
SIMULTANEOUS ANALYSIS AND DESIGN

IN PDE-CONSTRAINED OPTIMIZATION

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Youngsoo Choi

December 2012

 http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: http://purl.stanford.edu/yd710td7711

© 2012 by Young Soo Choi. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://purl.stanford.edu/yd710td7711

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Walter Murray, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Charbel Farhat

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Marco Pavone

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Saunders

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

New methods for solving certain types of PDE-constrained optimization problems are presented in

this thesis. The approach taken is to augment state-of-the-art PDE methods. The PDE variables

and the optimization variables are solved for simultaneously. This impacts the PDE method by

changing the core from solving a system of nonlinear equations to that of finding a nonlinear saddle

point. This in turn alters the character of the linear equations that are solved at each iteration.

In the problem we address, the objective function has to match a given target state. Both volume

and boundary controls are considered in order to match the target. Regularization is added to the

objective function to aid stability and to facilitate computing the solution of the linear systems that

arise within the algorithm. Solving such linear systems has been the focus of much research, with

many methods being proposed. How to do this simultaneously and efficiently for the specific systems

that arise in the PDE-constrained optimization problems of interest is the main focus of our work.

The new methods have been implemented by modifying the cutting-edge software AERO-S.

Numerical results are presented for a variety of problems including a flapping wing, a robotic control

problem, and a thermal control problem.

v

Acknowledgements

I am thankful to be thankful. There are many to whom I would like to express gratitude. First and

foremost, I am thankful to God for keeping me from going in a wrong direction and disciplining me

because He loves me so much. He has been my strength and protection. He also has provided me

with many good people who are essential for my life to flourish.

Professor Walter Murray is a wonderful person to have as my adviser. I am very fortunate to

have him not only because he is a distinguished scholar in numerical optimization, but also because

he is exceptionally friendly and supportive. Whenever I have come to see him in his home, I have

been treated as a family member.

Professor Michael Saunders is a great scholar in numerical linear algebra. He has been extremely

helpful. Whenever I had a question on numerical linear algebra, he did not hesitate to help me.

Plus, if it were not for his revisions, this thesis would not have been easy to read.

Professor Charbel Farhat is a passionate, intelligent, and distinguished scholar. I am grateful

that he allows me to work with other colleagues in his group and to use his cutting-edge code,

AERO-S. I am also looking forward to working with him in my postdoctoral career.

Professor Marco Pavone is an excellent scholar in control theory. He introduced me to the subject

of control theory and made me realize how powerful it is. I am looking forward to working with him

more in the future.

Without Dr. Philip Avery, it would have been impossible to generate the results I needed for

this thesis. He has been an essential help for my research. He taught me C++ and all the necessary

parts in AERO-S that I needed to know in order to implement a PDE-constrained optimization

routine. I am in debt to him in many ways.

Dr. Evelin Sullivan has corrected this thesis. She has transformed my thesis from a manuscript

that was full of grammatical errors to a marvelously readable manuscript. I am sure my writing

skills have tremendously improved (although they are far from perfect yet) because of the time we

spent together to go over my thesis.

Artist Helen Rose Baker is a good friend of mine whom I met when I came to America in 2001

for the first time. She became my friend when I did not have friends in the United States, and she

has been my friend and my mentor. She has even provided food when I was hungry.

vi

I am thankful to the following friends and colleagues for their friendship: Leonard Larry Majuri,

Rosaline Siu, Paula Akiya, Kelly Thomas, Robin Zuhlke, Jaehyoung Yoo; friends in ICME, Ko-

rean Christian Fellowship at Stanford, New Vision Church, Cornell University, Montgomery County

Community College, Ambler Mennonite Church, and SaRang Community Church.

My parents have been endless supporters since I was born. They have filled my life with encour-

aging words. My dad is my role model who teaches me the value of truth, justice, and honesty. My

mom provides limitless love, sacrifice, and patience. I learned all of these qualities from her.

My dear wife Giyoung Park has been continuously supportive no matter how hard circumstances

around her have been. She has provided mental as well as physical help with her sacrificial love.

Her presence gave love, peace, and comfort to me. Moreover, she has given me two lovely daughters,

Yejin and Yein, and raised them with care and love.

vii

Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 Thesis accomplishments and outline . 3

2 Partial differential equations 5

2.1 Linear static PDE . 6

2.1.1 Linear heat equation . 7

2.2 Static structural PDE . 10

2.3 Linear dynamic PDE . 13

2.3.1 Linear dynamic heat equation . 14

2.3.2 Linear structural dynamic PDE . 15

2.4 Nonlinear dynamic PDE . 17

2.5 Rotational Degrees of Freedom . 20

3 PDE-constrained optimization 22

3.1 Discretization of objective function for static problem 23

3.2 Linear static PDE-constrained optimal control . 24

3.3 Nonlinear static PDE-constrained optimal control . 26

3.4 Discretization of objective function for dynamic problem 27

3.5 Linear dynamic PDE-constrained optimal heat control 29

3.6 Linear dynamic PDE-constrained optimal structure control 30

3.7 Nonlinear dynamic PDE-constrained optimal control 32

4 Methods for PDE-constrained optimization 37

4.1 Nested analysis and design . 38

4.2 Simultaneous analysis and design . 40

viii

4.2.1 Reduced SAND . 41

4.2.2 Full SAND . 45

5 Iterative methods and preconditioners 46

5.1 Iterative methods . 46

5.1.1 Classical iterative methods and Jacobi scaling 47

5.1.2 GMRES . 48

5.2 Preconditioners . 53

5.2.1 Block diagonal . 53

5.2.2 Block lower triangular . 55

5.2.3 Range space . 56

5.2.4 Constraint preconditioner . 57

5.2.5 GMRES performance comparison . 58

5.2.6 An exact representation of a Schur complement 60

5.3 Multi-precondition . 61

5.3.1 Multi-preconditioned GMRES . 61

6 Global convergence of sequential quadratic programming 65

6.1 Linesearch . 65

6.1.1 Terminating criteria . 65

6.1.2 Merit functions . 67

7 Numerical experiments 69

7.1 Linear static PDE-constrained optimal control . 69

7.1.1 Linear static heat conduction with heat control 69

7.2 Nonlinear static PDE-constrained optimal control . 78

7.2.1 Large deflection of a plate . 78

7.3 Linear dynamic PDE-constrained optimal control . 83

7.3.1 A target cross on a heat plate . 83

7.4 Nonlinear dynamic PDE-constrained optimal control 88

7.4.1 Stabilizing inverted pendulum . 88

7.4.2 Five-link rigid biped control . 90

7.4.3 Nonlinear flapping wing . 93

8 Conclusion 98

8.1 Summary . 98

8.2 Future work . 99

ix

A Spectral analysis 100

A.1 Zero-regularization constraint preconditioner . 101

A.2 A variant of Biros-Ghattas constraint preconditioner 102

A.3 Block diagonal preconditioner . 103

A.4 Block triangular preconditioner . 107

x

List of Tables

5.1 Existing iterative algorithms since CG was created in 1952. 47

6.1 A list of a few representative merit functions . 68

7.1 Study of objective function values of example 1 with respect to various φ. }y� ȳ}{}ȳ}
measures the first part of objective function, }u} the second part. GMRES is used

with a convergence tolerance of 10�10. The mesh size h of 2�6 is used. The last

column, }b � Ax}{}b}, presents the residual norm of the KKT system of equations,

showing that the system has converged. } � } is `2 norm, A is the KKT matrix, and b

the corresponding right-hand side. 71

7.2 The numbers of iterations needed to converge are shown for various φ and precondi-

tioners. GMRES is used as a solver. nc means that GMRES has not converged within

100 restarts of 100 iterations. The mesh size is 2�6 and the convergence threshold is

10�10. 73

7.3 Computational times in seconds are shown for various φ and preconditioners. GMRES

is used as a solver. nc means that GMRES has not converged within 100 restarts of

100 iterations. The mesh size is 2�6 and the convergence threshold is 10�10. 73

7.4 The numbers of iterations to converge are shown for various φ and preconditioners.

GMRES is used as a solver. nc means that GMRES has not converged within 100

restarts of 100 iterations. The mesh size is 2�8 and the convergence threshold is 10�10. 74

7.5 Computational time in seconds are shown for various φ and preconditioners. GMRES

is used as a solver. nc means that GMRES has not converged within 100 restarts

of 100 iterations. The mesh size is 2�8 and the convergence threshold is 10�10. For

RSEfeti, the size of the subdomain is 2�2 and the number of processes is 16. 75

7.6 Number of FETI-DP iterations to convergence is shown for various φ. The mesh size

is 2�8 and the convergence threshold is 10�10. The size of the subdomain is 2�2 and

the number of processes is 16. 76

xi

7.7 The number of iterations to convergence are shown for various mesh sizes h and pre-

conditioners. The regularization parameter φ is 2� 10�8. The convergence threshold

is set to be 10�10. 76

7.8 Computational time in seconds are shown for various mesh sizes h and preconditioners.

The regularization parameter φ is 2 � 10�8. The convergence threshold is set to be

10�10. 76

7.9 The table shows how RSEfeti depends on the mesh size. The number of iterations

is shown for various mesh sizes h and for the various subdomain sizes H. The fixed

ratio H{h � 26 is used. The regularization parameter φ is 2� 10�8. The convergence

threshold is set to be 10�10. 77

7.10 The table shows how RSEfeti depends on the number of processes. The computational

time is shown for the various number of processes. The mesh size h � 1{1024 and the

subdomain size H � 1{16 are used. The regularization parameter φ is 2� 10�8. The

convergence threshold is set to be 10�10. 77

7.11 The table compares the total computational time in seconds and the number of it-

erations to converge of three different preconditioners for the first optimal control

problem of a nonlinear static plate. The regularization parameter of 10�20 and the

convergence threshold of 10�5 is used. For the number of iterations, the number

outside of parentheses is the number of major iterations and the inside is the total

number of minor iterations. 79

7.12 Comparison of the first part of the objective function values for all four cases con-

sidered in Section 7.2.1 in order to see how close optimal configurations are to the

target. 81

7.13 The table shows the scalability of the SAND method in a linear dynamic PDE-

constrained optimal control problem. GMRES is used as a Krylov iterative method.

The preconditioner is Pvbg. The convergence threshold is 10�10 and the regularization

parameter φ is 1. 87

7.14 The table shows the scalability of the SAND method in a linear dynamic PDE-

constrained optimal control problem. GMRES is used as a Krylov iterative method.

The preconditioner is Pvbg. The convergence threshold is 10�10 and the regularization

parameter φ is 1. 87

xii

List of Figures

2.1 The figure depicts the domain Ω and triangular discretization with nodes at each

vertex. 8

5.1 Left: eigenvalue distributions of two matrices in the complex plane. The red dots

have c{r ratio of 1.2 while the blue dots have c{r � 0.9. Right: GMRES performance

(e.g., relative residual) for two matrices from the left figure are shown. The red dots

correspond to the matrix whose eigenvalue distribution is represented by the red dots

in the left figure. 51

5.2 A study of c{r ratio versus the number of iterations in GMRES. 52

5.3 Comparison of the preconditioners introduced in this section. A KKT system of

equations is generated as explained in Example 1 with m � n � 200. (a) Left:

φ � 10�6. (b) Right: φ � 10�2. 59

5.4 Comparison of the preconditioners introduced in this section. A KKT system of

equations is generated as explained in example 1 with m � 100, n � 500. (a) Left:

φ � 10�6. (b) Right: φ � 10�2. 60

7.1 (a) Left: target temperature. Right: φ vs }y � ȳ}{}ȳ} 70

7.2 temperature and heat distribution for various regularization parameter 72

7.3 Left: initial configuration of a plate. Right: target configuration 78

7.4 Optimal solutions of the first problem. Left: the optimal translational force control.

Right: the optimal torque control . 79

7.5 Optimal solutions of the second and third problem. Left: the optimal translational

force control of the second problem. Right: the optimal traslational force control of

the third problem . 80

7.6 The optimal solutions of the fourth problem, in which only torque controls are allowed. 81

xiii

7.7 Convergence plots for all four problems. The absence of second-order derivatives of

nonlinear constraints results in a linear convergence rate. For the first problem, the

rate of convergence is less than 0.1. For the fourth problem the rate of convergence

is around 0.7. However, for the second and third problems, the rate of convergence is

close to one, which implies that it is almost sublinear. 82

7.8 The target temperature of the cross heat control problem. 83

7.9 A series of stick figures of optimal temperature solutions of the cross heating problem.

The regularization φ � 1 is used. The number below each figure indicates the passing

time in seconds. 84

7.10 A series of stick figures of optimal heat control of the cross heating problem. The

regularization φ � 1 is used. The number below each figure indicates the passing time

in seconds. 84

7.11 A series of stick figures of optimal temperature solutions of the cross heating problem.

The regularization φ � 0.1 is used. The number below each figure indicates the passing

time in seconds. 85

7.12 A series of stick figures of optimal heat control of the cross heating problem. The

regularization φ � 0.1 is used. The number below each figure indicates the passing

time in seconds. 85

7.13 A series of stick figures of optimal temperature solutions of the cross heating problem.

The regularization φ � 0.01 is used. The number below each figure indicates the

passing time in seconds. 86

7.14 A series of stick figures of optimal heat control of the cross heating problem. The

regularization φ � 0.01 is used. The number below each figure indicates the passing

time in seconds. 86

7.15 Left: a photo describing a finger that tries to balance a pencil. Right: an inverted

pendulum . 88

7.16 A series of stick figures of target (light gray) and optimal solutions of an inverted

pendulum are shown. The numbers below each stick figure indicate the corresponding

elapsed time in seconds. 89

7.17 Time history of control force at the bottom of the inverted pendulum 89

7.18 Target motion a series of stick figures of the target walk of a five-link biped 90

7.19 The first problem: only torque controls are allowed for each joint. A series of

stick figures of target in light blue and control solutions in black are shown. Arrows

indicate the torque vectors applied to joints. 91

7.20 The second problem: Torque controls at each joint and a translational force control

at the tip of a leg. A series of stick figures of the target in light blue and the control

solutions in black are shown. Arrows indicate the torque controls applied to joints. . 92

xiv

7.21 The second problem: Torque controls at each joint and a translational force control

at the tip of a leg. A series of stick figures of the target in light blue and the control

solutions in black are shown. Arrows indicate the translational force control applied

to a toe. 92

7.22 A picture of flapping wing . 93

7.23 Rotational displacements and applied force at the red dot in Figure 7.22 are depicted.

Top left: prescribed rotational displacement with blue dashed line and corresponding

optimal rotational displacement with thick black line. Top right: reaction torque

in the target with blue dashed line and optimal torque in the optimal solutions with

think black line. Bottom left: magnified prescribed rotational displacement at the

beginning of time. Bottom right: magnified applied torque at the beginning of time 95

7.24 Snapshots of target flapping motion. A series of snapshot figures of target states,

generated by applying prescribed rotational displacements as shown in the middle of

Figures 7.22 . 96

7.25 Snapshots of target and optimal solution motion. A series of snapshot figures

of target and optimal solutions. Targets are depicted with light gray and optimal

solution with black wire-frames. The arrow depicts the direction and magnitude of

applied torque as the optimal control solution. 97

A.1 The top two figures show the eigenvalue distributions in complex plane for three differ-

ent cases of block diagonal preconditioners considered in Appendix A.3. The bottom

two figures show the convergence of GMRES for block diagonal preconditioners. The

y-axis of the bottom figures is the relative residual and the x-axis is the number of

iterations. Left: for φ � 10�6. Right: for φ � 10�2 106

A.2 Eigenvalue distributions of the preconditioned system for case 3 and the non-preconditioned

system in the complex plane. 107

A.3 The contrived example with n � 200 and m � 100 for block diagonal precondition-

ers. Left: the convergence plot of GMRES for φ � 10�6. Right: the eigenvalue

distributions in the complex plane for case 4. 108

A.4 The top two figures show the eigenvalue distributions in the complex plane for three

different cases of block triangular preconditioners considered in Appendix A.4. The

bottom two figures show convergence plots of GMRES for block diagonal precondi-

tioners. Left: for φ � 10�6. Right: for φ � 10�2 111

A.5 The contrived example with n � 200 and m � 100 for block triangular precondi-

tioners. Left: the convergence of GMRES for φ � 10�6. Right: the eigenvalue

distributions in the complex plane for case 4 . 112

xv

xvi

Chapter 1

Introduction

Because of advances in computer technology and numerical methods, it is now possible to simulate

complicated physical models, predict their response, and use the results for further design. Many

physical laws are expressed in partial differential equations (PDEs). In thermodynamics, for example,

Newton’s law of cooling states that the rate of heat loss of a body is proportional to the temperature

difference between the body and its surroundings. Fourier’s law, which explains heat conduction, is

also expressed as a PDE. In electromagnetism, Maxwell’s equations consist of a set of PDEs. Laws

of chemistry, biological laws, geophysical laws, and law of conservations can also be expressed as

PDEs. In addition, PDEs can be used as mathematical models for a financial market. For example,

the Black-Scholes equation describes prices in the options market.

In spite of these broad applications of PDEs, if one wants to use them in a more practical way, it

is often necessary to use a mathematical optimization technique in which the PDE is a constraint.

PDE-constrained optimization tries to optimize some functional quantity of a system that is governed

by a PDE. Many applications of PDE-constrained optimization exist. Three representative examples

are inverse problems, shape optimization, and optimal controls. In inverse problems, one tries to

find properties of a physical system based on a given measurement. For example, the Mayo Clinic is

interested in finding properties of human arteries by examining the response of arteries to ultrasound

excitation and using those properties to diagnose arterial disease. This can be done by solving a

PDE-constrained optimization problem. In shape optimization, one tries to optimize some functional

quantity (e.g., drag or lift of a wing) by varying shape of an object (e.g., a wing or a car). In optimal

controls, one tries to find an optimal control of a system in order to achieve a goal. A goal may be

to match a target state or to optimize a physical quantity.

As a specific instance of PDE-constrained optimization, we focus on the PDE-constrained optimal

control problem. Optimal control is a powerful tool that can be used in a vast number of ways. In

engineering problems, for instance, one may want to control a system. For example, one may

want to control a car so that it reaches a destination either as fast as possible or with minimum

1

2 CHAPTER 1. INTRODUCTION

fuel consumption. Another famous example is the Space-Shuttle trajectory control. The space

mission is limited by fuel consumption. Thus, finding a minimum-fuel trajectory and corresponding

control for a spacecraft is important. Other examples are found in chemical process industries, such

as hydrocarbon fuels, chemical products, pulp and paper products, agrochemicals, and man-made

fibers. Controlling the process can optimize profits. Optimal control can also be used in traffic

control. One may want to control the traffic signals in a city in order to minimize the duration of

rush hour given a fixed amount of traffic. To summarize, applications of optimal control are varied

and important.

Optimal control problems with ordinary differential equations and constraints have a much longer

history than the multidimensional one. There are two ways of solving such optimal control problems.

The first one is an indirect method, in which the calculus of variations is used to form the first-order

optimality condition. One ends up solving a Hamiltonian dynamical system, which is a two-point

boundary value problem. A software package that implements the indirect method is BNDSCO [62].

However, the Hamiltonian system is often hard to solve. Advances in numerical optimization over

the past two decades have resulted in a direct method being the dominant approach. In direct

methods, states and controls as well as a cost functional are discretized with some approximated

functions (e.g., polynomials in the finite element method). Then the coefficients of approximated

functions are treated as optimization variables. The resultant problem becomes a DE-constrained

optimization (i.e., Differential Equation-constrained optimization). Direct methods are so popular

that a great deal of software has been developed. Programs written in Fortran are ASTOS [36],

DIRCOL [85], DITAN [84], OTIS [44], and SOCS [8]. Programs written in MATLAB include

DIDO [72], GPOPS [70], PROPT [73], and RIOTS [77]. Except for SOCS and RIOTS, all the

software mentioned above uses SNOPT [38] as a nonlinear programming (NLP) solver. PROPT is a

MATLAB optimal control routine that utilizes other NLP solvers, such as KNITRO, CONOPT [20],

and CPLEX. SOCS was developed by the Boeing company, which developed its own NLP solver.

In spite of the abundance of optimal control software that can solve a DE-constrained optimiza-

tion, further development in both numerical algorithms and software is required in order to perform

optimal control on more complicated physical systems, such as Navier-Stokes equations for fluid flow

and nonlinear elasticity for structure and solid mechanics. Sophisticated PDE solvers do exist, and

they can be used in developing a numerical method for PDE-constrained optimization. This thesis

focuses on developing and implementing an optimal control routine in the cutting-edge PDE solver

AERO-S [24]. AERO-S was first developed at the University of Colorado and is now maintained

and being further developed by the Farhat Research Group at Stanford University. AERO-S uses

the finite element method. The PDEs that AERO-S can solve include linear and nonlinear elasticity

equations, the Helmholtz equation, and the Laplace equation. AERO-S consists of many numerical

algorithms such as FETI (space-domain parallel decomposition algorithm), GNAT (nonlinear ROM

solver), and PITA (time-domain parallel decomposition algorithm). Many linear solvers, such as

1.1. THESIS ACCOMPLISHMENTS AND OUTLINE 3

MUMPS and SPOOLES, are available in AERO-S.

The simultaneous analysis and design (SAND) approach in solving a PDE-constrained optimiza-

tion problem can be adapted to a sophisticated numerical method for a PDE. The SAND method

is mainly studied in this thesis and implemented in AERO-S in order to take advantage of many of

the numerical methods available in AERO-S.

An efficient preconditioner is necessary for a SAND method to be successful. Many powerful

preconditioners have been developed in the literature. However, there has been no preconditioner

that improves as the value of the regularization parameter becomes smaller. This is undesirable

in some applications. For example, if one wants to control a robot that plays a violin, one needs

precise control of the robot’s arm movement. Another example is a robot operating on a human

patient. The precision of the robot’s motion directly affects the well-being of the patient. In these

applications, the smaller the value of a regularization parameter, the better the performance. In

this thesis, several novel preconditioners that work better for a smaller regularization parameter are

proposed and developed.

1.1 Thesis accomplishments and outline

The major contributions of this thesis are follows:

� Implemented PDE-constrained optimal control routines in AERO-S with four types of PDE

constraints.

� Integrated the generalized α method in SAND sequentially for a nonlinear dynamic PDE-

constrained optimization routine in AERO-S.

� Developed preconditioners that work well for a small regularization parameter.

� Introduced a “useful” exact representation of the Schur complement for a special type of KKT

systems and used FETI-DP in order to solve them.

This thesis considers PDEs that reflect thermal and structural systems. Chapter 2 describes and

derives four types among those partial differential equations (i.e., linear static, nonlinear static,

linear dynamic, and nonlinear dynamic PDEs). For the dynamic problems, time integrators are

explained. Chapter 3 formulates PDE-constrained optimal control problems in which the four types

of PDEs described in Chapter 2 are used as constraints. Chapter 4 briefly goes over methods for

PDE-constrained optimization (the nested analysis and design (NAND) method and the simultane-

ous analysis and design (SAND) method). Chapter 5 presents a Krylov iterative method (GMRES)

that is used in SAND and introduces a set of preconditioners that work well for a small regularization

parameter. Chapter 5 also describes an exact representation of the Schur complement for a special

type of KKT systems, which can be used as either a preconditioner in an iterative method or a

4 CHAPTER 1. INTRODUCTION

solver in the range-space method. Chapter 6 explains the linesearch method used to achieve global

convergence of sequential quadratic programming methods and several merit functions implemented

in the optimal control routine. Chapter 7 presents numerical results. The numerical results include

square heat plate static and dynamic controls, large deflection of a plate, balance of an inverted

pendulum, control of five-link rigid and flexible biped robots, and control of a flapping wing. Chap-

ter 8 provides a summary of this thesis and suggests directions for future research. Finally, spectral

analysis of the preconditioned systems with the preconditioners introduced in Chapter 5 is given in

Appendix A.

Chapter 2

Partial differential equations

Partial differential equations (PDEs) can be applied to many areas. Elasticity, plasticity, quantum

mechanics, fluid flow, electrodynamics, acoustics, and heat transfer are a few examples. Solving

PDEs means that one finds states (e.g., temperature, displacement, or velocity), given some bound-

ary conditions and internal and external loads (e.g., applied body or surface forces, gravity, or heat

source). There are four types of PDE:

� Linear Static

� Nonlinear Static

� Linear Dynamic

� Nonlinear Dynamic

Several numerical methods for solving these PDEs exist, among them the finite element (FE), the

finite volume (FV), the finite difference (FD), and the spectral method. The FE method is frequently

used in computational heat transfer, structural, and solid mechanics, in which a Lagrangian mesh

is convenient, while the FV and FD methods are popular in computational fluid analysis, in which

an Eulerian mesh is often adapted. In this thesis, only thermal and structural applications are

considered, so the finite element method is its focus. However, the numerical optimization methods

introduced for PDE-constrained optimization problems not are limited to the FE method. They can

be extended to other numerical PDE solving methods (e.g., FV or FD methods).

Two PDE formulations of solid mechanics are possible with the Lagrangian mesh: the total

Lagrangian formulation and the updated Lagrangian formulation. In the total Lagrangian formula-

tion, derivatives and integrals are taken with respect to the Lagrangian coordinates (fixed coordi-

nates), while the updated Lagrangian uses Eulerian coordinates (updated coordinates). The total

Lagrangian formulation uses fixed coordinates (e.g., initial configuration), whereas the updated La-

grangian formulation uses some reference coordinate, which is updated regularly. If the reference

5

6 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

coordinate is updated so that it coincides with the current configuration, this is called the Eulerian

formulation. Since the updated Lagrangian needs to update the coordinate, it seems to require more

work than the total Lagrangian. However, one may prefer to use the updated Lagrangian because

it can handle rotational degrees of freedom more easily than the total Lagrangian, in which some

difficulties may occur when the angle of rotation reaches 360 degrees. For this reason, one may use

a mixed formulation, in which translational degrees of freedom are treated in the total Lagrangian

formulation and rotational degrees of freedom are treated in an updated Lagrangian or Eulerian. In

this thesis, whenever rotational degrees of freedom are present (e.g., in the case of beam and shell

elements), the mixed formulation is adopted.

Dynamic PDEs, in general, require a time integrator, which makes the solution proceed from the

initial to the final time step. There are two kinds of time integrators: explicit and implicit. The

explicit time integrator uses only previous states in the PDE residual, so the update of the current

state is explicit and computationally cheap. On the other hand, in the implicit time integrator,

the update formula involves both current and previous states, so one needs to solve a system of

equations in order to proceed in time. Thus, it is computationally more expensive than the explicit

time integrator. However, in order to get stable and accurate enough solutions, an explicit scheme

requires much smaller time steps (and hence many more than an implicit one). An example of

an explicit scheme is the forward Euler method. Examples of implicit time integrators include the

backward Euler method, the midpoint rule, the generalized α method, and the composite rule. In

the numerical optimization methods developed in this thesis (i.e., the full SAND), all or some of the

temporal state variables are used as optimization variables. Thus it is important to have as small

a number of time steps as possible in order to prevent storage from being a problem. This is why

only implicit time integrators are used in this thesis.

For linear dynamic PDEs, the midpoint rule is sufficient to obtain stable, accurate solutions.

However, in nonlinear dynamic PDEs, the midpoint rule may result in an unstable solution. Thus,

more sophisticated time integrators need to be applied, such as generalized-α or composite rules

(e.g., the TRBDF2 method). In this thesis, only the generalized-α method is considered for nonlinear

dynamic PDE-constrained optimization. However, there is no reason the composite time integrators

would not work in optimization. The generalized-α method is explained in Sections 2.3 and 2.4 for

linear and nonlinear PDEs.

2.1 Linear static PDE

Linear static PDE may be applied to some problems in heat conduction. It also seems to solve

problems in the theory of linear elasticity in solid mechanics if small deformation is assumed as well

as many other problems. At its core, a system of linear equations needs to be solved in order to

2.1. LINEAR STATIC PDE 7

obtain the solution of discretized linear PDE, that is,

Ax � b.

In this section, a linear system of equations is derived to obtain a linear static heat equation. Specif-

ically, the finite element formulation is derived. Since many interesting and practical examples of

structural analysis are nonlinear, the formulation of a structural PDE is postponed until Section 2.2

where both linear and nonlinear formulations are presented. A more detailed derivation of an FE

formulation is found in the textbook by Hughes [48] or by Quarteroni [69]. The finite element for-

mulation can be derived through two consecutive procedures: first, converting a strong form of the

PDE to a variational form; second, approximating the variational form with finite element basis

functions.

2.1.1 Linear heat equation

The linear static heat equation is expressed as an elliptic PDE. Let Υ be a solution space. The

strong form of the PDE is defined to find temperature y P Υ in a domain Ω for a given heat source

u:

�∇ � pκ∇yq � u on Ω, (2.1)

subject to y � g on Γg and n �∇y � h on Γh, where Γg � Ω̄ and Γh � Ω̄ with Laplacian operator

∇2; κ is the conductivity matrix. The variational form (i.e., weak form) is obtained by introducing

a weighting function w P H1 that vanishes on Γg. H
1 denotes a Sobolev space, in which the first

derivative of a function is square integrable:»
Ω

}∇w}2dx 8. (2.2)

It is convenient to define a function space that w belongs to. For example, w P L � tvpxq|vpxq P
H1, vpxq � 0 for x P Γgu. Due to (2.1), and setting the conductivity matrix to identity, it is true

that

0 � �
»
Ω

wp∇2y � uqdx. (2.3)

Because w vanishes on Γg, integration by parts and the divergence theorem leads to a weak form,

0 �
»
Ω

p∇w �∇yqdx�
»
Ω

pwuqdx�
»
Γh

pwhqdx. (2.4)

The variable y is a solution to the weak form (2.4) if the weak form is satisfied for any w P L.

