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ABSTRACT

This is Supplementary Information for the above-named article.

Introduction
Figure 1 summarizes our DQQ procedure for achieving reliability and efficiency for multiscale optimization problems.

Figure 1. Flowchart for the 3-step DQQ procedure.

The main paper reports application of DQQ to three large ME models (TMA ME, GlcAerWT, GlcAlift) and to some other
challenging linear optimization problems (the pilot economic models and the Mészáros problematic set). Below we provide the
following supplementary information:

• Solution of 78 Metabolic models by Double and Quad MINOS, verifying that the Double solver gives reliable results.

• Solution of two slightly different forms of the TMA ME model, showing robustness of solution values with respect to
O(10−6) relative perturbations of the data.

• Some details of the Double and Quad MINOS implementations.

• Experiments with conventional iterative refinement (DRR procedure).

• Results with Gurobi on the ME models.

• Results with SoPlex80bit on the ME and problematic models.



Table 1. TMA ME model. Robustness of objective values computed by four high-accuracy solvers for two slightly different versions of the
problem with 13-digit and 6-digit data (from Matlab and MPS data respectively).

Optimal objective
SoPlex80bit 8.703671403e−07 Matlab data
QSopt ex 8.703646169e−07 Matlab data
Quad SQOPT 8.703646169e−07 Matlab data
Quad MINOS 8.703631539e−07 MPS data

Table 2. TMA ME model. Robustness of small solution values v j and w j computed by Quad MINOS for two slightly different versions
(Matlab and MPS data respectively).

j 107 201 302
v j 2.336815e−06 8.703646e−07 1.454536e−11
w j 2.336823e−06 8.703632e−07 1.454540e−11

Metabolic models with Quad solvers admit biomass synthesis
COBRA models of metabolic networks assume the existence of at least one steady-state flux vector that satisfies the imposed
constraints and admits a non-zero optimal objective. Where the objective is to maximize a biomass synthesis reaction, the
corresponding FBA problem should admit a nonzero biomass synthesis rate. It is established practice to solve monoscale
metabolic FBA problems with Double solvers, so one may ask: do biomass synthesis predictions from metabolic models hold
when higher precision solvers are applied to the same FBA problem? We tested 78 M models derived from the BiGG database1

using Double and Quad MINOS. We downloaded these models in the JSON format and parsed them using the JSON reader in
cobrapy2. The models were not modified after loading, so all constraints, bounds, and objective coefficients were used as in the
original files. All models were feasible using both Double and Quad, and all but five models had an optimal objective value
greater than zero. Of these five models, four simply had all-zero objective coefficients, while the remaining (RECON1) model
maximized a single reaction (S6T14g) but its optimal value was zero. The maximum difference in objective value between
Double and Quad was 2.6×10−12. The additional precision provided by Quad MINOS enabled us to conclude efficiently and
effectively that the 78 metabolic models could be solved reliably using a Double solver. This conclusion is consistent with
previous findings by Ebrahim et al.3.

Robustness of solution values for TMA ME

TMA ME4 was the first ME model that we used for Quad experiments. The data S, c, `, u came as a Matlab structure with
c j = 0, ` j = 0, u j = 1000 for most j, except four variables had smaller upper bounds, the last variable had moderate positive
bounds, and 64 variables were fixed at zero. The objective was to maximize flux v17533. We output the data to a plain text
file. Most entries of S were integers (represented exactly), but about 5000 Si j values were of the form 8.037943687315e−01 or
3.488862338191e−06 with 13 significant digits. The text data was read into Double and Quad versions of a prototype Fortran
90 implementation of SQOPT5.

For the present work, we used the same Matlab data to generate an MPS file for input into MINOS. Since this is limited to
6 significant digits, the values in the preceding paragraph were rounded to 8.03794e−01 and 3.48886e−06 and in total about
5000 Si j values had O(10−6) relative perturbations of this kind. This was a fortuitous limitation for the ME models. We have
been concerned that such data perturbations could alter the FBA solution greatly because the final basis matrices could have
condition number as large as 106 or even 1012 (as estimated by LUSOL6 each time SQOPT or MINOS factorizes the current
basis B). However, in comparing Quad SQOPT and Quad MINOS with SoPlex7, 8 and the exact simplex solver QSopt ex9, we
observe in Table 1 that the final objective values for TMA ME in Matlab data reported by QSopt ex and Quad SQOPT match
in every digit. Moreover, the objective value achieved by Quad MINOS on the perturbed data in MPS format agrees to 5 digits
of the results from the exact solver QSopt ex on the “accurate” data. These results show the robustness of the TMA ME model
and our 34-digit Quad solvers.

