that a potential reduction primal-dual conic
programming algorithm achieves a precision of ε in O(

√
ν log(1/ε)) iterations.

This is the state of the art complexity bound for general conic programming.
The usefulness of potential functions is not limited to theoretical aspects;

potential reduction algorithms have proven to be robust and computationally
efficient. Their merit lies in the fact that potential functions define a very
principled way to choose a step length, so that the next iterate will achieve a
sufficient reduction in the complementarity while staying centered enough.

The potential function we use in this work was first presented for linear
programming by Ye [54] and then generalized to conic programming by Nesterov
[43]. For a more detailed explanation of potential reduction in the context of
general conic programming see [40].

We now introduce the potential function Ψ and the functional proximity
measure Ω, and we visit some of their properties and those of a modified Newton

38 5. Homogeneous algorithms for general conic programming

method as applied to the reduction of Ψ. This will lay the foundation for
the presentation of the standard computational complexity results on potential
reduction methods.

Define

Ψ(x, s) = ρ log(xT s) + f(x) + f?(s)− ν log(ν) + ν, (5.14)

where ρ > ν is a scalar, f(x) is the barrier for the primal cone, and f?(s) is the
conjugate barrier for the dual cone.

Observe that if zk ∈ L is a sequence that approaches a sub-optimal limit
on the boundary of the cones, the barrier term will tend to infinity and the
complementarity term ρ log(xT s) will be bounded below (otherwise the com-
plementarity tends to zero, contradicting the sub-optimality of the limit), and
therefore Ψ will tend to infinity. On the other hand if the iterate approaches
an optimal point, the term ρ log(xT s) will tend to −∞, dominating the effect
of the barriers, and Ψ will tend to −∞. Potential reduction algorithms work by
following Ψ to −∞ to find a solution to the problem.

The functional proximity measure Ω(x, s) : K ×K? → R defined by

Ω(x, s) = ν log(xT s) + f(x) + f?(s)− ν log(ν) + ν (5.15)

is a useful way to evaluate the distance from a point to the central path. The
function Ω is positive in the feasible set and Ω(x, s) = 0 iff the argument is on
the central path.

Lemma 5.2.2. The function Ω(x, s) ≥ 0 and Ω(x, s) = 0 iff s+µg(x) = 0 with

µ = xT s
ν .

Proof. Let µ = xT s
ν . From the definition of the conjugate function we have that

−f?
(
s

µ

)
= inf

x

{
xT s

µ
+ f(x)

}
≤ xT s

µ
+ f(x)

and then

0 ≤ f?(s
µ

) +
xT s

µ
+ f(x)

0 ≤ ν log(µ) + f?(s) + f(x) + ν

0 ≤ ν log(xT s) + f?(s) + f(x)− ν log(ν) + ν

0 ≤ Ω(x, s).

On the other hand if s+ µg(x) = 0 then

Ω(x, s) = Ω(x,−µg(x))

= ν log(µν) + f?(−µg(x)) + f(x)− ν log(ν) + ν

= ν log(µ) + ν log(ν)− ν log(µ)− f(x)− ν + f(x)− ν log(ν) + ν

= 0.

5. Homogeneous algorithms for general conic programming 39

For the converse, if Ω(x, s) = ν log(xT s) + f?(s) + f(x) − ν log(ν) + ν = 0
then the properties of ν-logarithmically homogeneous barriers imply −f?(sµ) =

f(x) + xT s
µ ≥ inf x̂

{
f(x̂) + x̂T s

µ

}
= f?

(
s
µ

)
so x̂ = x minimizes f(x̂) + x̂T s

µ ,

which in turn implies that g(x) + s
µ = 0.

Now we can establish some results about the function Ψ in (5.14).

Lemma 5.2.3. The function Ψ is unbounded below in the feasible set.

Proof. Using (5.14) and (5.15) write Ψ(x, s) = (ρ− ν) log(xT s) + Ω(x, s), there-
fore at the central path we then have Ψ(x(µ), s(µ)) = (ρ−ν) log(µν) and there-
fore Ψ→ −∞ as µ→ 0.

A converse result also holds because Ψ induces an upper bound on the com-
plementarity. Thus, reducing Ψ to −∞ implies that xT s will tend to zero.

Lemma 5.2.4. If Ψ(x, s) ≤ (ρ− ν) log(ε) for some feasible x, s then xT s ≤ ε.

Proof. Since Ψ(x, s) = (ρ− ν) log(xT s) + Ω(x, s), the bound (ρ− ν) log(xT s) ≤
Ψ(x, s) holds. Therefore Ψ(x, s) ≤ (ρ−ν) log(ε) implies that (ρ−ν) log(xT s) ≤
(ρ− ν) log(ε), which in turn implies xT s ≤ ε.

The following is a rephrasing of the previous result that is useful to analyze
the computational complexity of the potential reduction algorithms.

Lemma 5.2.5. Any algorithm that produces a sequence of feasible iterates
{xk, sk} such that Ψ(xk+1, sk+1) < Ψ(xk, sk)− δ for some δ > 0, will converge
to an ε accurate iterate in O

(
(ρ− ν) log(1

ε)
)

iterations.

Proof. Let x0, s0 be some starting iterate and denote Ψ0 = Ψ(x0, s0). Using the
bound (ρ− ν) log(xT s) ≤ (ρ− ν) log(xT s) + Ω(x, s) = Ψ(x, s), we get that

(ρ− ν) log(xTk sk) ≤ Ψ0 − δk,

which holds iff
Ψ(x0, s0)

δ
+
ρ− ν
δ

log(1/ε) ≤ k.

5.3 A primal-dual potential reduction algorithm

The following is a potential reduction algorithm with a backtracking linesearch.
The search direction for the potential reduction algorithm is the solution to the
system of linear equations 0

H(x)∆x
0

+GT

λyλx
λθ

 =

 0
− ρ
xT s

s− g(x)
0

 , (5.16)

40 5. Homogeneous algorithms for general conic programming

together with

H?(s)∆s− λx = − ρ

xT s
x− g?(s) (5.17)

and

G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 . (5.18)

The above equations can be written in the form(
∇2F (z) BT

B 0

)(
∆z
λz

)
=

(
−∇zΨ(z)

0

)
, (5.19)

where B is the matrix that encodes all the linear constraints:

B =


A −b pr

−AT c dr −I
bT −cT gr −1
−pTr −dTr −gTr

 . (5.20)

And the function F (z) is the objective of the barrier problem, namely the self-
concordant convex function

F (z) =
µ0

µ
νθ + f(x) + f?(s).

The matrix ∇2F (z) is the Hessian of F (z), and −∇wΨ is the negative gradient
of the potential function.

It is clear that this is not the Newton direction for the potential function Ψ,
for the Newton direction is the solution to(

∇2Ψ(z) BT

B 0

)(
∆z
λz

)
=

(
−∇zΨ(z)

0

)
.

However, it is easy to see that the potential reduction direction ∆z coincides
with the Newton direction for the barrier problem (PDµ) with barrier parameter
µ = xT s/ρ.

Lemma 5.3.1. The potential reduction direction is the Newton direction for

the barrier problem with parameter µ = xT s
ρ .

Proof. Let λy, λx, λθ be the Lagrange multipliers in (5.16) and (5.17). If we
choose the new Lagrange multipliersλ̄yλ̄x

λ̄θ

 =

λyλx
λθ

− ρ

xT s

yx
θ

 ,

then
H?(s)∆s− λ̄x = −g?(s),

5. Homogeneous algorithms for general conic programming 41

and

GT

λ̄yλ̄x
λ̄θ

 = GT

λyλx
λθ

+
ρ

xT s
G

yx
θ

 = GT

λyλx
λθ

+
ρ

xT s

 0
s
−µ0ν

 ,

where in the second equality we used the skew-symmetry of G and in the third
the feasibility of w. Taken together the above imply that 0

H(x)∆x
0

+GT

λ̄yλ̄x
λ̄θ

 =

 0
−g?(s)
− ρ
xT s

µ0ν

 ,

H?(s)∆s− λ̄x = −g?(s),
and

G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 ,

which define the Newton direction for the barrier problem (5.11)–(5.13).

Algorithm 1 Potential reduction algorithm for conic programming

Given w0, η ∈ (0, 1
2) and β ∈ (0, 1)

while xT s > ε do
Solve for the search direction ∆w

Set λ←
(
‖∆x‖2x + ‖∆s‖2s

) 1
2

while Ψ(wk + α∆w) > Ψ(wk) + ηαλ2 do . Backtracking Linesearch
α = βα

end while
wk+1 ← wk + α∆w
k ← k + 1

end while

We now show the worst-case iteration bounds for the primal-dual potential
reduction of Algorithm 1. We need to show that Ψ admits the upper bound

Ψ(z + α∆z) ≤ Ψ(z)− α(λ2 + λ)− log(1− αλ),

where in this case λ =
(
‖∆x‖2x + ‖∆s‖s

)1/2

, that the backtracking linesearch

selects a step size α ≥ β
1+λ , and that the decrease in Ψ(z) along ∆z is at least

ηβ λ2

1+λ . Finally we use the bounds derived in Chapter 4 to show that the choice

ρ = ν +
√
ν implies that λ is bounded below by λ > 0.5, which implies a

worst-case computational complexity bound for Algorithm 1 of O
(√
ν log(1

ε)
)
.

Claim 5.3.2. Along the potential reduction directions the function Ψ admits
the upper bound Ψ(x+ α∆x, s+ α∆s) ≤ Ψ(x, s)− α(λ2 + λ)− log(1− αλ).

42 5. Homogeneous algorithms for general conic programming

Proof. From (5.19), it is clear that ∆zT∇2F (z)∆z = −∆z∇Ψ(z), which implies

‖∆x‖2x + ‖∆s‖2s = − ρ

xT s

(
sT∆x+ xT∆s

)
− g(x)T∆x− g?(s)T∆s. (5.21)

Since

Ψ(x+ α∆x, s+ α∆s)−Ψ(x, s) = ρ log

(
xT s+ α

(
sT∆x+ xT∆s

)
xT s

)
+f(x+ α∆x)− f(x) + f?(s+ α∆s)− f?(s),

(5.22)

and f(x) + f?(s) is a self-concordant function, we have

Ψ(x+ α∆x, s+ α∆s)−Ψ(x, s) ≤ ρ log

(
xT s+ α

(
sT∆x+ xT∆s

)
xT s

)
+α

(
g(x)T∆x+ g?(s)T∆s

)
− αλ− log (1− αλ) .

(5.23)

Using the bound log(1 + x) ≤ x, and using equality (5.21) we get the bound

Ψ(x+ α∆x, s+ α∆s)−Ψ(x, s) ≤ ρ

xT s

(
α
(
sT∆x+ xT∆s

))
− ρ

xT s

(
α
(
sT∆x+ xT∆s

))
− αλ2 − αλ− log (1− αλ)

= −α(λ2 + λ)− log(1− αλ).

(5.24)

Claim 5.3.3. Each iteration of Algorithm 1 will reduce Ψ by at least ηβ λ2

1+λ .

Proof. It suffices to prove that the step size α = 1
1+λ is feasible and satisfies the

stopping condition. Then the smallest possible step size the algorithm will take
is βα and the result follows.

If α = 1
λ+1 then the distance ‖w − (w + α∆w)‖w satisfies

‖w − (w + α∆w)‖w =
(
‖x+ α∆x− x‖2x + ‖s+ α∆s− s‖2s

)1/2

= α
(
‖∆x‖2x + ‖∆s‖2s

)1/2

= αλ =
λ

1 + λ
< 1.

Hence any step size smaller than 1
1+λ keeps the next iterate in the Dikin ellipsoid

centered at x, s and is therefore feasible. From Lemma 5.3.2 the damped Newton
step achieves the decrease

Ψ(x+ α∆x, s+ α∆s)−Ψ(x, s) ≤ −α(λ2 + λ)− log(1− αλ) (5.25)

= −λ+ log(1 + λ) (5.26)

≤ − λ2

1 + λ
(5.27)

< −η λ2

1 + λ
= −αηλ2. (5.28)

5. Homogeneous algorithms for general conic programming 43

This implies that the backtracking linesearch will choose β
1+λ < α, and therefore

Ψ(x+ α∆x, s+ α∆s)−Ψ(x, s) ≤ − βηλ
2

1 + λ
.

To obtain the worst-case complexity bounds we show that for the choice
ρ = ν +

√
ν, at every iteration, λ is bounded below by a constant. Then from

Lemma 5.2.5 it follows that the worst-case complexity is O
(√
ν log

(
1
ε

))
.

Theorem 5.3.4. If ρ = ν+
√
ν then λ is bounded away from zero by a constant.

Proof. Assume that for some iterate λ < 0.5, for if not there is nothing to prove.
Denote by φ(x, s, θ) = 1

µµ0νθ + f(x) + f?(s) the objective function for the
barrier problem with parameter µ. Denote by x?, s? the minimizer of φ, i.e. the
point on the central path with parameter µ.

Since, by Lemma 5.2.5, the potential reduction direction is the Newton

step for the barrier problem with parameter µ = xT s
ρ , the bound φ(x, s, θ) −

φ(x?, s?, θ?) ≤ ω?(λ) holds. Therefore a lower bound for φ(x, s, θ)−φ(x?, s?, θ?)
implies a lower bound for ω?(λ).

We can evaluate φ(x, s, θ)− φ(x?, s?, θ?). Observe that at the optimum,

φ(w?) =
1

µ
µ0νθ

? + f(x?) + f?(s?)

= ν log(ν)− ν log(x?T s?)

= ν log(ν)− ν log(µν)

= ν log(ν)− ν log(xT s)− ν log(ν/ρ),

(5.29)

where the second equality follows from the definition of Ω and the fact that
x?, s? is on the central path. The third follows from x?T s? = µν for any point
on the central path, and the last from the choice µ = xT s/ρ.

The objective function at (x, s, θ) takes the value

φ(x, s, θ) =
1

µ
µ0νθ + f(x) + f?(s) = ρ+ f(x) + f?(s),

and therefore

φ(x, s, θ)− φ(x?, s?, θ?) = ρ+ f(x) + f?(s)− ν log(ν) + ν log(xT s) + ν log(ν/ρ)

= ρ+ f(x) + f?(s) + ν log(xT s)− ν log(ρ)

= ρ− ν + ν log(ν)− ν log(ρ) + Ω(x, s)
(5.30)

Since Ω > 0, we have ρ − ν + ν log(νρ) ≤ φ(w) − φ(w?) ≤ ω?(λ), and a

constant lower bound for ρ − ν + ν log(νρ) will imply a constant lower bound

for λ. If we let ρ = ν +
√
ν then ρ− ν + ν log(νρ) =

√
ν − ν log

(
1 + 1√

ν

)
. The

44 5. Homogeneous algorithms for general conic programming

function ν →
√
ν − ν log

(
1 + 1√

ν

)
is monotonically increasing, at ν = 1 takes

the value 0 < 1 − log(2), and as ν → ∞ approaches the value 0.5. Therefore
the choice ρ = ν +

√
ν implies that 0.3 < 1 − log(2) ≤ −λ − log(1 − λ); for

example if λ < 0.5 then −λ− log(1−λ) > −0.5− log(0.5) ≈ 0.19. And therefore
λ > 0.5.

5.4 Reducing the system size using the Nesterov-
Todd scaling point

One of the algorithmic advantages of symmetric cone problems over unsym-
metric cone programming problems stems from the existence of Nesterov-Todd
scaling points [44]. With these scaling points, search directions that are similar
to the potential reduction directions can be calculated from linear systems of
half the size.

Recall that for the potential reduction algorithm for general conic program-
ming, the search directions are defined as the solution to the equations(

∇2F (z) BT

B

)(
∆z
λ

)
=

(
−∇ψ(z)

0

)
,

where F is the objective function of the barrier problem, B encodes all the
linear constraints, and Ψ(z) is the potential function. Here F is interpreted as
a function of all the variables, in the order z = (y, x, θ, s), and the matrix ∇2F
is given by

∇2F (z) =


0

H(x)
0

H?(s)

 .

We will refer to these directions as the potential reduction directions.
Recall that the Nesterov-Todd scaling point for (x, s) satisfies the relations

H(w)x = s and H(w)g?(s) = g(x). Using the properties of conjugate barriers
we have that H?(−g(w)) = H−1(w) for any w ∈ intK. Therefore, if w is
the Nesterov-Todd scaling point for (x, s), then the point w? = −g(w) satisfies
H?(w?)s = x and H?(w?)g(x) = g?(s).

Denote by ∇2F̃ the Hessian of F evaluated at the point x = w, s = w?:

∇2F̃ =


0

H(w)
0

H?(w?)

 .

The symmetric potential reduction directions are the solution to(
∇2F̃ BT

B

)(
∆z
λ

)
=

(
−∇ψ(z)

0

)
, (5.31)

5. Homogeneous algorithms for general conic programming 45

where the system matrix differs from the potential reduction directions in the
point at which ∇2F is evaluated. Observe that these directions are descent
directions for the potential function, since ∆zT∇Ψ = −∆zT (∇2F̃)∆z ≤ 0
because ∇2F̃ is positive semidefinite.

We now show that these directions can be calculated from the smaller system

H(w)∆x+ ∆s = − ρ

xT s
s− g(x),

B∆z = 0.
(5.32)

Theorem 5.4.1. The solution ∆z to system (5.32) is identical to the ∆z com-
ponent of the solution to (5.31).

Proof. First observe that from H(w)∆x+∆s = −x
T s
ρ s−g(x) and the properties

of the Nesterov-Todd scaling point H−1(w)∆s + ∆z = − ρ
xT s

x − g?(s), and
H?(w?)∆s+ ∆z = − ρ

xT s
x− g?(s) hold.

Observe that the second equation of (5.32) is identical to the second equation
of (5.31). Therefore we need to show that there exists a λ such that ∇2F̃∆z +
BTλ = −∇Ψ. Write

B∆z = G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 ,

where G is the appropriate skew-symmetric matrix. Let

λ =

λyλx
λθ

 =

−∆y
−∆x
−∆θ

 ,

where ∆x,∆y are the components of ∆z; then

BTλ =

GT
−∆y
−∆x
−∆θ


∆x

 =

G
∆y

∆x
∆θ


∆x

 =


0

∆s
0

∆x

 .

Finally observe that

∇2F̃∆z +BTλ =


0

H(w)∆x+ ∆s
0

H?(w?)∆s+ ∆x

 =


0

− ρ
xT s

s+ g(x)
0

− ρ
xT s

x+ g?(s)

 = −∇Ψ(z).

Nesterov and Todd show that with these directions the potential function
can be reduced by a constant at every iteration and therefore the same compu-
tational complexity results hold. We do not prove all the elements but sketch
the proof from [44].

46 5. Homogeneous algorithms for general conic programming

Using the equality derived above, it is easy to see that

‖∆x‖2w + ‖∆s‖2H?(w?) = − ρ

xT s

(
sT∆x+ xT∆s

)
−∆xT g(x)−∆sT g?(s).

From the bounds for self-scaled barriers (4.4) we can derive the bound for the
change in the value of Ψ along ∆z:

Ψ(z + α∆z)−Ψ(z) = ρ log
sT∆x+ xT∆s

xT s
+ f(x+ α∆x) + f?(s+ α∆s)

≤ ρ

xT s

(
sT∆x+ xT∆s

)
+ α∆xT g(x) + ∆sT g?(s)

+
σx(w)2 ‖∆x‖2x

σ2
x(∆x)

(−ασx(∆x)− log (1− ασx(∆x)))

+
σ?s (w)2 ‖∆s‖2H?(s)

σ?2
s(∆s)

(−ασs(∆s)− log (1− ασ?s (∆s))) .