One can prove that a solution to the weak form is a solution to the strong form and vice versa [48].

One thing to note here is that both the test function w and the trial function y do not need to be

8 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

Figure 2.1: The figure depicts the domain Ω and triangular discretization with nodes at each vertex.

in H1 in order to have an integral in the weak form. They only need to be continuous (e.g., C0).

To get the strong form one can relax the condition on w and y of being in C0 by imposing the

additional continuous condition v∇yw � 0, where v�w denotes the jump function. The strong form

then becomes
�∇ � pκ∇yq � u on Ω,

v∇yw � 0 on Γi,
(2.5)

subject to y � g on Γg and n � ∇y � h on Γh, where Γi are the points of discontinuity. In order

to actually solve heat equation (2.1) numerically, the geometric domain needs to be discretized by

introducing nodes. The set of nodes is introduced in a conforming way, as depicted in Figure 2.1.

The finite element method replaces y and w with finite dimensional approximate functions yh and

wh. It is convenient to decompose yh into the homogeneous part vh P Lh and the Dirichlet part, gh

(i.e. yh � vh � gh). Lh is a finite dimensional function space that corresponds to the space L. That

is,

 Lh � tvhpxq|vhpxq P H1, vhpxiq � 0 for any node xi P Γgu. (2.6)

Note that yh satisfies the Dirichlet boundary conditions by construction. It is possible to express

wh, yh P Lh, and gh as a linear combination of some basis functions called shape functions.

whpxq �
¸

iPη�ηg
wiNipxq,

vhpxq �
¸

jPη�ηg
vjNjpxq,

ghpxq �
¸
jPηg

gjNjpxq,

(2.7)

2.1. LINEAR STATIC PDE 9

where Ni is the shape function associated with node i; wi and vj are some coefficients, η is a set of

all the nodes, and ηg is a set of nodes in Γg; w
h needs to satisfy the Dirichlet boundary condition

exactly on the nodes that belong to Γg. Each yj needs to be determined by satisfying the following

finite dimensional weak form for any wh P Lh:

0 �
»
Ω

p∇wh �∇pvh � ghqqdx�
»
Ω

pwhuqdx�
»
Γh

pwhhqdx. (2.8)

Plugging the wh, vh, and gh expressions into (2.7), the finite dimensional weak form (2.8) becomes

0 �
¸

iPη�ηg
wir

¸
jPη�ηg

vj

»
Ω

∇Nipxq �∇Njpxqdx

�
¸
kPηg

gk

»
Ω

∇Nipxq �∇Nkpxqdx

�
»
Ω

Nipxqudx�
»
Γh

Nipxqhdxs.

(2.9)

This needs to be satisfied for any wi. Equivalently, the parts in the square brackets need to sum up

to zero. That is,

¸
jPη�ηg

vj

»
Ω

∇Nipxq �∇Njpxqdx � �
¸
kPηg

gk

»
Ω

∇Nipxq �∇Nkpxqdx�
»
Ω

Nipxqudx�
»
Γh

Nipxqhdx.

(2.10)

for each i. Now, it is obvious that the finite element formulation for linear heat conduction ends

up with a system of linear equations, Kvh � b, where Kij �
³
Ω
∇Nipxq � ∇Njpxqdx and bi �

�°kPηg gk
³
Ω
∇Nipxq �∇Nkpxqdx�

³
Ω
Nipxqudx�

³
Γh
Nipxqhdx. K is called the stiffness matrix in

the finite element method. Although the functions u and h are known in the PDE solver, if they are

discretized with the same shape functions Njpxq (i.e. u � °
jPη�ηg ujNjpxq and h � °

kPηh hkNkpxq),
then bi can be decomposed into

bi � �
¸
kPηg

gk

»
Ω

∇Nipxq �∇Nkpxqdx�
»
Ω

Nipxqudx�
»
Γh

Nipxqhdx,

� �
¸
kPηg

gk

»
Ω

∇Nipxq �∇Nkpxqdx�
¸

jPη�ηg
uj

»
Ω

NipxqNjpxqdx�
¸
kPηh

hk

»
Γh

NipxqNkpxqdx,

� V uh �Kcy
h
c ,

(2.11)

where Vij �
³
Ω
NipxqNjpxq is a volume matrix and an element of Kc is determined by

pKcqik �
³

Ω
∇Nipxq �∇Nkpxqdx if k P ηg³

Ω
NipxqNkpxqdx if k P ηh

, (2.12)

10 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

and similarly an element of yhc is determined by

pyhc qk �
#
gk if k P ηg
hk if k P ηh

. (2.13)

Finally, the discretized linear static heat PDE becomes Kvh � V uh �Kcy
h
c . When implementing

finite element code, one can also consider a nodal heat source instead of the distributed heat source

uh. This can be accomplished by setting the nodal heat source variable fh � V uh. Then the system

of equations for linear static PDE becomes Kvh � fh �Kcy
h
c .

2.2 Static structural PDE

Both linear and nonlinear static structural problems can be explained within continuum mechanics.

An important partial differential equation one needs to deal with in continuum mechanics is the

equilibrium equation. It is convenient to express the PDE in indicial notation (or Einstein notation)

due to the presence of fourth-order tensors in constitutive laws and the partial derivatives of second-

order tensors. In indicial notation, yi represents partial derivative with respect to the i-th component

of the coordinate. If the index is repeated twice, then this indicates summation on that index. For

example, yiwi means
°
i yiwi and σij,j means

°
j σij,j , etc. In indicial notation, a strong form in

continuum mechanics consists of an equilibrium equation,

σij,j � bi � 0, (2.14)

subject to displacement boundary condition yi � di on Γdi and traction boundary condition njσij �
ti on Γti , where σij is the pi,jq component of the stress tensor. The σij,j term is a partial derivative

with respect to the j-th component of the coordinate, and bi is i-th component of the body force.

As in the linear heat equation (2.1.1), the weak form of (2.14) can be obtained by multiplying 2.1.1

by the test function w and integrating over the domain, that is,»
Ω

wipσij,j � biqdx. (2.15)

Integration by parts and the divergence theorem leads to the weak form,

»
Ω

wi,jσijdx�
»
Ω

wibidx�
nsḑ

j�1

»
Γtj

tiwidx � 0, (2.16)

where nsd is the number of space dimensions (i.e., nsd � 2 for 2D and 3 for 3D). The boundary

integrals over Γdis vanish because test function w is zero on the displacement boundary. In order to

make sense out of the integrals in weak form (2.16), σij needs to be C�1 and w P C0, where C�1

2.2. STATIC STRUCTURAL PDE 11

denotes a set of piecewise continuous functions. For example, if f P C�1 in 1D, then

» b
a

f,xpxqdx � fpbq � fpaq �
¸
i

vfpxiqw.

If f P C�1 is in 2D or in 3D, then the discontinuity is assumed to occur along a line or surface,

respectively. If σij P C0 and C�1 P C0, then the strong form corresponding to the weak form

(2.16) is identical to the strong form (2.14) with an extra boundary condition, that is, the traction

continuity condition,

vnjσijw � 0 on Γint, (2.17)

where Γint is the union of all surfaces (or lines in 2D) on which the stresses are discontinuous in the

domain. As for the linear heat equation (2.1.1), the finite element method uses spatial discretiza-

tion of the domain by introducing nodes and elements. Then test function w and displacement y

are approximated as linear combinations of basis functions called shape functions, introducing finite

variables wh and yh. It is convenient to decompose displacement vector yh into displacement bound-

ary parts dh and non-boundary parts vh (i.e. yh � vh � dh). Then wh, vh, and dh are expressed as

whiIpxq � wiINIpxq,
vhiIpxq � viINIpxq,
dhiIpxq � diINIpxq,

(2.18)

where index i is the degree of freedom number and I the global node number. The global node

number I for w and v belongs to η � ηdi , where η is a set of all the nodes and ηdi a set of nodes

in Γdi . The global node number I for d is restricted to ηdi . Substituting (2.18) into the weak form

(2.16), the discretized weak form becomes

whiI

�»
Ω

NI,jσijpyhqdx�
»
Ω

NIbidx�
nsḑ

j�1

»
Γtj

tiNIdx

�
� 0. (2.19)

The discretized weak form needs to be satisfied for any whiI , and ends up being

»
Ω

NI,jσijpyhqdx�
»
Ω

NIbidx�
nsḑ

j�1

»
Γtj

tiNIdx � 0, (2.20)

for any I P η�ηdi . The weak form in (2.19) can be thought of as a virtual work where whiI is virtual

displacement and rest of the terms are force. Thus, internal force fint and external force fext can

12 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

be defined as

f intiI pvh,dhq �
»
Ω

NI,jσijpyhqdx,

fextiI �
»
Ω

NIbidx�
nsḑ

j�1

»
Γtj

tiNIdx.
(2.21)

Then the discretized equilibrium for static continuum mechanics reduces to fintpyhq � fext. The

external force fext consists of two parts, namely, the body force part fbody and the traction bound-

ary parts ftraction. The body force part fbody can be expressed as fbody � V bh, where Vij �³
Ω
NipxqNjpxq is a volume matrix and bh is a finite element approximation of b, that is, bhiIpxq �

biINIpxq. The internal force can be divided into two parts since yh � vh � dh. The notation

fintpvh,dhq is used to emphasize that internal force depends on discretized displacement vh and dh.

Whether the PDE (2.14) is linear or nonlinear is determined by a strain-displacement relation and a

constitutive law that defines the relation between stress tensor and deformation gradient (or strain

tensor). Let x denote a point in the current configuration and X a corresponding point in the initial

configuration. The deformation gradient is then defined to be Fij � Bxi
BXj . Note that the current and

initial points are related to displacement as xi � Xi � yi. Thus the deformation gradient is directly

related to the displacement gradient as follows:

Fij � BXi

BXj
� Byi
BXj

,

� δij � Byi
BXj

,

(2.22)

where δij is the Kronecker delta. There are two kinds of strain tensor: infinitesimal strain (or the

Cauchy strain tensor) for small deformation and finite strain (or a large strain tensor) for large

deformation. The Cauchy strain tensor is defined as

εij � 1

2
pui,j � uj,iq, (2.23)

which can be rewritten in terms of deformation gradient as ε � 1
2 pFT �F q�I due to relation (2.22).

One of the large strain tensors, the Green-Lagrangian strain tensor E, is defined as

E � 1

2
pFTF � Iq, (2.24)

which can be rewritten in terms of displacement Eij � 1
2 pyi,j � yj,i � yk,iyk,jq due to the relation

(2.22); yk,iyk,j represents summation on index k. Likewise, there are stress measures for infinitesimal

and large deformation. For infinitesimal deformation, the Cauchy stress ε defines three orthogonal

normal stresses and six orthogonal shear stresses relative to the current configuration, which can

be expresses as a second-order tensor. On the other hand, one of the stress measures for large

deformation, the second Piola-Kirchhoff stress tensor S, relates forces in the reference configuration

2.3. LINEAR DYNAMIC PDE 13

to area in the reference configuration, which is expressed as

S � JF�1 � σ � F�T , (2.25)

where J � detF is the determinant of the deformation gradient. In general, stress tensors σ or S

are expressed as a function of the deformation gradient F and F ’s rates in a constitutive law, that

is,

σptq � fpF pt̄q, 9F pt̄q, etc., t̄ ¤ tq, (2.26)

where the stress tensor may depend on the history of deformation in time. For example, the gen-

eralized Hooke’s law defines the linear constitutive law between Cauchy stress σ and Cauchy strain

tensor ε,

σij � cijklεkl, (2.27)

where cijkl are some elastic coefficients. Therefore, Hooke’s law is only valid for small deformation.

For large deformation, the simplest hyper-elastic material model, the Saint Venant-Kirchhoff model

relates the second Piola-Kirchhoff (PK2) stress tensor S to the Green-Lagrangian strain tensor E

as

S � λ trpEqI � 2µE, (2.28)

where λ and µ are lame constants and I the identity matrix. Thus, internal force fint is linear in

displacement if the generalized Hooke’s law is used and is nonlinear if, for example, the Saint Venant-

Kirchhoff model is used. In conclusion, the discretized equilibrium equation of a static structural

PDE can be expressed as

fintpvh,dhq � V bh � ftraction. (2.29)

For more detailed formulation of linear elasticity finite element models, the textbook by [48] is

recommended. For nonlinear formulation, the textbook by Belytschko, Liu, and Moran [6] is an

excellent source.

2.3 Linear dynamic PDE

In this section, linear thermal and structural dynamic formulation is considered. The midpoint rule

is an unconditionally stable implicit time integrator for a linear dynamic problem. Thus, it is enough

to consider only midpoint rules for both thermal and structural linear dynamic problems.

14 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

2.3.1 Linear dynamic heat equation

The linear dynamic heat equation is expressed as a parabolic PDE,

Bd
Bt �∇2d � F ptq, (2.30)

where d is temperature and F ptq internal heat source. The corresponding finite element discretization

is

Mv �Kd � F, (2.31)

where M and K are the mass and stiffness matrix, respectively, and d and F are temperature and

applied heat source, respectively; v is the first temporal derivative, that is, v � 9d. The midpoint

rule for the linear heat transfer starts by setting the initial states,

d0 � d,

v0 �M�1pF p0q �Kdq,
(2.32)

where F p0q is the initial external heat source. The midpoint rule for the heat transfer problem

satisfies the following equilibrium equation at midpoint:

F ptn� 1
2
q �Mvn� 1

2
�Kdn� 1

2
. (2.33)

The update rule for the midpoint rule is,

dn�1 � dn � ∆t

2
pvn � vn�1q. (2.34)

The midpoint states are linearly interpolated between two end points as

dn� 1
2
� 1

2
pdn�1 � dnq,

vn� 1
2
� 1

2
pvn�1 � vnq,

tn� 1
2
� 1

2
ptn�1 � tnq,

(2.35)

in which dn and vn are displacement and velocity at time tn, respectively; n � 0,1, . . . ,N � 1 where

N is the number of time steps and ∆t is the time step. Using (2.34) and (2.35), the first temporal

derivate midpoint can be expressed in terms of midpoint and current temperature,

vn� 1
2
� 2

∆t
pdn� 1

2
� dnq. (2.36)

2.3. LINEAR DYNAMIC PDE 15

Substituting these into (2.33) leads to

F ptn� 1
2
q � 2

∆t
Mpdn� 1

2
� dnq �Kdn� 1

2
. (2.37)

Combining dn� 1
2

terms in one side and multiplying ∆t
2 both sides give

K̄dn� 1
2
� ∆t

2
F ptn� 1

2
q �Mdn, (2.38)

where K̄ �M � ∆t
2 K. Once dn� 1

2
is obtained by solving (2.38), dn�1 and vn�1 are updated to

dn�1 � 2dn� 1
2
� dn

vn�1 � 1

∆t
pdn�1 � dnq.

(2.39)

It is possible to obtain a compact form, in which no intermediate states are shown. For example,

�
K̄ 0

0 K̄

��
dn�1

vn�1

�
�
�
∆tFn� 1

2

2Fn� 1
2

�
�
�
M � ∆t

2 K 0

�2K �K̄

��
dn

vn

�
. (2.40)

This compact form will be used in the linear heat transfer dynamic optimal control problem. Setting

external force terms in the compact form (2.40), to zero, it can be written as Xn�1 � AhXn, where

the amplification matrix Ah is defined as

Ah �
�
K̄ 0

0 1
∆tK̄

��1 �
M � ∆t

2 K 0

�2K � 1
∆tK̄

�
, (2.41)

and Xn � pdn, ∆tvnqT . The amplification matrix Ah is used to study the accuracy of the time

integrator. The stability and numerical dissipation depends on the eigenvalues of Ah. Thus it is

important to study the behavior of Ah.

2.3.2 Linear structural dynamic PDE

The discretized equilibrium equation for linear structural dynamic is

Ma� Cv �Kd � F, (2.42)

where M , C, and K are mass, damping, and stiffness matrix, respectively; d, v, a, and F are

displacement, velocity, acceleration, and external force, respectively. The midpoint rule for a linear

16 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

structural dynamic problem starts with initial states,

d0 � d

v0 � v,
(2.43)

where F p0q is an external force at initial time and d and v are given initial conditions. The midpoint

rule satisfies the following equilibrium equation at midpoints:

Man� 1
2
� Cvn� 1

2
�Kdn� 1

2
� F ptn� 1

2
q, (2.44)

an� 1
2
, an� 1

2
, and dn� 1

2
are the acceleration, velocity, and displacement at the midpoint. The mid-

point rule determines those midpoint states (i.e. an� 1
2
, vn� 1

2
, and dn� 1

2
) by linear interpolation

between two end states. For example,

dn� 1
2
� 1

2
pdn�1 � dnq

vn� 1
2
� 1

2
pvn�1 � vnq

an� 1
2
� 1

2
pan�1 � anq

tn� 1
2
� 1

2
ptn�1 � tnq.

(2.45)

The update formula from tn to tn�1 is identical to the Newmark method, that is,

dn�1 � dn �∆tvn � ∆t2

4
pan � an�1q

vn�1 � vn � ∆t

2
pan � an�1q.

(2.46)

Using (2.45) and (2.46), it is possible to express an� 1
2

and vn� 1
2

in terms of only midpoint displace-

ment and previous states (e.g., dn� 1
2
, dn, vn, and an). For example,

an� 1
2
� 4

∆t2
rdn� 1

2
� dns � 2

∆t
vn

vn� 1
2
� 2

∆t
rdn� 1

2
� dns.

(2.47)

Substituting these expressions for the equilibrium (2.44), the equilibrium equation is expressed

without intermediate velocities and accelerations and only in terms of intermediate displacement

and previous states.

M

�
4

∆t2
rdn� 1

2
� dns � 2

∆t
vn

� C

�
2

∆t
rdn� 1

2
� dns

�Kdn� 1

2
� F ptn� 1

2
q � 0. (2.48)

2.4. NONLINEAR DYNAMIC PDE 17

Combining dn� 1
2

terms on one side and multiplying both sides by ∆t2

4 , 2.48 becomes

K̂dn� 1
2
� K̃dn � ∆t

2
Mvn � ∆t2

4
F ptn� 1

2
q, (2.49)

where

K̃ �M � ∆t

2
C

K̂ � K̃ � ∆t2

4
K.

(2.50)

Once dn� 1
2

is obtained by solving (2.49) then vn� 1
2

is updated as

vn� 1
2
� 2

∆t
rdn� 1

2
� dns, (2.51)

and dn�1 and vn�1 are updated as

dn�1 � 2dn� 1
2
� dn

vn�1 � 2vn� 1
2
� vn,

(2.52)

It is possible to obtain a compact form of the midpoint rule for the linear structural dynamic as in

the linear thermal dynamic problem. That is,

�
K̂ 0

0 K̂

��
dn�1

vn�1

�
�
�
∆t2

2 Fn� 1
2

∆tFn� 1
2

�
�
�
K̃ � ∆t2

4 K ∆tM

�∆tK 2M � K̂

��
dn

vn

�
. (2.53)

This compact form will be used as a linear structure dynamic optimal control formulation below.

Setting external force terms in the compact form (2.53) to zero, it can be written as Xn�1 � AsXn,

where the amplification matrix As is defined as

As �
�
K̂ 0

0 1
∆tK̂

��1 �
K̃ � ∆t2

4 K M

�∆tK 2
∆tM � 1

∆tK̂

�
, (2.54)

and Xn � pdn, ∆tvnqT . The amplification matrix As is used to study the accuracy of the time

integrator. Since the stability and numerical dissipation depends on the eigenvalues of As, it is

important to study the behavior of As.

2.4 Nonlinear dynamic PDE

Many interesting simulations are described by ”nonlinear dynamic PDEs,” which can handle large

deformation and transient analysis. Nonlinear dynamic PDEs are the most complicated one among

four PDE types simply because they have to deal with both space and time domains as well as

18 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

nonlinearity. The main issue here is the time integrator and how it deals with nonlinearity. There

are two main types of time integrators: the generalized alpha method and the composite rule (e.g.,

the TRPDF2). The generalized alpha method is explained here since it is chosen to be used in the

PDE-constrained optimization routine. However, the choice was completely arbitrary. In the future,

it would be interesting to study how the PDE-constrained optimization routine performs with the

TRPDF2. One attractive feature of the generalized alpha method is that the midpoint rule, which

is described in the linear dynamic PDE Section 2.3, is a particular case.

The generalized alpha method was first introduced by Chung and Hulbert in their 1993 paper[16].

It starts with computing initial states with given initial displacement, d0, and velocity, v0.

d0 � d0

v0 � v0

a0 �M�1rF p0q � Cv � fintpd0qs,
(2.55)

where M and C are the mass and damping matrix, respectively. F p0q is external force at initial

time, and fintpdq is an internal force corresponding to a displacement d. The generalized alpha

method satisfies the following equilibrium equation:

Man�1�αm � Cvn�1�αf � fintpdn�1�αf q � F ptn�1�αf q, (2.56)

where an�1�αm is an acceleration at time tn�1�αm and vn�1�αf is interpreted similarly. The gener-

alized alpha method determines intermediate states (i.e., an�1�αm , vn�1�αf , and dn�1�αf) by linear

interpolation between two end states. For example,

dn�1�αf � p1� αf qdn�1 � αfdn

vn�1�αf � p1� αf qvn�1 � αfvn

an�1�αm � p1� αmqan�1 � αman

tn�1�αf � p1� αf qtn�1 � αf tn.

(2.57)

The update formula from tn to tn�1 is identical to the Newmark method, that is,

dn�1 � dn �∆tvn �∆t2
�
p1

2
� βqan � βan�1

�

vn�1 � vn �∆trp1� γqan � γan�1s.
(2.58)

Using (2.57) and (2.58), it is possible to express an�1�αm and vn�1�αf in terms of only intermediate

2.4. NONLINEAR DYNAMIC PDE 19

displacement and previous states (e.g., dn�1�αf , dn, vn, and an). For example,

an�1�αm � p1� αmq
∆t2βp1� αf q rdn�1�αf � dns � p1� αmq

∆tβ
vn �

� pαm � 1q
2β

� 1

�
an

vn�1�αf �
γ

∆tβ
rdn�1�αf � dns �

�
1� γp1� αf q

β

�
vn � p1� αf q∆tp2β � γq

2β
an.

(2.59)

Substituting these for the equilibrium (2.56), the equilibrium equation is expressed without inter-

mediate velocities and accelerations and only in terms of intermediate displacement and previous

states.

M

� p1� αmq
∆t2βp1� αf q rdn�1�αf � dns � p1� αmq

∆tβ
vn �

� pαm � 1q
2β

� 1

�
an

�C
�

γ

∆tβ
rdn�1�αf � dns �

�
1� γp1� αf q

β

�
vn � p1� αf q∆tp2β � γq

2β
an

�fintpdn�1�αf q � F ptn�1�αf q � 0.

(2.60)

Applying Newton’s method in order to find dn�1�αf that satisfies (2.60) at the i-th Newton’s iter-

ation, the following linearized equation needs to be solved in order to obtain the i-th incremental

step, δdin�1�αf ,

Ki
eδd

i
n�1�αf � ∆t2βrF ptn�1�αf q � fintpdin�1�αf qs �Kapdin�1�αf � dnq

� r∆tp1� αmqM �∆t2pβ � p1� αf qγqCsvn

�
�
∆t2

�
1� αm

2
� β

M �∆t3

p1� αf qp2β � γq
2

C

�
an,

(2.61)

where

Ka �
�

1� αm
1� αf

M �∆tγC

�

Ki
e � Ka �∆t2βKi

n�1�αf ,
(2.62)

and the tangential stiffness matrix Ki
n�1�αf is the Jacobian of fint at din�1�αf . Once δdin�1�αf is

obtained, di�1
n�1�αf is updated to

di�1
n�1�αf � din�1�αf � δdin�1�αf . (2.63)

At the end of Newton’s method, if everything goes well, it returns dn�1�αf that satisfies (2.60).

Then, vn�1�αf are updated as

vn�1�αf �
γ

∆tβ
rdn�1�αf � dns �

�
1� p1� αf qγ

β

vn �∆t

p1� αf qp2β � γq
2β

an, (2.64)

20 CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS

and dn�1, vn�1, and an�1 are updated as

dn�1 � 1

p1� αf q rdn�1�αf � αfdns

vn�1 � 1

p1� αf q rvn�1�αf � αfvns

an�1 � dn�1 � dn
∆t2β

� vn
∆β

� 2β � 1

2β
an.

(2.65)

Chung and Hulbert recommended how to set generalized alpha parameters, αf , αm, β, and γ. Let

ρ8 be a user-defined spectral radius in a high frequency limit with a value between 1 and 0.5. Then

the generalized alpha parameters are set as

αf � ρ8
ρ8 � 1

αm � 2ρ8 � 1

ρ8 � 1

β � 1

4
p1� αf � αmq2

γ � 1

2
� αf � αm.

(2.66)

If more numerical dissipation is desired, then a smaller ρ8 value must be used. The midpoint rule

is realized when ρ8 � 1.0.

2.5 Rotational Degrees of Freedom

For some structural elements, such as beam and shell elements, rotational as well as translational

degrees of freedom are present. Rotational degrees of freedom are handled with a rotation matrix.

The rotation matrix R is characterized by two properties,

detpRq � 1,

RTR � I,
(2.67)

where the second property states that it is an orthogonal matrix. Every rotation Rpq,θq is defined

by an axis (e.g., vector q) and angle (e.g., scalar θ) of rotation. If one applies a rotation matrix R

to an axis q, then Ru � u must be true, which is equivalent to saying q is an eigenvector of R with

eigenvalue 1. The angle is determined by taking a vector p that is perpendicular to q and measuring

the angle between p and Rp. Because only the direction of q (i.e., the direction of the axis of rotation)

is important, one may make a compact expression of rotation by setting the magnitude of q equal to

θ (i.e. }q} � θ). Then one can denote the rotation matrix to be Rpqq. It is clear now that one must

multiply two rotation matrices in order to update a state of rotation. This implies that special care

2.5. ROTATIONAL DEGREES OF FREEDOM 21

must be taken whenever rotational degrees of freedom need to be updated via addition of a rotation.

For example, update rule (2.63) within a Newton iteration should be modified for rotational degrees

of freedom. If one wants to update a rotation Rpqin�1�αf q by adding Rpδqin�1�αf q, this is done

by multiplication Rpδqin�1�αf qRpqin�1�αf q. Another place in the generalized alpha method where

attention needs to be paid to summation is in the definition of intermediate states (2.57). There,

the sum of two rotational degrees of freedom must be taken as

Rpqn�1�αq � Rpp1� αf qqn�1qRpαfqnq. (2.68)

Note that αfqn does not change the axis of rotation but only the angle of rotation. It is convenient

to consider the increment whenever two rotational degrees of freedoms need to be subtracted. For

example, update formula (2.58) for displacement can be expressed as

∆qn � ∆tvn �∆t2
�
p1

2
� βqan � βan�1

�
(2.69)

where ∆qn represents the increment from qn to qn�1.

Chapter 3

PDE-constrained optimization

PDE-constrained optimization solves an optimization problem,

minimize
y,u

F py,uq

subject to Cpy,uq � 0,
(3.1)

where Cpy,uq � 0 is a PDE constraint. The y vector is the state variable. State variables are

unknown variables in forward PDE problem. For example, temperatures in thermal PDE and

displacements or velocities in structural PDE are state variables. The u is either a design or a

control variable depending on the characteristics of optimization. If one wants to solve an optimal

control problem, u is a control variable, whereas it is a design variable if one wants to solve an

optimal design problem. It may also be some kind of parameter describing either material properties

or dynamics of systems for some inverse problem. In this thesis, PDE-constrained optimal control

is considered as an example of PDE-constrained optimization. In particular, thermal or structural

PDE-constrained optimal control is studied here although the method developed in this thesis can

also be applied to general PDE-constrained optimization. Among many possible objective functions

in a PDE-constrained optimal control problem, a target state is assumed to be given. Thus, optimal

control aims to find a state that is close to the target and a control that realizes that state. For

example, the static optimal heat control problem with unit conductivity is formulated as

minimize
y,u

F py,uq :� 1

2

»
Ω

py � ȳq2dx� φ

2

»
Ω

u2dx

subject to �∇2y � u on Ω

y � yc on Γg

(3.2)

Two ways of solving PDE-constrained optimization are: 1) optimize-and-discretize and 2) discretize-

and-optimize. In the optimize-and-discretize approach, one obtains a continuous optimality condition

22

3.1. DISCRETIZATION OF OBJECTIVE FUNCTION FOR STATIC PROBLEM 23

and then discretizes it, whereas in the discretize-and-optimize approach, one discretizes an objec-

tive function and constraints first and then obtains the discretized optimality condition. The two

approaches do not produce identical solutions in general [17, 42] The advantage of the optimize-and-

discretize approach is that one can use different meshes for different parts of continuous optimal

control. Thus it is better to use optimize-and-discretize in shape optimization, in which one should

consider grid movements and therefore needs to obtain derivatives of the mesh with respect to the

design parameters. On the other hand, the discretize-and-optimize approach produces a consistent

functional gradient, while gradients from the optimize-and-discretize approach may not be consis-

tent, and hence may generate an ascent direction instead of a descent direction. In the method

introduced here, it is important to have a consistent gradient. Thus the discretize-and-optimize

approach is taken.