More importantly, for the most part even small solution values are perturbed in only the 5th or 6th significant digit. Let v
and w be the solutions obtained on slightly different data. Some example values are given in Table 2. Among all j for which
max(v j,w j)> δ1 = 10−15 (the feasibility tolerance), the largest relative difference |v j−w j|/max(v j,w j) was less than 10−5

for all but 31 variables. For 22 of these pairs, either v j or w j was primal or dual degenerate (meaning one of them was zero and
there are alternative solutions with the same objective value). The remaining 9 variables had v j, w j values shown in Table 3.

We see that the values are small (the same magnitude as the data perturbation) but for each of the nine pairs there is about 1
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Table 3. TMA ME model. The values of 9 fluxes v j,w j computed by Quad MINOS for two slightly different versions of the problem,
revealing robustness of all 9 solution pairs. These values have 1 digit of agreement. Almost all 17535 pairs of values agree to 5 or more digits.

j v j w j Relative difference
16383 6.07e−07 2.04e−06 0.70
16459 1.71e−06 2.18e−06 0.22
16483 2.47e−06 5.99e−07 0.76
16730 1.44e−06 7.87e−07 0.46
17461 1.71e−06 2.18e−06 0.22
17462 2.47e−06 5.99e−07 0.76
17478 6.07e−07 2.04e−06 0.70
17507 1.44e−06 7.87e−07 0.46
17517 8.70e−07 2.97e−06 0.71

digit of agreement. We could expect thousands of small solution pairs to differ more, yet for almost all 17535 pairs at least 5
digits agree.

Although these observations do not prove robustness of FBA models in general (because we analyzed only one perturbation
to one model), they are welcome empirical evidence that the solutions are not extremely unstable. Quad solvers can help evaluate
the robustness of future (increasingly large) models of metabolic networks by enabling similar comparison of high-accuracy
solutions for slightly different problems.

MINOS implementation

MINOS10, 11 is a linear and nonlinear optimization solver implemented in Fortran 77 to solve problems of the form

min
v

cTv+ϕ(v) s.t. `≤

 v
Sv

f (v)

≤ u, (1)

where ϕ(v) is a smooth nonlinear function and f (v) is a vector of smooth nonlinear functions. The matrix S and the Jacobian of
f (v) are assumed to be sparse.

Let Single/Double/Quad denote the floating-point formats defined in the 2008 IEEE 754 standard12 with about 7/16/34
digits of precision, respectively. Single is not useful in the present context, and Double may not ensure adequate accuracy for
multiscale problems. This is the reason for our work. Since release 4.6 of the GCC C and Fortran compilers13, Quad has been
available via the long double and real(16) data types. Thus, we have made a Quad version of Double MINOS using
the GNU gfortran compiler (GNU Fortran 5.2.0).

On today’s machines, Double is implemented in hardware, while Quad (if available) is typically implemented in a software
library, in this case GCC libquadmath14.

For Double MINOS, floating-point variables are declared real(8) (≈ 16 digits). For Quad MINOS, they are real(16)
(≈ 34 digits) with the data S,c, `,u stored in Quad even though they are not known to that precision. This allows operations
such as Sv and STy to be carried out directly on the elements of S and the Quad vectors v,y. If S were stored in Double, such
products would require each entry Si j to be converted from Double to Quad at runtime (many times).

The primal simplex solver in MINOS includes geometric mean scaling15, the EXPAND anti-degeneracy procedure16, and
partial pricing (but no steepest-edge pricing, which would generally reduce total iterations and time). Basis LU factorizations
and updates are handled by LUSOL6. Cold starts use a Crash procedure to find a triangular initial basis matrix. Basis files are
used to preserve solutions between runs and to enable warm starts.

Scaling is commonly applied to linear programs to make the scaled data and solution values closer to 1. Feasibility and
optimality tolerances can be chosen more easily for the scaled problem, and LU factors of the basis matrix are more likely to be
sparse. For geometric mean scaling, several passes are made through the columns and rows of S to compute a scale factor for
each column and row. A difficulty is that the scaled problem may solve to within specified feasibility and optimality tolerances,
but when the solution is unscaled it may lie significantly outside the original (unscaled) bounds.

EXPAND tries to accommodate consecutive “degenerate” simplex iterations that make no improvement to the objective func-
tion. The problem bounds are effectively expanded a tiny amount each iteration to permit nonzero improvement. Convergence
is usually achieved but is not theoretically guaranteed17. Progress sometimes stalls for long sequences of iterations.