(5.33)

By letting σ̄ = max {σ?s (∆s), σx(∆x)}, denoting by γ2 = ‖∆x‖2w+‖∆s‖H?(w?),

and using the inequality σx(∆x) ≤ ‖∆x‖x ≤ σ ‖∆x‖w ≤ σγ, we see that σ̄ ≤ σγ,
which implies that

τ =
σ̄

σ2
≤ γ

σ
. (5.34)

Using the fact that for all 0 ≤ τ ≤ 1 the function −τ−log(1−τ)
τ2 is monotoni-

cally increasing and that σx(w) = σ?s (w), we can show that the following bound
holds [44, Theorem 8.2]:

Ψ(z + α∆z)−Ψ(z) ≤ −αγ2 +
σ2γ2

σ̄2
(−ασ̄ − log (1− ασ̄))

= −ασ2γ2

(
1

σ2
+

1

σ̄

)
− σ2γ2

σ̄2
log(1− ασ̄).

(5.35)

With α = 1
σ2+σ̄ this bound becomes

Ψ(z + α∆z)−Ψ(z) ≤ −γ
2

σ̄
+
σ2γ2

σ̄2
log
(

1 +
σ̄

σ2

)
= −γ

2

σ2

[
τ − log(1 + τ)

τ2

]
,

where τ = σ̄
σ2 ≤ γ

σ . Since the function in brackets is monotonically decreasing,
the upper bound for τ yields the final form of the bound:

Ψ(z + α∆z)−Ψ(z) ≤ −
(γ
σ
− log

(
1 +

γ

σ

))
.

The last element of the proof is to show that γ
σ ≥

√
3

2 , [44, theorem 5.2] and
therefore each step of the symmetric primal-dual potential reduction direction
can be reduced by a constant.

Chapter 6

Algorithms for the full
homogeneous embedding
with small linear systems

As we have seen, it is possible to design algorithms with excellent worst-case
complexity bounds for unsymmetric conic programming. These algorithms re-
quire the availability of a conjugate pair of barriers f for the primal cone K and
f? for the dual cone K? and with cheaply computable Hessians and gradients.
Furthermore they require the solution of linear systems that are twice as large
as those for symmetric conic programming algorithms.

In reality it is common to have an explicit barrier for the primal cone f while
not being able to compute the conjugate barrier f? [42]. Also, the large Newton
systems pose a real limitation for the linear solvers, as doubling the size of the
systems could increase the cost of the linear solves by up to a factor of eight.

In this section we analyze strategies for solving the homogeneous self-dual
embedding problem without explicit derivatives of the dual barrier. In the pro-
cess we define algorithms that solve smaller Newton systems that are comparable
in size to those of the more practical symmetric cone algorithms. However, we
will pay by having to maintain the iterates close to the central path and therefore
being forced to accept shorter step-lengths and higher iteration counts.

As in the previous sections the symbol x represents the concatenation of the
primal slacks with the variable τ , the symbol s represents the concatenation of
the dual slacks with the variable κ, the symbol f is redefined as f− log(τ) where
f is the barrier of the primal slacks, and the symbol f? is redefined to mean
f?−log(κ) where f? is the conjugate function to the original f . The symbols for
the primal and dual cones are redefined accordingly. The symbols g(x) and H(x)
denote the gradient and Hessian of the new f while the symbols g?(s) and H?(s)
denote the gradient and Hessian of the new f?. We let ‖v‖?x =

√
vTH−1(x)v

and ‖v‖x =
√
vTH(x)v. Whenever we need to use the norm induced by the

dual Hessian we use the symbol ‖v‖H?(s) =
√
vTH?(s)v. Finally we use the

47

48 6. Algorithms for the full homogeneous embedding

symbol z to mean the concatenation of all variables z = (y, x, s, θ), and redefine
ν to mean ν + 1, since now f is (ν + 1)-logarithmically homogeneous.

The algorithms described in this section are built on a variation of the cen-
tering direction

µH(x)∆x+ ∆s = −s− µg(x)

G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 ,
(6.1)

which differs from the direction used in symmetric cone programming in the
argument of the Hessian. This search direction does not incorporate information
about the dual barrier f? and therefore maintaining s feasible with respect to
the dual cone requires special care. In fact, we show that using the centrality
measure

η(x, s, µ) =
1

µ
‖s+ µg(x)‖H−1(x)

and maintaining

η(x, s, µ) < η̄ < 1 (6.2)

ensures feasibility of the dual slacks s. We also show that (6.2) ensures that di-
rection (6.1) reduces the distance to the central path quickly. This characteristic
is essential for the worst-case bounds of the algorithms we present.

Similar statements about the search direction (6.1) are shown in [51], where
the authors define a predictor-corrector algorithm, verify computationally its
efficiency, and show that a direction similar to (6.1) with the choice µ = xT s/ν
reduces the centrality quickly. We extend this result slightly and show that for
any µ that keeps (x, s) well centered the direction (6.1) reduces the centrality
quickly. We also show that the choice µ = xT s/ρ (where ρ > ν is chosen
judiciously) will maintain the centering condition (6.2) while guaranteeing a
step-size bounded away from zero.

Using these results we derive two algorithms. The first treats the barrier
parameter µ as an independent scalar (which is modified at every iteration
within certain bounds), and the second chooses a fixed scalar ρ > ν and sets
µ = xT s/ρ at every iteration. In both cases we show that the resulting algorithm
achieves a worst-case complexity of order O(

√
ν log 1

ε) iterations to achieve a
precision of ε.

This area is very well explored and similar results to the ones derived here,
are known. Both the statements here and the results from [51] can be derived
from the work on self-concordant monotone mappings presented by Nesterov
and Nemirovski in [43]. We prefer to use the theory of self-concordant func-
tions because the exposition will be clearer and we wish to avoid presenting the
monotone-mapping machinery. We should also mention that the primal-dual
potential reduction algorithm in [43] uses primal-dual search directions that are
very similar to the ones used in this section. However, since that algorithm
requires moving either the primal slacks or the dual variables, it is incompatible
with the homogeneous embedding, and therefore we believe our algorithms are

6. Algorithms for the full homogeneous embedding 49

a contribution.

We begin by recalling the following properties of the derivatives of conjugate
pairs of barriers, which hold for all strictly feasible x ∈ intK and s ∈ intK?:

−g(x) ∈ intK?, (6.3a)

−g(−g?(s)) = s, (6.3b)

H?(−g(x)) = H−1(x) (6.3c)

and the following properties of ν-logarithmically homogeneous self-concordant
barrier functions

g(γx) =
1

γ
g(x), (6.4a)

H(γx) =
1

γ2
H(x). (6.4b)

Because of the symmetry between conjugate function pairs, all these relations
hold when the roles of f and f? are reversed.

Since G is skew-symmetric we can show that

∆xT∆s = 0, (6.5a)

(x+ α∆x)T (s+ α∆s) = xT s+ α(sT∆x+ xT∆s). (6.5b)

By right-multiplying the linear constraints in (6.1) by
(
∆yT ,∆xT ,∆θ

)
and using

the skew symmetry of G we get the result. From the orthogonality of ∆x and
∆s we can show that if 1

µ ‖s+ µg(x)‖?x ≤ η then

‖∆x‖2x +
1

µ2
‖∆s‖2?x ≤ η

2,

‖∆x‖x ≤ η,
‖∆s‖?x ≤ η.

(6.6)

This is a simple consequence of the definition of the search directions. Since

1

µ
‖µH(x)∆x+ ∆s‖?x =

1

µ
‖s+ µg(x)‖?x ≤ η,

expanding the left-hand side implies that

‖∆x‖2x +
1

µ2
‖∆s‖2?x ≤ η

2 (6.7)

and the rest follow.

Lemma 6.0.2. Whenever 1
µ ‖s+ µg(x)‖?x < 1, s ∈ intK?.

Proof. Since −µg(x) ∈ intK? and f? is a self-concordant function, then the
Dikin ellipsoid centered at −µg(x) is contained in the dual cone. Therefore
‖s+ µg(x)‖H?(−µg(x)) < 1 implies s ∈ intK?, from (6.3c) and (6.4b). Because

from ‖s+ µg(x)‖H?(−µg(x)) = 1
µ ‖s+ µg(x)‖?x, the result follows.

50 6. Algorithms for the full homogeneous embedding

6.1 A substitute for the dual barrier and the
unsymmetric centering directions

In this section we motivate the search directions (6.1) by showing that they can
be used to efficiently solve the barrier problem

minimize ψ(x, s, θ) =
1

µ
µ0νθ + f(x) + f?(s)

subject to

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 .

(PB)

Let qx̄(s) be the quadratic approximation to f?(s) centered at −µg(x̄):

qx̄(s) =
1

2
‖s+ µg(x̄)‖2H?(−µg(x̄)) + g?(−µg(x̄))T (s+ µg(x̄)) + f?(−µg(x̄)).

If we substitute the f?(s) term in ψ (PB) we form a new primal-dual barrier
problem

minimize ψ̄(x, s, θ) =
1

µ
µ0νθ + f(x) + qx̄(s)

subject to

G

yx
θ

−
0
s
0

 =

 0
0
−µ0ν

 .

(6.8)

We will show that whenever x̄ = x the Newton direction for (6.8) can be cal-
culated by solving system (6.1), and because the objective function of (6.8) is
self-concordant the Newton directions will reduce ψ̄ significantly. We will also
show that when η is small, ψ̄ and ψ are similar and reducing ψ̄ implies reducing
ψ. We can conclude that the objective of the original barrier problem can be
reduced.

To show that direction (6.1) coincides with the Newton directions for (6.8),
observe from (6.4b), (6.3c), (6.4a), and (6.3b) that

qx̄(s) =
1

2µ2
‖s+ µg(x̄)‖2?x̄ −

1

µ
x̄T (s+ µg(x̄)) + f?(−µg(x̄)), (6.9)

∇sqx̄(s) =
1

µ2
H(x̄)−1(s+ µg(x̄))− 1

µ
x̄, (6.10)

∇2
sqx̄(s) =

1

µ2
H−1(x̄). (6.11)

Therefore the gradient and Hessian of qx̄(s) depend only on the primal barrier.

6. Algorithms for the full homogeneous embedding 51

Since the Newton system for (6.8) is the set of equations

H(x)∆x+GT

λyλx
λθ

 = −

 0
g(x)
1
µµ0ν

 (6.12a)

1

µ2
H−1(x)∆s− λs = −∇q(s) (6.12b)

G

∆y
∆x
∆θ

−
 0

∆s
0

 =

0
0
0

 , (6.12c)

it is clear that the solution to (6.1) satisfies (6.12c). To show that (6.1) solves
(6.12) we have to show that there exist Lagrange multipliers for which (6.12a)
and (6.12b) are satisfied.

Lemma 6.1.1. The solution to (6.1) together with the choice of Lagrange mul-
tipliers λy = 1

µ (−y −∆y), λx = 1
µ (−x−∆x), and λθ = 1

µ (−θ −∆θ) solves

(6.12).

Proof. Observe that the specified λ satisfies

GT

λyλx
λθ

 =
1

µ
G

y + ∆y
x+ ∆x
θ + ∆θ

 =

 0
s+∆s
µ

− 1
µµ0ν

 .

Therefore µH(x)∆x+ ∆s = −s−µg(x) implies that H(x)∆x+ s+∆s
µ = −g(x),

and (6.12a) is satisfied. As for (6.12b), multiply µH(x)∆x+ ∆s = −s− µg(x)
by 1

µ2H(x)−1 and add 1
µx to both sides of the equality to get (6.12b).

Since f? is a self-concordant function the error induced by a quadratic ap-
proximation is bounded by

|f?(s)− q(s)| ≤
1
µ3 ‖s+ µg(x)‖3?x

3(1− 1
µ ‖s+ µg(x)‖?x)

=
η3

3(1− η)
(6.13)

whenever η < 1 (see Theorem (4.1.3)). Therefore as η becomes small, qx̄(s)
approaches f?(s) and in particular on the central path (η = 0) they are identical.
Since we established that directions (6.1) are the Newton directions for (6.8) and
that whenever η is small both barrier problems are similar, we can expect that
these directions can be used to solve (PB). Before we state the main result of
this section we need to show the following.

Lemma 6.1.2. If η ≤ 1 then for all α < 1 we have 1
µ ‖s+ α∆s+ µg(x)‖?x < η.

52 6. Algorithms for the full homogeneous embedding

Proof. Observe that

‖s+ α∆s+ µg(x)‖2?x = ‖s+ µg(x)‖2?x
+ 2α∆sTH(x)−1(s+ µg(x))

+ α2 ‖∆s‖2?x
= ‖s+ µg(x)‖2?x

+ α(α− 2)
1

µ2
‖∆s‖2?x < η2,

(6.14)

where the second equality holds because ∆sTH−1(x)(s + µg(x)) = −‖∆s‖2?x.

We are in a position to make a precise statement about how directions (6.1)
reduce the primal-dual objective of (PB). We use the symbols ψ+ and ψ̄+ to
denote the value of ψ respectively ψ̄ when evaluated at the point (x+α∆x, s+
α∆s, θ + α∆θ).

Theorem 6.1.3. If η = 1
µ ‖s+ µg(x)‖?x ≤

1
2 then exact minimization of ψ

along directions (6.1) will reduce ψ by at least − 1
3η

2.

Proof. Because ψ̄ is self-concordant it admits the upper bound

ψ̄+ − ψ̄ ≤ ∇ψ∆z − αλ− log(1− αλ),

=
α

µ
µ0ν∆θ + αg(x)T∆x+ α∇qx̄(s)T∆s

− αλ− log(1− αλ),

where λ is the Newton decrement λ2 = ‖∆x‖2x+‖∆s‖2∇2q(s). From the definition

of the search directions the equality 1
µ2 ‖µH(x)∆x+ ∆s‖2?x = 1

µ2 ‖s+ µg(x)‖2?x =

η2 holds. Expanding the left-hand side and using ∆xT∆s = 0 and 1
µ ‖v‖?x =

‖v‖ 1
µ2
H−1(x) gives η2 = ‖∆x‖2x + 1

µ2 ‖∆s‖2?x = ‖∆x‖2x + ‖∆s‖2∇2q(s) = λ2, and

therefore η = λ.
Since the search directions are the Newton equations for problem (6.8), we

have η2 = ∆zT∇2ψ̄∆z = −∇ψ̄T∆z, and therefore

ψ̄+ − ψ̄ ≤ −α(η2 + η)− log(1− αη).

We now use this bound to derive a bound for the reduction achievable on ψ.

Using Lemma 6.1.2 and bound (6.13) we know that both |f?(s)−q(s)| ≤ η3

3(1−η)

and |f?(s+ α∆s)− q(s+ α∆s)| ≤ η3

3(1−η) hold. Therefore

ψ+ − ψ ≤ −α(η2 + η)− log(1− αη) +
2η3

3(1− η)
.

6. Algorithms for the full homogeneous embedding 53

Exact minimization will achieve a reduction at least as good as that achievable
by the damped Newton step α = 1

1+η , for which we have

ψ+ − ψ ≤ −η + log(1 + η) +
2η3

3(1− η)
≤ −η2

2(1− η)
+

2η3

3(1− η)
.

And since η = η ≤ 1
2 , it follows that ψ+ − ψ ≤ −η

2

3 .

We have shown that the search directions (6.1) are good descent directions
for the original primal-dual barrier problem (PB) because they are the Newton
directions for a similar optimization problem and when the centrality is small,
in particular for η ≤ 1

2 , a decrease of 1
3η

2 is guaranteed.

6.2 A short-step path-following algorithm for the
unsymmetric homogeneous self-dual formu-
lation

To build an algorithm out of directions (6.1) we need to define how the parameter
µ is updated and when. The algorithm we present here reduces µ at every
iteration as much as possible without violating the centrality condition. We show
that, when the centering condition (6.2) holds, a backtracking linesearch along
direction (6.1) can reduce the function η(x+α∆x, s+α∆s, µ) by a multiplicative
constant. Once this distance is reduced, µ is reduced as much as possible keeping
η(x+, s+, µ+) < η̄. We show that the reduction in µ is bounded above by some
multiplicative constant γ, namely µ+/µ ≤ γ, and in this way the algorithm
produces a sequence of iterates that maintain the centrality condition while
reducing the barrier parameter at a linear rate. Finally we show that γ is
bounded above in such a way that the number of iterations to reach µ ≤ ε is
O(
√
ν log 1

ε), and that because of the centrality condition, this implies xT s/ν ≤
2ε.

We start the analysis of Algorithm 2 by deriving an upper bound for
η(x+α∆x, s+α∆s, µ) as a function of α. To derive the result we need to bound
the size of the step direction, the change in the norm induced by the inverse
Hessian, and the error induced by approximating the gradient by a linearization.

Lemma 6.2.1. If f is a self-concordant nondegenerate function, then for any
x, y such that ‖y − x‖x < 1 the following inequality holds

‖v‖?y ≤
‖v‖?x

1− ‖y − x‖?x
. (6.15)

Proof. From Theorem [48, 2.2.1], if f is a nondegenerate self-concordant func-
tion then ∥∥H(y)−1H(x)

∥∥
H(x)

≤ 1

(1− ‖y − x‖x)
2 ,

54 6. Algorithms for the full homogeneous embedding

Algorithm 2 Unsymmetric primal dual path-following

Given a centrality parameter η̄ < 1
3 , a feasible z0 = (x0, y0, s0, θ0) for which

η(x0, s0, µ) ≤ 1
2 η̄

2 and a backtracking parameter 0 < β < 1.
while µ ≥ ε do

Solve for µ+ such that η(x, s, µ+) = η̄
µ← µ+

solve for the search directions ∆z = (∆y∆x,∆s,∆θ) by (6.1)
η ← η(x, s, µ)
α← 1 . Backtracking linesearch
while η(x+ α∆x, s+ α∆s, µ) > η + 1

9αη(η − 1) do
α← βα

end while
w ← w + α∆w

end while

where the matrix norm is the induced norm. Therefore we can derive the in-
equality

‖v‖2?y = vTH−1(y)v

= vTH(x)−1/2H(x)1/2H−1(y)H(x)H−1(x)H(x)1/2H(x)−1/2v

= vTH(x)−1/2H(x)1/2H−1(y)H(x)H−1/2(x)H(x)−1/2v

≤ ‖H(x)−1/2v‖22‖H(x)1/2H−1(y)H(x)H−1/2‖2
= ‖v‖2?x

∥∥H−1(y)H(x)
∥∥
H(x)

=
‖v‖2?x(

1− ‖y − x‖H(x)

)2 ,

(6.16)

as required.

Lemma 6.2.2. Let f be a self-concordant nondegenerate function and let x, y
be such that ‖y − x‖x < 1. Then

‖g(y)− g(x)−H(x)(y − x)‖?x ≤
r2

1− r
,

where r = ‖y − x‖x.

Proof. See Nesterov [42].

We are now in a position to upper bound the centrality as a function of the
step size.

Lemma 6.2.3. The function of α given by η(x+ α∆x, s+ α∆s, µ) admits the
upper bound

η(x+ α∆x, s+ α∆s, µ) ≤ (1− α)η

1− αη
+

α2η2

(1− αη)2
.