In the discretize-and-optimize approach, objective as well as constraint functions are discretized.

Sections 3.1 and 3.4 go over discretization of objective functions for static and dynamic problems,

respectively. Then formulations and necessary optimality conditions of linear static (Section 3.2),

linear dynamic (Sections 3.5 and 3.6), nonlinear static (Section 3.3), and nonlinear dynamic PDE

(Section 3.7) are explained.

3.1 Discretization of objective function for static problem

In the discretize-and-optimize approach, the objective function F py,uq in (3.2) must be discretized.

For a linear heat equation, as in Chapter 2, finite element discretization of y, ȳ, and u are taken to

be

y �
¸

jPη�ηg
yjNjpxq, ȳ �

¸
jPη�ηg

ȳjNjpxq, u �
¸

jPη�ηg
ujNjpxq. (3.3)

Substituting these into the objective function in (3.2), the first part of F py,uq becomes

1

2

»
Ω

py � ȳq2dx � 1

2

»
Ω

�
� ¸
jPη�ηg

yjNjpxq �
¸

jPη�ηg
ȳjNjpxq

�

2

dx,

� 1

2

¸
jPη�ηg

¸
kPη�ηg

pyj � ȳjqpyk � ȳkq
»
Ω

NjpxqNkpxqdx,

� 1

2
pyh � ȳhqTV pyh � ȳhqT ,

(3.4)

where V � ³
Ω
NjpxqNkpxqdx is a volume matrix that represents the volume of Ω, and yh and ȳh are

finite versions of y and ȳ. From now on, the superscript h in the finite version will be dropped unless

there is potential for confusion. The second part of F py,uq after discretization becomes similar to

24 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

(3.4), that is,
φ

2

»
Ω

u2dx � φ

2
uh

T
V uh, (3.5)

where uh is the discretized version of u. By dropping the superscript h, in uh, the objective function

becomes

F py,uq � 1

2
py � ȳqTV py � ȳq � φ

2
uTV u. (3.6)

The volume matrix V above is symmetric because
³
Ω
NipxqNjpxqdx �

³
Ω
NjpxqNipxqdx. Moreover,

it is positive definite. For example,

uTV u �
ņ

i�1

ņ

j�1

uiuj

»
Ω

NipxqNjpxqdx,

�
»
Ω

�
ņ

i�1

uiNipxq
�2

dx,

¥ 0.

(3.7)

Thus, the objective function in (3.6) is bounded below by zero, and hence the optimization problem

is well-posed. Note that the objective function can be rewritten as F py,uq � 1
2}y � ȳ}2V � φ

2 }u}2V ,

using the norm induced by positive definiteness, } � }V . Although the same symmetric positive

definite matrix, V , happens to be used in this specific example (i.e., the optimal distributed heat

control problem), separate notation will be used for the two norms in the objective function because

they may be different for other types of control problems (e.g., optimal boundary control). Plus, it

is possible to modify the symmetric positive definite matrix V in order to speed up the simulation.

For example, one may use a lumped volume matrix, which is a diagonal matrix. Thus, the objective

function F py,uq can be expressed as

F py,uq � 1

2
}y � ȳ}2V �

φ

2
}u}2G. (3.8)

Note that for this particular problem, the objective function is quadratic in the optimization variables

py,uq. Moreover, it is convex due to the positive definiteness of V and G.

3.2 Linear static PDE-constrained optimal control

Combining the discretized objective function (3.8)) with the finite element discretization of the linear

static PDE in Chapter 2 (i.e., Kv�Kcyc � V u), if the forcing term u is a control variable, then the

3.2. LINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 25

discretized optimal control becomes

minimize
y,u

F py,uq :� 1

2
}y � ȳ}2V �

φ

2
}u}2G

subject to Ky �Kcyc � V u.

(3.9)

On the other hand, if one wants to consider a boundary control problem, then the optimal control

formulation becomes

minimize
y,yc

F py,ycq :� 1

2
}y � ȳ}2V �

φ

2
}yc}2G

subject to Ky �Kcyc � V u.

(3.10)

Because discretized PDE constraints are linear in optimization variables (e.g., either py,uq in force

control or py,ycq in boundary control), the optimization problem becomes convex quadratic pro-

gramming. In order to solve the discretized optimal control problems (3.9) or (3.10), one must

consider necessary optimality conditions, which might be obtained by a Lagrangian. For example,

the Lagrangian for (3.9) is

Lpy,u,λq � 1

2
}y � ȳ}2V �

φ

2
}u}2G � λT pKy �Kcyc � V uq, (3.11)

where λ is a Lagrange multiplier. The first order necessary optimality condition for linear static

PDE-constrained forcing control is that there should be λ� such that

�
���
V KT

φG �V T
K �V

�
���
�
���
y�

u�

λ�

�
��
�

�
���

V ȳ

0

�Kcyc

�
��
, (3.12)

is satisfied at the optimal solution py�, u�, λ�q. Similarly, the first order necessary optimality con-

dition for linear static PDE-constrained boundary control is that there should be λ� such that

�
���
V KT

φG KT
c

K Kc

�
���
�
���
y�

y�c
λ�

�
��
�

�
���
V ȳ

0

V u

�
��
, (3.13)

is satisfied at the optimal solution py�, y�c , λ�q. The Karush-Kuhn-Tucker (KKT) system (also called

a saddle point system) in (3.12) and (3.13) is a symmetric indefinite matrix. In this thesis, solving this

indefinite system is used as a building block. A sequential quadratic programming (SQP) method

is used to solve the PDE-constrained optimization problem. At each iteration of this method a

QP is solved in which the linear constraints are a linearization of nonlinear constraints. The QP

subproblems have similar structure to QPs (3.9) and (3.10). It is important to have an efficient

way of solving these QPs since how they are solved will affect the total performance of the SQP

26 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

algorithm significantly. There are many numerical approaches to solving this indefinite system of

equations. An excellent survey paper on those methods is by Benzi, et al. [7]. The KKT system is

solved using a Krylov iterative method. In Chapter 5, several existing and new iterative methods

and preconditioners for solving KKT systems are presented.

3.3 Nonlinear static PDE-constrained optimal control

Combining the discretized objective function (3.8) with the finite element discretization of the non-

linear static PDE presented in Chapter 2 (i.e., fintpvh,dhq � V bh in the absence of traction boundary

condition, using the Saint Venant-Kirchhoff constitutive law), if the body force term b is a control

variable, then the discretized optimal control becomes

minimize
v,b

F pv,bq :� 1

2
}v � v̄}2V �

φ

2
}b}2G

subject to fintpv,dq � V b,

(3.14)

where the superscript h for finite element discretization is dropped. Although the objective function

is convex quadratic in v and b, the constraint is nonlinear. Thus a nonlinear optimization solver

needs to be applied. At the k-th major iteration of the SQP algorithm, the following QP is solved:

minimize
∆v,∆b

F p∆v,∆bq :� 1

2
}vpkq �∆v � v̄}2V �

φ

2
}bpkq �∆b}2G

subject to Kpvpkq,dq∆v � V ∆b � V b� fintpvpkq,dq,
(3.15)

where vpkq and bpkq are the k-th current state of displacement and the body force control, respec-

tively, and the tangential stiffness matrix Kpvpkq,dq is the Jacobian of fint evaluated at pvpkq,dq. In

a traditional SQP method, the objective Hessian of the QP subproblem is quasi-Newton approxi-

mation of the Hessian of the Lagrangian. here we use the exact second derivative for the objective

function and ignore the Hessian of the constraints. Convergence is still observed by the rate of

convergence may be impaired. In this sense, the QP formulation (3.15) is analogous to the Gauss-

Newton method, where least square problem is solved with second order derivative terms omitted

in the traditional Newton method. It is known that ignoring second order derivative terms in a

quadratic objective function will degrade the local convergence rate from super-linear (or quadratic)

to linear or may not even lead to convergence at all especially when nonlinear constraints are present.

However, one may choose to ignore the second order derivative terms because they are not readily

available from the PDE solver, and implementing them analytically is tedious. One may use finite

difference or automatic differentiation in order to approximate or obtain second order derivatives of

nonlinear constraints, but these are usually slow processes. Plus, the numerical results show that

the convergence is fast enough at least with a large number of control variables although it is linear

3.4. DISCRETIZATION OF OBJECTIVE FUNCTION FOR DYNAMIC PROBLEM 27

(e.g., see Figure 7.7). Two things may result in a high enough linear convergence rate: First, the

Lagrange multipliers are small and therefore the contribution of second order derivates of nonlinear

constraints to the Hessian of the Lagrangian is small. Second, a SQP method tends to give a search

direction that is nearly in the tangent space of nonlinear constraints (or the Null space of linearized

constraints). Thus, if the nonlinear constraints are not highly nonlinear (or curvature information

is not important), then the impact of second order derivative terms in nonlinear constraints is not

significant. The traditional SQP is explained in Section 4.2.

In order to solve (3.15), one needs to find a point p∆v�, ∆b�, λ�q that satisfies the necessary

optimality condition,

�
���

V Kpvpkq,dqT
G �V T

Kpvpkq,dq �V

�
���
�
���
∆v�

∆b�

λ�

�
��
�

�
���

V pv̄ � vpkqq
�Gbpkq

V b� fintpvpkq,dq

�
��
, (3.16)

which is also called the KKT system for the QP subproblem. Having an efficient solver for the linear

system of equation (3.16) is important. Since the KKT system tends to be sparse and large due to

finite discretization, an iterative method is adopted. Iterative methods for solving the KKT system

are explained in Chapter 5.

3.4 Discretization of objective function for dynamic problem

Consider a transient optimal control problem in which one wants to find a state that is closest to the

target ȳpt,xq for the whole time t P rt0,tf s, where t0 and tf are initial and final times, respectively.

Then, the continuous objective function Jpy,uq for the transient optimal control problem can be

expressed as

Jpy,uq :� 1

2

» tf
t0

»
Ω

pypt,xq � ȳpt,xqq2 dx dt� φ

2

» tf
t0

»
Ω

upt,xq2 dx dt, (3.17)

where y and u are state and control variables, respectively. In the discretize-and-optimize approach,

the objective function Jpy,uq in (3.17)

must be discretized. The inner integrals in (3.14) are spatial integrals. Applying spatial dis-

cretizations as in Section 3.1, the semi-discretized objective function J̃py,uq is obtained:

J̃py,uq :� 1

2

» tf
t0

}ypt,�q � ȳpt,�q}2V dt� φ

2

» tf
t0

}upt,xq}2G dt. (3.18)

An important point must be made here. For static problems, states do not involve time derivative

quantities (e.g., displacement and acceleration). However, for dynamic problems, states must include

time derivative quantities, especially high-order time integrator schemes such as the midpoint rule

28 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

and the generalized alpha method although one can avoid including time derivative terms in the

state if the backward Euler time integrator scheme is used. Thus both state y and target state ȳ may

include time derivative information. However, having time derivative target states is not necessary

(although one can always obtain them approximately via the finite difference method). One can

either set elements in V matrix that correspond to time derivative states to zero or make them

very small so that the difference between target time derivative states are negligible in the objective

function.

There are many numerical approximations for one-dimensional integrals from the simplest one

(e.g., Simpson’s rule) to more sophisticated ones (e.g., the Gaussian quadrature). The goal of the

objective function is to express some kind of scalar quantity of difference between state and target

states in both time and space domains. As long as this goal is met, it does not matter what kind of

discretization in the time domain is used. Thus, the Riemann-type approximation of the integral is

chosen, where the integral is approximated by the sum of the product of each time domain interval

with the corresponding function value. Thus, the fully discretized objective function J̄py,uq is given

as

J̄py,uq :� 1

2

Ņ

n�0

∆t
�}yn � ȳn}2V

�� φ

2

Ņ

n�0

∆t
�}un}2G� , (3.19)

where yn � yptnq and un � uptnq are spatial discretized states and controls at time t � tn. The

time domain pt0,tf q is supposed to be discretized uniformly with time interval ∆t � tf�t0
N ; hence

the time tn is expressed as tn � t0 � n∆t. Finally, the optimization variables are discretized states

y � py0, y1, . . . , yN qT and controls u � pu0, u1, . . . , uN qT both in time and space. It is possible to

rewrite the objective function (3.19) in matrix form, ∆t
2 py � ȳqTVspy � ȳq � φ

2∆tu
TGsu, where

Vs �

�
���������

V 0 � � � � � � 0

0 V � � � � � � 0

0
. . .

. . .
...

...
. . .

. . .
...

0 � � � � � � 0 V

�
���������

(3.20)

if a target state is given for all of the time domain pt0,tf q. In shorthand, Vs can be expressed as

Vs � blkdiagpV, . . . ,V q. Similarly, Gs � blkdiagpG, . . . ,Gq. It might be the case that one only wants

to match final target state yN . In this case, the objective function becomes

J̄f py,uq :� ∆t

2

�}yN � ȳN }2V
�� φ

2

Ņ

n�0

∆t
�}un}2G� , (3.21)

and in compact form, ∆t
2 py � ȳqTVsf py � ȳq � φ

2∆tu
TGsu, where Vsf � blkdiagp0, . . . ,0,V q.

3.5. LINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL HEAT CONTROL 29

3.5 Linear dynamic PDE-constrained optimal heat control

For the linear dynamic optimal heat control, combining the discretized objective function (3.19) or

(3.21) with the finite element discretization of linear dynamic PDEs discussed in Chapter 2 (i.e.,

equations (2.40) and (2.32)), the discretized formulation for a given initial temperature state d0 is

minimize
y,u

J̄py,uq :� 1

2

Ņ

n�0

∆t}yn � ȳn}2V �
φ

4
∆t}u0}2G �

φ

2

Ņ

n�1

∆t}un� 1
2
}2G

subject to d0 � d0

Mv0 � pu0 �Kd0q
Dhyn�1 � Un� 1

2
un� 1

2
�Rhyn for n � 0, . . . ,N � 1,

(3.22)

where Dh �
�
K̄

1
∆tK̄

�
, Rh �

�
M � ∆t

2 K 0

�2K � 1
∆tK̄

�
, Un� 1

2
�
�
∆tI

2I

�
, and K̄ � M � ∆t

2 K. The

state at time tn is composed of temperature and its temporal derivative, that is, yn � pdTn , ∆tvTn qT .

Note that temporal derivative of temperature, vn, gets multiplied by the time step ∆t in order

to scale temperature and its derivative to be of the same order. This is because the temporal

derivative of the temperature is an order of 1
∆t bigger than temperature in magnitude. Similarly,

the target state at time tn is composed of ȳn � pd̄n, ∆tv̄nq. Finally, the heat source control vector

u � pu0, uT1
2

, uT
1� 1

2

, . . . , uT
N� 1

2

qT . The formulation (3.22) can be compactly expressed as

minimize
y,u

J̄py,uq :� ∆t

2
py � ȳqTVspy � ȳq � φ

2
∆t

�
uTGsu

�
subject to Qy � Uu� d,

(3.23)

where Gs � blkdiagpG{2,G, . . . ,Gq and Q, U , and d are defined as

Q �

�
���������

R0 0 � � � � � � 0

�Rh Dh � � � � � � 0

0
. . .

. . .
...

...
. . .

. . .
...

0 � � � � � � �Rh Dh

�
���������
, d �

�
��������

d0

0

0
...

0

�
�������

, (3.24)

and U � blkdiagpU0, U 1
2
, . . . ,UN� 1

2
q, where R0 �

�
I

K M

�
, U0 �

�
0

I

�
, and d0 is a given initial

temperature state. Note that the formulation (3.23) is a QP. The necessary optimality condition

30 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

states that a solution py�,u�,λ�q to (3.23) must satisfy

�
���
Vs QT

φG �UT
Q �U

�
���
�
���
y�

u�

λ�

�
��
�

�
���
Vsȳ

0

d

�
��
, (3.25)

which is the KKT system. In order to solve the KKT system, a Krylov subspace-based iterative

method such as GMRES is chosen. In such an iterative method, only matrix-vector multiplications

are required if no preconditioner is applied, which is the ideal case. However, most of the time, for the

best performance, one needs a preconditioner. Preconditioners are designed to resemble the original

matrix but to be easier to invert or solve for (e.g., the Jacobi preconditioner takes the diagonal of the

original matrix). Thus, it is important to examine the number and ways of solving block matrices

of of the KKT matrix. Vs and G are used as a positive definite norm in the objective function; thus

the KKT matrix can be modified to be a simple positive definite matrix (e.g., a positive diagonal

matrix). The only potentially computationally demanding blocks are Q and QT . If one needs to

solve for Qp1 � w1, then one solve with M and 2N solves with K̄ are required, which is also true

for Qp2 � w2. Thus, if a preconditioner requires solving with Q and QT , two solves with M and 4N

solves with K̄ are required. Of course, one can approximate M and K̄ since they are used within

a preconditioner. However, since performance of a preconditioner depends on the approximation

done for M and K̄, it is important to keep track of the counts and types of computations that are

required to apply a preconditioner.

3.6 Linear dynamic PDE-constrained optimal structure con-

trol

For the dynamic optimal strurcture force control, combining the discretized objective function (3.19)

or (3.21) with finite element discretization of linear dynamic PDEs in Chapter 2 (i.e., equation

(2.53)), the discretized formulation becomes for given initial displacement d0 and velocity v0,

minimize
y,u

J̄py,uq :� 1

2

Ņ

n�0

∆t}yn � ȳn}2V �
φ

2

Ņ

n�1

∆t}un� 1
2
}2G

subject to d0 � d0

v0 � v0

Dsyn�1 � Un� 1
2
un� 1

2
�Rsyn for n � 0, . . . ,N � 1,

(3.26)

3.6. LINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL STRUCTURE CONTROL 31

where Ds �
�
K̂

1
∆tK̂

�
, Rs �

�
K̃ � ∆t2

4 K M

�∆tK 2
∆tM � 1

∆tK̂

�
, Un� 1

2
�
�
∆t2

2 I

∆tI

�
, K̃ � M � ∆t

2 C

, and K̂ � K̃ � ∆t2

4 K. The state at time tn is composed of displacement and velocity, that is,

yn � pdTn , ∆tvTn qT . Note that velocity vn gets multiplied by the time step ∆t in order to scale

displacement and velocity to be of the same order. This is because velocity is an order of 1
∆t

bigger than displacement in magnitude. Similarly, the target state at time tn is composed of ȳn �
pd̄n, ∆tv̄nq. Finally, the force control vector u � puT1

2

, uT
1� 1

2

, . . . , uT
N� 1

2

qT . Note that u0 is not needed

in the midpoint rule for structural problem because unlike in the thermal transient problem the

initial velocity v0 must be given in order for the time integrator to proceed. The formulation (3.26)

can be compactly expressed as

minimize
y,u

J̄py,uq :� ∆t

2
py � ȳqTVspy � ȳq � φ

2
∆t

�
uTGsu

�
subject to Qy � Uu� d,

(3.27)

where Gs � blkdiagpG, . . . ,Gq and Q, U , and d are defined as

Q �

�
���������

I 0 � � � � � � 0

�Rs Ds � � � � � � 0

0
. . .

. . .
...

...
. . .

. . .
...

0 � � � � � � �Rs Ds

�
���������
, d �

�
��������

d0

v0

0
...

0

�
�������

, (3.28)

and U � blkdiagpU0, U 1
2
, . . . ,UN� 1

2
q, where U0 �

�
0

0

�
and d0 and v0 are given initial displacement

and velocity states, respectively. Note that formulation (3.27) is QP. The necessary optimality

condition states that a solution py�,u�,λ�q to (3.27) must satisfy

�
���
Vs QT

φG �UT
Q �U

�
���
�
���
y

u

λ

�
��
�

�
���
Vsȳ

0

d

�
��
. (3.29)

As in the linear dynamic PDE-constrained heat control discussed in 3.5, it is important to keep

track of types and counts of solves needed to solve Qp1 � w1 or QT p2 � w2. For a given Q, 2N

solves of K̂ are needed, which is also true for QT . Thus, if one needs to solve both Qp1 � w1 and

QT p2 � w2, then 4N solves of K̂ are needed in total.

32 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

3.7 Nonlinear dynamic PDE-constrained optimal control

Given current displacement, velocity, and acceleration states, dn, vn, and an, the generalized α

method proceeds with six equations (e.g., equations (2.56), (2.57), and (2.58)) and six unknowns

(i.e., dn�1, vn�1, an�1, dn�1�αf , vn�1�αf , and an�1�αm). The PDE solver (e.g., AERO-S) treats

the generalized α method by solving for dn�1�αf by Newton’s method (i.e. equation (2.61)), then

obtains other unknowns dn�1, vn�1, an�1, vn�1�αf , and an�1�αm . This approach is beneficial in the

sense that it deals with a smaller system of equations (i.e., the size of the system is ns if dn P Rns).
However, in the full SAND method, it is necessary to express the generalized α method in a compact

form, where all the unknowns are solved simultaneously. In this setting, dealing with six unknown

vector variables simultaneously (i.e., the size of the system is 6m) is too daunting. Fortunately it

is possible to eliminate three equations and three intermediate unknowns (e.g., dn�1�αf , vn�1�αf ,

and an�1�αm) and express the time integrator with only end points (e.g., dn�1, vn�1, and an�1).

This is done by finding an expression for dn�1�αf from (2.60), that is,

dn�1�αf � ∆t2βK�1
a

�
uptn�1�αf q � fintpp1� αf qdn�1 � αfdnq

�
� dn

� �∆tp1� αmqK�1
a M �∆t2pβ � p1� αf qγqK�1

a C
�
vn

�
�
∆t2

�
1� αm

2
� β

K�1
a M �∆t3

p1� αf qp2β � γq
2

K�1
a C

�
an,

(3.30)

and plugging it into the first intermediate interpolation equation of (2.57) in order to remove

dn�1�αf , that is,

Kapdn�1 � dnq � ∆t2
β

1� αf

�
uptn�1�αf q � fintpp1� αf qdn�1 � αfdnq

�
�
�
∆t

p1� αmq
p1� αf qM �∆t2p β

1� αf
� γqC

�
vn

�
�
∆t2

�
1� αm

2p1� αf q �
β

1� αf

M �∆t3

p2β � γq
2

C

�
an,

(3.31)

where the notation u is used for the forcing term instead of F in order to emphasize that the term

is used as a control variable. Combining this equation with two updating equations of the Newmark

method (2.58), which consists of only end points, completes the elimination of intermediate variables

in the generalized α method.

There are two ways of formulating nonlinear dynamic optimal structure control problems. The

first one is a simultaneous approach, where all the time steps of states and controls are solved

simultaneously. The discretized formulation of nonlinear dynamic optimal control with objective

3.7. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 33

function (3.19) becomes for given initial displacement d0 and velocity v0,

minimize
y,u

J̄py,uq :� 1

2

Ņ

n�0

∆t}yn � ȳn}2V �
φ

4
∆t}u0}2G �

φ

2

Ņ

n�1

∆t}un� 1
2
}2G

subject to d0 � d0

v0 � v0

Ma0 � Cv0 � fintpd0q � u0

gαpyn�1,yn,un�1�αf q � 0 for n � 0, . . . ,N � 1,

(3.32)

where gα stands for the generalized α update function, which is represented by the three equations

(3.31) and (2.58). The state at time tn is decomposed into displacement, velocity, and acceleration,

i.e., yn � pdTn , vTn , aTn qT . Finally, the control is u � puT0 , uT1�αf , . . . ,uTN�αf qT . Note that the KKT

system corresponding to the formulation (3.32) is in Rp6ns�ncqpN�1q�p6ns�ncqpN�1q, where ns is the

size of displacement and nc the size of control at a stationary time tn. Considering the degrees of

discretization both in space and time, the size is daunting. The second formulation is to solve smaller

optimization problems sequentially. For example, initial states y0 and control u0 are completely

determined by the following optimization problem:

minimize
a0,u0

∆t

2
}a0 � ā0}2Va �

φ

4
∆t}u0}2G

subject to Ma0 � Cv0 � fintpd0q � u0,

(3.33)

where d0 and v0 are dropped in the optimization variables because they can be predetermined by

the constraints d0 � d0 and v0 � v0. Once y0 and u0 are found, one can sequentially solve the

following optimization problem:

minimize
yn,un�αf

∆t

2
}yn � ȳn}2V �

φ

2
∆t}un�αf }2G

subject to gαpyn,yn�1,un�αf q � 0

(3.34)

for n � 1, . . . ,N . Note that the KKT system corresponding to the formulation (3.33) is in Rp2ns�ncq�p2ns�ncq

and the one corresponding to the formulation (3.34) is in Rp6ns�ncq�p6ns�ncq. Although these KKT

systems can still be large depending on how fine the discretization is, they are much smaller than the

KKT system corresponding to the formulation (3.32), which is Rp6ns�ncqpN�1q�p6ns�ncqpN�1q. The

two approaches of formulations (i.e., the simultaneous one (3.32) and the sequential ones (3.33) and

(3.34)) are not equivalent. This can be easily seen by comparing the necessary optimality conditions.

34 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

For example, one of the necessary optimality condition for the formulation (3.32) is

∆tV pyn � ȳnq �
�Bgαpyn,yn�1,un�αf q

Byn

T
λn �

�Bgαpyn�1,yn,un�1�αf q
Byn

T
λn�1 � 0, (3.35)

while the corresponding condition for the sequential formulation does not have the last term since

gαpyn�1,yn,un�1�αf q is not needed in the formulation (3.34). However, if yn is close to ȳn (i.e., the

state solution is close to the target state), then the Lagrange multipliers λn and λn�1 are supposed

to be small, so the two formulations will result in similar solutions. Unfortunately, this implies that

the two formulations are totally different if the objective function (3.21) is used. To see this issue in

a different way, if the objective function (3.21) the initial optimization problem one needs to solve

becomes

minimize
a0,u0

φ

4
∆t}u0}2G

subject to Ma0 � Cv0 � fintpd0q � u0,

(3.36)

whose control solution is zero, where a0 is determined by Ma0 � Cv0 � fintpd0q � 0. For the

subsequent optimizations, the control solutions at all the time steps except for the last one, tN � tf ,

are zero. This solution is undesirable and unaccepted because the solution states are identical to the

initial states (d0, v0, a0) throughout the whole time domain, and the last sequence of the optimization

problem attempts a big jump from the initial states to the final target states (d̄N , v̄N , āN). Since

it is not hard to provide target states for all the time steps (e.g., via some kind of interpolations

between initial conditions and terminal target states), the sequential formulation is implemented.

Note that the constraints are nonlinear in yn, especially in displacement states because of the

internal force fintp�q that appears in both formulations (3.33) and (3.34). However, the initial

optimization problem (3.33) is QP, whose necessary optimality condition is expressed as the KKT

system: �
���
∆tVa MT

φ
2∆tG �I

M �I

�
���
�
���
a0

u0

λ

�
��
�

�
���

∆tVaā0

0

�Cv0 � fintpd0q

�
��
. (3.37)

Once a0 is obtained, it is fed into the next sequential nonlinear optimization (3.34) with n � 1.

Another option is to not solve the initial problem (3.33) at all and instead to feed zero initial

acceleration (i.e a0 � 0) into the next optimization problem. This implies that one chooses to apply

no initial external or body force on the system and allows the system to move freely or stay static

if the initial velocity is zero. The consequence of the resulting lack of force may be a lag in target

motion. This option may be chosen if a small amount of lag is allowed. For the subsequent nonlinear

programming, it is necessary to apply a nonlinear solver. Sequential quadratic programming (SQP)

is used as in the nonlinear static cases. The SQP method provides the search direction p∆yn, ∆unq

3.7. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 35

by solving the following QP subproblem:

minimize
∆yn,∆un�αf

∆t

2
}∆yn � yn � ȳn}2V �

φ

2
∆t}un�αf �∆un�αf }2G

subject to linearized version of gαpyn, yn�1, un�αf q � 0.

(3.38)

Note that the only nonlinear term in gα is internal force fintpp1 � αf qdn � αfdn�1q in equation

(3.31). Linearizing it gives

pKa �∆t2βKn�αf q∆dn �
∆t2β

1� αf
∆un�αf �

∆t2β

1� αf

�
un�αf � fintpp1� αf qdn � αfdn�1q

�
�Kapdn � dn�1q

�
�
∆t

p1� αmq
p1� αf qM �∆t2p β

1� αf
� γqC

�
vn�1

�
�
∆t2

�
1� αm

2p1� αf q �
β

1� αf

M �∆t3

p2β � γq
2

C

�
an�1,

(3.39)

where Kn�αf is Jacobian (or tangential stiffness matrix) of internal force fint at dn�αf . Expressing

the Newmark updates with incremental states ∆yn gives

∆t2∆an � 1

β
∆dn � 1

β
pdn � dn�1q � ∆t

β
vn�1 � 2β � 1

2β
∆t2an�1 �∆t2an

�∆t2γ∆an �∆t∆vn � ∆tpvn�1 � vnq �∆t2rp1� γqan�1 � γans,
(3.40)

where unknowns in QP (3.38) are grouped in the lefthand side and the rest of the terms in the

righthand side. Combining (3.39) and (3.40) forms the linearized version of gαpyn, yn�1, un�αf q,
which can be expressed in a compact form as Qn∆yn � U∆un�αf � rn, where

Qn �

�
���
Ka �∆t2βKn�αf 0 0

� 1
β I 0 ∆t2I

0 ∆tI �∆t2γI

�
��� , U �

�
���
�∆t2β

1�αf I

0

0

�
��� , (3.41)

and residual

rn �

�
�����������

∆t2β
1�αf

�
un�αf � fintpp1� αf qdn � αfdn�1q

�
�Kapdn � dn�1q

�
�
∆t p1�αmqp1�αf qM �∆t2p β

1�αf � γqC
�
vn�1

�
�
∆t2

�
1�αm

2p1�αf q �
β

1�αf

	
M �∆t3 p2β�γq2 C

�
an�1

1
β pdn � dn�1q � ∆t

β vn�1 � 2β�1
2β ∆t2an�1 �∆t2an

∆tpvn�1 � vnq �∆t2rp1� γqan�1 � γans

�
����������

. (3.42)

36 CHAPTER 3. PDE-CONSTRAINED OPTIMIZATION

The necessary optimality condition for (3.38) is

�
���
∆tV QTn

φ∆tG UT

Qn U

�
���
�
���

∆yn

∆Un�αf
λ

�
��
�

�
���
∆tV pȳn � ynq
�φ∆tGun�αf

rn

�
��
. (3.43)

Note that the part where the most computational effort is required to solve Qnp1 � q1 and QTnp2 � q2

is to solve for Ka �∆t2βKn�αf . The rest of the parts are simple algebraic operations (e.g., scalar

products).