LUSOL bounds the subdiagonals of L when the current basis matrix B is factorized as P1BP2 = LU with some permutations
P1, P2. It also bounds off-diagonal elements of elementary triangular factors L j that update L in product form each simplex
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Table 4. DRR procedure on three ME models. Iterations and runtimes in seconds for step D (Double MINOS with scaling) and
steps R1, R2 (Double MINOS with iterative refinement, with and without scaling). Pinf and Dinf = final maximum primal and dual
infeasibilities (log10 values tabulated). Bold figures show Pinf and Dinf at the end of step R2. The fourth line for each model shows the
correct objective value (from step Q2 of DQQ).

model Itns Times Final objective Pinf Dinf
TMA ME 21026 350.9 8.3789966820e−07 −06 −05

422 25.4 8.6990918717e−07 −08 −07
71 0.0 8.7035701805e−07 −10 −10

8.7036315385e−07
GlcAerWT 47718 10567.8 −6.7687059922e+05 −04 +00

907 1442.7 −7.0344344753e+05 −04 −04
157 151.2 −7.0344342883e+05 −10 −02

−7.0382449681e+05
GlcAlift 19340 15913.7 −5.3319574961e+05 −03 −01

447 198.8 −7.0331052509e+05 −03 −03
460 0.6 −7.0330602383e+05 −06 −10

−7.0434008750e+05

iteration. (The diagonals of L and each L j are implicitly 1.) Maximum numerical stability would be achieved by setting the LU
Factor and Update tolerances to be near 1.0, but larger values are typically chosen to balance stability with sparsity. For safety,
we specify 1.9 in step D of DQQ. This value guards against unstable factorization of the deceptive matrix diag(−1 2 1), and
improves the reliability of Double MINOS in the present context.

Conventional iterative refinement

For the biology models, our aim is to satisfy Feasibility and Optimality tolerances of 10−15 (close to Double precision). It
is reasonable to suppose that this could be achieved within a Double simplex solver by implementing iterative refinement
(Wilkinson18) for every linear system involving the basis matrix B or BT. This is a more sparing use of Quad precision than our
DQQ procedure. For example, each time the current B is factorized directly (typically a new sparse LU factorization every 100
iterations), the constraints Sv = 0 can be satisfied more accurately by computing the primal residual r = 0−Sv from the current
solution v, solving B∆vB = r, and updating vB← vB +∆vB. In general, the new v will not be significantly more accurate unless
r is computed in Quad. (If B is nearly singular, more than one refinement may be needed.) Similarly for solving BTy = cB after
refactorization, and for two systems of the form Bp = a and BTy = cB each iteration of the simplex method.

By analogy with DQQ, we implemented the following procedure within a test version of Double MINOS. Note that
“iterative refinement” in steps R1, R2 means a single refinement for each B or BT system, with residuals −Sv, a−Bp, cB−BTy
computed in Quad as just described.

DRR procedure
Step D Apply Double MINOS with scaling and moderately strict runtime options.
Step R1 Warm-start Double MINOS with scaling, stricter options, and iterative refinement.
Step R2 Warm-start Double MINOS without scaling but with stricter options and iterative refinement.

Step D is the same as for DQQ (with no refinement). The runtime options for each step are the same as for DQQ, except in
steps R1, R2 the tolerances 1e−15 were relaxed to 1e−9.

In Table 4 we see that this simplified (cheap) form of iterative refinement is only partially successful, with step R2 achieving
only 4, 3, and 2 correct digits in the final objective. For GlcAerWT, steps R1 and R2 encountered frequent near-singularities in
the LU factors of B (requiring excessive refactorizations and alteration of B), and in step R2, the single refinement could not
always achieve full Double precision accuracy for each system. Additional refinements would improve the final Pinf and Dinf,
but would not reduce the excessive factorizations. We conclude that on the bigger ME problems, a Double solver is on the
brink of failure even with the aid of conventional (Wilkinson-type) iterative refinement of each system involving B and BT. We
conclude that our DQQ procedure is a more expensive but vitally more robust approach.

Results with NEOS/Gurobi
For large linear models, commercial solvers have reached a high peak of efficiency. It would be ideal to make use of them to
the extent possible. For example, their Presolve capability allows most of the optimization to be performed on a greatly reduced
form of any typical model.
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Table 5. Performance of Gurobi with default options on three ME models. Note that “switch to quad” means switch to 80-bit floating-point
(not to IEEE Quad precision). This did not help GLcAerWT. For GlcAlift2, the options were NumericFocus 3, no Presolve, and no scaling.