6. Algorithms for the full homogeneous embedding 55

Proof. Let x+ = x+ α∆s, s+ = s+ α∆s, r = ‖∆x‖x and η = η(x, s, µ). From
Lemma 6.2.1, we have

1

µ

∥∥s+ + µg(x+)
∥∥
?x+ ≤

1
µ ‖s

+ + µg(x+)‖?x
1− αr

.

Writing the gradient as g(x+) = g(x) + αH(x)∆x + er, where er is an error
term, and using the bound for the norm of er of Lemma 6.2.2 we get the bound

1

µ

∥∥s+ + µg(x+)
∥∥
?x
≤ 1

µ
‖s+ α∆s+ µg(x) + αµH(x)∆x‖?x +

α2r2

1− αr
.

Using the definition of the search directions yields the bound

1

µ

∥∥s+ + µg(x+)
∥∥
?x
≤ |1− α| 1

µ
‖s+ µg(x)‖?x +

α2r2

1− αr
,

and since r ≤ η,

η(x+, s+, µ) ≤ (1− α)η(x, s, µ)

1− αr
+

α2r2

(1− αr)2

≤ (1− α)η

1− αη
+

α2η2

(1− αη)2
.

(6.17)

Given this upper bound we can show that when the backtracking linesearch
terminates, the centrality measure η(x, s, µ) has been reduced by a multiplicative
constant. To show the worst-case complexity bound, the choice of backtracking
parameter β is not very important. In fact as long as 0 < β < 1 the resulting step
size will achieve η+ ≤ cη for some constant smaller than one. For simplicity we
choose β = 1

2 and show that the step size is bounded below by β
1+η ≤ α and that

the backtracking linesearch will terminate with η(x+ α∆x, s+ α∆s, µ) ≤ 35
36η.

Lemma 6.2.4. The backtracking linesearch of Algorithm 2 will terminate with
α ≥ β

1+η and

η(x+, s+, µ) ≤ 35

36
η.

Proof. The step size α = 1
1+η satisfies the linesearch termination criteria because

η(x+, s+, µ) ≤ (1− α)η

1− αη
+

α2η2

(1− αη)2
= 2η2 ≤ 2

3
η

56 6. Algorithms for the full homogeneous embedding

and η+ 1
9α(η(η−1)) = η

(
1 + η−1

9η+9

)
≥ 2

3η. Therefore the linesearch terminates

with α ≥ β
1+η and

η(x+, s+, µ) ≤ η +
1

9
α(η(η − 1)) ≤ η

(
1− β(1− η)

9(η + 1)

)
≤ 35

36
η. (6.18)

After updating the variables, the algorithm finds the smallest value for µ+

that satisfies η(x+, s+, µ+) = η̄. This operation is not very costly, for observe

that solving η(x, s, µ)2 = η̄2 is the same as solving for t such that t2 ‖s‖2?x −
2txT s+ν = η̄2, and setting µ = 1

t . We now establish that there exists a constant
γ̄ such that µ+ ≤ γ̄µ.

Lemma 6.2.5. If η(x, s, µ) ≤ η̇, where η̇ is some constant, then
‖s‖?x ≤ µ(η̇ +

√
ν).

Proof. Using the triangle rule and the properties of the ν-logarithmically ho-
mogeneous self-concordant barriers we get the bound

1

µ
‖s‖?x =

1

µ
‖s+ µg(x)− µg(x)‖?x ≤ η̄ + ‖g(x)‖?x = η̄ +

√
ν.

Lemma 6.2.6. If η(x, s, µ) ≤ η̇ then

η(x, s, γµ) ≤
(
η̇ +

(
1− γ
γ

)
(η̇ +

√
ν)

)
,

and if γ is chosen so that 1−γ
γ (η̇ +

√
ν) ≤ 1

35 η̇ then

η(x, s, µγ) ≤ 36

35
η̇.

Proof. If δ = 1−γ
µγ then 1

µ+ = 1
µ + δ. Write

η(x, s, µγ)2 =

∥∥∥∥ 1

µ
s+ δs+ g(x)

∥∥∥∥2

?x

= η(x, s, µ)2 + 2δsTH−1(x)

(
1

µ
s+ g(x)

)
+ δ2 ‖s‖2H−1(x)

≤ η(x, s, µ)2 + 2δ ‖s‖H−1(x) η(x, s, µ) + δ2 ‖s‖2H−1(x)

≤ η̇2 + 2
1− γ
γ

η̇(η̇ +
√
ν) +

(
1− γ
γ

)2

(η̇ +
√
ν)2

=

(
η̇ +

(
1− γ
γ

)
(η̇ +

√
ν)

)2

.

(6.19)

Using the choice of γ we get the second part of the lemma.

6. Algorithms for the full homogeneous embedding 57

After updating the iterate z, Algorithm 2 will have achieved η ≤ 35
36 η̄ there-

fore the updated µ+ will be smaller than µγ, where γ is as chosen in Lemma
6.2.6.

To derive the worst-case complexity bound observe that at each iteration
the algorithm maintains the centrality condition (6.2) while reducing the bar-
rier parameter to µk ≤ µ0γ

k. The algorithm stops (at the latest) when k is
large enough for µ0γ

k ≤ ε to hold. This is satisfied for all k ≥ N , where

N =

(
log

1

γ

)−1(
log

1

ε
+ log µ0

)
.

Using the bound log 1/γ ≥ 1 − γ and since 1
1−γ = 35

η̄

√
ν + 36 we can conclude

that if

k ≥
(

35

η̄

√
ν + 36

)(
log

1

ε
+ log µ0

)
,

then µ ≤ ε and therefore the algorithm terminates in O
(√
ν log

(
1
ε

))
iterations.

6.3 Moving the barrier parameter continuously

In this section we show that the barrier parameter can be set to µ = xT s
ρ for

some ρ > ν. The algorithm moves the iterates along the direction (6.1) and
chooses a step size that satisfies the centrality condition

η

(
x+, s+,

x+T s+

ρ

)
≤ η̄.

We show that a step size of α = 1
1+η is acceptable, and that for a correct choice

of ρ such an algorithm achieves µ ≤ ε in O
(√
ν log 1

ε

)
iterations. To remove

some of the guesswork we set ρ = ν + p
√
ν for some positive scalar p. And to

simplify notation in this section we use the symbols µ = xT s
ρ and µ+ = x+T s+

ρ .

We show that condition (6.2) implies the restriction p ≤ η ≤ η̄. This means
that p acts as a lower bound for the centrality η the algorithm can achieve.

Lemma 6.3.1. If η(x, s, µ) ≤ η̄ then p ≤ η.

58 6. Algorithms for the full homogeneous embedding

Algorithm 3 Unsymmetric primal dual potential reduction

Given a centrality parameter η̄ < 1
5 , a feasible z0 = (x0, y0, s0, θ0) for which

η(x0, s0, µ) ≤ η̄, a parameter ρ, and a backtracking parameter 0 < β < 1.
while µ ≥ ε do

solve for the search directions ∆z = (∆y∆x,∆s,∆θ) by (6.1)
α← 1 . Backtracking linesearch
µ+ ← (x+ α∆x)T (s+ α∆s)/ρ
while η(x+ α∆x, s+ α∆s, µ+) > η̄ do

α← βα
µ+ ← (x+ α∆x)T (s+ α∆s)/ρ

end while
w ← w + α∆w
µ← µ+

end while

Proof. Observe that if β = xT s/ν and if we choose δ so µ = β + δ then

η(x, s, µ)2 =
1

(β + δ)2
‖s+ (β + δ)g(x)‖2?x

=
1

(β + δ)2
‖s+ βg(x)‖2?x

−2δxT (s+ βg(x))

(β + δ)2

+
1

(β + δ)2
δ2ν

=
1

(β + δ)2
‖s+ βg(x)‖2?x +

1

(β + δ)2
δ2ν

(6.20)

because xT (s + βg(x)) = 0. Therefore if η(x, s, µ) ≤ η̄, then 1
(β+δ)2 δ

2ν ≤ η̄2.

From δ + β = δ + xT s
ν = xT s

ρ we get δ = ν−ρ
ρν x

T s and therefore

1

(β + δ)2
δ2ν =

(
ρ

xT s

ν − ρ
ρν

xT s

)2

ν =

(
ν − ρ
ν

)2

ν = p2.

This means that the constraint 1
(β+δ)2 δ

2ν ≤ η̄ implies p ≤ η̄.

We now prove the equality

xT∆s+ sT∆x = −µ ‖∆x‖2?x − pµ
√
ν, (6.21)

which is used in the following lemma. Since

∆xT (µH(x)∆x+ ∆s) = −∆xT (s+ µg(x)),

6. Algorithms for the full homogeneous embedding 59

we have

µ ‖∆x‖2?x + ∆xT s+ ∆sTx = −µ∆xT g(x) + ∆sTx

= xT (µH(x)∆x+ ∆s)

= xT (−s− µg(x))

= µ(ν − ρ),

and (6.21) follows.

Lemma 6.3.2. The ratio µ+

µ admits the bounds

1− αη
2 + p

√
ν

ρ
≤ µ+

µ
≤ 1− αp

√
ν

ρ
.

Proof. Using (6.5b) we have µ+ = µ+ α
ρ

(
xT∆s+ sT∆x

)
, and from the defini-

tion of ρ = ν + p
√
ν we can derive the bounds

µ+

µ
= 1− α

‖∆x‖2x + p
√
ν

ρ
≥ 1− αη

2 + p
√
ν

ρ
, (6.22)

where we used (6.6) and (6.21).

In Lemma 6.2.3 we established the upper bound

η(x+, s+, µ) ≤ (1− α)η

1− αη
+

α2η2

(1− αη)2
.

Therefore for the step size α = 1
1+η we have η(x+, s+, µ) ≤ 2η2. Using the

first part of Lemma 6.2.6 with η̇ = 2η2 we can show that η(x+, s+, µ+) ≤
2η2 + 1−γ

γ (2η2 +
√
ν), where γ = µ+/µ. And from Lemma 6.3.2 and the choice

α = 1
1+η we have

1− γ
γ
≤ η2 + p

√
ν

ρ(η + 1)− η2 − p
√
ν
≤ η2 + p

√
ν

ν
.

Therefore, whenever ν ≥ 4 we have

η(x+, s+, µ+) ≤ 2η2 +
η2 + p

√
ν

ν
(2η2 +

√
ν)

≤ 2η2 + η4 + pη2 + p,

(6.23)

and with the choices η̄ ≤ 1
5 and p ≤ 1

2 η̄, the inequality η(x+, s+, µ+) ≤ η̄
holds. This proves that a step size of α ≤ 1

1+η is always admissible. Therefore a

backtracking linesearch would terminate with a step size satisfying 1
4 ≤

β
1+η ≤ α.

60 6. Algorithms for the full homogeneous embedding

Using the bound from (6.3.2) we have µ+/µ ≤ 1− p
√
ν

4ρ . Therefore Algorithm

3 will reduce µ at least as fast as µ ≤ (1− p
√
ν

4ρ)kµ0, which in turn implies that

for k ≥
(

4ρ
p
√
ν

) (
log 1

ε − logµ0

)
≥ log 1

ε−log µ0

log
(

1− p
√
ν

4ρ

) it achieves the precision µ ≤ ε.

Finally, since 4ρ
p
√
ν

= 4
p

√
ν + 4, we conclude that the algorithm terminates in

order

k ≥
(

4

p

√
ν + 4

)(
log

1

ε
− logµ0

)
= O

(√
ν log

1

ε

)
iterations.

Chapter 7

Linearly infeasible
algorithms and the
simplified homogeneous
embedding

In this chapter we analyze algorithms for unsymmetric conic optimization with
three changes relative to those of chapter 6. The first change is that these
algorithms use the simplified homogeneous embedding. The second is that we
use either the centering direction or the affine scaling direction. The final change
is that we measure the distance to the central path with the functional centrality
measure Ω(x, s) instead of 1

µ ‖s+ µg(x)‖?x. These modifications bring us closer
to the implementation of the solver that we describe in the next chapter.

We establish some notation to be consistent with the simplified homogeneous
embedding, see section 3.4.3 for more details. The simplified homogeneous em-
bedding eliminates the variable θ; therefore we redefine G with one less row and
column and we let:

G =

 A −b
−AT c
bT −cT

 . (7.1)

As in the previous section the variables τ and κ are part of the vectors x and s.
For the rest of this section we use the symbol µ to mean the complementarity
measure µ = xT s/ν.

61

62 7. Linearly infeasible homogeneous algorithms

Recall that we are interested in solving the feasibility problem

minimize 0

subject to

G

(
y
x

)
−
(

0
s

)
=

(
0
0

)
x ∈ K, s ∈ K?,

(sHSD)

for which we are given an initial point (x0, s0, y0), with x0 ∈ intK and s0 ∈
intK?. The residuals for the linear equality constraints are(

rp
rd

)
= −G

(
y0

x0

)
+

(
0
s0

)
,

and the central path is the solution of the nonlinear equations

s+ µg(x) = 0, (7.2a)

G

(
y
x

)
−
(

0
s

)
= −µ

(
rp
rd

)
. (7.2b)

The affine scaling direction (∆x,∆y,∆s) [51, 8] is derived by assuming the
present iterates are on the central path and linearizing the equations (7.2):

µH(x)∆x+ ∆s = −s, (7.3a)

G

(
∆y
∆x

)
−
(

0
∆s

)
=

(
rp
rd

)
. (7.3b)

The centering direction (∆x,∆y,∆s) is defined as

µH(x)∆x+ ∆s = −s− µg(x), (7.4a)

G

(
∆y
∆x

)
−
(

0
∆s

)
=

(
0
0

)
. (7.4b)

Some of the most efficient interior-point symmetric conic programming algo-
rithms [36, 7, 52, 4] use search directions that are a linear combination of (the
analogous) affine and centering directions. We use directions satisfying

µH(x)∆x+ ∆s = −s− σµg(x) (7.5a)

G

(
∆y
∆x

)
−
(

0
∆s

)
= (1− σ)

(
rp
rd

)
, (7.5b)

where 0 < σ < 1 is a scalar that determines the linear combination between the
directions.

We now establish some notation that will be used for the bounds that

follow. Let λ =
(
‖∆x‖2x + ‖∆s‖2?x

)1/2

, ησ = 1
µ ‖s+ σµg(x)‖?x, and η =

1
µ ‖s+ µg(x)‖?x. The following relates the two scalars η and ησ.

7. Linearly infeasible homogeneous algorithms 63

Claim 7.0.3. The equality η2
σ = η2 + (1− σ)2ν holds.

Proof.

η2
σ =

1

µ
‖s+ σµg(x)− (1− σ)µg(x)‖2?x

=
1

µ
‖s+ µg(x)‖2?x − 2

1

µ
xT (s+ µg(x)) + (1− σ)2ν

= η2 + (1− σ)2ν,

(7.6)

where we used xT s+ µxT g(x) = 0.

The relationship ∆xT∆s = 0 that held for the homogeneous embedding does
not hold for the simplified case. However, the following equality will allow us
to derive some useful bounds.

Claim 7.0.4.
∆xT∆s = −(1− σ)∆xT (s+ µg(x)).

Proof.

(x+ ∆x)T (s+ ∆s) = σ

(
y + ∆y
x+ ∆x

)T (
p
d

)
(7.7)

= σ

(
xT s+ ∆xT s+

(
y
x

)T
G

(
∆y
∆x

))
(7.8)

= σ
(
xT s+ ∆xT s+ xT∆s+ (1− σ)xT s

)
(7.9)

∆xT∆s+ (1− σ)
(
xT∆s+ sT∆x+ xT s

)
= σ(1− σ)xT s

From (7.5b) we have −µg(x)T∆x+ xT∆s = −(1− σ)xT s, and therefore

∆xT∆s+ (1− σ)
(
σxT s+ µg(x)T∆x+ sT∆x

)
= σ(1− σ)xT s

=⇒ ∆xT∆s = −(1− σ)∆xT (s+ µg(x))

Claim 7.0.5. The following bounds hold:

‖∆x‖x ≤ η(1− σ) +
√
η2 + (1− σ)2(η2 + ν), (7.10)

1

µ
‖∆s‖?x ≤ η(1− σ) +

√
η2 + (1− σ)2(η2 + ν), (7.11)∣∣∣∣∆xT∆s

µ

∣∣∣∣ ≤ η2(1− σ)2 + (1− σ)η
√
η2 + (1− σ)2(η2 + ν), (7.12)

λ ≤ (1− σ)η +
√

(1− σ)2η2 + η2 + (1− σ)2ν.

≤ η +
√

2η2 + (1− σ)2ν.

64 7. Linearly infeasible homogeneous algorithms

Proof. We have λ2 + 2 1
µ∆xT∆s = ‖∆x‖2x + 2 1

µ∆xT∆s+ 1
µ2 ‖∆s‖2?x = η2 + (1−

σ)2ν and therefore

‖∆x‖2x ≤ η
2 + (1− σ)2ν + 2 ‖∆x‖x (1− σ)η, (7.13)

1

µ2
‖∆s‖2?x ≤ η

2 + (1− σ)2ν + 2 ‖∆x‖x (1− σ)η. (7.14)

By solving the quadratic equation on ‖∆x‖x we get bounds (7.10) and (7.11).
From Claim 7.0.3 we get 1

µ |∆x
T∆s| ≤ (1−σ) ‖∆x‖x η, which implies the bound

(7.12). Finally, λ2 = ‖∆x‖2x + 1
µ2 ‖∆s‖2?x and ‖∆x‖x ≤ λ give

λ2 = η2 + (1− σ)2ν − 2
∆xT∆s

µ

= η2 + (1− σ)2ν + (1− σ)
2

µ
∆xT (s+ µg(x))

≤ η2 + (1− σ)2ν + 2(1− σ)λη,

(7.15)

which implies the bound

λ ≤ (1− σ)η +
√

(1− σ)2η2 + η2 + (1− σ)2ν

≤ η +
√

2η2 + (1− σ)2ν.

Now, we recall the definitions for the centrality measures

Ω(x, s) = ν log(xT s) + f(x) + f?(s)− ν log(ν) + ν, (7.16)

η(x, s) =
1

µ
‖s+ µg(x)‖?x , (7.17)

and establish some consistency between them.

Recalling that here µ = xT s
ν , we show that the value of Ω induces an upper

bound for the centrality measure η(x, s) and that whenever η < 1 then η induces
an upper bound on Ω.

Theorem 7.0.6. The centrality measures (7.16) and (7.17) satisfy

η − log(1 + η) ≤ Ω

and whenever η < 1
Ω ≤ −η − log(1− η).

Proof. By definition, the conjugate function f?(s) = − inf
{
f(x) + xT s

}
. There-

fore −f?(s/µ) = inf
{
f(x) + xT s

µ

}
. If h(x) = f(x)+ xT s

µ and h? is the minimizer

of h, then −f?(s/µ) = h?.

7. Linearly infeasible homogeneous algorithms 65

The Newton step for h(x) is ∆x = −∇2h(x)∇h(x) = −H(x)−1
(
g(x) + 1

µs
)

and the Newton decrement η = ‖∆x‖x = 1
µ ‖s+ µg(x)‖?x. Since h is self-

concordant we have the bound

η − log(1 + η) ≤ h(x)− h?

and for λ < 1 the bound

h(x)− h? ≤ −η − log(1− η).