Chapter 4

Methods for PDE-constrained

optimization

To solve PDE-constrained optimization, two methodologies are: NAND (Nested Analysis and De-

sign) and SAND (Simultaneous Analysis and Design). SAND is focused on in this thesis. SAND has

another name, the “all-at-once” approach. In the “all-at-once” approach, the numerical methods

are again divided into two categories: 1. full space (full SAND) and 2. reduced space methods

(reduced SAND). If sequential quadratic programming (SQP) method is used to solve the problem,

the full space method is called full SQP (fSQP), while the reduced space method is called reduced

SQP (rSQP). The full space method directly solves a saddle-point necessary optimality system,

for example, by using an iterative method, such as a Krylov iterative method [9, 10, 68] [79, 45].

Reduced space methods have many variants, but the main idea is to introduce decomposition of

the optimization variables (e.g., state and control variables) and reduce the size of optimization to

the number of control variables [82, 54]. Research on solving the saddle-point system efficiently is

very important because the system appears as both the main problem in linear PDE-constrained

optimization and as a QP sub-problem in nonlinear PDE-constrained optimization.

NAND is preferable regarding storage issues because it does not have as many variables as SAND

does. Plus, one can use available optimization and PDE solvers separately as long as the PDE solver

can provide sensitivity information to the optimization solver. Thus, it has been the method of

choice for a long time and it is still often preferred Some disadvantages of NAND are that it usually

requires many iterations to converge and that it may be hard to get sensitivity information within the

PDE solver either because it is tedious to compute or because it is computationally expensive if one

attempts to get the information via a finite difference scheme. Reduced SAND forms a reduced KKT

system of equations and solves smaller system at each iteration than Full SAND, but it requires even

more storage than NAND. Unless one forms the reduced KKT system explicitly and factorizes it

37

38 CHAPTER 4. METHODS FOR PDE-CONSTRAINED OPTIMIZATION

exactly, reduced SAND usually solves a reduced KKT system approximately either by using a quasi-

Newton approach or by omitting some terms, so it takes many iterations to converge. For example,

for QP, it takes more than one iteration to converge. On the other hand, although the full space

method is likely to be ill-conditioned and indefinite in nature, it exhibits better scalability than the

reduced space method if a good preconditioner is used. For example, if an optimal preconditioner is

used, then one can expect to converge with a constant number of iterations within a Krylov iterative

method regardless of the size of the problem. Recent advances in numerical linear algebra have shifted

more attention to full SAND. One reason is that it is easier to see many more ways to develop a

preconditioner for full SAND than for reduced SAND. However, in spite of all the development and

improvements in full SAND, much further research needs to be done. For example, if the PDE is

time-dependent, the storage requirement becomes so huge that it is not clear how to implement full

SAND in transient analysis for the whole time domain. Plus more effort on developing new efficient

preconditioners is needed, especially for a small regularization parameter. In this chapter, NAND

and reduced and full SAND are explained.

4.1 Nested analysis and design

In nested analysis and design, only control variables, u, are optimization variables, and state variables

y are considered to be an implicit function of control variables through the PDE equations. If

there are no additional constraints, then an optimization solver needs to solve the unconstrained

optimization problem. That is, NAND solves

minimize
u

F pu,ypuqq, (4.1)

where ypuq is expressed implicitly in the PDE, Cpy,uq � 0. There are many numerical algorithms

dealing with unconstrained optimization problems, but all can be put into one of two categories:

gradient and non-gradient based algorithms. Non-gradient based algorithms are zero-order methods,

whereas gradient based algorithms are higher-order methods. Thus, gradient based algorithms are

more popular than non-gradient based one. Among gradient based algorithms, some use only first

derivatives and others also use second derivatives. If a Hessian is used properly, a second order

asymptotic convergence rate is obtained if it converges. However, a Hessian may not be available

or may be tedious to compute. In either case, one can approximate a Hessian with only gradient

information via a quasi-Newton approach, where super-linear convergence rate may be achieved.

If neither a Hessian nor an approximate Hessian, but only the gradient is used, then normally a

linear convergence rate will be observed. Assuming that a gradient-based method without high

order derivative information (e.g., a Hessian) is used, the gradient g of F pu,ypuqq in (4.1) is derived

4.1. NESTED ANALYSIS AND DESIGN 39

in this section. The gradient is obtained by the chain rule

g :� dF

du
� BF

Bu � BF
By � ByBu. (4.2)

Consider BF
By or BF

Bu to be a row vector and BF
By � ByBu as usual the row vector-matrix product. The only

unknown is By
Bu . This can be obtained from the fact that the derivative of PDE should vanish, that

is,

0 � dC

du
� BC

By � ByBu �
BC
Bu . (4.3)

This results in the gradient being

g � BF
Bu � BF

By
�BC
By

�1 BC

Bu . (4.4)

There are two ways of computing the gradient: the direct and the adjoint approach. The direct

approach solves the last two terms in the second part of (4.4), while the adjoint approach solves

the first two terms. In other words, the direct approach takes the following two steps in order to

compute the gradient:

1. solve for By
Bu in (4.3)

2. compute g via (4.2),

and the adjoint approach takes the following two steps:

1. solve for λ in
�
BC
By
	T

λ�
�
BF
By
	T

� 0

2. compute g � BF
Bu � λT BC

Bu .

Let nc be the number of PDE constraints and nu the number of control variables. Note that the

number of state variables is the same as the number of PDE constraints. Thus, the size of BC
By is

nc�nc. In general, the direct approach is more expensive than the adjoint approach since the direct

approach needs to solve an nc � nc system of equations nu times (i.e., solving (4.3)). On the other

hand, the adjoint method needs to solve an nc � nc system of equations only once (i.e. solving for

λ). However, the adjoint solver (i.e.,
�
BC
By
	T

) may not be available since the PDE solver has not

implemented it. The only options then are modify the PDE solvers or use the direct method. Thus,

the direct method might be preferred if nc is small.

It is clear now why the name, “NAND (Nested Analysis and Design)” was coined. The PDE

solver is nested inside of the optimization solver. Thus, one can use any two available, separate

PDE and optimization solvers. The nested PDE solver must provide updated state variables that

satisfy PDE constraints and corresponding sensitivity information (e.g., gradient g). Then, the

optimization solver uses the information to generate the next point of control variables and feed

40 CHAPTER 4. METHODS FOR PDE-CONSTRAINED OPTIMIZATION

them to the PDE solver. It repeats this process until the minimizer u� that minimizes F in (4.1)

is found. One obvious convergence criterion is to check the norm of the gradient (i.e. }g}). Note

that the optimization solver needs only control variables to be stored, which has the benefit of less

storage than is needed for SAND. Also, note that it keeps PDE constraints (e.g., C=0) implicitly

satisfied all the time.

4.2 Simultaneous analysis and design

In simultaneous analysis and design, PDE constraints are explicitly specified. That is, SAND solves

the following optimization:

minimize
y,u

F py,uq,

subject to Cpy,uq � 0,
(4.5)

where Cpy,uq is an PDE constraints. The Lagrangian is

Lpy,u,λq � F py,uq � λTCpy,uq, (4.6)

where the λ are Lagrange multipliers. The first order necessary optimality condition states that

there should be λ� such that

0 � BF
By py

�, u�q �
�BC
By

T

py�, u�qλ�

0 � BF
Bu py

�, u�q �
�BC
Bu

T

py�, u�qλ�

0 � Cpy�,u�q,

(4.7)

is satisfied at the optimal solution, py�, u�, λ�q. If F py,uq is quadratic and Cpy,uq linear in y and

u, then the optimization formulation (4.5) becomes a quadratic program (QP) and the conditions

(4.7) becomes linear system of equations in py�, u�, λ�q. Thus, one linear solve will give a solution

if it exists. If the formulation (4.5) is nonlinear, but not QP, then the equations in (4.7) are still

linear in multiplier estimates λ but are nonlinear in optimization variables, (y, u), so a Newton type

numerical method needs to be applied in order to solve them. The standard Newton method applied

to (4.7) gives the search directions ∆x � p∆y,∆uq and the updated multiplier estimates λ, which

satisfy

Hyy∆y �Hyu∆u� � �BFBy �
�BC
By

T

λ

Huy∆y �Huu∆u� � �BFBu �
�BC
Bu

T

λ

BC
By ∆y �

BC
Bu ∆u � �Cpy,uq,

(4.8)

4.2. SIMULTANEOUS ANALYSIS AND DESIGN 41

where the Hessian is defined as

Hyy � B2F
By2 �

ny¸
i�1

λi

�B2Ci
By2

,

Huu � B2F
Bu2 �

ny¸
i�1

λi

�B2Ci
Bu2

,

Hyu � B2F
ByBu �

ny¸
i�1

λi

� B2Ci
ByBu

,

Huy � B2F
BuBy �

ny¸
i�1

λi

� B2Ci
BuBy

.

(4.9)

On the other hand, the traditional sequential quadratic programming (SQP) solves the following

QP subproblem:

minimize
∆x

gT∆x� 1

2
∆xTH∆x,

subject to Cpxq �A∆x � 0,

(4.10)

where

H :�
�
Hyy Hyu

Huy Huu

�
, x :�

�
y

u

�
, g :� BF

Bx , A :� BC
Bx (4.11)

whose first order necessary optimality condition is the same as (4.8). This shows that the traditional

SQP method is equivalent to the standard Newton method applied to (4.7) with some multiplier

estimates λ for λ�. This also implies that if the Newton method applied to the optimality conditions

(4.7) converges, then the traditional SQP method converges and vice versa. Since the Newton

method has quadratic local convergence if it converges, the traditional SQP method will converge

quadratically if the current point is near a solution. Of course, global convergence is not guaranteed

for the standard Newton method if no special treatment is used (e.g., in the linesearch or trust region

method). The linesearch method is explained in Chapter 6. There are two different ways of solving

SAND: reduced SAND, full SAND. Reduced SAND is described in Section 4.2.1 and full SAND in

Section 4.2.2

4.2.1 Reduced SAND

Reduced SAND reduces the number of variables and solves a smaller system of equations for each

QP subproblem. There are two ways: the reduced space method and the range space method. The

reduced space method (or the null space method) decompose the search direction ∆x in (4.10) into

the null and range space of the Jacobian of C (i.e. A in (4.10)). That is,

∆x � Z∆z � Y ∆y, (4.12)

42 CHAPTER 4. METHODS FOR PDE-CONSTRAINED OPTIMIZATION

where the columns of Z form the basis for the null space of A (i.e. AZ � 0), while the columns of

Y form the basis for the range space of A. Substituting this decomposition into (4.10),

minimize
∆z,∆y

gTz ∆z �∆zT pZTHY q∆y � 1

2
∆zT pZTHZq∆z � 1

2
∆yT pY THY q∆y � gTy ∆y,

subject to Cpxq �AY∆y � 0,

(4.13)

where gz � ZT g and gy � Y T g. AZ∆z in the constraint vanishes because AZ � 0. Note that there

is no ∆z in the constraint. Thus, one can solve for ∆y directly from the constraints. Then, the QP

above becomes equivalent to the following unconstrained minimization problem:

minimize
∆z

gTz ∆z �∆zT pZTHY q∆y � 1

2
∆zT pZTHZq∆z, (4.14)

where ∆y is known. The minimizer of (4.14) can be found by solving the following equation:

pZTHZq∆z � �pgz � ZTHY∆yq. (4.15)

Once ∆y and ∆z are obtained, ∆x is computed via (4.12) and x is updated to x�∆x. The multiplier

estimate, λ, is computed via a reduced form of the adjoint equation, that is,

pAY qTλ � �Y TH∆x� gy. (4.16)

There are many choices for Z. One is to use the LQ factorization of A [37]. The LQ factorization

transforms the matrix A into a lower triangular matrix by applying a series of orthonormal matrices

from the left (e.g., the Givens rotation or the Householder reflection). That is,

AQ � r L 0 s. (4.17)

Let ny be the rank of the range space of A, and nz the rank of the null space of A. From the

LQ factorization, the first ny columns of Q can be set to be Y and the rest of columns to be

Z. One advantage of this approach is that the condition number of ZTHZ is not bigger than

the condition number of H because the condition number of Z is 1. This approach may be very

efficient for a certain type of problem, such as a problem with a small number of constraints, linear

programming, or an active set method, where one row of A is changing at a time. However, if the

number of constraints or state variables are large, then it is impractical to use LQ factorization.

This is the usual case for PDE-constrained optimization. As the discretization of PDE becomes

finer, the number of constraints becomes larger and it is impractical to form an LQ factorization.

Furthermore, for the case of nonlinear PDE constraints, in which A is changing at every major

iteration, it is not clear how to update the previous LQ factorization efficiently. Thus, one usually

4.2. SIMULTANEOUS ANALYSIS AND DESIGN 43

uses the following null space matrix:

Z �
�
�J�1Q

I

�
, (4.18)

where J � BC
By and Q � BC

Bu . Note that indeed AZ � 0. Although this approach may increase the

condition number of ZTHZ, it is readily available because J�1 is an operator used in both linear

and nonlinear PDE solvers. The usual choice for the Y matrix is

Y �
�
I

0

�
. (4.19)

With this particular Z and Y , problem (4.13) becomes

minimize
∆z,∆y

gTz ∆z �∆zT pZTHY q∆y � 1

2
∆zT pZTHZq∆z � 1

2
∆yTHyy∆y � gTy ∆y,

subject to Cpxq � J∆y � 0.

(4.20)

Again, the constraint is independent of∆z. Thus∆y can be directly solved solely with the constraint.

Given ∆y, ∆z is obtained via (4.15) with

gz � �QTJ�T gy � gu,

ZTHY∆y � �QTJ�THyy∆y �Huy∆y,
(4.21)

where gy and gu are state and control parts of the gradient. Then the ∆x is updated via (4.12).

The multiplier estimate λ is obtained via

JTλ � �Hyy∆xy �Hyu∆u� gy. (4.22)

Note that no approximation is introduced in the process of solving the QP subproblem (4.20). The

major computation occurs when forming ZTHZ and solving for it in (4.15). This computation can

be efficiently approximated by a quasi-Newton update [37]. The BFGS update approximates the

effective Hessian (e.g., the second order information ZTHZ) with the rate of change in gradients.

The update is done so that each update gives rank-two update in the resultant matrix. Although

the BFGS method is very attractive since it only requires the matrix-vector multiplications, it may

have a storage issue. In order to resolve this, the limited memory BFGS is developed, in which only

a fixed number of first derivatives are used [13].

Many reduced space (e.g., rSQP) methods introduce some kind of approximation other than

BFGS approximation. For example, when ∆z is computed via (4.15), the second term of the right

hand side (i.e. ZTHY∆y) may be ignored. Also, when the multiplier estimates are updated via

44 CHAPTER 4. METHODS FOR PDE-CONSTRAINED OPTIMIZATION

(4.22), the first two terms of the right hand side (i.e. �Hyy∆xy �Hyu∆u) may be ignored [9]. If

those terms are not neglected and the QP (4.20) is solved using the BFGS update, then the operators

J�1 or J�T need to be applied four times for each major iteration. On the other hand, if those

terms are omitted and the QP (4.20) is solved with the BFGS update, then the operators J�1 or

J�T need to be applied three times for each major iteration.

The second type of reduced SAND is the range space method. The range space method solves

for the multiplier estimates first then compute optimization variables. The necessary optimality

condition for (4.10) is as follows:

H∆x�ATλ � �g
A∆x � �c.

(4.23)

Eliminating ∆x, one can solve the following system of equations in order to obtain λ:

Sλ � �c�AH�1g, (4.24)

where S � �AH�1AT is the Schur complement. The search direction ∆x is updated by solving the

following system of equations:

H∆x � �g �ATλ. (4.25)

In order to solve (4.24), one can form the Schur complement S and apply some factorization, which

is very expensive. Instead of forming S, one can solve for A and AT sequentially. In order to solve

for (4.25), one needs to solve for H, which can be done either by a direct or iterative method.

The null space and range space methods are related to two different factorizations of the KKT

system. The null space method is related to the following factorization:

�
���
Hyy Hyu JT

Huy Huu QT

J Q

�
��� �

�
���
HyyJ

�1 0 I

HuyJ
�1 I QTJ�T

I 0 0

�
���
�
���
J Q 0

0 Hz 0

0 Hyu �HyyJ
�1Q JT

�
��� , (4.26)

where Hz � QTJ�THyyJ
�1Q�QTJ�THyu �HuyJ

�1Q�Huu is the Schur complement of control

variable. On the other hand, the range space method is related to the following factorization:

�
H CT

C 0

�
�
�

I 0

CH�1 I

��
H 0

0 S

��
I H�1CT

0 I

�
. (4.27)

These factorizations are used in developing preconditioners introduced in Section 5.2

4.2. SIMULTANEOUS ANALYSIS AND DESIGN 45

4.2.2 Full SAND

A KKT system (e.g., equations (4.8)), which appears in the PDE-constrained optimal control is

sparse, but tends to be very large when the discretization is made finer. The strategy of full SAND

is simple. It attempts to solve the KKT system simultaneously. Due to the advances in numerical

linear algebra, it is possible to solve a large sparse linear system of equations, Ax � b. There are

two ways of solving the large sparse linear system of equations: the direct and the iterative method.

The iterative method is studied because the iterative method has many benefits although there are

many efficient direct sparse solvers. The equations (4.8) can be expressed in matrix form, that is,

�
H AT

A

��
∆x

λ

�
�
�

�g
�Cpy,uq

�
. (4.28)

Note that the KKT matrix above is indefinite. It can be shown that if ker pHqX ker pAq � t0u, then

the KKT matrix is invertible [7]. Thus, one cannot apply any iterative method, such as the conjugate

gradient (CG) method, which is only applicable for symmetric positive definite matrices. However,

many iterative methods can handle a symmetric indefinite matrix. Several iterative methods are

listed in Table 5.1 with explanation of what types of matrices can be handled for each method.

For example, (4.8) is solved using an iterative method, such as MINRES or GMRES. In order to

apply any iterative method, a good preconditioner is needed. Many preconditioners are available for

the saddle point system of equations. Currently existing preconditioners and some newly developed

preconditioners are presented in Chapter 5.

Chapter 5

Iterative methods and

preconditioners

5.1 Iterative methods

There are two main approaches to solve a system of linear equations, Ax � b: direct methods and

iterative methods, and a variation of the former can be used to assist the latter. Direct methods

attempt to solve the system directly. For example, they factorize the matrix A into several matri-

ces for which linear systems are easy to solve. Those matrices include orthogonal, diagonal, lower,

and upper triangular matrices. The direct methods give an exact solution with exact arithmetic.

Even with rounding errors, their behavior is well studied and understood, so they are robust and

predictable. However, for a large system of equations, a direct method may not be practical due

to storage or computational efficiency issues. This has become more obvious recently when the

size of the problem has become bigger (e.g., 3D PDE discretization). In order to overcome these

shortcomings of direct methods, two main developments have been made. First, various direct meth-

ods that conserve sparsity as much as possible were developed (e.g., MA27, MUMPS, PARDISO,

SPOOLES, superLU, sparse Cholesky factorization, etc.). These direct methods are now also used

in developing a preconditioner in iterative methods. Second, the combination of Krylov subspace

and preconditioning led to a group of iterative methods that outperform direct methods on very

large sparse systems of equations. Such iterative methods include conjugate gradient (CG) [46],

MINRES, SYMMLQ [63], and generalized minimum residual (GMRES) methods [74]. Choi has

organized such iterative methods inclusively in her thesis [15]. Table 5.1 reproduces Choi’s table

and adds one more iterative method that was developed recently by Fong and Saunders.

As shown in the table, CG is applicable to symmetric positive definite matrices, while MINRES

and SYMMLQ are applicable to symmetric indefinite matrices. GMRES is applicable to square

46

5.1. ITERATIVE METHODS 47

Linear Equations Authors Properties of A AT ?
CG Hestenes and Stiefel (1952) [46] Symmetric positive definite

CRAIG Faddeev and Faddeeva (1963) [23] Square or rectangular yes
MINRES Paige and Saunders (1975) [63] Symmetric indefinite
SYMMLQ Paige and Saunders (1975) [63] Symmetric indefinite

Bi-CG Fletcher (1976) [28] Square unsymmetric yes
LSQR Paige and Saunders (1982) [65, 64] Square or rectangular yes

GMRES Saad and Schultz (1986) [74] Square unsymmetric
CGS Sonneveld (1989) [78] Square unsymmetric
QMR Freund and Nachtigal (1991) [34] Square unsymmetric yes

Bi-CGSTAB Van der Vorst (1992) [18] Square unsymmetric yes
TFQMR Freund (1993) [33] Square unsymmetric yes
SQMR Freund and Nachtigal (1994) [35] Symmetric yes
CGLS Hestenes and Stiefel (1952) [46] Square or rectangular yes
RRLS Chen (1975) [14] Square or rectangular yes

RRLSQR Paige and Saunders (1982) [65] Square or rectangular yes
LSQR Paige and Saunders (1982) [65] Square or rectangular yes
LSMR Fong and Saunders (2011) [29] Square or rectangular yes

Table 5.1: Existing iterative algorithms since CG was created in 1952.

unsymmetric matrices. CG, MINRES, and SYMMLQ have the attractive property of short term

recurrence while GMRES does not have that property. However, because some preconditioners

(e.g., constraint preconditioners) introduced in this thesis do not preserve the symmetry of the KKT

system, neither MINRES nor SYMMLQ will work, but GMRES will. This is why GMRES is used

here, and as explained in this chapter1. However, first, some classical iterative methods and their

main ideas are briefly illustrated. In particular, Jacobi scaling is explained in more detail because it

will be used to develop a new preconditioner for the KKT system that appears in PDE-constrained

optimization problems.

5.1.1 Classical iterative methods and Jacobi scaling

Iterative methods for solving linear equations generate a sequence of approximate solutions that

converge to a real solution. The classical iterative methods include Jacobi, Gauss-Seidel, SOR,

and Chebyshev semi-iterative [40]. The main idea of these standard iterations is best explained as

splitting. Assume that the matrix A is split into M and N , such that A � M � N , where M is

nonsingular. Then, Ax � b can be rewritten as Mx � Nx � b. By introducing a sequence of xk,

Mxk�1 � Nxk � b can be used as an updating rule in the hope of achieving convergence, that is,

xk Ñ x�, where x� � A�1b. For example, Jacobi iteration uses M as the diagonal matrix whose

diagonal elements are the same as the ones in A, while Gauss-Seidel iteration employs the lower

1Several other constraint preconditioners have recently been developed for use with CG, especially for saddle point
systems, but are not in investigated in this thesis [30, 80, 19].

48 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

triangular part of A as M . Convergence is guaranteed if the spectral radius of M�1N is less than 1.

Furthermore, Gauss-Seidel iteration converges for any starting point x0 if the matrix A is symmetric

positive definite [40].

The diagonal elements in Jacobi iteration can also be used in scaling the system of equations.

Jacobi scaling is often used as preconditioning. That is, for a symmetric matrix A, instead of solving

Ax � b directly, one can solve DADy � Db, and the solution x� is obtained from x� � Dy, where D

is the diagonal matrix whose diagonals are over the square root of the diagonal elements of A. The

underlying motivation for this alternative is that DAD is more well-conditioned than the original

matrix A (e.g., κpDADq ! κpAq). Additionally, van der Sluis in his 1969 paper [83] has proved

that Jacobi scaling gives near-optimal conditioning within a factor of n among all diagonal scaling

matrices for a symmetric positive definite matrix A. In the same paper, he also proved that if A has

maximum q non-zeros in a row, then Jacobi scaling gives near-optimal condition number to within a

factor of q. Even earlier, in 1955, Forsythe showed that if a symmetric positive definite matrix A has

Young’s property A (i.e. there is a permutation matrix P such that PAPT is a 2� 2 block matrix

whose diagonal block matrices are diagonal), then Jacobi scaling provides the optimal conditioning

among all diagonal scaling matrices. The idea of diagonal scaling as a preconditioning is studied

and further conceptualized to bi-normalization and equilibration [11, 51, 53]. The idea of diagonal

scaling will be used in a later section in developing a novel preconditioner for PDE-constrained

optimization problems.

5.1.2 GMRES

Given a matrix A and a vector q1, the Krylov subspace KpA,q1,kq is defined as

KpA,q1,kq � spantq1, Aq1, . . . ,Ak�1q1u. (5.1)

A Krylov subspace iterative method seeks to generate a sequence of approximate solutions txku to

Ax � b, where xk P x0 �KpA,r0,kq and r0 � b � Ax0. GMRES is a Krylov subspace method that

works for unsymmetric Ax � b problems. It can be thought of as a generalization of MINRES, in

which xk minimizes the 2-norm of the residual (i.e., }b � Ax}2) for a symmetric indefinite matrix.

The Lanczos method is used in order to get the orthonormal basis for the Krylov subspace in MIN-

RES, while GMRES uses the Arnoldi method for orthogonalization in order to handle unsymmetric

systems. Instead of the tridiagonal matrix produced in MINRES, the Arnoldi process produces an

upper Hessenberg matrix. Thus, the three-term recurrence property MINRES possesses is lost in

GMRES. The Arnoldi process up to the k-th iteration is shown in Algorithm 1. Note that the

Arnoldi process is nothing more than applying the Gram-Schmidt algorithm to the Krylov subspace

5.1. ITERATIVE METHODS 49

KpA,q1,kq with basis vectors of q1, Aq1, . . . ,A
k�1q1.

Algorithm 1: Arnoldi Iteration

Choose an initial vector q1 with }q1}2 � 1.

for j � 1 . . . k do
rj � Aqj ,

hi,j � prj ,qiq for i � 1, . . . ,j,

rj � rj �
°j
i�1 hi,jqi,

hj�1,j � }rj}2, and

qj�1 � rj{hj�1,j .

end

Let an upper Hessenberg matrix Hk be defined as,

Hk �

�
���������

h1,1 h1,2 � � � � � � h1,k

h2,1 h2,2 � � � � � � h2,k

0
. . .

. . .
...

...
. . .

. . .
...

0 � � � � � � hk,k�1 hk,k

�
���������
. (5.2)

Then the original matrix A is related to Hk through the Arnoldi process as

AQk � QkHk � rke
T
k , (5.3)

where Qk � rq1 � � � qks. The last operation in the for loop in the k-th iteration of Arnoldi iteration 1

gives rk � hk�1,kqk�1. Substituting this into relation (5.3),

AQk � QkHk � qk�1phk�1,ke
T
k q,

� Qk�1Ĥk,
(5.4)

where Qk�1 � rq1 . . . qk�1s and Ĥk is defined as

Ĥk �

�
������������

h1,1 h1,2 � � � � � � h1,k

h2,1 h2,2 � � � � � � h2,k

0
. . .

. . .
...

...
. . .

. . .
...

0 � � � � � � hk,k�1 hk,k

0 � � � � � � 0 hk�1,k

�
������������
. (5.5)

GMRES takes q1 to be a normalized initial residual for a given initial guess x0, that is, q1 � r0
}r0}2 .

50 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

For some vector yk P Rk, the kth approximate solution is xk � x0 �Qkyk. Then the residual at the

k-th iteration becomes
rk � b�Axk � b�Apx0 �Qkykq

� r0 �AQkyk

� r0 �Qk�1Ĥkyk

� Qk�1p}r0}2e1 � Ĥkykq.

(5.6)

Since the orthonormal matrix is invariant in 2-norm, the residual norm becomes }rk}2 � }}r0}2e1 �
Ĥkyk}2. GMRES finds y�k such that }}r0}2e1 � Ĥkyk}2 is minimized. This is done by applying a

sequence of Givens rotations in order to transform Ĥk into an Rk upper triangular matrix augmented

with an extra zero row. That is, after a series of Givens rotations G, the structure of the residual

norm is

}G}r0}2e1 �Rkyk}2 �

�����������������

�
fk

ϕk�1

�
�

�
������������

� � � � � � � � �
0 � � � � � � � �
0

. . .
. . .

...
...

. . . � �
0 � � � � � � 0 �
0 � � � � � � 0 0

�
������������
yk

�����������������
2

, (5.7)

where si for i � 1, . . . ,k is a sine operation from the i-th Givens rotation. The least-squares solution

is obtained by solving Rky � fk, and the corresponding residual is ϕk�1 � |s1s2 . . . sk}r0}2|. Since

the sine function is strictly less than 1 unless hk�1,k is exactly zero (i.e., lucky break-down), the

residual is monotonically decreasing. The monotonic decrease in residual can be also seen from the

fact that the previous Krylov subspace is included in the current subspace, that is, KpA,r0,k� 1q �
KpA,r0,kq. Thus, GMRES can be terminated if ϕk�1 � |s1s2 . . . sk}r0}2| is small enough. Then, a

solution is obtained by x� � x0 �Qkyk.

The convergence of GMRES for a symmetric matrix can be derived easily. The residual vector

rk is b � Axk. For simplicity, let x0 be a zero vector. Since xk P KpA,b,kq, GMRES finds xk such

that

}rk}2 � min
αPRk

�����
ķ

j�1

�
αjA

j � I
�
b

�����
2

. (5.8)

Let ℘k be a set of polynomials with degree k or less. Then (5.8) can be rewritten as

}rk}2 � min
pP℘k,pp0q�1

}ppAqb}2. (5.9)

Since A is symmetric, it is diagonalizable. That is, A � V DV T , where D is a diagonal matrix with

diagonal elements of eigenvalues of A, and V is an orthogonal matrix whose columns are eigenvectors

5.1. ITERATIVE METHODS 51

Figure 5.1: Left: eigenvalue distributions of two matrices in the complex plane. The red dots have
c{r ratio of 1.2 while the blue dots have c{r � 0.9. Right: GMRES performance (e.g., relative
residual) for two matrices from the left figure are shown. The red dots correspond to the matrix
whose eigenvalue distribution is represented by the red dots in the left figure.

of A. Then (5.9) can be bounded above by

}rk}2 � min
pP℘k,pp0q�1

}V ppDqV T b}2,

¤ κpV q}b}2 min
pP℘k,pp0q�1

max
λPσpAq

ppλq,
(5.10)

where σpAq is a set of eigenvalues of A. One can bound this min max by Chebyshev polynomials.

Precisely speaking, if all the eigenvalues of A are included in the ellipse Epc,d,aq, centered at c, focal

distance d, semi-major axis a, and excluding the origin, then the residual norm }rk}2 is bounded by

}rk}2 ¤ κpV q}b}2Ckpa{dq
Ckpc{dq . (5.11)

Furthermore, the term Ckpa{dq
Ckpc{dq can be approximated by (e.g., see the Chapter 6 of [76])

Ckpa{dq
Ckpc{dq �

�
a�?

a2 � d2

c�?
c2 � d2

k
. (5.12)

Note that if the centroid of a cluster of eigenvalues of A is far away from the origin (e.g., c big),

the cluster size is small (e.g., a and d small), and the condition number of V is small (e.g., κpV q is

small), then GMRES converges quickly. Indeed, the performance of GMRES can be characterized

by the c{r ratio when the eigenvalues are included in a circle centered at c with radius r. On the left

of Figure 5.1, eigenvalue distributions are shown for two different matrices whose size is 1000� 1000

52 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

Figure 5.2: A study of c{r ratio versus the number of iterations in GMRES.

in the complex plane. The red dots are included in a circle centered at p1,0q with a radius of about

0.83, so the c{r ratio is 1.2. On the other hand, the eigenvalue distribution of the blue dots lies on

the circumference centered at p0.5,0q with a radius of about 0.56, so it has a c{r ratio of 0.9. In

order to avoid a (nearly) singular matrix, the matrix whose c{r ratio is less than 1 has eigenvalues

that lie only on the circumference. On the right of Figure 5.1, the relative residuals (e.g., }r}2{}b}2)

computed by applying GMRES to these two matrices are shown for the first 60 iterations. As

expected, the matrix with higher c{r ratio converges faster than the one with smaller c{r. This

pattern appears true. Figure 5.2 shows a plot of c{r ratio versus the number of iterations taken to

converge. As expected, GMRES converges faster for bigger c{r ratio. In general, GMRES converges

fast for any symmetric positive definite matrix whose eigenvalues are clustered. It is important

to note that the convergence analysis for symmetric matrices presented in this section is not only

applicable to GMRES, but also to any Krylov subspace-based iterative method. Also note that if

there are m distinct nonzero eigenvalues in a symmetric matrix A, then theoretically GMRES must

converge within at most m iterations. This is because if A has only one nonzero eigenvalue λ0, then

there is a linear function that vanishes at λ0, resulting in zero residual in the first iteration due to

the inequality in (5.10). If there are two distinct nonzero eigenvalues λ0 and λ1, then one can find a

quadratic function that vanishes at both λ0 and λ1, resulting in zero residual in the second iteration

due to the inequality in (5.10).

5.2. PRECONDITIONERS 53

5.2 Preconditioners

As seen in the previous section, GMRES (or other Krylov iterative methods) perform best when the

eigenvalues of a system are clustered. If the matrix does not have clustered eigenvalues, then one can

apply preconditioners and try to make the preconditioned system have clustered eigenvalues. Because

it is natural to think of saddle point systems in block structures, only block preconditioners are

considered. However, it must be noted that incomplete factorization preconditioners are also possible

for saddle point systems. There are three types of block preconditioners: block diagonal, block

constraint, and block triangular. The subsequent sections will describe each type of preconditioner

and introduce some new preconditioners for a saddle point system of the following block structure:

�
���
V JT

φG QT

J Q

�
���
�
���
y

u

λ

�
��
�

�
���
r1

r2

r3

�
��
, pAx � bq, (5.13)

which is identical to the block structures for all four types of optimal control formulation presented

in Chapter 3.

5.2.1 Block diagonal

Murphy, et al. [59] present a short note on block diagonal preconditioner based on the Schur com-

plement for a saddle point system. That is,

Pbd :�

�
���
V

φG

�S

�
��� , (5.14)

where the Schur complement S is given by

S � �pJV �1JT � 1

φ
QG�1QT q. (5.15)

The preconditioned system has three distinct nonzero eigenvalues, so a Krylov iterative method is

theoretically expected to converge in at most three iterations. The only disadvantage of applying

this preconditioner is that it requires solving for the Schur complement, which is impractical since

it is as expensive as solving for original saddle point system.

Rees, et al. [71] developed a block diagonal preconditioner that is based on an approximate

Schur complement. There are two parts in the Schur complement: S1 :� �JV �1JT and S2 :�
� 1
φQG

�1QT . V and G are symmetric positive definite, and it may be possible to make them

easier to invert (i.e., turn them into a diagonal matrix) since V and G only appear in the objective

function and their two main roles are defining a norm and weighting each component of state vector

54 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

proportional to volume occupation. J is the Jacobian of constraints with respect to the state

variables. It is a stiffness matrix for static PDEs and a time integrator scheme for dynamic PDEs

(see Chapter 3). Although there are cases where J becomes rank-deficient, only the full-rank case

is considered. Thus, the first part of the Schur complement has full rank. However, except for

some special cases (i.e., optimal body force control for static PDEs), Q is not even a square matrix.

Thus, the second part of the Schur complement is usually rank-deficient. Note that φ determines

the relative significance of the two parts. For φ small, the second part is more important than the

first part, and vice versa for φ large. Rees et al. take advantage of these facts in order to develop

preconditioners. Note that for φ not too small, S can be approximated by S1, which defines a block

diagonal preconditioner,

Prees :�

�
���
V

φG

�S1

�
��� . (5.16)

Rees et al. further approximate S1 by replacing J by some approximation J̄ that is obtained by a

multi-grid method. Defining S̄ :� �J̄V �1J̄T , Rees’s block diagonal preconditioner P̄rees is

P̄rees :�

�
���
V

φG

�S̄

�
��� . (5.17)

They have shown in [71] that an eigenvalue λ of the preconditioned system P�1
reesA satisfies one of

the following:

λ � 1,

1

2
p1�?

1� 4σ1q ¤ λ ¤ 1

2
p1�?

1� 4σmq,
1

2
p1�?

1� 4σmq ¤ λ ¤ 1

2
p1�?

1� 4σ1q,

(5.18)

where 0 ¤ σ1 ¤ . . . ¤ σm are the eigenvalues of 1
φ pJV �1JT q�1pQG�1QT q � I. Note that for φ

extremely big, σi � 1 for i � 1, . . . ,m, which results in eigenvalues identical to those of Murphy’s

preconditioned system [59]. This analysis explains why Prees performs better for φ large (see Prees

in Table 7.2).

One can go to the other extreme by replacing S by S2 in Pbd, defining Pbd2 � blkdiagpV,φG,S2q.
This must work well for φ small because S2 is more important than S1 when φ small. Indeed, Pbd2

works better for smaller φ as shown in Table 7.2 and Figure A.1 (i.e., case 3 in Appendix A.4).

However, as pointed out earlier, the problem with this preconditioner is that S2 has full-rank only

if Q is a square full rank matrix. Q is not a square matrix if the number of control variables is not

equal to that of state variables and for dynamic problems in general.

5.2. PRECONDITIONERS 55

There is a simpler way of approximating S if φ is small because the order of magnitude of S will

be determined by 1
φ . One can replace S with ξI, where I is the identity matrix and ξ is a coefficient.

This defines the preconditioner Psbd2 � blkdiagpV,φG,ξIq. ξ must be set so that it is similar to S2

in magnitude. To be precise, ξ must be bigger than the maximum absolute eigenvalue of the Schur

complement S. This choice is appropriate even when G is not a square matrix. Unfortunately, this

preconditioner does not work well because the preconditioned system becomes nearly singular as

φ decreases. For example, if one sets ξ � 1
φ , then the preconditioned system has an eigenvalue of

1�?1�4µ
2 , where µ is an eigenvalue of S. Note that it becomes nearly zero when µ is nearly zero.

Figure A.3 shows the performance of GMRES applied to contrived example 1 with preconditioner

Psbd2 and φ � 10�6. The spectral analysis for all the block diagonal preconditioners introduced in

this section is done in Appendix A.3.

Murphy’s block diagonal preconditioner may be thought of as being derived from the factorization

(4.27) of the KKT system. Ignoring H�1 in the first and third matrices and putting minus in

front of S, the resultant matrix becomes a block diagonal preconditioner identical to Murphy’s.

Depending on how S is approximated, one obtains several other practical preconditioners, including

Rees’s preconditioner and all other block diagonal preconditioners introduced in this section. The

concept of approximating or modifying the factorization of the KKT system in order to derive a new

preconditioner will be used again later in this chapter.

5.2.2 Block lower triangular

The factorization of the KKT system (4.27) can be used to find another type of preconditioner: the

block lower triangular preconditioner. Note that the multiplication of the first two factors gives

Plt �

�
���
V 0 0

0 φG 0

J Q S

�
��� , (5.19)

where S is the Schur complement. Note that from factorization (4.27), the preconditioned system

P�1
lt A is a block upper triangular matrix in which the diagonal elements are 1s. Thus, it has a

unique eigenvalue, 1. However, as in the case of Pbd, this is not practical because Plt needs to solve

for S, which is as expensive as solving the original KKT system directly. Thus, one needs to replace

S with approximate S. As in the block diagonal preconditioners, for φ relatively large, one can

replace S with S1 � �JV �1JT , which defines the preconditioner Plt1,

Plt1 �

�
���
V 0 0

0 φG 0

J Q S1

�
��� . (5.20)

56 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

One can prove the following theorem

Theorem 1. Let µ be an eigenvalue of pJV �1JT q�1QG�1QT . Then, the eigenvalues of P�1
lt1 A

include 1 with multiplicity of n�m and 1� µ
φ , where φ is a regularization parameter.

The theorem states that if φ is larger than |µ|, then all the eigenvalues are between 0 and 2.

The upper right of Figure A.4 shows the eigenvalue distribution of P�1
lt1 A for φ � 10�2. All the

real parts of the eigenvalues are equal to or larger than 1. The lower right of Figure A.4 shows the

convergence of GMRES with preconditioner Plt1 and φ � 10�2. Although Plt1 is no better than

Plt, the number of iterations required for convergence is much lower than the number of iterations

required for no preconditioners. However, for a small regularization parameter φ, the performance

of Plt1 is poor. The left two Figures of A.4 show eigenvalue distribution and convergence of GMRES

for φ � 10�6. The eigenvalues are not clustered and GMRES converges poorly. This is because S1

does not represent the Schur complement S well if φ is small. An alternative way is to replace S

with S2 � � 1
φQG

�1GT as in the case of block diagonal preconditioners. This defines Plt2:

Plt2 �

�
���
V 0 0

0 φG 0

J Q S2

�
��� . (5.21)

Note that there is no minus sign in front of S2, unlike block diagonal preconditioners. This is because

of the preference of signs of eigenvalues of preconditioned system.

Theorem 2. Let µ be an eigenvalue of pJV �1JT q�1QG�1QT . Then, the eigenvalues of P�1
lt2 A

include 1 with multiplicity of n�m and 1� φ
µ , where φ is a regularization parameter.

The theorem states that if φ is much smaller than µ, then all the eigenvalues of P�1
lt2 A are clustered

around 1. The upper left of Figure A.4 shows the eigenvalue distribution of P�1
lt2 A for φ � 10�6.

Note that they are indeed clustered around 1. The lower left of Figure A.4 shows the convergence

of GMRES for Plt2. Although Plt2 performs worse than Plt, the number of iterations required for

convergence is around 20, which is much less than for GMRES with Plt1 or no preconditioners. The

spectral analysis of the preconditioned systems is shown in Appendix A.4, where both Theorems 1

and 2 are proved.

5.2.3 Range space

If the second derivatives of the PDE constraints are not included in the Hessian, then it is straight-

forward to invert H in the factorization (4.27). Taking advantage of this fact, one can modify the

Schur complement in the middle factor and use it as a preconditioner. For large φ, one can replace

5.2. PRECONDITIONERS 57

S with S1, which defines Prs1:

Prs1 �

�
���

I 0 0

0 I 0

JV �1 1
φQG

�1 I

�
���
�
���
V 0 JT

0 φG QT

0 0 S1

�
��� . (5.22)

Applying Prs1 is equivalent to solving for S1 instead of S in (4.24) of the range space method. For

small φ, one can replace S with S2, which defines Prs2:

Prs2 �

�
���

I 0 0

0 I 0

JV �1 1
φQG

�1 I

�
���
�
���
V 0 JT

0 φG QT

0 0 S2

�
��� . (5.23)

Applying Prs2 is equivalent to solving for S2 instead of S in (4.24) of the range space method.

5.2.4 Constraint preconditioner

Biros and Ghattas

Biros and Ghattas [9] use factorization (4.26) of the KKT system, which is based on the reduced

space method. Based on this factorization, they introduce four preconditioners by approximating

Hz with BFGS, omitting second-order terms H, or replacing J by its preconditioner J̃ . Two of four

preconditioners introduced by Biros and Ghattas are

Pbg1 �

�
���
HyyJ̃

�1 0 I

HuyJ̃
�1 I QT J̃�T

I 0 0

�
���
�
���
J̃ Q 0

0 Bz 0

0 Hyu �HyyJ̃
�1Q J̃T

�
��� , (5.24)

Pbg2 �

�
���

0 0 I

0 I QT J̃�T

I 0 0

�
���
�
���
J̃ Q 0

0 Bz 0

0 0 J̃T

�
��� �

�
���

0 0 J̃T

0 Bz Q

J̃ Q

�
��� , (5.25)

where Bz is the BFGS approximation of Hz � QTJ�THyyJ
�1Q�QTJ�THyu �HuyJ

�1Q�Huu.

For linear problems or the initial Hessian approximation for nonlinear problem, they implemented

two choices: the identity matrix and the two-step stationary method. In this thesis, a variant of

Pbg2 is considered where Bz is replaced with the Huu block (i.e., φG):

Pvbg �

�
���

0 0 J̃T

0 φG Q

J̃ Q

�
��� . (5.26)

58 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

One can prove the following theorem

Theorem 3. Let µ be an eigenvalue of pJV �1JT q�1QG�1QT . Then, the eigenvalues of P�1
vbgA

include 1 with multiplicity of n�m and 1� µ
φ , where φ is a regularization parameter.

The spectral analysis of the preconditioned system is shown in Appendix A.2. Note that the

eigenvalues are identical to those of P�1
lt1 A. Thus, Plt1 and Pvbg are supposed to perform simi-

larly. This approach of developing preconditioners is based on approximating or modifying a block

factorization, as for the block diagonal preconditioners in Section 5.2.1.

Rees’ constraint preconditioner

Rees et al. [71], introduced a constraint preconditioner

Pcrees �

�
���

JT

�φS1 QT

J Q

�
��� . (5.27)

Zero-regularization constraint preconditioner

If the block matrix Q is a square full-rank matrix, then there is an ideal preconditioner for φ small.

With φ � 0, the KKT matrix (5.13) defines the zero-regularization constraint preconditioner

Pzrc �

�
���
V JT

QT

J Q

�
��� . (5.28)

Pzrc is a block triangular matrix, so one can solve for QT first, then V , and last Q in order to apply

it. This preconditioner works best when φ small. However, this desirable property is marred by the

fact that this preconditioner is only applicable when Q is square and nonsingular.

Theorem 4. Let µ be an eigenvalue of pJV �1JT q�1QG�1QT . Then, the eigenvalues of P�1
zrcA

include 1 with multiplicity of 2n and 1� φ
µ , where φ is a regularization parameter.

The spectral analysis of the preconditioned system is shown in Appendix A.1.

5.2.5 GMRES performance comparison

The example below compares the performance of GMRES with several preconditioners introduced

in this section.

Example 1. A KKT matrix (5.13) is constructed with the number of state variables n and the

number of control variables m. Each block matrix is generated randomly in MATLAB in a way that

5.2. PRECONDITIONERS 59

Figure 5.3: Comparison of the preconditioners introduced in this section. A KKT system of equations
is generated as explained in Example 1 withm � n � 200. (a) Left: φ � 10�6. (b) Right: φ � 10�2.

makes it similar to a KKT matrix generated in PDE-constrained optimization based on the FEM

discretization; V P Rn�n and G P Rm�m are randomly generated diagonal symmetric positive definite

matrices, J P Rn�n is a randomly generated symmetric positive definite matrix with bandwidth of

5, and Q P Rn�m is a random sparse matrix generated by the sprand function in MATLAB with

density of 0.2. The right-hand side b is generated by the rand function in MATLAB. Finally, all

the convergence results are averages of 100 samples.

Figure 5.3 compares all the preconditioners introduced in this section by solving the KKT system

of equations in example 1 with m � n � 200. The figure on the left shows the results for φ �
10�6 and the one on the right shows the results for φ � 10�2. For φ � 10�6, the constraint

preconditioner Pzrc works the best. Among the preconditioners derived from factorization (4.27)

(i.e., Pbd2, Plt2, and Prs2), Prs2 is slightly better than Plt2 and Pbd2 is the worst. However, all

three preconditioners perform better than the constraint preconditioner Pbg and the case where

no preconditioner is applied. For φ � 10�2, the preconditioner Prs1 based on the range-space

method works the best. Lower triangular preconditioner Plt1 and constraint preconditioner Pbg

perform similarly as second best and Rees’s block diagonal preconditioner Prees is next. Figure 5.4

compares all the preconditioners introduced in this section by solving the KKT system of equations

in example 1 with n � 500 and m � 100. The figure on the left shows the results for φ � 10�6 and

the one on the right shows the results for φ � 10�2. For φ � 10�6, the range-space preconditioner

Prs2 works the best. For φ � 10�2, the preconditioner Prs1 based on the range-space method works

the best. Lower triangular preconditioner Plt1 and constraint preconditioner Pbg perform similarly

as second best and Rees’s block diagonal preconditioner Prees is next.

60 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

Figure 5.4: Comparison of the preconditioners introduced in this section. A KKT system of equations
is generated as explained in example 1 with m � 100, n � 500. (a) Left: φ � 10�6. (b) Right:
φ � 10�2.

5.2.6 An exact representation of a Schur complement

Pearson and Wathen [66] introduced a new approximation for the Schur complement of the Laplacian

optimal control problem with volume controls. The KKT system corresponding to the problem is

�
���
V 0 J

0 φV �V
J �V 0

�
���
�
���
y

u

λ

�
��
�

�
���
r1

r2

r3

�
��
, (5.29)

where J and V are symmetric matrices. The Schur complement corresponding to this KKT system

is S � JV �1J � 1
φV . They approximated S with

Spearson � pJ � 1?
φ
V qV �1pJ � 1?

φ
V q. (5.30)

This approximation works well because the error is Op 1?
φ
q (note that S � Spearson � 2?

φ
J , which

shows that the error term is 2?
φ
J). Also it is easy to solve with J � 1?

φ
V via a multi-grid method.

Pearson and Wathen showed that if the block diagonal preconditioner with this approximation of the

Schur complement is used, a Krylov iterative method will converge in a fixed number of iterations

regardless of mesh size or φ value.

It is possible to derive the following exact representation of the Schur complement S:

Sexact � pJ � 1?�φV qV
�1pJ � 1?�φV q. (5.31)

5.3. MULTI-PRECONDITION 61

Note that the structure of Sexact is the same as that of Spearson (i.e., the linear combination of

J and V in the first factor, V �1 in the second factor, and again the linear combination of J and

V in the third factor). A difference between Sexact and Spearson is that Sexact includes imaginary

numbers. For example, in order to solve with pJ � 1?�φV q, one needs to use a linear solver that can

solve with a symmetric complex matrix2. Such solvers include CG [32], FETI [26], and multi-grid

methods [52]. In Section 7.1.1, the expression Sexact is used in the range space method via FETI-DP

in order to solve a linear static thermal optimal control problem. There, numerical results show that

FETI-DP on pJ � 1?�φV q and pJ � 1?�φV q does not depend on the mesh size h as long as the size of

subdomain H changes to keep the ratio H{h fixed. The numerical results also show that FETI-DP

on pJ � 1?�φV q and pJ � 1?�φV q does depend on φ, but the dependence is minor.

5.3 Multi-precondition

The preconditioners introduced in this section have different ranges of regularization parameters

in which they work best. If there is a way of combining two preconditioners (e.g., one works best

for small regularization parameter, the other for bigger regularization parameter), then this may

result in a combination of preconditioners that is robust in the sense that it works for any value of

regularization. The robustness in linear solvers is more crucial in nonlinear problems than in linear

problems. In nonlinear problems, a sequence of linearized problems is solved (e.g., by Newton’s

method) and each linearized problem varies in its characteristics. Thus it is important in nonlinear

problems to have a linear solver that can handle a broad range of linear systems and we try to

achieve robustness by introducing a multi-preconditioned Krylov iterative method.

The idea of mixing preconditioners in order to develop robust iterative methods goes back to

1993, the year in which Saad developed flexible GMRES (FGMRES) [75, 76]. Since then, many vari-

ants of FGMRES have been developed. A few of them are flexible conjugate gradient (FCG) [61],

multi-preconditioned CG (MPCG) [12], and multi-preconditioned GMRES (MPGMRES) [41], all of

which fall into the category of Krylov iterative methods. Both FCG and MPCG lose an attractive

property of CG (or PCG), namely, short-term recurrence. Similarly, both GMRES and MPGMRES

do not have the short-term recurrence property. However, GMRES and MPGMRES work for un-

symmetric preconditioned systems. Since the preconditioners Pzrc, Plt1 and Plt2 yield unsymmetric

preconditioned systems, we focus on MPGMRES.

5.3.1 Multi-preconditioned GMRES

MPGMRES [41] is similar to flexible GMRES, the only difference being that MPGMRES has a richer

subspace than flexible GMRES. There are two main categories of MPGMRES: full and truncated

MPGMRES. Both are based on the block Arnoldi process. Full MPGMRES has a richer subspace

2Neither pJ � 1?
�φ

V q nor pJ � 1?
�φ

V q is Hermitian.

62 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

than truncated MPGMRES at each iteration, but full MPGMRES is computationally expensive if

it does not converge early.

Algorithm 2: MPGMRES: vectorized version with elimination of redundant search directions

Choose xp0q, rp0q � b�Axp0q

β � }rp0q}, vp1q � rp0q{β
Zp1q � fullmultipreconditionprp0qq
Ṽ � vp1q

nZp1q � no. of columns in Zp1q, nZ � ZZp1q
for i � 1, . . . until convergence do

nṼ � no. of columns in Ṽ
for ` � 1 . . . nZpiq do

w � AZ
piq
`

for j � 1 . . . nṼ do

pH̃iqj,nṼ � wT Ṽj
w � w� ṼjpH̃iqj,nṼ

end

pH̃iqnṼ �1,nṼ
� }w}2

Ṽ � rṼ w{pH̃iqnṼ �1,nṼ
s

if pH̃iqnṼ �1,nṼ
� 0 then

if residual small enough then
lucky breakdown

else

remove this column of Zpiq, nZpiq � nZpiq � 1
return to top of loop

end

else
nṼ � nṼ � 1

end

end

ypiq � argmin}βe1 � H̃iy}2
xpiq � xp0q � rZp1q . . . Zpiqsypiq

Zi�1 �
"

fullmultipreconditionpṼnZ�1:nZ�nZpiq q, or

truncmultipreconditionpṼnZ�1:nZ�nZpiq q
nZpi�1q � no. of columns in Zpi�1q, nZ � nZ � nZpiq

end

MPGMRES is described in Algorithm 2. The columns in Z � rZp1q . . . Zpiqs form basis vectors

for xpiq � xp0q. Full MPGMRES calls the function fullmultiprecondition to update Zpiq in the

main loop, while truncated MPGMRES calls the function truncmultiprecondition. Note that the

size of the number of columns in Zpiq increases exponentially in full MPGMRES as the number of

outer iterations increases. On the other hand, truncated MPGMRES has a fixed number of columns

in Zpiq added to Z for each outer iteration. Due to the way Z is formed, it is possible to get linearly

5.3. MULTI-PRECONDITION 63

Algorithm 3: Subroutine: full multi-preconditoined step

function Z � fullmultipreconditionpV q
Z � rP�1

1 V . . . P�1
t V s

end function

Algorithm 4: Subroutine: truncated multi-preconditoined step

function Z � truncmultipreconditionpV q
Z � rP�1

1 V1 . . . P
�1
t Vts

end function

dependent columns in Z. If this happens, pH̃iqnṼ �1,nṼ
� 0 although it has not yet converged. To

prevent this undesirable event, a check is made for linear dependency of every column in Z. At

the i-th iteration of the Arnoldi process, the following relation is true: For Zi � rZp1q . . . Zpiqs and

Vi�1 � rV p1q . . . V pi�1qs,
AZi � Vi�1H̃i,

where H̃i is a matrix with one extra row at the bottom of an upper Hessenberg matrix. This relation

is directly used in MPGMRES to minimize }b�Ax}2 in order to get updated ypiq in the following

sense:

}b�Ax}2 � }βv1 �AZiy}2 � }Vi�1rβe1 � H̃iys}2 � }βe1 � H̃iy}2.

In order to see the difference between MPGMRES and FGMRES, let us look at the preconditioned

Krylov subspace in the first couple of iterations of MPGMRES with two right preconditioners and

FGMRES with preconditioners P1 and P2. At the first iteration, FGMRES seeks the solution xp1q

that minimizes }b�Axp1q}2 subject to

xp1q P SpantP�1
1 r0u.

At the second iteration, it seeks the solution xp2q that minimizes }b�Axp2q}2 subject to

xp2q P SpantP�1
1 r0, P

�1
2 AP�1

1 r0u.

At the third iteration,

xp3q P SpantP�1
1 r0, P

�1
2 AP�1

1 r0, P
�1
3 AP�1

2 AP�1
1 r0u.

On the other hand, MPGMRES seeks the solution xp1q that minimizes }b�Axp1q}2 subject to

xp1q P SpantP�1
1 r0, P

�1
2 r0u.

64 CHAPTER 5. ITERATIVE METHODS AND PRECONDITIONERS

At the second iteration, it seeks the solution xp2q that minimizes }b�Axp2q}2 subject to

xp2q P SpantP�1
1 r0, P

�1
2 r0, P

�1
1 AP�1

1 r0, P
�1
1 AP�1

2 r0, P
�1
2 AP�1

1 r0,P
�1
2 AP�1

2 r0,u.

As mentioned earlier, MPGMRES has a richer subspace than FGMRES at each major iteration. If

x� is a solution of Ax� � b, then convergence (i.e., }xpiq � x�} Ñ 0 as iÑ 8) is expected. Let us

define Spiq to be a subspace in which xpiq resides. If convergence occurs for small i, this means that

x� P Spiq with i small is “almost” true. “Almost” means that convergence will still occur even with

x� R Spiq if a large convergence threshold is used. For a more detailed description of MPGMRES,

see the paper by Grief, et al. [41].

The robustness of MPGMRES becomes apparent in nonlinear dynamic optimal control problems.

A combination of one preconditioner that works well for a small regularization parameter (e.g.,

Plt2) and another preconditioner that works well for a large regularization parameter (e.g., Pvbg) in

MPGMRES turns out to be useful in nonlinear dynamic problems (see Sections 7.4.1, 7.4.2 and 7.4.3).

Chapter 6

Global convergence of sequential

quadratic programming

Newton-type methods do not guarantee global convergence if a starting point is not close to a

solution and if the method is not safeguarded. One safeguard that is necessary for global convergence

is explained. It is the linesearch method. An important concept in the linesearch method is a merit

function, which is also explained in this chapter.