Finally observe that

h(x)−h? = f(x)+
xT s

µ
+f?(s/µ) = ν log(xT s)+f(x)+f?(s)−ν log(ν)+ν = Ω.

7.0.1 A predictor-corrector algorithm for the simplified
homogeneous embedding and the functional prox-
imity measure

In this section we show that an algorithm that alternates between prediction
(σ = 0) and correction (σ = 1) steps can maintain a functional proximity
measure Ω below some threshold Ω̄ and take prediction steps of order 1√

ν
. We

choose the threshold Ω ≤ 1
4 − log(1 + 1

4), which will imply η ≤ 1
4 . We establish

a second threshold ¯̄Ω = − 1
6 − log(1 − 1

6), which implies 1
6 ≤ η. Whenever Ω is

in the range ¯̄Ω ≤ Ω ≤ Ω̄ we have 1
6 ≤ η ≤ 1

4 and in that case the algorithm

will take a correction step. After each correction step and whenever Ω ≤ ¯̄Ω the
algorithm will take a prediction step until Ω = Ω̄.

Claim 7.0.7. The following bound holds:

g(x)T∆x+∇q(s)T∆s ≤ − 1

µ
(xT∆s+ sT∆x) + (1− σ)

√
νησ − η2

σ.

Proof. From µH(x)∆x + ∆s = −s− σµg(x) = −s− µg(x) + (1− σ)µg(x), we
get

g(x)T∆x = − 1

µ
sT∆x+ (1− σ)g(x)T∆x− ‖∆x‖2x −

1

µ
∆xT∆s,

and from

∇q(s) =
1

µ2
H(x)−1(s+ µg(x))− 1

µ
x

=
1

µ2
H(x)−1(s+ σµg(x))− 1

µ
x− (1− σ)

1

µ
x

= − 1

µ
∆x− 1

µ2
H(x)−1∆s− 1

µ
x− (1− σ)

1

µ
x

66 7. Linearly infeasible homogeneous algorithms

we get the equality

∇q(s)T∆s = − 1

µ
∆xT∆s− 1

µ2
‖∆s‖?x −

1

µ
xT∆s− (1− σ)

1

µ
xT∆s.

Thus

g(x)T∆x+∇q(s)T∆s = − 1

µ
(xT∆s+ sT∆x)− (1− σ)

1

µ
xT (µH(x)∆x+ ∆s)

− 1

µ2
‖µH(x)∆x+ ∆s‖2?x

We now derive some bounds for the change in the functional centrality mea-

sure Ω along the combined search direction. Let β =
(
‖∆x‖2x + ‖∆s‖2H?(s)

)1/2

.

Since f(x) + f?(s) is self-concordant, the following bound holds:

Ω+ − Ω ≤ν log

(
(x+ α∆x)T (s+ α∆s)

xT s

)
+ g(x)T∆x+ g?(s)T∆s

− αβ − log(1− αβ).

We must remove the dependency on the derivatives of f?. Therefore we
bound the norm ‖∆s‖H?(x) in terms of the centrality measure η, and relate

g?(s) to ∇qx̄. Beginning with the norm of ∆s we use the definition of self-
concordant functions to get

‖∆s‖H?(s) ≤
‖∆s‖H?(−µg(x))

1− ‖s+ µg(x)‖H?(−µg(x))

≤
1
µ ‖∆s‖?x

1− 1
µ ‖s+ µg(x)‖?x

≤
1
µ ‖∆s‖?x

1− η
.

(7.18)

To simplify the resulting bounds, we bound ‖∆x‖x ≤
‖∆x‖x

1−η , and from

β2 = ‖∆x‖2x + ‖∆s‖2H?(s) ≤
‖∆x‖2x + 1

µ ‖∆s‖
2
?x

(1− η)2
=

λ2

(1− η)2
(7.19)

we conclude that β = λ
1−η .

To relate g?(s) to ∇qx̄(s) we can write

g?(s) = g?(−µg(x)) +H?(−µg(x))(s+ µg(x)) + eg,

where eg is some error vector. Since

g?(−µg(x))+H?(−µg(x))(s+µg(x)) = − 1

µ
x+

1

µ2
H−1(x)(s+µg(x)) = ∇qx̄(s),

7. Linearly infeasible homogeneous algorithms 67

we get that g?(s) = ∇qx̄ + eg.

It is now easy to show the following sequence of bounds:

Ω+ − Ω ≤ ν log

(
(x+ α∆x)T (s+ α∆s)

xT s

)
+ g(x)T∆x+ g?(s)T∆s

− αβ − log(1− αβ)

≤ ν log

(
(x+ α∆x)T (s+ α∆s)

xT s

)
+ g(x)T∆x+∇qx̄(s)T∆s+ eTg ∆s

− α λ

1− η
− log(1− α λ

1− η
)

≤ α2

µ
∆xT∆s+ αησ((1− σ)

√
ν − ησ)

+ α
1

µ
‖∆s‖?x µ ‖er‖x

− α λ

1− η
− log(1− α λ

1− η
).

(7.20)

We have explicit bounds for the norm of eg. Recall that from (6.2.2) we
have ‖g(y)− g(x)−H(x)(y − x)‖?x ≤ r2/(1 − r), where r = ‖y − x‖x. This
translates to

‖g?(s)− g?(−µg(x))−H?(−µg(x))(s+ µg(x))‖(H?(−µg(x)))−1 ≤ r2/(1− r),

where r = ‖s+ µg(x)‖H?(−µg(x)) = 1
µ ‖s+ µg(x)‖?x = η. Since H?(−µg(x)) =

1
µ2H

−1(x), we have

µ ‖g?(s)− g?(−µg(x))−H?(−µg(x))(s+ µg(x))‖x ≤ η
2/(1− η)

and therefore µ ‖eg‖x ≤
η2

1−η . It then follows that

α
1

µ
‖∆s‖?x µ ‖er‖x ≤

η2

1− η

(
η(1− σ) +

√
η2 + (1− σ)2(η2 + ν)

)
.

We can specialize these bounds for the two extremes σ = 1 and σ = 0. For
the centering direction we have ∆xT∆s = 0 and λ = η. We also have that
1
µ ‖∆s‖?x ≤ η, and the bound therefore becomes

Ω+ − Ω ≤− αη2 − α η

1− η
− log(1− α η

1− η
) + α

η3

1− η

≤− αη2 +
α2
(

η
1−η

)2

2(1− α η
1−η)

+ α
η3

1− η
.

(7.21)

68 7. Linearly infeasible homogeneous algorithms

For the affine direction σ = 0, we have λ ≤ η +
√

2η2 + ν,
∣∣∣∆xT∆s

µ

∣∣∣ ≤
η2 + η

√
2η2 + ν, and since

√
ν − ησ < 0 we get the bound

Ω+ − Ω ≤α2
(
η2 + η

√
2η2 + ν

)
− αη +

√
2η2 + ν

1− η
− log

(
1− αη +

√
2η2 + ν

1− η

)

+ α
η2

1− η

(
η +

√
2η2 + ν

)
.

(7.22)

Correction phase

Since at all times η ≤ 1
4 and for the correction stage 1

6 ≤ η, by assuming α ≤ 1
it is easy to show that

Ω+ − Ω ≤− 2

3
αη2 + α2 1

12
(7.23)

≤− α 1

54
+ α2 1

12
. (7.24)

Therefore we can always reduce the value of Ω by a constant. For example, for
a step size α = 6

52 then Ω can be reduced by −0.001.

The prediction phase

After a correction step, the functional centrality Ω is at least a constant C below
the upper threshold Ω̄. We now use the bound (7.22) to show that in this case
we can take a step that is bounded below by a multiple of 1√

ν
. Because (7.22) is

somewhat involved, it is useful to define some notation. Let γ = η+
√

2η2 + ν.
Then recalling that η ≤ 1

4 it is easy to show that

Ω+ − Ω ≤ α2ηγ +
(α γ

1−η)2

2(1− α γ
1−η)

+ α
γ

12
. (7.25)

If α ≤ 1−η
2γ then

Ω+ − Ω ≤ αγ + α
γ

1− η
+ α

γ

12
(7.26)

≤ α19

12
γ (7.27)

Therefore if Ω ≤ Ω̄−C, a step of size α = min{ 1−η
2γ ,

12C
19 }

1
γ will maintain Ω ≤ Ω̄,

and since γ = η +
√

2η2 + ν we have the result. To conclude, we have shown
that a predictor-corrector algorithm can be constructed that uses the functional
centrality measure and is able to take prediction steps of order 1√

ν
.

Chapter 8

Conjugate barriers for the
exponential cone

In this chapter we define a conjugate pair of barriers for the exponential cone
and its dual. Here the function f(x, y, z) is the barrier for the exponential cone
defined in [12]:

f(x, y, z) = − log
(
z log

(y
z

)
− x
)
− log(y)− log(z),

and f?(u, v, w) is the conjugate function:

f?(u, v, w) = −2 log(−u)− log(v)− log

(
(1− ω̄)2

ω̄

)
− 3,

where ω̄ = ω(2− w
u − log(−u) + log(v)) and ω is the Wright Omega function.

8.1 The Wright Omega function

The Wright Omega function [13] denoted ω(β) : R → R+ is defined as the
unique solution to the equation

ω(β) + log(ω(β)) = β. (8.1)

The function ω(β) is continuous, defined over all the reals and takes positive
values in all its domain. Trivially ω(1) = 1, when β → −∞ then ω(β)→ 0, and
as β →∞, ω →∞.

Differentiating (8.1) yields ω′(β) + ω′(β)
ω(β) = 1 and therefore

ω′(β) =
ω(β)

1 + ω(β)
. (8.2)

Differentiating again yields the expression for ω′′(β) = ω(β)
(1+ω(β))3 . We conclude

that ω(β) is monotonically increasing and convex.

69

70 8. Conjugate barriers for the exponential cone

8.2 The conjugate function

In this section we prove that f and f? are conjugate. We start by the following
lemma, which shows that the gradient of f is invertible and we can calculate its
inverse.

Lemma 8.2.1. The mapping

g̃(u, v, w) = −


3−wu−2ω̄

u(1−ω̄)
−ω̄

v(1−ω̄)
1

u(1−ω̄)

 , (8.3)

with ω̄ = ω
(
2− w

u − log(−u)− log(v)
)

is such that −g(−g̃(u, v, w)) = (u, v, w)T .

Proof. Let g be the gradient of f . It is easy to see that

−g(x, y, z) =

 1
r

1
y −

z
yr

1
z −

`−1
r


where ` = log y

z and r = x− z`.
Substituting x = −g̃1, y = −g̃2 and z = −g̃3 in the definition of ` and r

yields

` = log(
−u
v

) + log(ω̄) (8.4)

r =
3− w

u − 2ω̄

u(1− ω̄)
−

log(−uv) + log(ω̄)

u(1− ω̄)
(8.5)

=
3− w

u − 2ω̄ − log(−uv)− log(ω̄)

u(1− ω̄)
=

1

u
, (8.6)

where for the last equality we used that ω̄+ log(ω̄) = 2− w
u − log(−u)− log(v).

By substituting into the second entry of −g we get

1

y
− z

yr
=

1

y
(1− zu) =

v(1− ω̄)

−ω̄

(
1− u

u(1− ω̄)

)
= v,

and by substituting into the third entry we get

1

z
− `− 1

r
=

1

z
− (`− 1)u = u(2− ω̄ − `) = u(2− ω̄ − log

−u
v
− log ω̄) = w.

Therefore −g(−g̃(u, v, w)) = (u, v, w)T .

Recalling the definition of f?(u, v, w) = − infx,y,z {f(x, y, z) + xu+ yv + zw},
and noting that the optimality condition for the minimization is given by the
equation−g(x?, y?, z?) = (u, v, w)T , we can conclude that because−g(−g̃(u, v, w)) =
(u, v, w)T , the entries of −g̃(u, v, w) are the minimizing x?, y?, z?.

From the properties of conjugate pairs of functions (4.3.5) we know that
−g? = arg minx,y,z {f(x, y, z) + xu+ yv + zw}, so that g? = g̃. Finally to show
that f? is conjugate to f it remains to show that f? = −f(−g?)−x?u−y?v−z?w.

8. Conjugate barriers for the exponential cone 71

Theorem 8.2.2. The function f? is conjugate to f .

Proof. We now evaluate −f(x?, y?, z?) − x?u − y?v − z?w. Observe that f =
− log(−r)− log(y)− log(z) and therefore

f(x, y, z) = − log(− 1

u
)− log

(
−ω̄

v(1− ω̄)

)
− log

(
1

u(1− ω̄)

)
(8.7)

= log(−u) + log(v) + log

(
1− ω̄
−ω̄

)
+ log (u(1− ω̄)) (8.8)

= 2 log(−u) + log(v) + log

(
(1− ω̄)2

ω̄

)
. (8.9)

On the other hand,

x?u+ y?v + z?w =
3− w

u − 2ω̄ − ω̄ − w
u

1− ω̄
= 3. (8.10)

Therefore

−f(x?, y?, z?)− x?u− y?v − z?w = −2 log(−u)− log(v)− log

(
(1− ω̄)2

ω̄

)
− 3.

8.3 A second pair of conjugate functions

In [12] the author notes that there exists a linear transformation B : R3 → R3

such that intK? = B[intK] given by the matrix

B =

 −1
1/e

−1

 . (8.11)

Therefore the function f̃?(u, v, w) = f(B−1(u, v, w)T) is a self-concordant 3-
logarithmically homogeneous barrier for the dual cone and f̃(x, y, z) = f?(B(x, y, z)T)
is its conjugate barrier for the primal exponential cone. These functions take
the form

f̃(x, y, z) = −2 log(z)− log(y)− log

(
(1− ω̄)2

ω̄

)
− 3

with ω̄ = ω(1− x
z − log z − log y), and

f̃?(u, v, w) = − log(w − u− u log
−v
u

)− log(−u)− log(v).

72 8. Conjugate barriers for the exponential cone

8.4 Evaluating the Wright Omega function

In [31] Laurence et al. describe an algorithm for evaluating of the Wright Omega
function over the complex plane. The authors separate the complex plane into
7 different regions and define an approximation algorithm for each region. Since
we are only interested in the evaluation of ω for real numbers and all arguments
in conic optimization with exponential cones will be positive and larger than 1,
only two of these approximation schemes are of interest. We have implemented
our own version of their algorithm, restricted to real positive arguments larger
than 1.

Algorithm 4 describes our version of the algorithm. When the argument is
between 1 and 1 + π we initialize w with the value of the Taylor series about 1.
When the argument is larger than 1 + π we initialize w with the value of the
series about∞. After initializing we proceed to do two rounds of the refinement
procedure described in [31] and return the resulting value.

Algorithm 4 Wright omega function for z > 1

if 1 ≤ z < 1 + π then
w ← 1 + 1

2 (z− 1) + 1
16 (z− 1)2− 1

192 (z− 1)3− 1
3072 (z− 1)4 + 13

61440 (z− 1)5

else if z > 1 + π then
w ← z − log z + log z

z + log z
z2

(
1
2 log z − 1

)
+ log z

z3

(
1
3 log2 z − 3

2 log z + 1
)

else the argument is outside the range
return −1

end if . Refinement
k ← 0
r0 ← z − w − logw
w0 ← w
for k < 2 do

wk+1 = wk

(
1 + rk

1+wk

(1+wk)(1+wk+2/3rk)−rk/2
(1+wk)(1+wk+2/3rk)−rk

)
rk+1 =

2w2
k−8wk−1

72(1+wk)6 r
4
k

k ← k + 1
end for
Return wk

8.4.1 Numerical evaluation of the Wright Omega Real im-
plementation

We sampled 109 different values for z, and for each we calculated the relative
residual err(z) = |z − w(z) − log(w(z))|/|z|. The points were generated by the
iteration zk = szk with s of the form s = (1+ε)p, where ε is the machine precision
and p = 227. By leaving larger gaps between samples of larger magnitude, this
sampling strategy chooses sample points that are equispaced in the sequence of
all representable floating-point numbers. With this particular choice of s the
first two values sampled are z1 = 1 and z2 ≈ 1 + 3 × 10−8. The largest after

8. Conjugate barriers for the exponential cone 73

109 samples was close to 8.7 × 1012. The largest resulting relative error was
err(1 + 10−6) ≈ 4.5× 10−16.

Chapter 9

Modeling convex problems
with the exponential cone

In this chapter we define conically representable functions and conically rep-
resentable problems. Our objective is to show how some important convex
optimization problems can be transformed into conic programming problems
expressed in terms of the positive orthant, the Lorentz cone, and the expo-
nential cone. We do not wish to describe the full family of problems that can
be transformed into conic programming problems; instead we show the value
of allowing for the exponential cone in the formulation of conic programming
problems. For a more complete treatment we direct the reader to the work of
Michael Grant [23], where disciplined convex programming (DCP) is defined (a
series of rules to build and transform convex problems into equivalent problems
for which solvers exist), and also to the work of Nemirovski [38, 8], where K-
representable sets are defined (all sets representable from simple operations on
cones).

9.1 Conically representable functions

We say that f : Rn → R is conically representable if the epigraph Epi f =
{(x, t) | f(x) ≤ t} is the same as the set of pairs (x, t) (where x ∈ Rn and t ∈ R)
such that

A

xu
t

 = b, G

xu
t

+ h ∈ K (9.1)

for some matrices A,G and vectors b, h and possibly some auxiliary variables
u. We call the set of constraints Ax = b equality constraints and Gx + h ∈ K
conic constraints. For completeness we adopt the convention from [23, 49] that
a convex function evaluated outside its domain takes the value∞ and therefore
there is no pair (x, t) ∈ Epi(f) for x /∈ Dom(f) with finite t.

74

9. Modeling convex problems with the exponential cone 75

We now describe some simple operations on conically representable functions
that maintain them conically representable.

9.1.1 Sums of conically representable functions

Assume f1 and f2 are conically representable withA1, A2, G1, G2, b1, b2, h1, h2,K1,K2

and auxiliary variables u1 and u2. Then g(x) = f1(x) + f2(x) ≤ t iff

A1

 x
u1

t1

 = b1, G1

 x
u1

t1

+ h1 ∈ K1,

A2

 x
u2

t2

 = b2, G2

 x
u2

t2

+ h2 ∈ K2,

−t1 − t2 + t ≥ 0.

(9.2)

By reinterpreting t1 and t2 as auxiliary variables and defining the cone K =
K1 × K2 × R+, we can reorganize those conditions into the form (9.1), so that
g(x) is conically representable.

9.1.2 Affine transformation of the arguments

If f is conically representable, then the function g(x) = f(Bx+d), where B is a
matrix and d is a vector, is conically representable. Observe that the epigraph of
g(x) is the set of all (x, t) such that there exists a y = Bx+d with (y, t) ∈ Epi(f).
However, this is equivalent to the conditions

A

yu
t

 = b, G

yu
t

+ h ∈ K, Bx+ d = y,

which is the same as

A

B I
I

xu
t

 = b−A

d0
0

 ,

G

B I
I

xu
t

+G

d0
0

+ h ∈ K.

This is equivalent to (9.1) and therefore g is conically representable.

9.1.3 Sums of functions defined over different variables

Assume f1(x1) and f2(x2) are functions defined for variables x1 and x2. We
can trivially redefine f1(x1) and f2(x2) to be a function of both variables

76 9. Modeling convex problems with the exponential cone

f̂1(x1, x2) = f1(x1) and f̂2(x1, x2) = f2(x2). These are affine transformations of

the argument of f1 and f2 and therefore f̂1 and f̂2 are conically representable.
Finally the sum g(x1, x2) = f1(x1)+f2(x2) = f̂1(x1, x2)+ f̂2(x1, x2) is conically
representable.