6.1 Linesearch

In a linesearch based SQP method, a search direction p is determined by solving a QP subproblem

taking a step α along p. That is, the next point xk�1 is updated from the current point xk through

the formula

xk�1 � xk � αkp.

There are many criteria that determine a “good” step length αk. One obvious criterion is the

decrease in some functional M that quantifies both an objective function and a constraint violation.

That is,

Mpxk�1q Mpxkq. (6.1)

M is called a merit function. Various linesearch terminating criteria and merit functions are ex-

plained.

6.1.1 Terminating criteria

A simple decrease in M is not sufficient to guarantee global convergence. For example, consider

Mpxq � x2 � 1 and assume that we aim to find a minimum of M , which is Mpx�q � �1. If one

65

66CHAPTER 6. GLOBAL CONVERGENCEOF SEQUENTIAL QUADRATIC PROGRAMMING

takes a series of step lengths αk that make the merit function Mpxkq 5
k at the k-th iteration, then

Mpxk�1q Mpxkq is satisfied at every iteration, but Mpxkq converges to 0, not to the minimum �1.

In order to guarantee global convergence, stricter terminating conditions (e.g., the Wolfe condition)

need to be imposed in a linesearch procedure. In each iteration, a sufficient decrease is required.

Clearly the decrease in M will be converging to zero. However, what we require is that the decrease

is not converging to zero with respect to decrease that is possible.

To understand these stricter conditions, a univariate function ρpαq needs to be defined for sim-

plicity as follows:

ρpαq �Mpxk � αpq.

The Wolfe condition imposes two conditions, the Armijo condition [4] and the curvature condition.

The Armijo condition is measured by the following inequality:

Mpxk � αpkq ¤Mpxkq � c1α∇MT
k pk (6.2)

for some constant c1 P p0,1q. In practice, c1 is chosen to be quite small, say c1 � 10�4. The

Armijo condition is also called the “sufficient decrease” condition because it imposes the decrease

(i.e., Mpxkq �Mpxk � αpkq) in a merit function to be greater than a positive lower bound (i.e.,

�c1α∇MT
k pk). The Armijo condition is not sufficient by itself for a reasonable progress because it

is satisfied only for a sufficiently small value of α. To rule out an unacceptably short step, a second

requirement, called the curvature condition, is necessary, in which αk must satisfy the following

inequality:

∇Mpxk � αkpkqT pk ¥ c2∇MT
k pk (6.3)

for some constant c2 P pc1,1q, where c1 is a constant from (6.2). Note that the left-hand side is simply

the derivative ρ1pαkq, so the curvature condition ensures that the slope of ρ at αk is greater than

c2 times the initial slope ρ1p0q. This makes sense because if the slope ρ1pαq is strongly negative, we

have an indication that we can reduce M significantly by moving further along a chosen direction.

On the other hand, if ρ1pαkq is only slightly negative or even positive, this is a sign that we cannot

expect much more decrease in M in this direction, so it makes sense to terminate the linesearch.

The curvature condition rules out an unacceptably short step. A typical value of c2 is 0.9 when a

search direction pk is chosen by a Newton-type method.

Ensuring curvature condition (6.3) requires a gradient of a merit function at xk � αkpk, which

may not be readily available. It is possible to construct a simple linesearch algorithm without the

curvature condition and rule out a small step length. The backtracking approach checks if the Armijo

condition (6.2) is satisfied or not starting with a sufficiently large α. The backtracking algorithm

makes progress as follows:

6.1. LINESEARCH 67

Algorithm 5: Backtracking Linesearch

Choose α̂ ¡ 0, ϕ P p0,1q, c P p0,1q; set αÐ α̂;

repeat until fpxk � αpkq ¤ fpxkq � cα∇fTk pk
αÐ ϕα

end(repeat)

Terminate with αk � α.

In this procedure, the initial step length α̂ is typically chosen to be 1 in a Newton-type method,

but it can have a different value in other algorithms such as the steepest descent method. An

acceptable step length will be found after a finite number of trials, because αk will eventually

become small enough for the Armijo condition to hold. In practice, the contraction factor ϕ is

often allowed to vary at each iteration of the linesearch. For example, it can be chosen by some

safeguarded interpolation. The only requirement on ϕ is ϕ P rϕlo, ϕhis for some fixed constants

0 ϕlo ϕhi 1.

The backtracking approach ensures either that the selected step length αk is some fixed value

(i.e., an initial choice α̂) or that it is short enough to satisfy the Armijo condition but not too short.

The latter claim holds because an accepted value α is within a factor ϕ of the previous trial value

(i.e., αk{ϕ), which is rejected for violating the Armijo condition, that is, for being too long.

Besides the Wolfe condition and the backtracking linesearch, there are more linesearch termi-

nating criteria. The strong Wolfe condition replaces the curvature condition in the Wolfe condition

with the following stronger curvature condition:

|∇Mpxk � αkpkqT pk| ¤ c2|∇MT
k pk|. (6.4)

As c2 decreases to zero, condition (6.4) becomes closer to the minimization condition. It is harder

to find a step that satisfies the strong Wolfe condition than the Wolfe condition, but there is an

algorithm that finds a step satisfying the strong Wolfe condition [57]. Some modifications to the

Wolfe condition can be found in [39] and [31].

In an SQP algorithm implemented in AERO-S, both the Wolfe condition and the backtracking

algorithm are available. A user can choose one of these two algorithms from an input file. For more

sophisticated linesearch algorithms, the textbooks [37, 60] are good references.

6.1.2 Merit functions

In an SQP method, constraints need not be satisfied exactly at an intermediate iterate. One should

make sure that the SQP method creates a sequence of points that minimize both an objective function

and infeasibilities. Thus, a merit function in a linesearch algorithm has to quantify a combination of

an objective function and a constraint violation. Kaustuv [49] has made a table in which a list of a few

68CHAPTER 6. GLOBAL CONVERGENCEOF SEQUENTIAL QUADRATIC PROGRAMMING

representative merit functions and their characteristics are shown. His table is repeated in Table 6.1.

Merit function Exactness Differentiability Maratos Effects
fpxq � ρ}cpxq}1 Exact Non-differentiable Yes

at some point
fpxq � ρ}cpxq}2 Exact Non-differentiable Yes

at some point
fpxq � ρ

2 }cpxq}22 Inexact Differentiable Yes
at all points

fpxq � λT cpxq � ρ}cpxq}22 Inexact Differentiable No
at all points

Table 6.1: A list of a few representative merit functions

In Table 6.1, an objective function is denoted as fpxq and constraints as cpxq. The penalty

parameter ρ is used to penalize infeasibility. The first merit function in Table 6.1 is the `1 penalty

function. It has the desirable property of exactness [67], meaning that a minimizer of an original

optimization problem is also a minimizer of the corresponding merit function with a sufficiently large

penalty parameter. However, it is differentiable only if all the constraints are infeasible at a current

point. Thus, one may not be able to apply a sophisticated surrogate model that can be useful to

apply a sophisticated linesearch condition such as the Wolfe condition. Additionally, the `1 penalty

merit function is known to exhibit Maratos effects [55], according to which a merit function hinders

a unit step to be taken near a minimizer. If a Maratos effect occurs, a superlinear or quadratic

rate of convergence for the quasi-Newton or Newton method is prohibited, which is undesirable.

The second and third merit functions (the `2 penalty function and the quadratic penalty function,

respectively) also suffer from the Maratos effect. On the other hand, the augmented Lagrangian

merit function (i.e., the fourth merit function in Table 6.1) does not suffer from the Maratos effect.

Actually, it has the exact opposite properties to the `1 or `2 penalty functions. For example, the

augmented Lagrangian merit function does not have the exactness property, but it is differential

everywhere. The augmented Lagrangian merit function has been used in SNOPT [38] successfully.

In the PDE-constrained optimal control routine in AERO-S, all four merit functions in Table 6.1

are implemented.

Chapter 7

Numerical experiments

Optimal control has many practical engineering applications. Several numerical experiments of

optimal control will be considered. Throughout the experiments, the performance of preconditioners

introduced in Chapter 5 is examined. All the numerical results presented are based on simulations

run on a single process except when the FETI-DP method is used in the range space method. Also,

note that none of the optimal control examples considered consider a feedback system although the

SAND formulation for nonlinear dynamic PDE-constrained optimal control in Chapter 3 can be

readily adapted to the closed-loop control problem.

7.1 Linear static PDE-constrained optimal control

7.1.1 Linear static heat conduction with heat control

Thermal control is required in various applications. In computer hardware, one may want to maintain

the temperature of the computer below some maximum temperature. In a greenhouse, a farmer may

want a particular temperature change. For both of these cases, an appropriate cooling or heating

system and its control are required. By solving a PDE-constrained optimal control problem, precise

heat control can be obtained. In this section, heat conduction on a square plate is considered. Heat

conduction is considered because its PDE is a Poisson’s equation, which is linear.

minimize
y,u

F py,uq � 1

2
py � ȳqTV py � ŷq � φ

2
uTV u

subject to Ky �Kcyc � V u � 0,

(7.1)

where y P Rn is temperature, u P Rm is distributed heat source, and V is the volume matrix. This

example is identical to the example 5.1 in [71] by Rees et al. The domain Ω is r0,1s2 � R2, which is

a unit square plate, whose material properties are simple. For example, Young’s Modulus of 1 Pa,

69

70 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.1: (a) Left: target temperature. Right: φ vs }y � ȳ}{}ȳ}

density of 1 kg{m3, thickness of 1 m, specific heat coefficient of 1 J{kg � K, and heat conduction

coefficient of 1 W {m �K are used. The target temperature ȳ is defined as

ȳ �
#

p2x1 � 1q2p2x2 � 1q2 if px1,x2q P r0, 12 s2,
0 otherwise,

(7.2)

which is illustrated in Figure 7.1(a). The boundary condition yc is defined as

yc � ȳ on BΩ � tpx1,x2q|x1 P t0,1u, x2 P t0,1uu (7.3)

The optimal control (7.1) tries to find a temperature y that is close to the target temperature ȳ by

controlling heat u. How close y can be to ȳ is determined by the regularization parameter φ. As φ

decreases, y is expected to approach ȳ, but }u} increases as φ decreases. This makes sense because

the objective function value is not sensitive to the second term if the regularization parameter is

small and the first term dominates the objective function value. These results are shown both in

Figure 7.1(b) and Table 7.1.

Temperature and heat distributions for various regularization parameters are shown in Fig-

ures 7.2(a)-(h). Note that for φ � 2 and 2 � 10�2, heat is almost zero everywhere and the cor-

responding temperature distributions (i.e., 7.2(a) and (c)) are slightly different from the target

temperature (i.e., Figure 7.1). They are induced only by boundary condition yc. The target temper-

ature can be matched more precisely if smaller regularization is used. Figures 7.2(e) and (g) show

temperature distributions that are closer to the target temperature. They are produced by setting

7.1. LINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 71

φ }u} }y � ȳ}{}ȳ} }b�Ax}{}b}
2e-2 4.7e00 4.3e-01 2.75e-12
2e-3 2.6e01 3.1e-01 1.86e-11
2e-4 7.1e01 1.5e-01 4.80e-11
2e-5 1.2e02 4.9e-02 7.70e-11
2e-6 1.6e02 1.3e-02 4.99e-11
2e-7 1.8e02 3.2e-03 9.61e-11
2e-8 1.9e02 9.1e-04 9.23e-11
2e-10 1.9e02 1.6e-04 9.46e-11

Table 7.1: Study of objective function values of example 1 with respect to various φ. }y � ȳ}{}ȳ}
measures the first part of objective function, }u} the second part. GMRES is used with a convergence
tolerance of 10�10. The mesh size h of 2�6 is used. The last column, }b � Ax}{}b}, presents the
residual norm of the KKT system of equations, showing that the system has converged. } � } is `2
norm, A is the KKT matrix, and b the corresponding right-hand side.

smaller φ values (i.e., φ � 2 � 10�5 and 2 � 10�6). Note that the corresponding heat distributions

(i.e., Figures 7.2(f) and (h)) show nonzero heat at the left bottom of the domain. As φ decreases,

a sharper heat gradient is present near the boundary.

According to Figure 7.1(b) (i.e., the graph of φ vs }y � ȳ}{}ȳ}), ideally, one would like to use

a φ of less than 2 � 10�6 in order to match the target temperature to within 1%. However, as

discussed in Chapter 5, each preconditioner has a certain range of φ in which it works the best.

Tables 7.2 and 7.3 show the performance of seven preconditioners proposed in this thesis along

with two preconditioners previously developed by others (i.e., Prees and Pbg2). Table 7.2 shows

the number of iterations whereas Table 7.3 shows the computational time in seconds according to

various φs. nc means that GMRES does not converge within 100 restarts of 100 iterations. The

mesh size (h) is 2�6 and the convergence threshold is 10�10. For each fixed φ, the best performing

preconditioner is colored as dark blue and the second best performing one as light blue.

72 CHAPTER 7. NUMERICAL EXPERIMENTS

(a) temperature, φ � 2 (b) heat, φ � 2

(c) temperature, φ � 2� 10�2 (d) heat, φ � 2� 10�2

(e) temperature, φ � 2� 10�5 (f) heat, φ � 2� 10�5

(g) temperature, φ � 2� 10�6 (h) heat, φ � 2� 10�6

Figure 7.2: temperature and heat distribution for various regularization parameter

7.1. LINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 73

φ pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2
2E-2 9 7 6 nc nc 6 nc 5 nc
2E-3 13 8 8 nc nc 8 nc 7 nc
2E-4 21 12 10 9091 4607 11 8200 10 4561
2E-5 35 17 14 1365 848 18 2334 18 843
2E-6 66 30 23 176 227 33 476 31 226
2E-7 199 42 31 34 69 63 138 61 68
2E-8 2044 50 43 6 15 139 43 138 22
2E-9 4499 53 63 3 9 300 17 352 8
2E-10 nc 53 95 3 5 587 9 597 4
2E-11 nc 53 280 3 4 nc 9 3399 3
2E-12 nc 53 400 3 3 nc 9 - 2

Table 7.2: The numbers of iterations needed to converge are shown for various φ and preconditioners.
GMRES is used as a solver. nc means that GMRES has not converged within 100 restarts of 100
iterations. The mesh size is 2�6 and the convergence threshold is 10�10.

φ pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2 RSE RSEfeti
2E-2 0.06 0.06 0.04 nc nc 0.05 nc 0.06 nc 0.14 0.14
2E-3 0.07 0.06 0.06 nc nc 0.06 nc 0.06 nc 0.14 0.12
2E-4 0.1 0.07 0.06 28.12 13.49 0.07 22.62 0.07 13.50 0.14 0.14
2E-5 0.14 0.09 0.07 3.93 2.45 0.09 6.40 0.11 2.70 0.14 0.14
2E-6 0.29 0.13 0.11 0.5 0.65 0.16 1.30 0.15 0.72 0.15 0.13
2E-7 0.93 0.18 0.13 0.08 0.19 0.30 0.37 0.30 0.20 0.13 0.13
2E-8 9.26 0.22 0.19 0.03 0.05 0.64 0.10 0.67 0.07 0.15 0.12
2E-9 20.57 0.23 0.27 0.02 0.04 1.37 0.06 1.74 0.03 0.14 0.14
2E-10 nc 0.22 0.45 0.03 0.03 2.81 0.03 3.00 0.04 0.13 0.13
2E-11 nc 0.23 1.26 0.03 0.02 nc 0.04 16.99 0.03 0.15 0.13
2E-12 nc 0.23 1.84 0.02 0.02 nc 0.04 nc 0.03 0.14 0.13

Table 7.3: Computational times in seconds are shown for various φ and preconditioners. GMRES
is used as a solver. nc means that GMRES has not converged within 100 restarts of 100 iterations.
The mesh size is 2�6 and the convergence threshold is 10�10.

Block diagonal preconditioner Prees, developed by Rees et al. [71] only works well for φ greater

than or equal to 2� 10�7 as expected from the discussion in Chapter 5. Constraint preconditioner

Pbg2 developed by Biros and Ghattas [9], where the reduced Hessian is replaced by an identity

matrix, also tends to perform better for larger φ, but it performs better than Prees for every φ. The

variant of Pbg2 (i.e., Pvbg) performs slightly better than Pbg2 for a large φ, but the performance of

Pvbg becomes worse than that of Pbg2 as φ decreases. This shows that pvbg is more sensitive to φ

than Pbg2. Preconditioners Pzrc, Plt2, Pbd2, and Prs2 are expected to work well for a small φ as

discussed in Chapter 5. Indeed, Table 7.2 reflects this expectation. Also preconditioners Plt1 and

Prs1 work better, the larger the value of φ.

Table 7.3 has two extra columns, RSE and RSEfeti. These columns show computational time

74 CHAPTER 7. NUMERICAL EXPERIMENTS

for the range space method with exact Schur complement factorization (5.31). RSE uses sparseLU

factorization from the EIGEN1 library in a single process in order to solve with the first and third

factors in (5.31). Thus, computational time shown in the RSE column is used as a reference indi-

cating whether or not a preconditioner is worth using. For example, if the computational time of a

preconditioner is slower than one in the RSE column, then the corresponding computational time is

colored red to indicate that the preconditioner performs worse than that in the range space method

in a single process. This shows that preconditioners Pzrc, Plt2, Pbd2, and Prs2 are worth using for a

small φ whereas they are not worth using for a large φ. On the other hand, preconditioners Prees,

Pbg2, Pvbg, Plt1, and Prs1 are worth using for a large φ, but not worth using for a small φ. RSEfeti

uses FETI-DP [25] in multi-processes in order to solve with the first and third factors in (5.31).

RSEfeti is expected to run a simulation faster than RSE, but since the problem size is not large, the

effect of multi-processes does not appear in Table 7.3 (e.g., the size of the KKT system is 11,907).

In order to see the impact of multi-processes and to compare preconditioners on a larger problem,

Tables 7.4 and 7.5 show the number of iterations and computational time on a problem whose mesh

size is 2�8 and the size of the corresponding KKT system is 190,075. The same patterns are

found. Preconditioners Pzrc, Plt2, Pbd2, and Prs2 perform better the smaller the value of φ whereas

preconditioners Prees, Pbg2, Pvbg, Plt1, and Prs1 performs better the larger the value of φ. RSEfeti

works well throughout all the values of φ although the computational time increases slightly as φ

decreases. FETI-DP is an iterative method, so one can report the number of FETI-DP iterations.

Table 7.6 shows that the number of FETI-DP iterations on both J� 1?�φV and J� 1?�φV increases

as φ decreases. This shows the obvious dependency of FETI-DP on φ.

φ pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2
2E-2 9 7 6 nc nc 5 nc 4 nc
2E-3 13 9 8 nc nc 7 nc 6 nc
2E-4 19 11 9 nc nc 10 nc 9 nc
2E-5 33 16 14 nc nc 17 nc 16 nc
2E-6 62 25 21 nc nc 31 nc 30 nc
2E-7 189 31 22 476 1403 59 4302 57 1400
2E-8 1940 33 23 4 327 146 777 127 326
2E-9 5724 33 30 3 95 382 273 383 94
2E-10 nc 33 45 3 31 1291 59 1284 30
2E-11 nc 33 74 3 11 7049 21 7154 10
2E-12 nc 33 185 3 6 nc 11 nc 5

Table 7.4: The numbers of iterations to converge are shown for various φ and preconditioners.
GMRES is used as a solver. nc means that GMRES has not converged within 100 restarts of 100
iterations. The mesh size is 2�8 and the convergence threshold is 10�10.

Tables 7.7 and 7.8 compare preconditioners for various mesh size (h). Table 7.7 shows that the

number of iterations increases as h decreases for Plt2, Pbd2, and Prs2 as expected from the spectral

1http://eigen.tuxfamily.org/index.php?title=Main Page

7.1. LINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 75

φ pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2 RSE RSEfeti
2E-2 1.5 1.36 1.30 nc nc 1.26 nc 1.21 nc 5.24 0.53
2E-3 1.76 1.49 1.44 nc nc 1.39 nc 1.36 nc 5.22 0.75
2E-4 2.17 1.63 1.50 nc nc 1.60 nc 1.57 nc 5.25 0.57
2E-5 3.27 1.98 1.83 nc nc 2.24 nc 2.10 nc 5.24 0.59
2E-6 5.89 2.63 2.34 nc nc 3.21 nc 3.27 nc 5.52 0.93
2E-7 18.16 3.08 2.41 25.07 75.09 5.45 216.76 5.87 82.16 5.26 0.78
2E-8 180.70 3.25 2.50 0.51 17.24 14.12 38.90 13.10 18.85 5.28 1.00
2E-9 531.41 3.25 3.01 0.50 5.33 37.00 13.59 39.14 5.73 5.31 1.19
2E-10 nc 3.23 4.18 0.52 1.40 124.33 2.63 129.85 1.52 5.33 1.37
2E-11 nc 3.23 7.11 0.51 0.72 706.28 0.95 722.12 0.74 5.38 1.31
2E-12 nc 3.25 17.52 0.50 0.58 nc 0.70 nc 0.57 13.99 1.30

Table 7.5: Computational time in seconds are shown for various φ and preconditioners. GMRES is
used as a solver. nc means that GMRES has not converged within 100 restarts of 100 iterations.
The mesh size is 2�8 and the convergence threshold is 10�10. For RSEfeti, the size of the subdomain
is 2�2 and the number of processes is 16.

analysis in Appendix A. On the other hand, the number of iterations for Prees, Pbg2, Pvbg, Plt1, and

Prs1 does not depend on h. It is surprising to see that Pzrc also does not depend on h although

the spectral analysis in Appendix A shows that it is supposed to depend on h. As in the previous

numerical results, RSE is used as a reference. Results worse than the one for RSE for a fixed h are

colored red. The best performing one is colored dark blue and the second best performing one is

colored light blue. For large mesh sizes (e.g., h � 2�4 or h � 2�5), the computational times are

so small for all the preconditioners that they are not comparable. As h decreases further, obvious

performance differences start to appear. It is worthwhile noting that the full SQP method with

preconditioners Pbg2, Pvbg, and Pzrc shows better scalability than the reduced SQP method (i.e.,

the range space method (RSE)).

Tables 7.9 and 7.10 present the scalability of FETI-DP on J � 1?�φV and J � 1?�φV . Table 7.9

shows the number of FETI-DP iterations for various mesh sizes (h) with a fixed ratio of H{h � 26.

The number of iterations does not depend on h. Table 7.10 shows the computational time for various

numbers of processes. As the number of processes increases, the computational time decreases.

76 CHAPTER 7. NUMERICAL EXPERIMENTS

φ J � 1?�φV J � 1?�φV
2E-2 21 21
2E-3 21 22
2E-4 23 23
2E-5 29 29
2E-6 37 37
2E-7 47 47
2E-8 60 58
2E-9 75 74
2E-10 89 89
2E-11 93 93
2E-12 87 87

Table 7.6: Number of FETI-DP iterations to convergence is shown for various φ. The mesh size is
2�8 and the convergence threshold is 10�10. The size of the subdomain is 2�2 and the number of
processes is 16.

h (KKT size) pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2
2�4 (675) 88 41 38 5 5 45 9 49 4
2�5 (2,883) 699 55 52 5 9 82 15 87 8
2�6 (11,907) 2044 50 43 6 23 139 43 138 22
2�7 (48,387) 1942 41 31 4 82 151 199 139 81
2�8 (195,075) 1940 33 23 4 327 146 777 127 326
2�9 (783,363) 1354 26 19 5 1908 141 6430 113 1848
2�10 (3,139,587) 950 22 14 6 nc 136 nc 98 nc

Table 7.7: The number of iterations to convergence are shown for various mesh sizes h and pre-
conditioners. The regularization parameter φ is 2 � 10�8. The convergence threshold is set to be
10�10.

h (KKT size) pPreesq pPbg2q Pvbg Pzrc Plt2 Plt1 Pbd2 Prs1 Prs2 RSE
2�4(675) 0.03 0.01 0.01 0 0 0.01 0 0.01 0 0.01
2�5(2,883) 0.73 0.06 0.05 0.01 0.01 0.09 0.01 0.1 0.01 0.03
2�6(11,907) 9.30 0.24 0.18 0.03 0.02 0.65 0.10 0.68 0.07 0.15
2�7(48,387) 39.9 0.82 0.63 0.14 1.02 3.21 2.49 3.11 1.11 0.82
2�8(195,075) 180.6 3.24 2.47 0.53 17.4 14.2 38.9 13.1 18.9 5.29
2�9(783,363) 634.0 13.8 11.4 2.26 497.8 65.6 1594.6 57.7 528.8 37.71
2�10(3,139,587) 2495.3 57.84 41.74 13.15 nc 356.3 nc 285.41 nc 276.8

Table 7.8: Computational time in seconds are shown for various mesh sizes h and preconditioners.
The regularization parameter φ is 2� 10�8. The convergence threshold is set to be 10�10.

7.1. LINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 77

num. of elem. h H nsub J � 1?�φV J � 1?�φV
16,384 1{128 1{2 4 31 30
65,536 1{256 1{4 16 45 42

262,144 1{512 1{8 64 40 40
1,048,576 1{1024 1{16 256 35 35
1,638,400 1{1280 1{20 400 35 35
1,806,336 1{1344 1{21 441 32 32
2,166,784 1{1472 1{23 529 34 34
2,359,296 1{1536 1{24 576 34 34
2,560,000 1{1600 1{25 625 34 35
3,211,264 1{1792 1{28 784 34 34
3,368,400 1{1920 1{30 900 34 34

Table 7.9: The table shows how RSEfeti depends on the mesh size. The number of iterations is
shown for various mesh sizes h and for the various subdomain sizes H. The fixed ratio H{h � 26 is
used. The regularization parameter φ is 2� 10�8. The convergence threshold is set to be 10�10.

num. of processes comp. time (sec)
1 101.99
2 52.60
4 28.13
8 15.51

16 9.02
32 6.02
64 5.52

128 4.30
144 3.81

Table 7.10: The table shows how RSEfeti depends on the number of processes. The computational
time is shown for the various number of processes. The mesh size h � 1{1024 and the subdomain
size H � 1{16 are used. The regularization parameter φ is 2 � 10�8. The convergence threshold is
set to be 10�10.

78 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.3: Left: initial configuration of a plate. Right: target configuration

7.2 Nonlinear static PDE-constrained optimal control

7.2.1 Large deflection of a plate

When a structure undergoes large deformation, nonlinear analysis is necessary since the stiffness

changes as the structure’s configuration changes. A plate composed of shell elements is considered.

The shell element has a membrane [1] as well as bending [56] stiffness. The geometric nonlinearity is

handled with corotational formulation developed by Felippa [27]. The stiffness of the plate is 2.1�108

Pa and Poisson’s ratio is 0.3. Initial and target configurations are shown in Figures 7.3. The width of

the plate is 0.25 m and the length is 1 m. All the degrees of freedom at both ends are completely fixed

and the side-displacement in the z-direction is fixed at zero. The target configuration is generated

by applying a uniform nodal force of 1000 N along the mid-line of the plate as shown by red arrows

on the right of Figure 7.3.

Four optimal control problems are considered in this section. First, the same boundary conditions

are applied as the ones in the case used to generate the target configuration. Then, control forces

are allowed on every degree of freedom; these include angular as well as translational forces. The

optimal translational force and torque controls corresponding to the first problem are shown on the

left and right in Figures 7.4, respectively, with the initial configuration in a wire-frame format to

see how much the plate deforms. The contour colors of the deformed plate also indicate the degree

of deformation. The legend on the left (DISP Magnitude) shows that the maximum displacement is

around 0.1 m. The arrows and the legends (i.e., “TCON Magnitude” and “RCON Magnitude”) show

the optimal translational force (on the left) and torque (on the right) controls. These are almost

the same as the forces that are used in order to generate the target configuration (e.g., 1002.9 N in

a slightly perturbed x-direction for translational control and relatively small magnitude of torque).

7.2. NONLINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 79

Figure 7.4: Optimal solutions of the first problem. Left: the optimal translational force control.
Right: the optimal torque control

Pzrc Plt2 Prs2
computational time (sec) 6.90 1.23 0.99

number of iterations 2(10895) 9(1815) 9(1300)

Table 7.11: The table compares the total computational time in seconds and the number of iterations
to converge of three different preconditioners for the first optimal control problem of a nonlinear
static plate. The regularization parameter of 10�20 and the convergence threshold of 10�5 is used.
For the number of iterations, the number outside of parentheses is the number of major iterations
and the inside is the total number of minor iterations.

The size of the KKT system for the first problem is 1938�1938. The number of control variables

is the same as the number of state variables. Thus, preconditioner Pzrc as well as Plt2 and Prs2

are applicable to this problem. Table 7.11 compares the total computational time in seconds and

the number of iterations required for convergence for these three preconditioners in order to solve

the first problem. The constraint preconditioner Pzrc requires only two major iterations, while the

other two preconditioners require nine major iterations. If the number of major iterations is the only

criterion for the choice of preconditioners, then Pzrc must be used for the first problem. However,

Pzrc needs more computational time for convergence than the other two preconditioners because

each major iteration needs many more minor iterations.

The second optimal control problem is solved to see if the optimal control routine can regenerate

the forces used to generate the target state by allowing control forces to be applied only to the

mid-line of the plate in the x-direction. The optimal control routine could, indeed, regenerate the

forces used to generate the target state as shown on the left of Figure 7.5. The number of control

variables is much lower than the number of state variables. The size of the KKT system that arises

80 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.5: Optimal solutions of the second and third problem. Left: the optimal translational force
control of the second problem. Right: the optimal traslational force control of the third problem

in the QP subproblem for the second problem is 1298 � 1298. Since the KKT system is smaller

than the one in the first problem, the second problem is expected to converge faster than the first

problem. However, it turns out that the SAND method on the second problem converges slower

than on the first problem. Plus, the number of major iterations for the second problem is greater

than that for the first problem (see Figure 7.7). The slow convergence rate for the smaller number

of control variables appears again for the third and fourth optimal control problems in this section.

The third problem is solved just to see what kind of solution is returned by the optimal control

routine if the control is limited to applying to places different from the mid-line. The control is

allowed to be applied to the nodes neighboring the ones on the mid-line. The result is shown on

the right of Figure 7.5. As expected, it does not match the target state precisely. For example, the

sharp edge present in the mid-line of the target is absent. Plus, the maximum displacement is not

quite the same as the target maximum displacement (around 0.105 m for the third problem and

around 0.112 for the target). However, it matches the target fairly well.

One may wonder if the target is realizable with only torque, and, if not, how close the configura-

tion can be to the target only with torque only. This question can be answered easily by solving an

PDE-constrained optimization problem. The fourth problem limits the control to be torque only.

Figure 7.6 shows the optimal configuration capable of being generated by torque control only. It

turns out that a configuration generated by torque only can be almost identical to the target con-

figuration. In order to see how close it is to the target, the first part of the objective function (i.e.
1
2}y � ȳ}2V) can be examined. Table 7.12 compares the first part of the objective function values

for all four problems considered in this section. Note that optimal configuration from the fourth

problem is closer to the target than that from the third problem.

7.2. NONLINEAR STATIC PDE-CONSTRAINED OPTIMAL CONTROL 81

Figure 7.6: The optimal solutions of the fourth problem, in which only torque controls are allowed.

problem 1 problem 2 problem 3 problem 4
1
2}y � ȳ}2V 2.3� 10�17 9.8� 10�14 1.8� 10�4 7.2� 10�6

Table 7.12: Comparison of the first part of the objective function values for all four cases considered
in Section 7.2.1 in order to see how close optimal configurations are to the target.

As noted in Chapter 3.3, when QP subproblems are formed in SQP, second order derivatives

of nonlinear PDE-constraints are omitted. Thus, the convergence rate is expected to be linear

at best. As shown in Figure 7.7, the SQP method applied to all of the four problems exhibits a

linear convergence rate. The figure shows decrease in the residual norm of the necessary optimality

conditions. For the first problem, the rate of convergence is less than 0.1; for the fourth problem, it

is around 0.7. However, for the second and third problems, it is close to 1, which implies that it is

nearly sub-linear. Note also that the number of control variables is biggest in the first problem (i.e.,

646) and next biggest in the fourth problem (i.e., 114), while the second and third problems have the

smallest number of control variables (i.e., 6 and 12, respectively). As the number of control variables

increases, the rate of convergence seems to be better in the full SAND approach. This is speculated

to be the case because greater freedom to reach a target is allowed with more control variables, but

a more thorough study needs to be done to verify this. In order to improve the rate of convergence,

it may be worth adding either exact or approximate second order derivative information of nonlinear

constraints.

82 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.7: Convergence plots for all four problems. The absence of second-order derivatives of non-
linear constraints results in a linear convergence rate. For the first problem, the rate of convergence
is less than 0.1. For the fourth problem the rate of convergence is around 0.7. However, for the
second and third problems, the rate of convergence is close to one, which implies that it is almost
sublinear.

7.3. LINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 83

Figure 7.8: The target temperature of the cross heat control problem.

7.3 Linear dynamic PDE-constrained optimal control

7.3.1 A target cross on a heat plate

As in Section 7.1.1, a heat conduction problem on a unit square plate is considered. Instead of a

solving static problem, this time, a dynamic problem is considered, and a discontinuous cross-shaped

target is used, as shown in Figure 7.8. The target is the same as the one used in the paper [79] by

Stoll and Wathen, that is,

ȳ �
#

�x1e�px1�0.5q2�px2�0.5q2 if 0.4 ¤ x1 ¤ 0.6 or 0.4 ¤ x2 ¤ 0.6,

0 otherwise.
(7.4)

The initial temperature distribution is all zero, and the homogeneous Dirichlet boundary condition

is applied. The heat conduction coefficient of 10 W �m�1 � C�1, specific heat coefficient of 10 J{C,

thickness of 10 m are used. From Figure 7.9 to Figure 7.14, optimal temperatures and heat control

are shown with various regularization parameters in decreasing order (i.e., φ � 1 for Figure 7.9 and

7.10, φ � 0.1 for Figure 7.9 and 7.10, and φ � 0.01 for Figure 7.9 and 7.10). The legend for heat

control shows the heat from �220 J{m3 to 80 J{m3, whereas the legend for optimal temperature

is the same as the one used for the target temperature (i.e., Figure 7.8). As expected, the optimal

temperature gets closer to the target temperature as the regularization decreases.

84 CHAPTER 7. NUMERICAL EXPERIMENTS

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.9: A series of stick figures of optimal temperature solutions of the cross heating problem.
The regularization φ � 1 is used. The number below each figure indicates the passing time in
seconds.

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.10: A series of stick figures of optimal heat control of the cross heating problem. The
regularization φ � 1 is used. The number below each figure indicates the passing time in seconds.

7.3. LINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 85

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.11: A series of stick figures of optimal temperature solutions of the cross heating problem.
The regularization φ � 0.1 is used. The number below each figure indicates the passing time in
seconds.

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.12: A series of stick figures of optimal heat control of the cross heating problem. The
regularization φ � 0.1 is used. The number below each figure indicates the passing time in seconds.

86 CHAPTER 7. NUMERICAL EXPERIMENTS

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.13: A series of stick figures of optimal temperature solutions of the cross heating problem.
The regularization φ � 0.01 is used. The number below each figure indicates the passing time in
seconds.

0 0.001 0.002 0.003 0.004

0.005 0.006 0.007 0.008 0.009

Figure 7.14: A series of stick figures of optimal heat control of the cross heating problem. The
regularization φ � 0.01 is used. The number below each figure indicates the passing time in seconds.

7.3. LINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 87

final time, tf 0.1 0.2 0.3 0.4 0.5
number of states 45,450 90,450 135,450 180,450 225,450
number of controls 22,725 45,225 67,725 90,225 112,725
computational time (sec) 11.16 60.80 164.75 339.82 580.01
number of iterations 64 103 131 159 181

Table 7.13: The table shows the scalability of the SAND method in a linear dynamic PDE-
constrained optimal control problem. GMRES is used as a Krylov iterative method. The pre-
conditioner is Pvbg. The convergence threshold is 10�10 and the regularization parameter φ is 1.

final time, tf 0.6 0.7 0.8
number of states 270,450 315,000 360,450
number of controls 135,225 157,500 180,225
computational time (sec) 1046.91 1498.890 2001.740
number of iterations 204 226 245

Table 7.14: The table shows the scalability of the SAND method in a linear dynamic PDE-
constrained optimal control problem. GMRES is used as a Krylov iterative method. The pre-
conditioner is Pvbg. The convergence threshold is 10�10 and the regularization parameter φ is 1.

As explained in Chapter 3, the formulation of the SAND method for the linear dynamic PDE-

constrained optimization problem in this thesis is simultaneous in the time as well as the space

domain. Thus the size of the KKT system that GMRES needs to solve simultaneously increases as

the terminal time increases. Tables 7.13 and 7.14 show the scalability of the SAND method. The

number of iterations increases linearly as the terminal time tf increases.

88 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.15: Left: a photo describing a finger that tries to balance a pencil. Right: an inverted
pendulum

7.4 Nonlinear dynamic PDE-constrained optimal control

7.4.1 Stabilizing inverted pendulum

An inverted pendulum problem is a classical control problem. The bottom of a pendulum is free

to move horizontally, but the pendulum needs to stay as upright as possible. Imagine that you

have a pencil on a fingertip, trying to balance it as depicted in Figure 7.15 on the left. You may

find yourself moving your finger back and forth or left and right horizontally. The motion of the

finger reflects the effort to stabilize the upright pencil. The inverted pendulum is modeled with one

beam element with Young’s modulus of 2 � 109 Pa, density of 7850 kg{m3, cross-sectional area of

0.1 m2, and Poisson’s ratio of 0.3. The bottom of the pendulum is fixed in the vertical direction

(i.e. the y-direction) and the z-direction (i.e. perpendicular to the paper) but is free to move in the

x-direction (i.e. the horizontal direction). The target is set to be a static upright pendulum which

does not move. Then, the optimal control problem is solved by only allowing the translational force

in the x-direction on the bottom of the pencil.

Figure 7.16 shows a series of stick figures of the target (light gray) and an optimal motion

(black) of an inverted pendulum. The initial configuration of the pendulum is slanted slightly in

order to show an interesting optimal solution. The red arrows represent the translational control.

If the initial configuration were identical to the target configuration, then no movement would be

observed in the optimal solution because the pendulum is already in the equilibrium state. The link

http://www.stanford.edu/~yc344/anInvertedPendulum.avi is to a movie clip which shows the

slow motion of eight complete cycles of stabilizing inverted pendulum motion. As expected, back

and forth stabilizing translational force control is shown and the inverted pendulum is trying to stay

http://www.stanford.edu/~yc344/anInvertedPendulum.avi

7.4. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 89

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Figure 7.16: A series of stick figures of target (light gray) and optimal solutions of an inverted
pendulum are shown. The numbers below each stick figure indicate the corresponding elapsed time
in seconds.

Figure 7.17: Time history of control force at the bottom of the inverted pendulum

upright accordingly. Figure 7.17 shows the corresponding control force plot with respect to time. A

periodic pattern with period of about 0.012 seconds and amplitude of about 107 is observed.

For the simulation of the inverted pendulum, multi-preconditioned GMRES (MPGMRES) is

used as a Krylov iterative method with two preconditioners Pvbg and Plt2. When Pvbg is used as a

single preconditioner, the simulation converges fast, but the optimal solution is static, which means

that the inverted pendulum stays at the initial configuration. This solution is not desirable. If Plt2

is used, the simulation fails to converge because the target is not realizable. When both Pvbg and

Plt2 are used in MPGMRES, however, the simulation converges fast and the periodic motion of an

inverted pendulum is produced. The `1-penalty function is used as a merit function in the linesearch.

The convergence threshold for the major loop is 10�7 and the one for the minor loop is 10�15. The

regularization parameter is set to be 10�18. The time step ∆t is 10�5 seconds and the terminal time

90 CHAPTER 7. NUMERICAL EXPERIMENTS

0.7 sec 0.6 sec 0.5 sec 0.4 sec 0.3 sec 0.2 sec 0.1 sec 0 sec

Figure 7.18: Target motion a series of stick figures of the target walk of a five-link biped

tf is 0.09 seconds.

7.4.2 Five-link rigid biped control

Finding a natural gait for a biped robot and its control is an active research area. This is because it

lays the foundation for the development of a humanoid robot. The first biped robot of practical size

was developed by Kato [22]. Since 1986, Honda has been developing a domestic robot, that coexists

with people and helps them with household chores [47]. Their current version of the humanoid

robot is ASIMO[5]. Although ASIMO is able to walk and run in a very stable manner, it exhibits

a particular gait, which looks different from a normal human gait. For further development of a

humanoid robot, it is necessary to be able to generate different gaits and to control them in a stable

manner. In the literature, the sagittal gait of a five-link biped is often considered due to its simplicity

and similarity to human structures. There are two ways of computationally achieving a natural gait

of a biped: using image processing [50] and polynomial interpolation [81, 58]. Mu and Wu used

a polynomial function as a way of getting a natural gait of a five-link biped[58]. Their approach

is used to generate a target motion of a biped robot in this section. The polynomials and their

coefficients are obtained by satisfying a number of constraints (e.g., stability, minimizing impact).

The polynomial functions describe a motion of two tips of legs and a hip. Then the trajectory

of two joints is obtained using rigid body constraints. One of the constraints is used to minimize

impacts with the ground when the swing leg hits it by setting the arrival velocity to zero. Kim, et

al. [50] used sagittal and frontal plane images of an actual human walking in order to get 3D gait

information. They used a genetic algorithm (GA) to generate a natural and stable 3D gait.

Several numerical methods of solving optimal robotic control have been proposed in the literature:

Hardt, et al. [43] first formed the recursive symbolic dynamic model by reducing the variables, then

used an optimal control software, DIRCOL, which again used optimization software NPSOL and

SNOPT. They minimized the power provided by controllers.

A full SQP method implemented in AERO-S is used to obtain the control necessary on each joint

of a five-link biped model to match a given target gait. Figure 7.18 shows a series of stick figures of

target motion generated by polynomial functions described in the paper by Mu and Wu [58]. Two

7.4. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 91

0.7 sec 0.6 sec 0.5 sec 0.4 sec 0.3 sec 0.2 sec 0.1 sec 0 sec

Figure 7.19: The first problem: only torque controls are allowed for each joint. A series of stick
figures of target in light blue and control solutions in black are shown. Arrows indicate the torque
vectors applied to joints.

optimal control problems are then solved with two different sets of controls. The first problem only

allows rotational controls at each joint whereas the second problem allows additional translational

controls at the tip of a leg. All the optimal control problems are solved assuming there is no friction

on the ground because AERO-S does not have a friction model. Thus, without a translational control

on the tip of a leg (e.g., in the first problem), the biped is expected to slip on the ground. The ground

condition (i.e., the biped is not allowed to go below the ground) is applied with linear multi-point

constraints (LMPC). All the constraints necessary to impose a rigid beam, revolute joint, and spring

condition including LMPC are solved with a penalty method.

Figure 7.19 shows a series of stick figures of two robots for the first problem. The light blue one

is the target, the black one is generated by solving the first problem. Arrows attached to the black

biped’s joints display a set of torque controls necessary for the indicated black biped’s motion. Since

there is no friction on the ground, it does not move forward as the target motion does. However,

it tries to follow the target by rotating and getting closer to the target (e.g., the top node of the

torso is trying to follow the top of the torso in the target biped). Note that the ground condition

is not satisfied since the toe of the black biped is slightly under the ground (e.g., see 0.7 second in

Figure 7.19). It is because the penalty method is used to impose the ground condition.

In order to mimic ground friction, translational force control is allowed to be applied to the tip

of a leg in the second problem. The resultant motion compared with the target motion is shown in

Figures 7.20 and 7.21. The arrows in Figure 7.20 show the torque controls and the ones in Figure 7.21

show the translational control force at the tip of a leg. They do match the target motion fairly well

for this set of controls but not precisely. At the beginning of walking, a big translational stabilizing

force at the tip of a leg is required. After that, a moderate translational force follows.

For both problems in this section, MPGMRES is used as a Krylov iterative method and two

preconditioners Plt2 and Pvbg are used. The time step ∆t is 0.01 seconds. The terminal time is 1

second. The convergence threshold for major iterations is 10�5 and the convergence threshold for

minor iterations is 10�15. The value of the regularization parameter is 10�18.

92 CHAPTER 7. NUMERICAL EXPERIMENTS

0.7 sec 0.6 sec 0.5 sec 0.4 sec 0.3 sec 0.2 sec 0.1 sec 0 sec

Figure 7.20: The second problem: Torque controls at each joint and a translational force control
at the tip of a leg. A series of stick figures of the target in light blue and the control solutions in
black are shown. Arrows indicate the torque controls applied to joints.

0.7 sec 0.6 sec 0.5 sec 0.4 sec 0.3 sec 0.2 sec 0.1 sec 0 sec

Figure 7.21: The second problem: Torque controls at each joint and a translational force control
at the tip of a leg. A series of stick figures of the target in light blue and the control solutions in
black are shown. Arrows indicate the translational force control applied to a toe.

The animation for the target motion can be found at the following link, http://www.stanford.

edu/~yc344/targetbiped.avi. The animation for the first problem can be found at http://www.

stanford.edu/~yc344/case1.avi. The animation that shows torque controls at each joint for the

second problem can be found at http://www.stanford.edu/~yc344/case2rot.avi. The animation

that shows translational controls at the tip of a leg can be found at http://www.stanford.edu/

~yc344/case2trans.avi.

http://www.stanford.edu/~yc344/targetbiped.avi
http://www.stanford.edu/~yc344/targetbiped.avi
http://www.stanford.edu/~yc344/case1.avi
http://www.stanford.edu/~yc344/case1.avi
http://www.stanford.edu/~yc344/case2rot.avi
http://www.stanford.edu/~yc344/case2trans.avi
http://www.stanford.edu/~yc344/case2trans.avi

7.4. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 93

Figure 7.22: A picture of flapping wing

7.4.3 Nonlinear flapping wing

The US Army is interested in developing a drone with flapping wing. The reason for this interest is

that flapping wings are more efficient and wind-tolerant than inert wings. Past military drones were

limited in their ability to stop-and-start in the air - a serious barrier to drones offering surveillance of

a given area [2]. In 2011, Aerovironment designed the winged drone - the Hummingbird. It consists

of its own motor, battery, communication system, and a video camera and weighs 19 grams. The

hummingbird hovers for eight minutes, flies at 11 miles per hour, and soar from outdoors to indoors

and back outside again through a normal doorway. In addition to being able to climb and descend

vertically, the Nano Hummingbird can fly forward and backward. To give the video camera a full

360-degree view of a room, it can rotate during flight [3]. For any motion (e.g., hovering or soaring),

it is important to know how to control actuator which induces the flapping.

In this section, a numerical example of a nonlinear flapping wing control is considered. Flapping

results in large deformation in the wing, so the PDE that describes a flapping wing must be nonlinear.

Fluid-structure interaction is necessary in order for flapping motion to induce lift. However, the

simulation is done without fluid (i.e., a dry simulation) because fluid optimal control routine has

not been implemented yet. Only one wing is modeled under the assumption of the symmetry of the

wings (see Figure 7.22). The span of the a flapping wing is modeled with thin shell elements. Two

flexible beams are connected through the red point in Figure 7.22: one in the direction of the blue

line and the other in the direction of the frontal line. A flapping motion of the wing is generated as a

target by prescribing rotational displacements at the frontal node of the wing and running the PDE

solver AERO-S. The frontal node is depicted as a red dot in Figure 7.22. The prescribed rotational

displacements are applied in the direction of the blue line. Eight snapshots of the target states are

shown in Figure 7.24. Then optimal control is solved with a control of torque allowed to be applied

only to the same node and direction to which the prescribed rotational displacement is applied. In

the top left of Figure 7.23, two plots of rotational displacements of both target and optimal solutions

at the red point are shown. The rotational displacement for the target (blue dashed line) follows

94 CHAPTER 7. NUMERICAL EXPERIMENTS

a sinusoidal curve, while the one for optimal control (thick black line) is more or less the same as

that of the target. In the top right of Figure 7.23, the reaction torque from the target (blue dashed

line) and optimal control torque (thick black line) are shown. The two plots are again more or

less similar to each other, but at the beginning of the simulation, more oscillation is present for

the reaction torque from the target than for the optimal control torque. Magnified portions of the

graphs are shown at the bottom of Figure 7.23. On the left, the rotational displacement plots are

shown, while the torque plots are shown on the right. In the magnified figures, the optimal rotational

displacement starts with almost zero velocity, while the target rotational displacement has nonzero

initial slope, meaning nonzero initial velocity. As a result, the initial target reaction torque needs to

be large and the oscillation follows right after in order to stabilize the flapping motion. The absence

of the oscillation with optimal control torque is due to almost zero initial velocity and no need for

stabilization. In the design or control of flapping wing applications, the data from the optimal control

routine is more realistic than that from the target because the real flapping wing model will not have

nonzero initial velocity, unlike the target. Additionally, it is easier for the actuator to apply smooth

rather than oscillatory torque. Figure 7.25 shows both snapshots of target (light gray) and optimal

state (black). The optimal states match the target states almost exactly up to 0.01 seconds. From

0.015 seconds, some visually obvious discrepancy starts to show up in tip displacements. The optimal

states always fall behind in movement because they do not start with nonzero initial velocity. The

arrow in Figure 7.25 depicts the direction and magnitude of optimal control torque. The simulation

can be watched through the following link http://www.stanford.edu/~yc344/thickcase1.avi.

The movie shows about one and a half cycles of flapping.

Remark 1. For the generation of target states, the time step of 10�4 is small enough to obtain

a stable solution. However, the optimal control with external torque requires a finer time step. The

results shown in this section are generated with a time step of 5.0� 10�5.

Remark 2. For the simulation of the flapping wing, MPGMRES with two preconditioners Plt2

and Pvbg is used as a Krylov iterative method.

http://www.stanford.edu/~yc344/thickcase1.avi

7.4. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 95

Figure 7.23: Rotational displacements and applied force at the red dot in Figure 7.22 are depicted.
Top left: prescribed rotational displacement with blue dashed line and corresponding optimal rota-
tional displacement with thick black line. Top right: reaction torque in the target with blue dashed
line and optimal torque in the optimal solutions with think black line. Bottom left: magnified
prescribed rotational displacement at the beginning of time. Bottom right: magnified applied
torque at the beginning of time

96 CHAPTER 7. NUMERICAL EXPERIMENTS

0.000 sec 0.005 sec 0.010 sec 0.015 sec

0.020 sec 0.025 sec 0.030 sec 0.035 sec

Figure 7.24: Snapshots of target flapping motion. A series of snapshot figures of target states,
generated by applying prescribed rotational displacements as shown in the middle of Figures 7.22

7.4. NONLINEAR DYNAMIC PDE-CONSTRAINED OPTIMAL CONTROL 97

0.000 sec 0.005 sec 0.010 sec 0.015 sec

0.020 sec 0.025 sec 0.030 sec 0.035 sec

Figure 7.25: Snapshots of target and optimal solution motion. A series of snapshot figures of
target and optimal solutions. Targets are depicted with light gray and optimal solution with black
wire-frames. The arrow depicts the direction and magnitude of applied torque as the optimal control
solution.

Chapter 8

Conclusion

As shown in this thesis, PDE-constrained optimization is a powerful tool for many practical appli-

cations. This chapter provides a summary of the work done in this research and proposes potential

future work.

8.1 Summary

A SAND method for four types of PDE-constrained optimization is formulated and implemented as

an SQP augmentation to AERO-S. The PDEs focused on in this thesis are ones that reflect thermal

and structural systems. The four types include linear static, nonlinear static, linear dynamic, and

nonlinear dynamic PDEs. Many existing preconditioners in the literature improve as the value

of a regularization parameter becomes larger, but until now, none existed that improve as the

regularization parameter becomes smaller. In order to fill this gap in the literature, several novel

preconditioners for a small regularization parameter are introduced. Various numerical results show

that the novel preconditioners work well when the target is realizable. Some preconditioners do

not even need to solve with the Jacobian related to the PDE, which is a good feature because

solving with the Jacobian is computationally expensive. A “useful” exact representation of the

Schur complement for the KKT system that arises in a volume control problem is introduced. With

this exact representation, a fast way of solving with the Schur complement is now possible. The

exact representation can be used as a solver in the range-space method directly or as a preconditioner

in a full SQP method. The numerical results show that the exact representation enables the range-

space method to work well for any value of the regularization parameter. The SAND framework

presented here is well suited to augmenting sophisticated numerical PDE methods. For example,

a parallel solver FETI-DP in AERO-S is augmented to the PDE-constrained optimization routine.

Also, the generalized α method for a nonlinear dynamic PDE-constrained optimization problem

is adapted to the SAND formulation, which has not been done in the literature. The nonlinear

98

8.2. FUTURE WORK 99

dynamic formulation for optimization is sequential, and can be readily adapted to closed-loop control

problems.

8.2 Future work

The SAND method and novel preconditioners introduced in this thesis are applied to a rather sim-

ple problem, namely the PDE-constrained optimal control problem whose goal is to match a target.

More complicated PDE-constrained optimization need to be tackled, such as shape optimization

and inverse problems. A common practical problem is any fluid-structure interaction (FSI) prob-

lem. Formulating and implementing a SAND method for an FSI problem has great potential for

applications. The PDE-constrained optimization formulation considered here is limited to an equal-

ity constraint. Including inequality constraints is necessary to broaden the range of problems that

PDE-constrained optimization can solve. Also, the current formulation does not include second-

order information of the PDE constraints, resulting in a linear rate of convergence. To achieve a

higher rate of convergence, one needs to include approximate second-order information of the PDE

constraints. Although the SAND method is a highly useful interface to augment any existing PDE

solvers, the current implementation in AERO-S only makes use of the generalized-α method and

FETI-DP. More numerical methods for PDEs, such as PITA and reduced-order methods, need to be

augmented in the SAND method. In particular, constructing a surrogate PDE model with reduced-

order methods is attractive because it reduces the number of optimization variables significantly. In

the process of adapting reduced-order methods, discovering methods to update the basis vectors as

the optimization proceeds is also a promising future research topic.

Appendix A

Spectral analysis

In this appendix, a spectral analyses of the preconditioners Pzrc, Prees, Pbd2, Plt1, and Plt2, – which

have been introduced in Chapter 5 – are presented. Since Prees and Pbd2 differ by how they modify

the Schur complement S, it is possible to introduce a generalized form of such a block diagonal

preconditioner and conduct the spectral analysis of it (e.g., see Section A.3). Similarly, in Section A.4,

a generalized form of block triangular preconditioners are introduced and the spectral analysis is

done in order to see the properties of eigenvalue distribution of Plt1 and Plt2. All the preconditioners

are structured as a permuted block triangular matrix. Thus applying them is equivalent to the block

forward or back substitution.

The following factorization of the saddle point system [7] is useful in the spectral analysis:

�
A BT1

B2 �C

�
�
�

I

B2A
�1 I

��
A

S

��
I A�1BT1

I

�
, (A.1)

which leads to the following identity,

det

��
A BT1

B2 �C

��
� detpAqdetpSq, (A.2)

where S � �C�B2A
�1BT1 . Since all the preconditioners introduced in this thesis are block matrices,

the preconditioned systems are also block matrices. Thus, it is clear that identity (A.2) will be useful

in analyzing the eigenvalues of the preconditioned system.

100

A.1. ZERO-REGULARIZATION CONSTRAINT PRECONDITIONER 101

A.1 Zero-regularization constraint preconditioner

As introduced in Section 5.2.4, the constraint preconditioner Pzrc is defined as

Pzrc �

�
���
V JT

QT

J Q

�
��� . (A.3)

An eigenvalue λ of P�1
zrcA can be found by solving

0 � detpA� λPzrcq �

∣∣∣∣∣∣∣∣
p1� λqV p1� λqJT

φG p1� λqQT
p1� λqJ p1� λqQ

∣∣∣∣∣∣∣∣ . (A.4)

Due to identity (A.2), it is equivalent to

0 � p1� λqndet

�
�p1� λq2

�
J Q

� � 1
1�λV

�1

1
φG

�1

��
JT

QT

��
,

� p�1qnp1� λqndet

�
p1� λqJV �1JT � p1� λq2

φ
QG�1QT

,

�
��1

φ

n
p1� λq2ndet

�
φJV �1JT � p1� λqQG�1QT

�
.

(A.5)

Assuming J is not singular, the determinant in (A.5) is further manipulated to

0 � det pφI � p1� λqqHq , (A.6)

where H � pJV �1JT q�1QG�1QT . Let µ be an eigenvalue of H. The determinant vanishes if

λ � φ

µ
� 1 for µ � 0,

which proves Theorem 4. Note that the eigenvalues become clustered around 1 for φ small. Thus,

Pzrc must work well for small φ. However, µ is located in the denominator, which depends on the

FEM discretization. For example, if the linear basis functions of either triangular or quadrilateral

elements are used in the linear optimal distributional heat control in Section 7.1.1, then µ is known

to be bounded as

c1h
2 ¤ µ ¤ c2, (A.7)

due to Proposition 1.29 and Theorem 1.32 in [21]. The coefficients c1 and c2 are some finite constants

that are independent of mesh size h. In this particular case, as the discretization becomes finer, the

magnitude of the eigenvalue λ becomes larger, which causes the eigenvalue distribution to be spread

102 APPENDIX A. SPECTRAL ANALYSIS

out. This causes a Krylov iterative method such as GMRES to perform poorly; however Table 7.7

shows that the mesh dependence of Pzrc is relatively minor compared to other preconditioners such

as Ptl2, Pbd2, and Prs2.

A.2 A variant of Biros-Ghattas constraint preconditioner

As introduced in Section 5.2.4, the constraint preconditioner Pvbg is defined as

Pvbg �

�
���

JT

φG QT

J Q

�
��� . (A.8)

An eigenvalue λ of P�1
vbgA can be found by solving

0 � detpA� λPvbgq �

∣∣∣∣∣∣∣∣
V p1� λqJT

φp1� λqG p1� λqQT
p1� λqJ p1� λqQ

∣∣∣∣∣∣∣∣ . (A.9)

Due to identity (A.2), it is equivalent to

0 � φmp1� λqmdet

�
�p1� λq2

�
J Q

� �V �1

1
φp1�λqG

�1

��
JT

QT

��
,

� p�1qnφmp1� λqm�ndet

�
p1� λqJV �1JT � 1

φ
QG�1QT

,

� p�1qnφm�np1� λqm�ndet
�
φp1� λqJV �1JT �QG�1QT

�
.