9.1.4 Multiple by positive constant

If f(x) is conically representable, then λf(x) is conically representable for λ > 0.
Any (x, t) ∈ Epi(λf) if and only if (x, tλ) ∈ Epi(f). Hence (x, t) ∈ Epi(λf) iff

A

I I
1
λ

xu
t

 = b, G

I I
1
λ

xu
t

+ h ∈ K.

9.1.5 Maxima of conically representable functions

If f1(x) and f2(x) are conically representable, then g(x) = max {f1(x), f2(x)}
is conically representable. Observe that g(x) ≤ t if and only if f1(x) ≤ t1 ≤ t
and f2(x) ≤ t2 ≤ t, which is the same set as

A1

 x
u1

t1

 = b1, G1

 x
u1

t1

+ h1 ∈ K1,

A2

 x
u2

t2

 = b2, G2

 x
u2

t2

+ h2 ∈ K2,

t1 ≤ t, t2 ≤ t.

9.2 Examples of conically representable functions

9.2.1 Negative Entropy

Let φ(x) = x log(x) for x ∈ R. We call φ the negative entropy function on one
variable. This function is convex in the interval [0,∞).

Observe that the triplet (t, u, x) ∈ Ke if and only if −t ≥ x log
(
x
u

)
, and every

triplet (t, u, x) ∈ Ke such that u = 1 has the property that (x,−t) ∈ Epi(ψ).
Therefore we can write Epi(ψ) as

(
0 1 0

)tu
x

 = 1

−1
1

1

tu
x

+

0
0
0

 ∈ Ke.
We can then define the negative entropy function in n variables φn(x) : Rn → R
as φn(x) =

∑
xi log(xi). Since this is the sum of n conically representable vari-

ables, it is itself conically representable.

9. Modeling convex problems with the exponential cone 77

9.2.2 Kullback-Leibler divergence

The Kullback-Leibler divergence (KL) between p and q, denoted D(p||q) and
defined for probability distributions over finite sets, is conically representable
as a function of p. If p and q are defined by vectors p, q ∈ RK+ , then D(p||q) =∑K
i pi log pi

qi
. Let d(pi, qi) = pi log pi

qi
= pi log pi − pi log qi. It is clear that

d(pi, qi) is conically representable, for it is the sum of the negative entropy
function and a term linear in pi. Writing D(p||q) =

∑
i d(pi, qi) we conclude

that D(p||q) is conically representable as a function of p.

The exponential function is conically representable. Observe that any triplet
(x, t, u) ∈ Ke satisfies exp(xu) ≤ t

u and therefore any triplet (x, t, 1) ∈ Ke satisfies
exp(x) ≤ t. Therefore (x, t) ∈ Epi(ex) for any (x, t, u) ∈ Ke with u = 1. And
we can write the epigraph of the exponential function as

(
0 0 1

)xt
u

 = 1,

xt
u

 ∈ Ke.

9.2.3 Logarithm of sum of exponentials

Define by ψ(x) : Rn → R the function ψ(x) = log (
∑
i e
xi). This function is also

conically representable, for observe that ψ(x) ≤ t if and only if
∑
i e
xi−t ≤ 1.

To represent ψ(x) as a set of conic constraints, for each xi we introduce the
auxiliary triplet ui, vi, wi, and establish the constraints wi = 1, xi − t = ui and(
ui, vi, wi

)T ∈ Ke for all i, and the constraint −v1 − · · · − vn + 1 ≥ 0.

9.2.4 Negative logarithm

The function− log(x) is convex and conically representable. Because
(
t, x, w

)T ∈
Ke if and only if −t/w ≥ − log(x/w) and w > 0, then − log(x) ≤ t if and only

if
(
−t, x, 1

)T ∈ Ke.

9.2.5 Two norm

The function ψ(x) = ‖x‖2 is conically representable, albeit using the SOCP
cone and not the exponential cone, for ψ(x) ≤ t iff

(
x, t
)
∈ L?.

78 9. Modeling convex problems with the exponential cone

9.2.6 Two norm squared

The function ψ(x) = ‖x‖22 is also conically representable, for√
xTx+

(
1

4
− z
)2

≤ 1

4
+ z (9.3)

if and only if xTx ≤ z. Finally, constraint (9.3) is equivalent to
(
x, 1

4 − z
)T ∈ L?,

where L? is the SOCP cone.

9.2.7 One norm

The function ψ(x) = ‖x‖1 is conically representable, for ψ(x) ≤ t iff ui−vi = xi
and ui ≥ 0 and vi ≥ 0 and

∑
i xi + vi ≤ t.

9.2.8 Linear functions

The function ψ(x) = cTx+b is linearly representable, for ψ(x) ≤ t iff (cT ,−1)(xT , t)T =
−b.

9.3 An alternative standard form

The standard form we use here differs from the one used previously but it is
consistent with the input format for ECOS, CVXOPT and other solvers. Some
of the analysis of the previous section has to be adapted, but the changes are
mostly cosmetic. In fact, any problem in the standard form used in the previous
chapters has an equivalent problem in the format described here, and conversely
any problem in this new format can be transformed into an equivalent problem
in the original standard form.

In the next chapter we describe our extension to ECOS in more detail. Mean-
while we refer to [17] for the description of ECOS and to [7] for the description
of the CVXOPT algorithm used by ECOS.

ECOS solves problems of the form

min cTx

subject to Ax = b,

Gx+ s = h,

s ∈ K.

(Sn)

Note that here s denotes the primal slacks.

9. Modeling convex problems with the exponential cone 79

If a problem is defined in the original standard form

minimize ĉT x̂

subject to Âx̂ = b̂,

x̂ ∈ K̂,

(So)

then choosing G = −I and h = 0 in problem (Sn) yields an equivalent problem.
On the other hand if a problem is given in format (Sn), then with

Â =

(
A −A
G −G I

)
,

x̂ = (x+, x−, s)
T ,

ĉ = (c,−c, 0)T ,

K̂ = Rn+ × Rn+ ×K,

problem (So) will be equivalent. (Here the length of the zero vector in ĉ is the
same as the dimension of s, the n in the Cartesian cone is the same as the
dimension of x, and the symbols x− and x+ refer to the positive and negative
parts of x.)

9.4 Conic programming problems

A conically representable problem is a convex problem of the form

minimize f0(x),

subject to f1(x) ≤ 0,

f2(x) ≤ 0,

...

fp(x) ≤ 0,

Ap+1x = bp+1,

Gp+1x+ hp+1 ∈ Kp+1,

(CP)

where all the fi(x) are conically representable. As we show now, conically rep-
resentable problems are easily transformed into problems in the conic standard
form (Sn).

Since the functions fi in the constraints are conically representable, the
constraints fi(x) ≤ ti ≤ 0 are equivalent to

Ai

x
ui
ti

 = bi, Gi

x
ui
ti

+ hi ∈ Ki, ti ≤ 0.

80 9. Modeling convex problems with the exponential cone

On the other hand the constraint f0(x) ≤ t is equivalent to

Ai

 x
u0

t0

 = b0, G

 x
u0

t0

+ h0 ∈ K0,

and it is easy to see that there exists a matrix A and vector b such that

A
(
x, u, t

)T
= b if and only if Ai

(
x, ui, ti

)T
= bi for all i = 0, . . . , p + 1. And

that there exist a matrix G and cone K such that G
(
x, u, t

)T
+ h ∈ K if and

only if Gix + hi ∈ Ki for all i = 0, . . . , p + 1, and ti ≤ 0 for all i > 0. Using
these matrices A,G and vectors b and h, the final conic problem is of the form

minimize t0

subject to A

xu
t

 = b,

G

xu
t

+ h ∈ K.

(9.4)

It is worth noting that this transformation is not unique but serves our objective
of showing that all conically representable problems are in fact equivalent to a
conic programming problem.

9.4.1 Logistic regression

Logistic regression is a model for the probability that a vector x ∈ Rp belongs
to one of K classes, given a linear function of the covariates x [26].

We use the K = 2 instance as an example, and assume that we have access
to a training set formed by N samples (x, y) ∈ Rp × {0, 1} , where yi ∈ {0, 1}
and xi takes values in Rp. We assume that the probability that yi = 1 given x
is given by

P (Y = 1 | X = x) =
exp

(
βTx+ β0

)
1 + exp (βTx+ β0)

,

where β is a vector and β0 a scalar.
Let I1 be the indices of the samples where yi = 1 and let I0 be the indices

where yi = 0, trivially I1 ∪ I0 = 1, . . . , N . The likelihood of any observed
sequence of samples is given by

L(β, β0) =
∏
i∈I0

1

1 + exp (βTxi + β0)

∏
i∈I1

exp
(
βTxi + β0

)
1 + exp (βTxi + β0)

,

and the log-likelihood is given by

`(β, β0) = −
N∑
i=1

log
(
1 + exp

{
βTxi + β0

})
+
∑
i∈I1

(βTxi + β0).

9. Modeling convex problems with the exponential cone 81

We are interested in fitting β, β0 using a maximum likelihood estimator. There-
fore we need to maximize `(β, β0).

We now show that the above can be solved by an exponential conic program-
ming problem. Letting x̂ =

∑
i∈I0 xi and t ∈ RN , w ∈ RN , and recalling that

log
∑
j e
xj ≤ −uj iff

∑
j e
xj+uj ≤ 1, we can see that the maximum likelihood

problem is equivalent to

minimize −
∑
i

ui − x̂Tβ − |I0|β0

subject to βTxi + β0 = wi i ∈ 1, . . . , N

exp(ui) + exp(wi + ui) ≤ 1, i ∈ 1, . . . , N.

(9.5)

Since (9.5) is formed by conically representable functions, it is conically repre-
sentable.

9.4.2 Sparse logistic regression

Sparse logistic regression adds a regularization term ‖β‖1 to the maximum like-
lihood objective in order to achieve a sparser model β [26]. The regularization
term is weighted by the constant λ > 0, which modifies its relative importance.
The regularized maximum likelihood objective takes the form

`r(β, β0, λ) =

N∑
i=1

log
(
1 + exp

{
βTxi + β0

})
−
∑
i∈I1

(βTxi + β0) + λ ‖β‖1 .

Because both `(β, β0) and λ ‖β‖1 are conically representable, the minimization
of `r can be done via an equivalent conic programming problem.

Other important regularization terms ψ(β, β0) exist, and as long as ψ is a
conically representable function the resulting regularized maximum likelihood
objective can be maximized using a conic programming solver, for in that case
the function

`ψ(β, β0) =

N∑
i=1

log
(
1 + exp

{
βTxi + β0

})
−
∑
i∈I1

(βTxi + β0) + ψ(β, β0)

is conically representable.

9.4.3 Minimum Kullback-Leibler divergence

Assume that a probability distribution p over the set X = {1, . . . ,K} is known
to belong to a set P that can be written as P = {p | f(p) ≤ 0}, for some conically
representable f . And assume we know a probability distribution q /∈ P that is a
good approximation to some optimal p?. The problem of finding the distribution
p ∈ P that minimizes the Kullback-Leibler divergence is given by [11]

minimize

K∑
i

pi log
pi
qi

subject to f(p) ≤ 0,

(9.6)

82 9. Modeling convex problems with the exponential cone

and as we have shown, the objective and constraints are conically representable.

9.4.4 Geometric programming

Geometric programming problems are a family of nonlinear optimization prob-
lems that have applications in many areas. For a detailed tutorial on geometric
programming, see [10] and references therein for applications in circuit design,
chemical engineering, information theory, probability, computational finance,
etc.

Geometric programming problems are not directly conically representable.
However, after a nonlinear transformation of their variables the resulting opti-
mization problems are. These problems are written in terms of mathematical
objects called monomials.

Let x1, . . . , xp be positive variables and x = (x1, . . . , xp) be a vector. The
monomial m(x) is defined as the function m(x) = cxa11 xa22 · · ·x

ap
p , where all the

ai are real and c > 0. A sum of monomials f(x) =
∑k
i ci

∏
j x

aj
j is called a

posynomial.
A geometric programming problem is a problem of the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

0 < xi, i = 1, . . . , n

(9.7)

where f0, . . . , fm are posynomials, and gi, . . . , gp are monomials.
Even though this problem is not convex and therefore not conically rep-

resentable, the variable transformation exp(yi) = xi yields a convex prob-
lem on yi. For observe that in the new variables any monomial gi(e

y) =

exp
(∑

j ajyj + log(ci)
)

results from the affine transformation of the arguments

of the exponential function, and is therefore conically representable. Further-
more, any posynomial is itself the sum of conically representable functions and
therefore conically representable. We conclude that the problem

minimize f0(ey)

subject to fi(e
y) ≤ 1, i = 1, . . . ,m

gi(e
y) = 1, i = 1, . . . , p

(9.8)

is conically representable and equivalent to the original geometric programming
problem. Therefore a conic solver that supports the exponential cone can solve
all geometric programing problems, and furthermore solve any problem from
the larger class of problems for which the transformation ey = x yields conically
representable problems. This class is defined in [10] under the name generalized
geometric programming.

Chapter 10

Extending ECOS to solve
problems with the
exponential cone

ECOS [16] is an ANSI-C implementation of an interior-point method designed
to solve symmetric cone problems modeled with products of second-order cones
and linear constraints. We have extended ECOS into ECOS-Exp, an implemen-
tation that can solve problems modeled with products of second-order cones,
exponential cones and linear constraints. In this section we describe our exten-
sion and some of the implementation choices made to build an efficient solver.

Recall that the difficulty of a conic programming problem is given in terms of
ν (the complexity of the barrier). ECOS is based on the exceedingly successful
Mehrotra predictor-corrector algorithm (MPC), which increases its iteration
count very slowly as ν grows. This Mehrotra predictor-corrector algorithm
approximates the central path by a second-order Taylor expansion. At the same
time it can take long steps within the feasible region as it does not require that
its iterates stay close to the central path. In this section we explore our variant
of the Mehrotra predictor-corrector. This variant has two important differences
with respect to the original MPC. It restricts the iterates to a region close to the
central path, and since, for the variables corresponding to the exponential cones
no second-order information is available, it only approximates the direction of
the central path with respect to the variables in the exponential cone to first
order. Remarkably, we have discovered that our extension also increases its
iteration count very slowly as ν increases, yielding an implementation that is
practical to use.

In Chapter 5 we described the potential reduction algorithms for general
conic programming. These algorithms can be used to solve any conic program-
ming problem, provided conjugate, self-concordant barriers are known for the
primal and dual cone. Their downside is that the Hessian of both barriers must
be used when solving for the search direction, essentially doubling the size of the

83

84 10. Extending ECOS to solve problems with the exponential cone

Newton system. This potentially increases the iteration cost by up to a factor
of 8. In ECOS-Exp we keep the size of the Newton system comparable to that
of a symmetric cone problem, meaning that the size of the matrix is the same
as for an alternative problem with the same number of variables and constraints
but only with symmetric cones. To achieve this, our method keeps the iterates
close to the central path in a similar way to that described in Chapter 7. The
restriction of the iterates to a vicinity of the central path implies that the ini-
tialization procedure ECOS uses can no longer be used. Instead, all variables
are initialized on a central ray.

This section is organized as follows. We begin by describing the format
of the problems ECOS solves. We then describe the variant of the Mehrotra
predictor-corrector algorithm on which ECOS is based. We proceed to describe
how we extended ECOS into ECOS-Exp. There we define the search directions
and we explain how we enforce the centrality condition and how we initialize
the iterates.

We then proceed with numerical experiments to evaluate ECOS-Exp by solv-
ing random conic programming problems, negative entropy minimization prob-
lems, and geometric programming problems. We also compare against PDCO
[50] and MOSEK [5].

10.1 ECOS for symmetric cones

A full description in ECOS and the MPC algorithm can be found in [16, 7] and
[17]. Our description is more succinct for we only wish to give the minimum
necessary background for the ECOS-Exp extension.

The standard form used by ECOS differs from the definition used in the
previous chapters and the notation has to be updated. However, the changes
are mostly cosmetic and don’t pose important theoretical modifications. ECOS
solves problems of the form

min cTx

subject to Ax = b,

Gx+ s = h,

s ∈ K,

(Sn)

with dual

max−bT y − hT z,
subject to GT z +AT y + c = 0,

z ∈ K?.
(10.1)

For this primal-dual pair, s denotes the primal slacks and z denotes the dual
slacks. The simplified homogeneous self-dual embedding for the standard form
used by ECOS is the problem of finding a nonzero solution of the feasibility

10. Extending ECOS to solve problems with the exponential cone 85

problem
minimize 0

subject to
GT AT c

−A b
−G h
−cT bT hT



x
y
z
τ

−


0
0
s
κ

 =


0
0
0
0


z ∈ K?, s ∈ K, τ > 0, κ > 0.

(10.2)

Given an initial point x0, s0, y0, z0, τ0, κ0 we define the residuals
rx
ry
rz
rτ

 = −


GT AT c

−A b
−G h
−cT bT hT



x
y
z
τ

+


0
0
s
κ

 .

The central path is the unique solution of the equations

s− µg?(z) = 0 (10.3a)

τκ− µ = 0 (10.3b)
GT AT c

−A b
−G h
−cT bT hT



x
y
z
τ

−


0
0
s
κ

 = −µ


rx
ry
rz
rτ

 . (10.3c)

By construction, the initial point satisfies (10.3c).
The centering search directions maintain the linear residuals unchanged and

reduce the distance to the central path. They are the solution to the equations

H?(w)∆z + ∆s = −s− µg?(z) (10.4a)

τ∆κ+ κ∆τ = −τκ+ µ (10.4b)
GT AT c

−A b
−G h
−cT bT hT




∆x
∆y
∆z
∆τ

−


0
0

∆s
∆κ

 =


0
0
0
0

 , (10.4c)

where w denotes the Nesterov-Todd scaling point for the ordered pair s, z.
When the iterates are exactly on the central path, the affine direction is

tangent to it and points in the direction along which µ reduces. Moving the
iterate along this direction corresponds to a first-order path-following method.
The affine direction is calculated from the solution of

H(w)∆za + ∆sa = −s
τ∆κa + κ∆τa = −τκ

GT AT c
−A b
−G h
−cT bT hT




∆xa
∆ya
∆za
∆τa

−


0
0

∆s
∆κ

 =


rx
ry
rz
rτ

 .

(10.5)

86 10. Extending ECOS to solve problems with the exponential cone

As discussed before, the Mehrotra predictor-corrector algorithm uses a second-
order approximation to the central path. This second-order direction is calcu-
lated from equations of the form

H(w)∆z + ∆s = −s− 1

1− σ
T (∆za,∆sa)

τ∆κ+ κ∆τ = −τκ− 1

1− σ
∆τa∆κa

GT AT c
−A b
−G h
−cT bT hT




∆x
∆y
∆z
∆τ

−


0
0

∆s
∆κ

 =


rx
ry
rz
rτ

 ,

(10.6)

where T (∆za,∆sa) is a function of the affine direction. The derivation of this
term is outside the scope of this thesis, but we will mention that for linear pro-
gramming problems it takes the form of T (∆za,∆sa) = ∆Sa∆za, where ∆Sa is
the diagonal matrix with the entries of ∆sa in the diagonal. Similar terms exist
for symmetric conic programming problems with self-scaled barriers. However,
a generalization for an unsymmetric cone problem could not be derived for this
implementation, and remains an important area of opportunity for research.