(A.10)

Assuming J is not singular, the determinant in (A.5) is further manipulated to

0 � det pφp1� λqI �Hq , (A.11)

where H � pJV �1JT q�1QG�1QT . Let µ be an eigenvalue of H. Due to (A.10) and (A.11), the

determinant vanishes if

λ � 1, 1, 1� µ

φ
,

which proves Theorem 3. Note that the eigenvalues become clustered around 1 for φ large. Thus,

Pvbg must work well for large φ. Additionally, µ is located in the numerator. If the linear basis

functions of either triangular or quadrilateral elements are used, refining the mesh size does not cause

a Krylov iterative method such as GMRES to increase the number of iterations for convergence due

to the bound (A.7) on µ. Table 7.7 shows that the number of iterations for Pvbg actually decreases

A.3. BLOCK DIAGONAL PRECONDITIONER 103

as mesh size decreases.

A.3 Block diagonal preconditioner

In order to analyze the eigenvalue distribution of Pbd1 and Pbd2, a generalized form of the block

diagonal preconditioner Pgbd is defined as follows:

Pgbd �

�
���
γV

ρφG

ζU

�
��� , (A.12)

where α and β are real constants. An eigenvalue λ of P�1
gbdA can be found by solving

0 � detpA� λPgbdpq �

∣∣∣∣∣∣∣∣
p1� γλqV JT

p1� ρλqφG QT

J Q �ζλU

∣∣∣∣∣∣∣∣ . (A.13)

Due to identity (A.2), it is equivalent to

0 � p1� γλqnp1� ρλqnφndet

�
�ζλU �

�
J Q

� � 1
1�γλV

�1

1
φp1�ρλqG

�1

��
JT

QT

��
,

� p1� γλqnp1� ρλqnφndet

�
�ζλU � 1

1� γλ
JV �1JT � 1

φp1� ρλqQG
�1QT

,

� p�1qndet
�
ζφλp1� γλqp1� ρλqU � φp1� ρλqJV �1JT � p1� γλqQG�1QT

�
.

(A.14)

Let U be parameterized by some scalar α and β such as

U � αJV �1JT � βQG�1QT .

Assuming J is not singular, (A.14) is further manipulated to

0 � det prαφζλp1� γλqp1� ρλq � φp1� ρλqsI � rβφζλp1� γλqp1� ρλq � p1� γλqsHq , (A.15)

where H � pJV �1JT q�1QG�1QT . Let µ be an eigenvalue of H. Then the determinant vanishes if

αφζλp1� γλqp1� ρλq � φp1� ρλq
βφζλp1� γλqp1� ρλq � p1� γλq � �µ for µ � 0

αφζλp1� γλqp1� ρλq � φp1� ρλq � 0 for µ � 0

This leads to the following theorem.

104 APPENDIX A. SPECTRAL ANALYSIS

Theorem 5. Let λ be an eigenvalue of P�1
gbdA and µ be an eigenvalue of H � pJV �1JT q�1QG�1QT .

If µ � 0, then λ satisfies

αζφγρλ3 � αζφpγ � ρqλ2 � pαζφ� ρφqλ� φ � 0

If µ � 0, then λ obeys

pα� µβqζφγρλ3 � pα� µβqζφpγ � ρqλ2 � ppα� µβqζφ� ρφ� µγqλ� φ� µ � 0

&

βζφγρλ3 � βζφpγ � ρqλ2 � pβζφ� γqλ� 1 � 0.

Consider the following cases:

Case 1. An eigenvalue of P�1
bd A (i.e., γ � 1, ρ � 1, ζ � 1, α � 1, and β � 1

φ) is

λ � 1,
1�?

5

2
for both µ � 0 and µ � 0.

Case 2. An eigenvalue of P�1
reesA (i.e., γ � 1, ρ � 1, ζ � 1, α � 1, and β � 0) is

λ � 1,
1�?

5

2
for µ � 0

λ � 1,
1�

b
5� 4µ

φ

2
for µ � 0.

Case 3. An eigenvalue of P�1
bd2A (i.e., γ � 1, ρ � 1, ζ � 1, α � 0, and β � 1

φ) is

λ � 1 for µ � 0

λ � 1,
1�

b
5� 4φ

µ

2
for µ � 0.

Case 4. An eigenvalue of P�1
sbd2A (i.e., γ � 1, ρ � 1, ζ � 1, and U � 1

φI) is

λ � 1,
1�?

1� 4µs
2

,

where µs is an eigenvalue of the Schur complement S � JV �1JT � 1
φQG

�1QT . As claimed by

Murphy, there are three distinct nonzero eigenvalues for the preconditioned system P�1
bd A (i.e., see

case 1). Case 2 corresponds to Rees’ block diagonal preconditioner Prees. Note that φ is in the

denominator and µ is in the numerator. For large φ, Prees will act like Pbd since its eigenvalue

distributions becomes similar to case 1. Furthermore, it is beneficial to have µ in the numerator

for linear basis functions of quadrilateral or triangular elements. Due to the bound (A.7), refining

A.3. BLOCK DIAGONAL PRECONDITIONER 105

the mesh size does not increase the magnitude of an eigenvalue of P�1
lt1 A. However, note that φ

is in the numerator and µ in the denominator for eigenvalues of P�1
lt2 A. This explains why Plt2

performs better for φ small, but it suffers when the mesh size is refined if linear finite element basis

functions are used. This is shown in Table 7.2 and Table 7.7. Case 4 shows eigenvalues of P�1
sbd2A.

If S is not singular, then µs is not zero. Thus an eigenvalue of P�1
sbd2A is not zero. However, if S is

singular, then µs is zero, resulting in a singular Schur complement S. If J is not singular, then S is

not singular. However, for φ small, the Schur complement S will be dominated by the second part
1
φQG

�1QT and if Q is not a square full rank matrix, then S becomes nearly singular.

In order to verify the effects of the spectral analysis, the contrived example 1 was run with m �
n � 200. Note that Pbd2 does not make sense if m � n since QG�1QT becomes singular. Figure A.1

shows the eigenvalue distributions and convergence of GMRES for the three preconditioners: Pbd,

Prees, and Pbd2. As predicted by both the preceeding analysis and [59], the three distinct real

eigenvalues of P�1
bd A are 1 and 1�?5

2 for both φ � 10�6 and φ � 10�2, although small imaginary

parts are present for φ � 10�6. Also note that the eigenvalues of P�1
reesA are clustered around 1

and 1�?5
2 for relatively large φ � 10�2, whereas they are spread out for relatively small φ � 10�6.

On the other hand, the eigenvalues of P�1
bd2A are more spread out for large φ � 10�2 than for small

φ � 10�6. The convergence of GMRES directly reflects the eigenvalue distribution results as shown

in the bottom plots of Figure A.1. For φ � 10�6, the performance of GMRES in order of best to

worst is Pbd, Pbd2, Prees, and no preconditioner, while for φ � 10�2 the performance in order of

best to worst is Pbd, Prees, no preconditioner, and Pbd2. It is not surprising that the preconditioned

system with Pbd2 performs worse than with no preconditioner. Figure A.2 shows that eigenvalues

become more spread out for P�1
bd2A than for no preconditioner.

For the case of m � n, Pbd, Prees, and Psbd2 are applicable. The contrived example 1 with

n � 200 and m � 100 was run. Figure A.3 shows the convergence of GMRES with these three

preconditioners. As expected, Psbd2 does not perform well since the preconditioned system is nearly

singular as the Figure on the right in A.3 shows.

106 APPENDIX A. SPECTRAL ANALYSIS

Figure A.1: The top two figures show the eigenvalue distributions in complex plane for three different
cases of block diagonal preconditioners considered in Appendix A.3. The bottom two figures show
the convergence of GMRES for block diagonal preconditioners. The y-axis of the bottom figures is
the relative residual and the x-axis is the number of iterations. Left: for φ � 10�6. Right: for
φ � 10�2

A.4. BLOCK TRIANGULAR PRECONDITIONER 107

Figure A.2: Eigenvalue distributions of the preconditioned system for case 3 and the non-
preconditioned system in the complex plane.

A.4 Block triangular preconditioner

In order to analyze the eigenvalue distributions of Plt1 and Plt2, a generalized form of the block

triangular preconditioner Pglt is defined as follows:

Pglt �

�
���
γV

ρφG

J Q ζU

�
��� , (A.16)

where ζ and γ are real constants. An eigenvalue λ of P�1
glt A can be found by solving

0 � detpA� λPgltq �

∣∣∣∣∣∣∣∣
p1� γλqV JT

p1� ρλqφG QT

p1� λqJ p1� λqQ �ζλU

∣∣∣∣∣∣∣∣ . (A.17)

108 APPENDIX A. SPECTRAL ANALYSIS

Figure A.3: The contrived example with n � 200 and m � 100 for block diagonal preconditioners.
Left: the convergence plot of GMRES for φ � 10�6. Right: the eigenvalue distributions in the
complex plane for case 4.

Due to identity (A.2), it is equivalent to

0 � p1� γλqnp1� ρλqnφndet

�
�ζλU � p1� λq

�
J Q

� � 1
1�γλV

�1

1
φp1�ρλqG

�1

��
JT

QT

��
,

� p�1qnp1� γλqnp1� ρλqnφndet

�
ζλU � 1� λ

1� γλ
JV �1JT � 1� λ

φp1� ρλqQG
�1QT

,

� p�1qndet
��ζφλp1� γλqp1� ρλqU � φp1� λqp1� ρλqJV �1JT � p1� γλqp1� λqQG�1QT

�
,

(A.18)

Let U be parameterized by some scalar α and β such as

U � αJV �1JT � βQG�1QT

Assuming J is not singular, (A.18) is further manipulated to

0 � det prαφζλp1� γλqp1� ρλq � φp1� λqp1� ρλqsI � rβφζλp1� γλqp1� ρλq � p1� γλqp1� λqsHq ,
(A.19)

where H � pJV �1JT q�1QG�1QT . Let µ be an eigenvalue of H. Then the determinant vanishes if

αφζλp1� γλqp1� ρλq � φp1� λqp1� ρλq
βφζλp1� γλqp1� ρλq � p1� γλqp1� λq � �µ for µ � 0

αφζλp1� γλqp1� ρλq � φp1� λqp1� ρλq � 0 for µ � 0

A.4. BLOCK TRIANGULAR PRECONDITIONER 109

This leads to the following theorem.

Theorem 6. Let λ be an eigenvalue of P�1
glt A and µ be an eigenvalue of H � pJV �1JT q�1QG�1QT .

If µ � 0, then λ satisfies

αζφγρλ3 � pρφ� αζφpγ � ρqqλ2 � pαζφ� φp1� ρqqλ� φ � 0.

If µ � 0, then λ obeys

pα� µβqζφγρλ3 � pρφ� µγ � pα� µβqζφpγ � ρqqλ2 � ppα� µβqζφ� φp1� ρq � µp1� γqqλ� φ� µ � 0

&

βζφγρλ3i� pγ � βζφpγ � ρqqλ2 � pβζφ� p1� γqqλ� 1 � 0.

Consider the following cases:

Case 1. An eigenvalue of P�1
lt A (i.e., γ � 1, ρ � 1, ζ � �1, α � 1, and β � 1

φ) is

λ � 1, 1, 1 for both µ � 0 and µ � 0.

Case 2. An eigenvalue of P�1
lt1 A (i.e., γ � 1, ρ � 1, ζ � �1, α � 1, and β � 0) is

λ � 1, 1, 1 for µ � 0

λ � 1, 1, 1� µ

φ
for µ � 0.

Case 3. An eigenvalue of P�1
lt2 A (i.e., γ � 1, ρ � 1, ζ � �1, α � 0, and β � 1

φ) is

λ � 1, 1 for µ � 0

λ � 1, 1, 1� φ

µ
for µ � 0.

Case 4. An eigenvalue of P�1
slt2A (i.e., γ � 1, ρ � 1, ζ � �1, and U � 1

φI) is

λ � 1, 1, µs,

where µs is an eigenvalue of the Schur complement S � JV �1JT � 1
φQG

�1QT . Case 1 shows the

spectral results for the preconditioned system with Plt. As expected from factorization (4.27), every

eigenvalue is equal to one. Similar to P�1
reesA, µ is in the numerator for an eigenvalue of P�1

lt1 A.

Thus, the clustering of eigenvalues does not deteriorate as a consequence of mesh size refinement,

which is demonstrated by Table 7.7 if linear FEM basis functions are used. On the other hand, µ

is in the denominator for an eigenvalue of P�1
lt2 A, which implies that this preconditioner will suffer

when mesh size is refined for linear FEM basis functions as shown in Table 7.7. Case 4 shows the

110 APPENDIX A. SPECTRAL ANALYSIS

spectral analysis for the preconditioned system with Pslt2 where the Schur complement S in Plt is

replaced by � 1
φI. Note that the eigenvalue µs is also an eigenvalue of S. As the case of Psbd2, the

preconditioned system P�1
slt2A becomes nearly singular if Q is not a square full rank matrix and φ

small.

In order to verify the effects of the spectral analysis, the contrived Example 1 with m � n � 200

was run. Note that Plt2 is not appropriate if m � n since QG�1QT becomes singular. Figure A.4

shows the eigenvalue distributions and convergence of GMRES for the three preconditioners: Plt,

Plt1, and Plt2. As expected from the analysis above, all the real eigenvalues of P�1
lt A are 1 for both

φ � 10�6 and φ � 10�2 although small imaginary parts are present. Also note that the eigenvalues

of P�1
lt1 A are clustered around 1 for relatively large φ � 10�2, whereas they are spread out for

relatively small φ � 10�6. On the other hand, the eigenvalues of P�1
lt2 A are clustered around 1 for

φ � 10�6, but spread out for φ � 10�2. The convergence of GMRES directly reflects the eigenvalue

distribution results as shown in the bottom plots of Figure A.4. For φ � 10�6, the performance of

GMRES in order of best to worst is Plt, Plt2, Plt1, and no preconditioner, while for φ � 10�2 the

performance in order of best to worst is Plt, Plt1, Plt2, and no preconditioner.

For the case of m � n, Plt, Plt1, and Pslt2 are applicable. The contrived example 1 with n � 200

andm � 100 was run. Figure A.5 shows the convergence of GMRES with these three preconditioners.

As expected, Pslt2 does not perform well since the preconditioned system is nearly singular as the

figure on the right in A.5 shows.

One can define a generalized upper triangular preconditioner Pgut as it follows:

Pgut �

�
���
βM KT

ρφG �GT
αG

�
��� .

It must have the same eigenvalues as Pglt because detpA � λPgutq � detpA � λPgltq due to the

symmetry of A. Thus the spectral properties of P�1
gutA and P�1

glt A are identical. One should prefer

Pglt to Pgut if the adjoint operator is not available since Pglt does not require an adjoint operator.

However, if the adjoint operator is available and easier to apply than the forward operator, then one

should prefer Pgut to Pglt.

A.4. BLOCK TRIANGULAR PRECONDITIONER 111

Figure A.4: The top two figures show the eigenvalue distributions in the complex plane for three
different cases of block triangular preconditioners considered in Appendix A.4. The bottom two
figures show convergence plots of GMRES for block diagonal preconditioners. Left: for φ � 10�6.
Right: for φ � 10�2

112 APPENDIX A. SPECTRAL ANALYSIS

Figure A.5: The contrived example with n � 200 and m � 100 for block triangular preconditioners.
Left: the convergence of GMRES for φ � 10�6. Right: the eigenvalue distributions in the complex
plane for case 4

Bibliography

[1] Ken Alvin, Horacio M. de la Fuente, B. Haugen, and C. Felippa. Membrane triangles with corner

drilling freedoms I. The EFF element. Finite Elements in Analysis and Design, 12:163–187,

1992.

[2] http://www.wired.com/dangerroom/2012/03/army-wings/.

[3] http://www.wired.com/dangerroom/2011/02/video-hummingbird-drone-can-perform-loops/.

[4] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.

Pacific J. Math., 16:1–3, 1966.

[5] http://world.honda.com/ASIMO/.

[6] Ted Belytschko, Wing Kam Liu, and Brian Moran. Nonlinear Finite Elements for Continua

and Structures. Wiley, 2000.

[7] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems.

Acta Numerica, 14:1–137, 2005.

[8] J. T. Betts and W. P. Huffman. Sparse optimal control software, SOCS. Technical report,

Boeing Information and Support Services, Seattle, Washington, July 1997.

[9] George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-

Constrained Optimization. Part I: The Krylov-Schur Solver. SIAM Journal on Scientific Com-

puting, 27:687–713, 2005.

[10] George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-

Constrained Optimization. Part II: The Lagrange-Newton Solver and its Application to Optimal

Control of Steady Viscous Flows. SIAM Journal on Scientific Computing, 27:714–739, 2005.

[11] Andrew Bradley and Walter Murray. Matrix-free approximate equilibration. submitted, 2012.

[12] Robert Bridson and Chen Greif. A multipreconditioned conjugate gradient algorithm. J. on

Matrix Analysis and Applications, 27:1056–1068, 2006.

113

114 BIBLIOGRAPHY

[13] Richard Byrd, Jorge Nocedal, and Robert Schnabel. Representations of quasi-Newton matrices

and their use in limited memory methods. Journal Mathematical Programming, 63:129–156,

1994.

[14] Y. T. Chen. Iterative methods for linear least-squares problems. Technical report, University

of Waterloo, 1975.

[15] Sou-Cheng Choi. Iterative Methods for Singular Linear Equations and Least-Squares Problems.

PhD thesis, Stanford University, 2006.

[16] J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with

improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics,

60:371–375, 1993.

[17] S. S. Collis and M. Heinkenschloss. Analysis of the streamline upwind/petrov galerkin method

applied to the solution of optimal control problems. Technical report, Department of Compu-

tational and Applied Mathematics, Rice University, 2002.

[18] H. A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–644, 1992.

[19] H. Sue Dollar, Nicholas I. M. Gould, Martin Stoll, and Andrew J. Wathen. Preconditioning

saddle-point systems with applications in optimization. SIAM Journal on Scientific Computing,

32:249–270, 2010.

[20] A.S. Drud. CONOPT - A Large-Scale GRG Code. ORSA Journal on Computing, pages 207–

216, 1992.

[21] Howard C. Elman, David J. Silvester, and Andrew J. Wathen. Finite Elements and Fast Iterative

Solvers: With Applications in Incompressible Fluid Dynamics. Oxford Science Publications,

2005.

[22] I. Kato et al. Pneumatically powered artificial legs walking automatically under various cir-

cumstances. In Proceedings of 4th Int. Symposium in External Control of Human Extremities,

pages 458–470, 1972.

[23] D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra. W. H. Freeman

and Co. San Francisco, 1963. Translated by Robert C. Williams.

[24] C. Farhat. FEM Manual, 0.1 edition, May 2010.

[25] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal unified

FETI method. I. A faster alternative to the two-level FETI method. Internat. J. Numer.

Methods Engrg., 50:1523–1544, 2001.

BIBLIOGRAPHY 115

[26] C. Farhat and F. X. Roux. A method of finite element tearing and interconnecting and its par-

allel solution algorithm. International Journal for Numerical Methods in Engineering, 32:1205–

1227, 1991.

[27] C. A. Felippa and B. Haugen. A unified formulation of small-strain corotational finite elements:

I. theory. Computer Methods in Applied Mechanics and Engineering, 194:2285–2335, 2005.

[28] R. Fletcher. Conjugate gradient methods for indefinite systems. Numerical Analysis (Proc 6th

Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), 506:73–89, 1976. Lecture Notes in Math.

[29] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-squares

problems. SIAM J. Sci. Comput, 33:5:2950–2971, 2011.

[30] A. Forsgren, P. E. Gill, and J. D. Griffin. Iterative solution of augmented systems arising in

interior methods. SIAM J. Optim., 18:666–690, 2007.

[31] Anders Forsgren and Walter Murray. Newton methods for large-scale linear equality-constrained

minimization. SIAM J. Matrix Anal. Appl., 14(2):560–587, 1993.

[32] R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric

coefficient matrices. SIAM J. Sci. Stat. Comput., 13:425–448, 1992.

[33] R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear

systems. SIAM J. Sci. Comput., 14(2):470–482, 1993.

[34] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian

linear systems. Numer. Math., 60(3):315339, 1991.

[35] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for symmetric indefinite

linear systems. In Proceedings of the 14th IMACS World Congress on Computational and

Applied Mathematics, pages 1253–1256, 1994.

[36] P. F. Gath and K. H. Well. Trajectory optimization using a combination of direct multiple

shooting and collocation. In AIAA Guidance, Navigation, and Control Conference, August

2001.

[37] P. E. Gill, W. Murray, and M. H. Wright. Practical optimization. Academic press, 1981.

[38] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for

large-scale constrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

[39] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. Two steplength

algorithms for numerical optimization. Technical report, Systems Optimization Laboratory,

Stanford University, 1979.

116 BIBLIOGRAPHY

[40] G. H. Golub and C. F. Van Loan. Matrix Computations. 1996. Johns Hopkins University Press,

1996.

[41] Chen Grief, Tyrone Rees, and Daniel B. Szyld. Multipreconditioned iterative methods for

the solution of nonsymmetric linear systems of equations. Technical report, The University of

British Columbia, December 2011.

[42] Max D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, 1987.

[43] Michael Hardt, Kenneth Kreutz-Delgado, and J. William Helton. Minimal energy control of a

biped robot with numerical methods and a recursive symbolic dynamic model. In Proceedings

of the 37th IEEE conference on Decision and Control, pages 413–416, 1998.

[44] C.R. Hargraves and S.W. Paris. Direct trajectory optimization using nonlinear programming

and collocation. Journal of Guidance, 10:338–342, 1987.

[45] Matthias Heinkenschloss. A time-domain decomposition iterative method for the solution of

distributed linear quadratic optimal control problems. Journal of Computational and Applied

Mathematics, 173:169–198, 2005.

[46] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.

Journal of Research of the National Bureau of Standards, 49:409–436, 1952.

[47] Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru Takenaka. The development of Honda hu-

manoid robot. In Proceedings of 4th Int. Symposium in External Control of Human Extremities,

pages 458–470, 1972.

[48] Thomas J. R. Hughes. The finite element method: linear static and dynamic finite element

analysis. Dover Publications, 2000.

[49] Kaustuv. IPSOL: An Interior Point Solver For Nonconvex Optimization Problems. PhD thesis,

Stanford University, 2008.

[50] Byounghyun Kim, Youngjoon Han, and Hernsoo Hahn. Lower energy gait pattern generation

in 5-link biped robot using image processing. World Academy of Science, Engineering and

Technology 50, pages 543–550, 2009.

[51] Philip A. Knight and Daniel Ruiz. A fast algorithm for matrix balancing. In Andreas Frommer,

Michael W. Mahoney, and Daniel B. Szyld, editors, Web Information Retrieval and Linear

Algebra Algorithms, number 07071 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.

Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,

Germany.

BIBLIOGRAPHY 117

[52] D. Lahaye, H. De Gersem, S. Vandewalle, and K. Hameyer. Algebraic multigrid for complex

symmetric systems. IEEE Transactions on Magnetics, 36:1535–1538, 2000.

[53] Oren E. Livne and Gene H. Golub. Scaling by binormalization. Numerical Algorithms, 35:97–

120, 2004.

[54] Tarek Mathew, Marcus Sarkis, and Christian Schaerer. Analysis of block parareal precondition-

ers for parabolic optimal control problems. SIAM Journal on Scientific Computing, 32:1180–

1200, 2010.

[55] D. Q. Mayne and N. Maratos. A first order, exact penalty function algorithm for equality

constrained optimization problems. Math. Programming, 16(3):303–324, 1979.

[56] Carmelo Militello and Carlos A. Felippa. The first andes elements: 9-dof plate bending triangles.

Computer Methods in Applied Mechanics and Engineering, 93:217–246, 1991.

[57] Jorge J. More and David J. Thuente. Line search algorithms with guaranteed sufficient decrease.

ACM Trans. Math. Software, 20(3):286–307, 1994.

[58] Xiuping Mu and Qiong Wu. Synthesis of a composite sagittal gait cycle for a five-link biped

robot. Robotica, 21:581–587, 2003.

[59] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen. A note on preconditioning for

indefinite linear systems, 1999.

[60] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.

[61] Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22:1444–1460, 2000.

[62] H. J. Oberle and W. Grimm. BNDSCO-A Program for the Numerical Solution of Optimal

Control Problems. Institute for Flight Systems Dynamics, 1989.

[63] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM

J. Nuer. Anal., 12:617–624, 1975.

[64] C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and least-

squares problems. ACM Trans. Math. Software, 8(2):195–209, 1982.

[65] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparse

least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

[66] John W. Pearson and Andrew J. Wathen. A new approximation of the Schur complement in

preconditioners for PDE-constrained optimization. Numerical Linear Algebra with Applications,

pages 816–829, 2012.

118 BIBLIOGRAPHY

[67] Tomasz Pietrzykowski. An exact potential method for constrained maxima. SIAM J. Numer.

Anal., 6:299–304, 1969.

[68] Ernesto Prudencio, Richard Byrd, and Xiao-Chuan Cai. Parallel full space SQP Lagrange-

Newton-Krylov-Schwarz algorithms for PDE-constrained optimization problems. SIAM Journal

on Scientific Computing, 27:13051328, 2006.

[69] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial Differential Equations,

volume 23. Springer-Verlag, 1994.

[70] A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby, and M. A. Patterson.

User’s manual for GPOPS: A MATLAB package for dynamic optimization using the gauss

pseudospectral method. Technical report, University of Florida, August 2008.

[71] Tyrone Rees, H. Sue Dollar, and Andrew J. Wathen. Optimal solvers for PDE-constrained

optimization. SIAM J. on Scientific Computing, 32:271–298, 2010.

[72] I. M. Ross and F. Fahroo. User’s manual for DIDO: A MATLAB package for dynamic opti-

mization. Technical report, Dept. of Aeronautics and Astronautics, Naval Postgraduate School,

2002.

[73] P. Rutquist and M. Edvall. PROPT - MATLAB optimal control software. Technical report,

Tomlab Optimization, Inc, 2010.

[74] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 1986.

[75] Youcef Saad. A flexible inner-outer preconditioned gmres algorithm, 1993.

[76] Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS, 1993.

[77] Adam Schwartz. Theory and Implementation of Methods based on Runge-Kutta Integration for

Solving Optimal Control Problems. PhD thesis, University of California at Berkeley, 1996.

[78] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.

Statist. Comput., 10(1):36–52, 1989.

[79] Martin Stoll and Andy Wathen. All-at-once solution of time-dependent pde-constrained opti-

mization problems. Technical report, University of Oxford, 2011.

[80] Martin Stoll and Andy Wathen. Combination preconditioning and the Bramble-Pasciak� pre-

conditioner. SIAM Journal on Matrix Analysis and Applications, 2011.

[81] Aye Aye Thant and Khaing Khaing Aye. Application of cubic spline interpolation to walking

patterns of biped robot. World Academy of Science, Engineering and Technology, 2009.

BIBLIOGRAPHY 119

[82] Stefan Ulbrich. Generalized SQP methods with “parareal time-domain decomposition for

time-dependent pde-constrained optimization. In Lorenz T. Biegler, Omar Ghattas, Matthias

Heinkenschloss, David Keyes, and Bart van Bloemen Waanders, editors, Real-Time PDE-

Constrained Optimization, chapter 7, pages 145–168. SIAM, 2007.

[83] A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14–23,

1969.

[84] M. Vasile, F. Bernelli-Zazzera, N. Fornasari, and P. Masarati. Design of interplanetary and lunar

missions combining low-thrust and gravity assists. Technical report, ESA/ESOC, September

2002.

[85] Oskar von Stryk. User’s guide for DIRCOL (version 2.1): A direct collocation method for

the numerical solution of optimal control problems. Technical report, Technische Universitt

Darmstadt, 1999.

	Abstract
	Acknowledgements
	Introduction
	Thesis accomplishments and outline

	Partial differential equations
	Linear static PDE
	Linear heat equation

	Static structural PDE
	Linear dynamic PDE
	Linear dynamic heat equation
	Linear structural dynamic PDE

	Nonlinear dynamic PDE
	Rotational Degrees of Freedom

	PDE-constrained optimization
	Discretization of objective function for static problem
	Linear static PDE-constrained optimal control
	Nonlinear static PDE-constrained optimal control
	Discretization of objective function for dynamic problem
	Linear dynamic PDE-constrained optimal heat control
	Linear dynamic PDE-constrained optimal structure control
	Nonlinear dynamic PDE-constrained optimal control

	Methods for PDE-constrained optimization
	Nested analysis and design
	Simultaneous analysis and design
	Reduced SAND
	Full SAND

	Iterative methods and preconditioners
	Iterative methods
	Classical iterative methods and Jacobi scaling
	GMRES

	Preconditioners
	Block diagonal
	Block lower triangular
	Range space
	Constraint preconditioner
	GMRES performance comparison
	An exact representation of a Schur complement

	Multi-precondition
	Multi-preconditioned GMRES

	Global convergence of sequential quadratic programming
	Linesearch
	Terminating criteria
	Merit functions

	Numerical experiments
	Linear static PDE-constrained optimal control
	Linear static heat conduction with heat control

	Nonlinear static PDE-constrained optimal control
	Large deflection of a plate

	Linear dynamic PDE-constrained optimal control
	A target cross on a heat plate

	Nonlinear dynamic PDE-constrained optimal control
	Stabilizing inverted pendulum
	Five-link rigid biped control
	Nonlinear flapping wing

	Conclusion
	Summary
	Future work

	Spectral analysis
	Zero-regularization constraint preconditioner
	A variant of Biros-Ghattas constraint preconditioner
	Block diagonal preconditioner
	Block triangular preconditioner