The final search direction is a linear combination of the second-order search
direction (10.6) and the centering direction (10.4). By smartly ordering the
solution of the linear systems, the MPC algorithm solves only two linear systems
instead of the expected three (we would expect to solve two for the second-
order approximation of the central path and one for the centering direction).
The strategy is to solve for the affine scaling direction, then determine the
coefficient of the linear combination, then form and solve for a right-hand side
crafted to yield the desired search direction [7]. Once the linear combination is
determined and the terms from the affine search direction ∆za,∆sa are known,
the combined search direction is the solution of

H(w)∆z + ∆s = −s− σµg(z)− T (∆za,∆sa)

τ∆κ+ κ∆τ = −τκ+ σµ−∆τa∆κa
GT AT c

−A b
−G h
−cT bT hT




∆x
∆y
∆z
∆τ

−


0
0

∆s
∆κ

 = (1− σ)


rx
ry
rz
rτ

 .

(10.7)
The selection of the scalar σ that determines the linear combination between

the affine and centering direction is done by first computing the largest feasible
step size αa along the affine scaling direction, then choosing σ = (1−αa)3. This
has the following effect: if the affine unit step is admissible then the algorithm
will set σ = 0 and use the affine scaling direction. This is the ideal behavior,
for a feasible unit step along the affine scaling direction reduces the residuals
to zero and achieves optimality. However, if the feasible step along the affine
scaling direction is zero or nearly zero then σ ≈ 1. In this case the algorithm has

10. Extending ECOS to solve problems with the exponential cone 87

Algorithm 5 Mehrotra predictor-corrector

k ← 0
2: x← x0, y ← y0, s← s0, z ← z0

τ ← 1
4: κ← 1

while not converged do
6: Compute the Nesterov-Todd scaling points

Form and factor the system matrix of equation 10.5
8: Solve for the affine search direction ∆wa of equation 10.5

Find the largest αa such that z + αa∆za and s+ αa∆sa are feasible
10: Set σ = (1− αa)3

Solve for the combined second-order search directions ∆wc of equation
10.7

12: Find the largest α such that z + α∆zc and s+ α∆sc are feasible
α← 0.98α

14: w ← w + α∆w
k ← k + 1

16: end while

strayed far from the central path and the next step should be mostly a centering
step. A similar heuristic for the selection of σ was confirmed experimentally in
[36] and this particular version is defined in [7] and used by ECOS.

Listing 5, describes the basic Mehrotra predictor-corrector algorithm. The
two linear system solves for the search directions occur in lines 8 and 11. Lines
9–10 are concerned with computing the coefficient of the linear combination,
and 12–14 with the final linesearch and updating the iterates. A notable aspect
of the algorithm is that the final step length is a constant multiple of the step
to the boundary, and generally this constant is chosen like 0.95 to 0.99, even
0.995!

10.2 ECOS for the exponential cone

Following the theoretical development of chapter 7 we know that for unsymmet-
ric conic programming problems, the centering directions arising from

µH?(z)∆z + ∆s = −s− µg?(z) (10.8a)

µ

τ2
∆τ + ∆κ = −κ+ µ

1

τ
(10.8b)

GT AT c
−A b
−G h
−cT bT hT




∆x
∆y
∆z
∆τ

−


0
0

∆s
∆κ

 =


0
0
0
0

 . (10.8c)

are efficient at reducing the distance to the central path. However, this is true
provided that s, z are already close to the central path in the sense that the

88 10. Extending ECOS to solve problems with the exponential cone

value of the function Ω(s, z, τ, κ) = (ν + 1) log(sT z + τκ) + f(s) + f?(z) −
log(τ) − log(κ) + (ν + 1) log(ν + 1) + ν + 1 is small. (Here f(s) and f?(z)
are conjugate pairs of barriers for the cones K and K? respectively.) Since we
know explicit conjugate barriers for any Cartesian product of second-order cones
and the positive orthant, and have derived a conjugate pair of barriers for the
exponential cone and its dual, we can define the appropriate function Ω for
problems modeled with Cartesian products of any of these cones.

To extend ECOS we restrict the iterates to the set N = {Ω ≤ Ω̄}, where Ω̄
is a threshold chosen so that the conditions for the efficiency of the centering
direction from (10.8) are maintained. In this manner ECOS-Exp will be able
to calculate useful centering directions at any iterate. Given an initial point
x0, s0, z0, y0τ0, κ0 that satisfies Ω(s0, z0, τ0, κ0) ≤ Ω̄, the algorithm proceeds in a
similar manner to the original MPC, with the following exceptions: linesearches
are used to find the largest affine scaling and combined steps that reach the
edge of the set N instead of the edge of the feasible set; a first-order Taylor
approximation is used for the variables that correspond to the unsymmetric
cones; and the Hessian of the unsymmetric barrier is evaluated at the dual
iterate instead of the Nesterov-Todd scaling point.

We must pause for a moment and mention again the work of Ye and Ska-
jaa [51]. Where the authors derive a similar predictor-corrector algorithm for
unsymmetric cones. This algorithm differs from the one here in the follow-
ing fronts: First, the predictor and corrector directions are used in alternation
while we use linear combinations. Their predictor steps correspond to our affine
scaling directions, and their corrector to our centering directions. Second: the
measure of centrality η(s, z) = ‖s+ µg?(z)‖H−?(z) is used instead of Ω. Their
algorithm is guaranteed to converge if the iterates are maintained in the region
where η(s, z) < 1 holds. Third: the Hessian is evaluated in the primal iterate
for symmetric and unsymmetric variables, while we evaluate the section of the
Hessian corresponding to the symmetric variables at the Nesterov-Todd scaling
point.

We now introduce some notation to describe the ECOS-Exp algorithm more
thoroughly. We denote the Cartesian product of all symmetric cones by Ks, of
all exponential cones by Ke, and of all dual exponential cones by K?e . With this
notation we have that K = Ks × Ke and K? = Ks × K?e . We will partition the
primal (dual) variables into the symmetric variables ss ∈ Ks (zs ∈ Ks) and the
exponential variables se ∈ Ke, (ze ∈ K?e).

The centering directions are now the solution of the equations

µH?(zec)∆zec + ∆sec = −sec − µg?(zec)
H(w)∆zsc + ∆ssc = −ssc − µg(zsc)

τ∆κ+ κ∆τ = −τκ+ µ
GT AT c

−A b
−G h
−cT bT hT




∆xc
∆yc
∆zc
∆τc

−


0
0

∆sc
∆κc

 =


0
0
0
0

 .

(10.9)

10. Extending ECOS to solve problems with the exponential cone 89

The c in the subscript is used to indicate that these are centering directions.
Here w is the Nesterov-Todd scaling point for the dual-primal pair zs, ss. The
affine directions are the solution to

µH?(ze)∆zea + ∆sea = −se
H(w)∆zsa + ∆ssa = −ss

τ∆κ+ κ∆τ = −τκ
GT AT c

−A b
−G h
−cT bT hT




∆xa
∆ya
∆za
∆τa

−


0
0

∆sa
∆κa

 =


rx
ry
rz
rτ

 ,

(10.10)

where the a subscript indicates affine scaling directions. The combined direc-
tions are the solution to

µH?(ze)∆ze + ∆se = −se − σµg?(ze)
H(w)∆zs + ∆ss = −ss − σµg(zs) + T (∆zsa,∆ssa)

τ∆κ+ κ∆τ = −τκ+ σµ−∆τ∆κ
GT AT c

−A b
−G h
−cT bT hT




∆x
∆y
∆z
∆τ

−


0
0

∆s
∆κ

 = (1− σ)


rx
ry
rz
rτ

 .

(10.11)

Algorithm 6 ECOS-Exp Mehrotra predictor-corrector

k ← 0
2: x← x0, y ← y0, s← s0, z ← z0

τ ← 1
4: κ← 1

while not converged do
6: Compute the Nesterov-Todd scaling point for zs, ss

Form and factor the matrix of equations (10.9)
8: Solve for the affine search direction (∆xa,∆ya,∆sa,∆za,∆τa,∆κa)

Find the largest αa such that z + αa∆za and s + αa∆sa are contained
in the set N

10: Set σ = (1− αa)3

Solve for the combined second-order search directions ∆wc using (10.11)
12: Find the largest α such that z + α∆zc and s + α∆sc are contained in

the set N
α← 0.98α

14: (x, y, s, z, τ, κ)← (x, y, s, z, τ, κ) + α(∆xc,∆yc,∆sc,∆zc,∆τc,∆κc)
k ← k + 1

16: end while

90 10. Extending ECOS to solve problems with the exponential cone

10.2.1 The barriers for the exponential cone

Due to the formulation used by ECOS, the Hessian H?(ze) in (10.9)–(10.11) is
the dual barrier of the exponential cones. We have chosen to use the barrier
which in chapter 8 was denoted f̃?(u, v, w) and given by

f̃?(u, v, w) = − log(w − u− u log
−v
u

)− log(−u)− log(v).

10.2.2 Initializing ECOS-Exp

Because all iterates are expected to stay within the region N we must select an
initial iterate inside N . One possible strategy is to find an initial iterate strictly
on the central path. Some solvers, for example, SEDUMI [52] initialize variables
that are not conically constrained (in this case x, y) to zero and the rest (in this
case s, z, τ, κ) to some vector ι that depends on the cone of the problem and
satisfies ι = −g(ι), where g is the gradient of the barrier. The conjugacy of the
barriers implies that −g?(ι) = ι and therefore ι is primal-dual strictly feasible.
Because ι + g(ι) = 0, this vector is on the central path (for µ = 1). Observe
that −γ2g(γι) = −γg(ι) = γι holds and therefore any scaling γι with γ > 0 can
also be perfectly centered with µ = γ2.

For symmetric cones, ι is the identity in the Jordan algebra where the cone
is defined. This corresponds to the following: for the positive orthant, ι is the
vector of all ones; for the Lorentz cone, ι = (1, 0, · · · , 0) where the 1 corresponds
to the root variable in the second-order cone. For semidefinite cones (though
ECOS does not solve systems with them) ι is the identity matrix. Unsymmet-
ric cones are not domains of positivity of a Jordan algebra and therefore this
definition of ι as an identity vector in a ring does not make sense. However, for
the three symmetric cases listed here, the vector ι can also be constructed by
finding some sort of central ray in the cone. This idea extends to unsymmetric
cones and will allow us to define such an ι for the exponential cone.

The equation ι = −g(ι) can also be solved for barriers of unsymmetric cones.
If we find a solution the resulting ι will satisfy −g?(ι) = ι, will be strictly primal-
dual feasible and the pair (ι, ι) will be on the central path for µ = 1.

To find ι we need to solve the optimization problem

minimize f(s) (10.12)

subject to ‖s‖2 ≤ 1. (10.13)

Whose optimality conditions are

‖s‖2 ≤ 1,

−g(s) = λs,

λ ≥ 0,

s ∈ K.

If the inequality is active then λ = 0 and if it is active λ > 0. However, for any
recession direction ∆s of the cone K we have that s+α∆s is feasible for all α > 0,

10. Extending ECOS to solve problems with the exponential cone 91

then f(α∆s) = −ν log(α) + f(∆s) → −∞ and we conclude that the barrier
functions for the cones are unbounded below. Therefore the solution s? satisfies
‖s?‖2 = 1 and g(s?) + λs? = 0 for some positive Lagrange multiplier. From the
ν-logarithmic homogeneity of f we have that 0 = s?T g(s?) + λ = −ν + λ = 0
and we conclude that λ = ν.

To calculate the ι for the exponential cone we need to solve problem 10.13
using the barrier of the exponential cone and then set ι = s?√

ν
for then ι+g(ι) =

1√
ν
s? +

√
νg(s?) = 1√

ν
(s? + λg(s?)) = 0. We used projected gradient descent

and hard-coded the entries of ι into the implementation. For the exponential
cone,

ι ≈
(
−1.051 1.259 0.556

)
.

Symmetric cone solvers, where the iterates don’t have to start close to the
central path, can take advantage of another initialization strategy. This is due
to Mehrotra, and the form described here is the same as implemented in ECOS
[16] and CVXOPT [7]. We refer to this as Mehrotra’s initialization strategy, in
which the initial points are selected by solving the least-norm problem

minimize cTx+
1

2
‖s‖22

subject to Ax = b,

Gx+ s = h,

with solution x̂, ŝ, and the least-norm problem

maximize −hT z − bT y − 1

2
‖z‖22 ,

subject to AT y +GT z + c = 0,

with solution ŷ, and ẑ, and adding a multiple of a vector ι to both ŝ and ẑ
so that s0 = ŝ + αsι ∈ intK and z0 = ẑ + αzι ∈ intK?. The initial point is
x0 = x̂, y0 = ŷ, s0, z0, τ0 = 1, and κ0 = 1. The least-norm problems can be
readily solved by one linear system. The selection of the αs and αz is done as
follows: first the smallest α̂s such that s0 + α̂s ∈ K is found, then αs = α̂s + 1.
The same is done to find αz.

10.2.3 Stopping criteria

The termination criteria for ECOS-Exp are designed to detect when the solver
has reached an optimal point or has generated a certificate of primal or dual
unboundedness. We have observed that it is not uncommon for problems defined
in terms of exponential cones to have solutions with large norms. Therefore we
have adapted the termination criteria of ECOS.

When an iterate is identified as optimal, the vectors x, y, s, z are divided by
τ to form the solution. Therefore, the solution returned to the user has residuals

92 10. Extending ECOS to solve problems with the exponential cone

norms

rx =
‖AT y +GT z + τc‖

τ
,

ry =
‖Ax− τb‖

τ
,

rz =
‖Gx+ s− τh‖

τ
.

(10.14)

Since, under floating-point arithmetic, we can only guarantee small residuals
with respect to the size of the inputs, we must normalize the residuals by some
measure of A,G, b, c, h and x, y, s, z. ECOS-Exp achieves this by computing the
scaled residual norms

r̂x =
‖AT y +GT z + τc‖

τ max(‖c‖+ ‖y‖+ ‖z‖, 1)
,

r̂y =
‖Ax− τb‖

τ max(‖b‖+ ‖x‖, 1)
,

r̂z =
‖Gx+ s− τh‖

τ max(‖x‖+ ‖s‖+ ‖h‖, 1)
.

(10.15)

It declares an iterate feasible with respect to the linear constraints when rx ≤ εf ,
and max(r̂y, r̂z) ≤ εf . An iterate is declared optimal if it is linear feasible (in
the above sense) and if the gap sT z ≤ εabs, or if the gap satisfies the bound

sT z/max
(
|cT x|
τ , |b

T y+hT z|
τ

)
≤ εrel. In the definition of these stopping criteria,

there is an implicit assumption that the matrices A,G are of moderate norm.
In practice a scaling procedure applied to A and G before solving.

An approximate certificate of primal unboundedness is found when the equa-
tions Ax = 0, Gx + s = 0 are approximately satisfied and cTx is sufficiently
negative. On the other hand a certificate of primal or dual unboundedness
is found when the equations AT y + GT z = 0 are approximately satisfied and
−bT y−hT z is sufficiently positive. To this end ECOS-Exp calculates the set of
scaled residual norms

hrx =
‖AT y +GT z‖

max(‖y‖+ ‖z‖, 1)
,

hry =
‖Ax‖

max(‖x‖, 1)
,

hrz =
‖Gx+ s‖

max(‖x‖+ ‖s‖, 1)
,

(10.16)

and declares a problem unbounded if it is not optimal, cTx/‖x‖ ≤ −εa, and
max(hry, hrz)/(‖y‖ + ‖z‖) ≥ εf . It declares the problem dual unbounded (in-
feasible) when it is not optimal, hrx ≤ εf , and −bT y − hT z > εa.

10.3 Empirical evaluation of ECOS

In this section we document our numerical experiments using ECOS-Exp. We
first study the growth of the iteration count as the complexity of the problem

10. Extending ECOS to solve problems with the exponential cone 93

(defined by ν) increases. In section 10.3.1 we show that, for a set of random
problems, the increase in complexity causes a slow growth in iteration count.
In fact, the rate of increase in iteration counts is similar to that observed for
symmetric problems, and we confirm the same result for families of unbounded
and infeasible random problems.

We observe that for two versions of the same random problem —one formed
of symmetric cones and one formed of a mixture of symmetric an exponential
cones— the iteration count is larger for the problem that includes exponen-
tial cones. This is not surprising because the purely symmetric problem can
take advantage of the second-order path-following strategy and the Mehrotra
initialization scheme. We explore this issue further and modify the symmet-
ric version of ECOS to use the ι-initialization (see (10.2.2)) and disable the
second-order path-following scheme. We observe that (at least for this set of
random problems) the second-order approximation to the central path seems to
be the heuristic that most reduces the iteration count. As mentioned before we
were not able to extend this heuristic to the exponential cone case. However,
knowing that this can bring such benefits highlights the importance of defining
a generalization.

We are aware that random problems tend to be easy to solve. Therefore
in section 10.4 we test ECOS-Exp on a set of problems defined on data from
the LPnetlib library [14]. We extract 75 linear programming problems given
in the standard form: minimize cTx subject to Ax = b, 0 ≤ x, define the
negative-entropy problem

minimize
∑
i

xi log(xi)

subject to Ax = b,

(10.17)

and solve it using ECOS-Exp. This problem is ideally suited for the solver
PDCO [50] and for the exponential optimization solver of MOSEK [5]. We
solve each of these problems with them and compare the iteration counts.

Geometric programming problems are an important family of optimization
problems that can be modeled with the exponential cone. A public test set
is not available, however the authors of [51] shared with us the problems used
for the results in their paper. In section 10.5 we list the iterations required by
ECOS-Exp.

10.3.1 Growth in iteration count as a function of complex-
ity

We now describe the strategy used to explore the growth in iteration count as
the complexity of the problem increases. We wish to create a family of problems
with increasing complexity ν and increasing number of variables. Furthermore
for each ν and problem size we wish to generate two problems, one purely
symmetric and the other a mixture of symmetric and exponential cones. Our
strategy is the following: For each k = 1, . . . , kmax we determine the values

94 10. Extending ECOS to solve problems with the exponential cone

n = 12× k, m = n, p = floor(n/10). We set G = −In (the n× n identity) and
generate random sparse matrix A ∈ Rp×n. (The matrix A is generated using
the sprand command in MATLAB with sparsity parameter 0.5.)

The problems are fully determined by specifying the values of c, b and h and
the sizes of the cones. To generate pairs of problems with the same complexity,
for each k we generate symmetric problems with 6 × k linearly constrained
variables and 2 × k SOCP cones of dimension 3 each. This yields a problem
of complexity ν = 8 × k on n = m = 12 × k conically constrained variables.
The mixed symmetric-exponential problems are formed by 2 × k SOCP cones
of dimension 3 and two exponential cones, yielding a complexity of ν = 8 × k,
and again n = m = 12× k conically constrained variables.

To generate primal-dual feasible problems we use the following strategy.
Once the sizes of the cones have been determined, we generate the random
vector z0 strictly in the dual cone and s0 strictly in the primal cone. We also
generate random normal vector y0. We then let b ← Ax0, h ← Gx0 + s0 and
c ← −AT y0 − GT z0. That way we know that the feasible set contains at least
the strictly feasible point x0, y0, z0, s0 and therefore the problem is solvable.

For each value of k, 10 random problem pairs are generated; one purely
symmetric and solved with ECOS and one containing both symmetric and ex-
ponential constraints and solved by ECOS-Exp. The iteration count over these
10 problems is averaged to yield the values reported in this experiment. ECOS
is used to solve each instance of the purely symmetric problem 4 times: Once
with the Mehrotra initialization strategy and second-order path following (this
is the default in ECOS), a second time with ι-initialization and second-order
path-following, a third time with Mehrotra initialization and first-order path-
following, and a fourth time with ι-initialization and first-order path-following.

The first experiment compares ECOS (second-order path-following and Mehro-
tra initialization) with ECOS-Exp. Figure 10.1 shows the average iteration
count for each complexity value ν. The iteration count of ECOS-Exp is larger
than that of ECOS however, for this range of complexities the growth rates of
both iteration counts seems to be similar. In Figure 10.2 we plot log10 of the
series, and observe that the growth rate of the log series seems to be close to
linear or possibly sublinear. Importantly, the sequences for ECOS and ECOS-
Exp seem to grow at similar rates. For these random problems both ECOS and
ECOS-Exp seem to increase their iteration count close to logarithmically in the
complexity of the problem.

We are interested in why ECOS solves in less iterations than ECOS-Exp. We
hypothesize that both the Mehrotra initialization strategy and the second-order
path-following play a part. To explore this issue further we modify ECOS to be
able to initialize it with the ι-initialization strategy.

Figure 10.3 extends Figure 10.1 and incorporates a new series with the av-
erage iteration count for ECOS when initialized with the ι vector. We observe
that the average iteration count is very similar to the version with Mehrotra
initialization. If anything, the ι-initialization seems to slightly reduce the av-
erage number of iterations. We do not claim that the ι-initialization strategy
is superior, as this set of problems is randomly generated and likely to be well

10. Extending ECOS to solve problems with the exponential cone 95

Figure 10.1: Average iteration count versus complexity. ECOS with second-
order path-following and Mehrotra initialization vs ECOS-Exp.

scaled. However, this experiment indicates that the difference between ECOS
and ECOS-Exp cannot be explained by the difference in initialization strategy.

In the third experiment we disable the second-order path-following of ECOS
and plot the average iteration count when ECOS is initialized with the ι-
initialization strategy and with Mehrotra’s strategy. Disabling the second-order
path-following amounts to setting the term T (∆s,∆z) to zero in the second
equation of (10.11), and modifying the third to τ∆κ + κ∆τ = −τκ + σµ. Be-
cause ECOS-Exp uses second-order path-following for the symmetric variables
we plot two series for ECOS-Exp: one with second-order path-following and
one without. In Figure 10.4 we observe that disabling the second-order path-
following from ECOS increases the average iteration count enough to surpass
ECOS-Exp by a large margin, even when the second-order path-following is
disabled for ECOS-Exp. This seems to indicate that the second-order path is
responsible for the smaller iteration count that ECOS achieves. It also seems
to indicate, though we have not confirmed it, that for first-order path-following
methods, maintaining the iterates close to the central path can be beneficial.

10.3.2 Detection of unbounded problems

We repeat the first experiment of the previous section but generate problems
we know are primal unbounded. The problems have the same size as those

96 10. Extending ECOS to solve problems with the exponential cone

Figure 10.2: log10 of average iteration count versus complexity. ECOS with
second-order path-following and Mehrotra initialization vs ECOS-Exp

in the previous section. ECOS is set to solve with second-order path-following
and Mehrotra’s initialization, while ECOS-Exp uses ι-initialization with second-
order path-following for the symmetric cones.

To generate unbounded problems we generate a feasible problem as in the
previous experiment, and then change the sign of c. This yields an unbounded
problem with very high probability. To be certain, we check the exit conditions
of ECOS and ECOS-Exp. If the problem is not unbounded we discard the
problem and generate a new one. In Figure 10.5 we observe the same behavior
we observed for solvable problems. The iteration count for ECOS-Exp is larger
than that of ECOS, but the growth in iteration counts is very similar.

10.3.3 Detection of infeasible problems

We repeat the experiment, this time generating dual unbounded (primal in-
feasible) problems. The sizes and complexities are equal to the previous two
experiments. To generate primal infeasible problems we use the following strat-
egy: After generating matrices A and G (with the same scheme as described for
the feasible problem) we generate random normal x0 ∈ Rn, yres ∈ Rm−1 and
random s0 and z0 strictly feasible with respect to the primal and dual cones.
We then calculate d = AT (:, 1 : end − 1)yres + GT z0, and form the new ma-
trix ÂT = [AT d] and vector ŷres = [yres ;−1]. By construction the equation
ÂT ŷres +GT z0 = 0 holds. We then generate random normal vectors b and h. If
−bT ŷres − hT z0 < 0 we multiply b and h by −1. This strategy yields a problem

10. Extending ECOS to solve problems with the exponential cone 97

Figure 10.3: Average iteration count versus complexity for ECOS (with second-
order path-following and Mehrotra initialization, with second-order path-
following and ι-initialization) and ECOS-Exp

for which the vectors yres , z0 are a certificate of dual unboundedness and there-
fore the problems are infeasible. The vector c is then generated by choosing
another random normal y0 and setting c← −ÂT y0 −GT z0. This yields a dual
feasible and unbounded problem.

In Figure 10.6 we observe, the same behavior as for solvable and unbounded
problems. The iteration count of ECOS-Exp is larger than ECOS, but with
similar growth rate.

10.4 Negative entropy problems

We generate test problems by using the linear systems A, b from the LPnetlib
[14] collection and form the problem

minimize
∑
i

xi log(xi)

subject to Ax = b.

(10.18)

These problems can be solved by PDCO and MOSEK. This allows us to compare
the iteration counts for the three solvers.

PDCO and ECOS-Exp can be sensitive to the scaling of the problem data,
and the systems from the LPnetlib library can be badly scaled. Therefore, we
modify the problem by using a pair of diagonal scaling matrices R,C calculated

98 10. Extending ECOS to solve problems with the exponential cone

Figure 10.4: Average iteration count versus complexity for ECOS (with first-
order path-following, Mehrotra initialization, with first-order path-following and
ι-initialization) and ECOS-Exp (with first-order path-following for the symmet-
ric variables and second-order path-following for the symmetric variables)

from the geometric mean scaling heuristic implemented in the MATLAB code
gmscale.m [19, 50], and instead solve the equivalent problem

minimize
∑
i

c−1
i x̄i log(c−1

i x̄i) subject to Āx̄ = b̄, (10.19)

where Ā = R−1AC−1, b̄ = R−1b, and Cx = x̄ and we expect Ā and b̄ to be
better scaled. Because the geometric mean scaling heuristic finds scalings for
the rows and columns of a matrix and we wish to scale the right-hand side b,
we used the heuristic on the matrix [A, b]. This produces a diagonal matrix
C of size n + 1 and a diagonal matrix R of size p (here A is p × n). For this
experiment we discarded the last entry of C to produce a scaling matrix C of
the correct size.

For this experiment the three solvers were set to solve to the same precision:
10−7 for the linear residuals and 10−7 for the complementarity. The stopping
criteria of the three solvers is slightly different and therefore these three are
not identical. PDCO has the capacity to use an estimate of the norm of the
solution to re-scale the problem. When such an estimate is known this feature
can greatly improve its behavior. In these tests we do not use PDCO’s scaling
feature because we try to give ECOS-Exp and PDCO identically scaled data.
On the other hand, we have very little insight into the heuristics MOSEK uses
and have no knowledge of the presolve techniques or their effect.

10. Extending ECOS to solve problems with the exponential cone 99

Figure 10.5: Average iteration count versus complexity. ECOS and ECOS-Exp,
unbounded problems

In Table 10.1 we highlight some problems that proved difficult for ECOS-
Exp. Problem lp agg was declared infeasible by ECOS-Exp, yet we know that
the original LP is feasible and therefore so is the negative entropy problem.
This seems to be a relatively hard problem because neither PDCO nor MOSEK
manages to solve it. The sequence of osa problems were solved to a moderate
precision, but the precision was not high enough for the solution to be declared
close to optimal, and instead ECOS-Exp indicated a failure. PDCO was also
unable to solve these problems, while MOSEK indicates the problems were
solved with linear residuals two orders of magnitude smaller than those of ECOS-
Exp, but still far from the requested precision. It is very likely that the norm of
the solution is large and the normalized residuals are in fact acceptably small.

We explore the above phenomenon further by extracting the convergence
history of ECOS-Exp for a particularly complicated problem. We use the neg-
ative entropy problem generated with A, b from lp agg as an example. Even
though we know the problem is feasible, ECOS-Exp reaches its limit of itera-
tions and concludes that the problem is close to infeasible. We know that one
of τ or κ will tend to zero upon convergence, but it is possible that initially
both variables become very small, one dominating the other only at the later
stages of the solution. This is the signature of an almost infeasible or almost
unbounded problem.

For the problem in question, the norms of the iterates at the solution are
‖x‖ ≈ 108, ‖y‖ ≈ 109, ‖s‖ ≈ 108, ‖z‖ ≈ 107. Figure 10.7 plots the norm
of the linear residuals ry = ‖Ax− τb‖2, rx =

∥∥AT y +GT z + τc
∥∥

2
and rz =

100 10. Extending ECOS to solve problems with the exponential cone

Figure 10.6: Average iteration count versus complexity. ECOS and ECOS-Exp,
infeasible problems

‖Gx+ s− τh‖2 as a function of the iteration count. We observe initial rapid
convergence followed by stalled progress. Figure 10.8 shows the iteration history
of τ and κ. We observe that both become small quickly and only at the very
late stages of the solve does κ become significantly smaller than τ .

To declare a problem feasible, ECOS-Exp evaluates the residual norms di-
vided by τ and scaled by some function of the norm of the iterates (see (10.16)
). In this case the stopping criterion depends on residuals that are close to

1
τ max(‖x‖+‖s‖,1) ≈ 10−2 times the ones plotted. And therefore r̂y ≈ 10−4.

To declare a problem infeasible the residual ĥrx =
‖AT y+GT z‖

2

max(‖y‖+‖z‖,1) of (10.16)

must be small. This residual is independent of the value of τ and κ. Figure 10.9

Table 10.1: Problems where ECOS-Exp was unable to achieve the requested
precision

Name ECOS-Exp PDCO MOSEK

Iter Flag Lin res Iter Flag Lin res Iiter Flag Lin res

lp agg 300 CPi 2.3e-02 135 Fail 1.2e+07 1 Fail 1.53+10
lp d2q06c 300 CO 1.2e-04 300 Fail 1.2e+04 46 Opt 1.14-02
lp osa 07 300 Fail 1.4e-04 300 Fail 8.2e+03 59 Opt 1.78-06
lp osa 14 300 Fail 2.3e-03 36 Fail 7.1e+05 117 Opt 2.30-04
lp osa 30 300 Fail 1.4e-02 35 Fail 2.6e+06 114 Opt 8.83-04
lp osa 60 300 Fail 1.2e-01 35 Fail 7.8e+06 100 Opt 3.60-03

10. Extending ECOS to solve problems with the exponential cone 101

Figure 10.7: Convergence history of the linear residuals for problem lp agg

shows the norm of the unscaled homogeneous residuals (without the denomina-
tor of the definition of hrx). For this problem the norm of hrx will converge to
close to 10−13.

We can dramatically improve the behavior of ECOS-Exp for this problem
by re-scaling the data A,G, c, b, h with scalars γx = 102, γy = 103, γτ = 10−5

and forming Â = γxγyA, Ĝ = γxG, ĉ = γxγτ c ĥ = γτh, b̂ = γyγτ b. This yields
the alternative and equivalent conic problem with solution x̂ = γτ

γx
x?, ŷ = γτ

γy
y?,

ŝ = γτs
?, ẑ = γτz

?, where the variables x?, y?, s?, z? correspond to the solution
of the unscaled problem. For this re-scaled problem ECOS-Exp identifies an
optimal solution in 68 iterations. Figure 10.11 shows the iteration history of
τ̂ and κ̂, where we observe that for the re-scaled problem only κ̂ tends to zero
while τ̂ stays well away from it. Figure 10.10 shows the norm of the unscaled
residuals r̂x, r̂y, r̂z for the re-scaled problem and we observe the expected fast
convergence of a Newton method.

Table 10.2 lists the set of problems where ECOS-Exp detected an infeasible
solution. For some of these PDCO failed to converge; for some others both
MOSEK and PDCO failed to converge. However, for all problems the linear
residuals achieved by both PDCO and MOSEK are large. For example the set
of klein problems are identified as optimal by MOSEK but the linear residuals
at the solution are of order 106 to 108. Again different stopping criteria between
ECOS-Exp and MOSEK can explain this difference.

In Table 10.3 we include the iteration counts, status flags, and linear residuals
for the three solvers. This table is summarized in the performance profile of
Figure 10.12. We use an example to interpret the performance profile: The

102 10. Extending ECOS to solve problems with the exponential cone

Figure 10.8: Convergence history of the homogeneous variables τ and κ for lp
agg

vertical line at ordinate 10 intersects the line for ECOS-Exp close to 0.75. This
means that for 75% of the problems ECOS-Exp took less than 10 times as many
iterations to solve the problem than the best solver for each problem.

The performance profile shows that MOSEK is the best solver on all the
problems (in terms of iteration counts). However, there is a factor that has to
be considered: MOSEK incorporates heuristics that we do not have access to,
therefore we are comparing ECOS-Exp against a method that potentially uses
a pre-solver and some other well tuned and tested scaling strategy.

Name ECOS-Exp PDCO MOSEK

Iter Flag Lin res Iter Flag Lin res Iiter Flag Lin res

lp 25fv47 56 Opt 2.4e-07 42 Opt 2.4e-08 22 Opt 3.92e-11
lp adlittle 28 Opt 5.5e-10 32 Opt 8.7e-09 9 Opt 2.09e-06
lp afiro 30 Opt 1.4e-11 25 Opt 1.1e-09 12 Opt 8.76e-12
lp agg 300 CPi 2.3e-02 135 Fail 1.2e+07 1 Fail 1.53e+10
lp agg2 93 Opt 1.9e-08 300 Fail 2.6e+06 16 Opt 7.54e-03
lp agg3 117 Opt 1.1e-08 154 Fail 2.7e+06 15 Opt 6.02e-02
lp bandm 40 Opt 1.3e-06 55 Opt 7.2e-09 17 Opt 9.42e-06
lp beaconfd 38 Opt 1.7e-09 166 Fail 5.0e+03 12 Opt 2.54e-06
lp blend 32 Opt 3.8e-09 35 Opt 1.9e-10 15 Opt 1.90e-14
lp bnl1 258 Opt 7.6e-07 75 Opt 1.1e-06 61 Opt 3.63e-03
lp bnl2 102 Opt 1.2e-06 74 Opt 1.5e-06 109 Opt 1.11e-04
lp brandy 48 Opt 1.4e-07 49 Opt 1.2e-07 16 Opt 7.91e-11
lp cre a 77 Opt 6.8e-05 50 Opt 4.6e-07 25 Opt 1.10e-10

10. Extending ECOS to solve problems with the exponential cone 103

lp cre b 188 Opt 3.1e-05 63 Opt 9.5e-07 24 Opt 1.52e-10
lp cre c 96 Opt 2.8e-05 57 Opt 8.3e-07 35 Opt 7.33e-11
lp cre d 181 Opt 7.7e-05 72 Opt 1.6e-06 69 Opt 3.16e-11
lp d2q06c 300 CO 1.2e-04 300 Fail 1.2e+04 46 Opt 1.14e-02
lp degen2 61 Opt 1.6e-07 43 Opt 1.3e-07 17 Opt 1.13e-10
lp degen3 111 Opt 6.8e-07 45 Opt 3.9e-07 25 Opt 9.11e-09
lp e226 46 Opt 5.3e-07 44 Opt 1.0e-08 15 Opt 1.45e-12
lp fffff800 112 Opt 2.2e-03 300 Fail 3.2e+05 29 Opt 3.16e+01
lp israel 58 Opt 1.1e-06 252 Fail 7.9e+05 22 Opt 2.50e+02
lp lotfi 35 Opt 8.9e-10 37 Opt 2.1e-06 13 Opt 2.39e-05
lp maros r7 36 Opt 1.5e-10 45 Opt 6.5e-07 19 Opt 6.69e-09
lp modszk1 81 Opt 7.5e-11 101 Fail 2.5e+05 21 Opt 1.01e-09
lp osa 07 300 Fail 1.4e-04 300 Fail 8.2e+03 59 Opt 1.78e-06
lp osa 14 300 Fail 2.3e-03 36 Fail 7.1e+05 117 Opt 2.38e-04
lp osa 30 300 Fail 1.4e-02 35 Fail 2.6e+06 114 Opt 8.83e-04
lp osa 60 300 Fail 1.2e-01 35 Fail 7.8e+06 100 Opt 3.60e-03
lp qap12 13 Opt 1.2e-08 6 Opt 7.8e-11 8 Opt 9.89e-11
lp qap15 14 Opt 3.1e-10 6 Opt 1.2e-10 7 Opt 1.21e-10
lp qap8 14 Opt 7.1e-09 6 Opt 3.3e-11 7 Opt 4.27e-10
lp sc105 26 Opt 1.0e-09 29 Opt 2.3e-09 13 Opt 3.98e-13
lp sc205 29 Opt 2.2e-09 39 Opt 2.0e-09 14 Opt 4.82e-13
lp sc50a 26 Opt 8.8e-10 28 Opt 3.0e-09 11 Opt 3.08e-13
lp sc50b 29 Opt 1.9e-09 33 Opt 1.5e-09 11 Opt 6.83e-13
lp scagr25 29 Opt 1.0e-11 41 Opt 5.6e-08 13 Opt 7.693-03
lp scagr7 28 Opt 6.5e-12 36 Opt 3.5e-08 16 Opt 1.13e-10
lp scfxm1 85 Opt 5.7e-07 300 Fail 1.0e+03 22 Opt 2.16e-04
lp scfxm2 84 Opt 5.1e-07 239 Fail 1.5e+03 24 Opt 8.19e-05
lp scfxm3 85 Opt 3.4e-07 257 Fail 1.9e+03 24 Opt 3.80e-03
lp scorpion 43 Opt 1.3e-07 42 Opt 2.1e-08 11 Opt 4.27e-15
lp scrs8 66 Opt 5.8e-07 50 Opt 6.1e-08 18 Opt 1.84e-03
lp scsd1 16 Opt 3.1e-11 13 Opt 1.2e-12 5 Opt 7.36e-12
lp scsd6 17 Opt 3.3e-12 14 Opt 1.5e-11 5 Opt 6.32e-10
lp scsd8 38 Opt 5.8e-12 20 Opt 6.9e-10 9 Opt 5.25e-14
lp sctap1 38 Opt 1.7e-07 36 Opt 3.4e-09 400 Fail 9.09e-13
lp sctap2 41 Opt 5.0e-08 34 Opt 4.0e-09 16 Opt 5.29e-13
lp sctap3 50 Opt 9.4e-09 35 Opt 7.9e-09 279 Opt 5.92e-13
lp share1b 48 Pi 1.0e+00 227 Fail 5.8e+03 1 Fail 3.42e+06
lp share2b 22 Opt 2.0e-08 32 Opt 3.0e-08 19 Opt 6.53e-11
lp ship04l 54 Opt 8.5e-08 45 Opt 3.9e-08 11 Opt 2.07e-08
lp ship04s 48 Opt 8.1e-08 52 Opt 9.5e-09 11 Opt 7.35e-09
lp ship08l 97 Opt 7.9e-07 49 Opt 3.9e-08 16 Opt 1.58e-09
lp ship08s 71 Opt 8.0e-07 47 Opt 2.7e-08 13 Opt 2.48e-09
lp ship12l 91 Opt 3.9e-07 49 Opt 4.7e-08 15 Opt 6.51e-10
lp ship12s 70 Opt 4.1e-07 47 Opt 1.9e-08 14 Opt 1.08e-11
lp stocfor1 26 Opt 4.3e-09 33 Opt 8.1e-09 13 Opt 1.42e-07
lp stocfor2 48 Opt 1.9e-07 52 Opt 1.1e-07 24 Opt 1.89e-05
lp stocfor3 88 Opt 1.0e-06 69 Opt 9.3e-07 32 Opt 1.55e-06
lp truss 73 Opt 5.6e-09 28 Opt 1.4e-08 12 Opt 5.41e-13
lp wood1p 147 Opt 3.8e-06 56 Opt 2.0e-05 24 Opt 3.95e-12
lp woodw 112 Opt 1.3e-04 57 Opt 1.6e-05 18 Opt 2.45e-07

104 10. Extending ECOS to solve problems with the exponential cone

lpi bgindy 13 Pi 3.7e-02 113 Opt 6.1e+04 14 Opt 1.22e+08
lpi bgprtr 13 Pi 1.2e+01 69 Opt 4.0e+03 10 Opt 4.71e+08
lpi ceria3d 25 Pi 5.3e-03 300 Fail 6.2e+00 0 Opt 1.37e+04
lpi gosh 141 Pi 4.7e-02 300 Fail 3.6e+02 400 Fail 1.47e+04
lpi itest2 10 Pi 4.2e-03 300 Fail 3.5e+00 8 Opt 2.68e+01
lpi itest6 10 Pi 3.2e-01 20 Fail 3.4e+05 10 Opt 2.34e+08
lpi klein1 30 Pi 5.0e-01 300 Fail 4.7e+00 21 Opt 9.77e+06
lpi klein2 32 Pi 7.9e+00 300 Fail 9.9e+02 33 Opt 9.69e+06
lpi klein3 41 Pi 1.4e+01 300 Fail 2.0e+03 54 Opt 8.59e+06

Table 10.3: Iteration counts, result status, and linear residuals for
ECOS-Exp, PDCO, and Mosek

10.5 Geometric programming problems

To conclude Table (10.4) lists the iteration count and resulting flag that ECOS-
Exp returns when solving a set of geometric programming problems. These
were provided by Erling Andersen and used by Ye and Skajaa in [51]. The
transformation into a conic programming problem yields the number of linear
constraints in the column denoted Lin, the number of exponential cones in the
column Exp, and the total number of conically constrained variables in Conic
vars. The column Flag indicates the status of the solver at the solution, where
Opt indicates an optimal point was detected, Pi that the primal is infeasible,
and CO that the desired precision was not achieved but to a lower precision the
problem seems to be Optimal. The requested accuracy was 10−7 for the linear
residuals and a complementarity measure of less than 10−8.

10. Extending ECOS to solve problems with the exponential cone 105

Table 10.2: Negative entropy problems where ECOS-Exp found a certificate of
infeasibility

Name ECOS-Exp PDCO MOSEK

Iter Flag Lin res Iter Flag Lin res Iter Flag Lin res

lp share1b 48 Pi 1.0e+00 227 Fail 5.8e+03 1 Fail 3.42e+06
lpi bgindy 13 Pi 3.7e-02 113 Opt 6.1e+04 14 Opt 1.22e+08
lpi bgprtr 13 Pi 1.2e+01 69 Opt 4.0e+03 10 Opt 4.71e+08
lpi ceria3d 25 Pi 5.3e-03 300 Fail 6.2e+00 0 Opt 1.30e+03
lpi gosh 141 Pi 4.7e-02 300 Fail 3.6e+02 400 Fail 1.47e+04
lpi itest2 10 Pi 4.2e-03 300 Fail 3.5e+00 8 Opt 2.68e+02
lpi itest6 10 Pi 3.2e-01 20 Fail 3.4e+05 10 Opt 2.34e+08
lpi klein1 30 Pi 5.0e-01 300 Fail 4.7e+00 21 Opt 9.77e+06
lpi klein2 32 Pi 7.9e+00 300 Fail 9.9e+02 33 Opt 9.69e+06
lpi klein3 41 Pi 1.4e+01 300 Fail 2.0e+03 54 Opt 8.59e+06

Table 10.4: Iteration counts, result status and problem size for a set of Geometric
programming problems

Problem name Iteration count Flag Lin Exp Conic vars

beck751 36 Opt 4 18 58
beck752 32 Opt 4 18 58
beck753 33 Opt 4 18 58
bss2 17 Opt 1 4 13
car 35 Opt 19 142 445
demb761 300 CO 3 31 96
demb762 34 Opt 3 31 96
demb763 32 Opt 3 31 96
demb781 15 Opt 1 4 13
fang88 32 Opt 3 28 87
fiac81a 64 Pi 36 73 255
fiac81b 41 Pi 7 20 67
gptest 30 Opt 2 6 20
jha88 65 Pi 40 305 955
mra01 72 Opt 83 906 2801
mra02 127 Opt 245 3621 11108
rijc781 30 Opt 2 6 20
rijc782 26 Opt 1 9 28
rijc783 15 Pi 1 12 37
rijc784 146 Pi 3 8 27
rijc785 19 Opt 7 12 43
rijc786 20 Opt 7 12 43
rijc787 81 Opt 7 48 151

106 10. Extending ECOS to solve problems with the exponential cone

Figure 10.9: Convergence history of the homogeneous residuals for lp agg

Figure 10.10: Convergence history of the linear residuals for problem lp agg
after re-scaling

10. Extending ECOS to solve problems with the exponential cone 107

Figure 10.11: Convergence history of the homogeneous variables τ and κ for lp
agg after re-scaling

Figure 10.12: Perfomance profile for iteration count of ECOS-Exp, PDCO and
MOSEK over the 72 negative-entropy problems

Chapter 11

Conclusions and future
directions

We have derived a variant of the primal-dual interior methods for the full ho-
mogeneous embedding that can be used whenever a cheaply computable self-
concordant barrier for an unsymmetric cone is available. This method solves
systems of size comparable to the Nesterov-Todd methods for primal-dual sym-
metric cone programming. We have also derived a version for the simplified
homogeneous embedding and shown that the functional centrality measure de-
fined by Nesterov can be used to define a region where the Hessian of the primal
barrier evaluated at the primal iterate serves to define primal-dual search di-
rections, thus maintaining the size of the systems comparable to the symmetric
versions of these algorithms. These algorithms achieve the theoretical state of
the art complexity of O(

√
ν).

The robustness of our implementation of a Mehrotra predictor-corrector like
algorithm for the exponential cone, in the extension of ECOS to support Carte-
sian products of symmetric cones with exponential cones, shows that these ideas
are not only of theoretical use but also of practical importance.

11.1 Contributions

11.1.1 Predictor-corrector algorithms with small Newton
systems

The algorithms of Chapters 6 and 7 are new variants for the family of primal-
dual conic programming algorithms. Similar primal-dual potential reduction
algorithms exist: by Skajaa and Ye [51], Nesterov and Nemirovski [43], Ye[55],
and more. Our variants differ by the measure of centrality, the selection of
directions, or the choice of homogeneous embedding. As far as we know, no
algorithm for the full homogeneous embedding has been published that uses the
search directions we defined. And no algorithm for the simplified homogeneous

108

11. Conclusions and future directions 109

embedding uses the centrality measure we chose. For these reasons we can count
these algorithms as an original contribution.

11.1.2 The conjugate pair of functions

As far as we know, the conjugate pair of the barrier for the exponential cone
from [12] defined in (8) has not been published before and we consider this a
contribution of the present work. Since the definition of the centrality measure
used in ECOS-Exp depends on it, the discovery of this function and the fact
that it is computable are of practical importance.

11.1.3 Proofs and alternative interpretations

Although the results were already known, we derived a new proof for a key result
to show that the potential reduction algorithm for general conic programming
achieves the state of the art complexity of O(

√
ν). The proof for the complexity

bound of (5) of section 5.3, Theorem (5.3.4).

The interpretation of the search directions of (6.1) as the Newton direction
of a quadratic approximation to the conjugate barrier, as described in Section
(6.1), is also a minor contribution.

11.1.4 Extension of ECOS

Finally, for showing that a Mehrotra predictor-corrector type algorithm is prac-
tical for unsymmetric cone problems, the extension of ECOS into ECOS-Exp
amounts to another contribution. Furthermore, during the development of
ECOS-Exp we had to extend the definition of the identity vectors used for
symmetric cone programming. We believe that the ι vector used to initialize
the exponential cone — see section 10.2.2— is a contribution in itself. In par-
ticular it is a natural way to generalize the derivation of the identity vector of
a Jordan algebra into the unsymmetric exponential cone.

11.2 Future work

Of the many avenues that are left to explore, generalizing Nesterov-Todd scaling
points to unsymmetric cones seems the most important. We know that these
scaling points do not exist, but it is not inconceivable that a weaker version can
be defined. For example it is possible that for some conjugate pairs of barriers
and for any pair of primal dual feasible points x, s there exists a ŵ such that
H(ŵ)x = s but that H(ŵ)g(s) = g(x) does not hold, or otherwise that the
second equation holds while the first does not. Given such a point, it is feasible
to solve for the Newton direction of a modified Newton problem like that of
section 6.1, using one factorization and two different right-hand sides. This
could yield methods for which no centrality condition has to be enforced!

110 11. Conclusions and future directions

11.2.1 Conjugate pairs of barriers for other cones

Defining an algorithm that requires a conjugate pair of barriers limits its ap-
plicability and the possibility of extending ECOS further. Power cones can be
used to represent a wide variety of problems. An efficient self-concordant barrier
was defined by [12]. It would be of great interest to derive its conjugate dual to
define an algorithm like ECOS-Exp that can also handle power cones.

11.2.2 An automatic scaling for the exponential cone

We have observed that the scaling of the solution is pretty critical, and that
when the solution norms are of moderate size the iteration count is greatly
reduced. We believe that implementing a strategy to rescale the problem as the
iterations proceed and the norm of the solution becomes apparent will have a
good impact on the practical performance of ECOS-Exp.

Bibliography

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathemat-
ical Programming, 95:3–51, 2001.

[2] F. Alizadeh and S. H. Schmieta. Optimization with semidefinite, quadratic
and linear constraints. Technical report, RUTCOR, Rutgers University,
1997.

[3] Farid Alizadeh, Jean-Pierre A. Haeberly, and Michael L. Overton. Primal-
dual interior-point methods for semidefinite programming: Convergence
rates, stability and numerical results. SIAM Journal on Optimization, 5:13–
51, 1994.

[4] Erling D. Andersen and Knud D. Andersen. The MOSEK interior point
optimizer for linear programming: An implementation of the homogeneous
algorithm. In Hans Frenk, Kees Roos, Tamas Terlaky, and Shuzhong Zhang,
editors, High Performance Optimization, volume 33 of Applied Optimiza-
tion, pages 197–232. Springer US, 2000.

[5] Erling D. Andersen and Yinyu Ye. A computational study of the homoge-
neous algorithm for large-scale convex optimization. Computational Opti-
mization and Applications, 10(3):243–269, 1998.

[6] Erling D. Andersen and Yinyu Ye. On a homogeneous algorithm for
the monotone complementarity problem. Mathematical Programming,
84(2):375–399, 1999.

[7] M. S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A python
package for convex optimization, version 1.1.5, 2012.

[8] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Op-
timization. SIAM, Philadelphia, 2001.

[9] Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear
Optimization. Springer, 2006.

[10] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Has-
sibi. A tutorial on geometric programming. Optimization and Engineering,
8(1):67–127, 2007.

111

112

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] Peter Rober Chares. Cones and Interior-Point Algorithms for Structured
Convex Optimization involving Powers and Exponentials. PhD thesis, Uni-
versité Catholique de Louvain, 2007.

[13] Robert M. Corless and D. J. Jeffrey. The Wright Omega function. In
Jacques Calmet, Belaid Benhamou, Olga Caprotti, Laurent Henocque, and
Volker Sorge, editors, Artificial Intelligence, Automated Reasoning, and
Symbolic Computation, volume 2385 of Lecture Notes in Computer Science,
pages 76–89. Springer, Berlin and Heidelberg, 2002.

[14] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software, 38(1), 2011.

[15] E. de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite pro-
gramming via a self-dual skew-symmetric embedding. Operations Research
Letters, 20(5):213–221, 1997.

[16] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference (ECC), pages 3071–3076, 2013.

[17] Alexander Domahidi. Methods and Tools for Embedded Optimization and
Control. PhD thesis, ETH Zurich, Switzerland, 2013.

[18] Mirjam Dür. Copositive programming a survey. In Moritz Diehl, Francois
Glineur, Elias Jarlebring, and Wim Michiels, editors, Recent Advances in
Optimization and its Applications in Engineering, pages 3–20. Springer
Berlin Heidelberg, 2010.

[19] Robert Fourer and Michael Saunders. Geometric-Mean Scaling. http:

//stanford.edu/group/SOL/software/pdco.

[20] Robert M. Freund. Polynomial-time algorithms for linear programming
based only on primal scaling and projected gradients of a potential function.
Mathematical Programming, 51(1-3):203–222, 1991.

[21] Donald Goldfarb, Shucheng Liu, and Siyun Wang. A logarithmic barrier
function algorithm for quadratically constrained convex quadratic program-
ming. SIAM Journal on Optimization, 1(2):252–267, 1991.

[22] Clovis C. Gonzaga. Path-following methods for linear programming. SIAM
Rev., 34(2):167–224, June 1992.

[23] Michael Charles Grant. Disciplined Convex Programming. PhD thesis,
Stanford University, 2005.

[24] Osman Güler. Barrier functions in interior point methods. Mathematics of
Operations Research, 21:860–885, 1996.

113

[25] Osman Gler and Yinyu Ye. Convergence behavior of interior-point algo-
rithms. Mathematical Programming, 60(1-3):215–228, 1993.

[26] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2nd edition, 2008.

[27] F. Jarre. On the convergence of the method of analytic centers when applied
to convex quadratic programs. Mathematical Programming, 49(1-3):341–
358, 1990.

[28] F. Jarre and M. A. Saunders. A practical interior-point method for convex
programming. SIAM Journal on Optimization, 5(1):149–171, 1995.

[29] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[30] Masakazu Kojima, Shinji Mizuno, and Akiko Yoshise. An O(
√
nL) iter-

ation potential reduction algorithm for linear complementarity problems.
Mathematical Programming, 50(1-3):331–342, 1991.

[31] Piers W. Lawrence, Robert M. Corless, and David J. Jeffrey. Algorithm
917: Complex double-precision evaluation of the Wright Ω function. ACM
Transactions on Mathematical Softwtware, 38(3):20:1–20:17, April 2012.

[32] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Herv Lebret.
Applications of second-order cone programming. Linear Algebra and its
Applications, 284(13):193–228, 1998. International Linear Algebra Society
(ILAS) Symposium on Fast Algorithms for Control, Signals and Image
Processing.

[33] Z-Q. Luo, J. F. Sturm, and S. Zhang. Conic convex programming and self-
dual embedding. Econometric Institute Research Papers EI 9815, Erasmus
University Rotterdam, Erasmus School of Economics (ESE), Econometric
Institute, 1998.

[34] Zhi-Quan Luo, Jos F. Sturm, and Shuzhong Zhang. Duality results for
conic convex programming. Technical report, Erasmus University, 1997.

[35] Nimrod Megiddo. Pathways to the optimal set in linear programming. In
Nimrod Megiddo, editor, Progress in Mathematical Programming, pages
131–158. Springer, New York, 1989.

[36] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[37] Renato D. C. Monteiro. Polynomial convergence of primal-dual algorithms
for semidefinite programming based on the Monteiro and Zhang family of
directions. SIAM Journal on Optimization, 8(3):797–812, 1998.

114

[38] Arkadi Nemirovski. Advances in convex optimization: Conic programming.
In Marta Sanz-Sol, Javier Soria, Juan L. Varona, and Joan Verdera, editors,
Proceedings of International Congress of Mathematicians, August 22–30,
2006 Madrid, volume 1, pages 413–444. European Mathematical Society
Publishing House, April 2007.

[39] Arkadi Nemirovski and Katya Scheinberg. Extension of Karmarkar’s algo-
rithm onto convex quadratically constrained quadratic problems. Mathe-
matical Programming, 72(3):273–289, 1996.

[40] Yurii Nesterov. Long-step strategies in interior-point primal-dual methods.
Mathematical Programming, 76(1):47–94, 1997.

[41] Yurii Nesterov. Introductory Lectures on Convex Optimization. A Basic
Course. Kluwer Academic Publishers, 2004.

[42] Yurii Nesterov. Towards nonsymmetric conic optimization. Core discussion
paper, Université Catholique de Louvain, 2006.

[43] Yurii Nesterov and Arkadi Nemirovski. Interior-Point Polynomial Algo-
rithms in Convex Programming. SIAM, Philadelphia, 1994.

[44] Yurii Nesterov and Michael. J. Todd. Self-scaled barriers and interior-point
methods for convex programming. Mathematics of Operations Research,
22(1):1–42, 1997.

[45] Yurii. Nesterov, Michael. J. Todd, and Yinyu. Ye. Infeasible-start primal-
dual methods and infeasibility detectors for nonlinear programming prob-
lems. Mathematical Programming, 84(2):227–267, 1999.

[46] Florian A. Potra and Rongqin Sheng. On homogeneous interrior-point algo-
rithms for semidefinite programming. Optimization Methods and Software,
9(1-3):161–184, 1998.

[47] James Renegar. A polynomial-time algorithm, based on Newton’s method,
for linear programming. Mathematical Programming, 40(1-3):59–93, 1988.

[48] James Renegar. A Mathematical View of Interior-Point Methods in Convex
Optimization. SIAM, Philadelphia, 2001.

[49] Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[50] Michael Saunders. PDCO: Primal-dual interior method for convex objec-
tives. http://stanford.edu/group/SOL/software/pdco.

[51] Anders Skajaa and Yinyu Ye. A homogeneous interior-point algorithm
for nonsymmetric convex conic optimization. Mathematical Programming,
pages 1–32, 2014.

115

[52] Jos F. Strum. Implementation of interior point methods for mixed semidef-
inite and second-order cone optimization problems. Technical report,
Tilburg University, The Netherlands, 2002.

[53] Xiaojie Xu, Pi-Fang Hung, and Yinyu Ye. A simplified homogeneous and
self-dual linear programming algorithm and its implementation. Annals of
Operations Research, 1996.

[54] Yinyu Ye. An O(n3L) potential reduction algorithm for linear program-
ming. Mathematical Programming, 50(1-3):239–258, 1991.

[55] Yinyu Ye. Interior-Point Algorithms: Theory and Practice. John Wiley &
Sons, New York, NY, 1997.

[56] Yinyu Ye, Michael J. Todd, and Shinji Mizuno. An O(
√
nL)-iteration

homogeneous and self-dual linear programming algorithm. Mathematics of
Operations Research, 19(1):53–67, 1994.