TMA ME Presolve 18209×17535→ 2386×2925
Optimal Iterations 1703
0.5 secs Objective 9.6318438361e-07

True obj 8.7036315385e-07
GlcAerWT Presolve 68299×76664→ 18065×26157

Warning switch to quad (itns ≈ 14000)
Numeric error Iterations 593819
3715 secs Objective 3.2926249e+07

True obj -7.0382449681e+05
GlcAlift Presolve 69528×77893→ 18063×26155

Warning switch to quad (itns ≈ 10000)
Optimal Iterations 45947
109 secs Objective -7.043390954e+05

True obj -7.0434008750e+05
Warning unscaled primal/dual residuals:

1.07, 1.22e-06

GlcAlift2
Optimal Iterations 128596
844 secs Objective -7.043415774e+05

True obj -7.0434008750e+05
Warning unscaled primal residual:

1.05e-05

Table 6. Performance of SoPlex80bit on three large ME models (default options except no simplifier or lifting).

TMA ME 18209×17535
Optimal Iterations 19563 (3 refinements)
90.9 secs Objective 8.7036315385e-07

True obj 8.7036315385e-07
GlcAerWT 68299×76664
Optimal Iterations 86366 (3 refinements)
1059 secs Objective -7.0382449681e+05

True obj -7.0382449681e+05
GlcAlift 69528×77893
Optimal Iterations 83941 (3 refinements)
889 secs Objective -7.0434008750e+05

True obj -7.0434008750e+05

Table 5 summarizes the performance of Gurobi19 on three large ME models via the NEOS server20. The first three
results used Gurobi’s default runtime options, including Presolve, Dual simplex, and Scaling (with default FeasibilityTol =
OptimalityTol = 1e−6). TMA ME seemed to solve successfully, but from the Quad MINOS solution we know that Gurobi’s
final objective value has no correct digits. GlcAerWT failed with “Numeric error” after many expensive iterations using 80-bit
floating-point. GlcAlift also switched to 80-bit floating-point. The scaled problem seemed to solve successfully, but unscaling
damaged the primal residual and this casts significant doubt on the final solution. (This is the reason for our research.)

For GlcAlift2 we specified NumericFocus 3 with no Presolve and no scaling. These options are appropriate for lifted
models21. Gurobi did not switch to 80-bit arithmetic, yet achieved 5 correct digits in the objective. This helps confirm the value
of the lifting strategy of21, and would provide a good starting point for steps Q1 and Q2 of DQQ. However, DQQ permits us to
solve the original model GlcAerWT directly (without the lifting transformation).

Results with NEOS/SoPlex80bit

Table 6 summarizes the performance of SoPlex80bit8 on the three large ME models via NEOS with default options, except the
simplifier and lifting options were turned off to ensure that SoPlex80bit was iterating on the same problems as MINOS.

SoPlex80bit performed extremely well on all ME models (Table 6). The first floating-point solves achieved maximum
primal and dual feasibilities of order 1e−7 or less, with no sign of scaling or potentially troublesome unscaling, and three rounds
of iterative refinement reduced the infeasibilities to order 1e−44(!). The optimal objective values agreed to the 11 digits printed
by Quad MINOS. Analogous excellent performance by SoPlex80bit on large ME models is described by Gleixner [22, Ch. 4].
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Table 7. Performance of SoPlex80bit on the problematic models (default options except no simplifier or lifting).

de063155 852×1488
Optimal Iterations 1766 (3 refinements)
0.3 secs Objective 9.8830944565e+09

True obj 9.8830944565e+09
de063157 936×1488
Optimal Iterations 3828 before refinement
0.1 secs Objective 2.15277062e+07

True obj 2.1528501109e+07
de080285 936×1488

Iterations 804 (2 refinements)
0.1 secs Objective 1.3924732864e+01

True obj 1.3924732864e+01
gen1 769×2560

Iterations 12850 (3 refinements)
186.5 secs Objective 1.2953925804e-06

True obj 1.2953925804e-06
gen2 1121×3264
Optimal Iterations 12079 (2 refinements)
6016 secs Objective 3.2927907840e+00

True obj 3.2927907840e+00
gen4 1537×4297
Optimal Iterations 14358 (3 refinements)
7132 secs Objective 2.8933064888e-06

True obj 2.8933064888e-06
l30 2701×15380

Iterations 3400093 before refinement
11552 secs Objective -2.54658516e-11

True obj -6.6.......e-26
iprob 3001×3001
Infeasible Iterations 3001 (2 refinements)
0.6 secs Objective 1.0e+100

On the problematic set (Table 7), SoPlex80bit solved most problems solved accurately, but with some anomalies. On
de063157, the first floating-point solve achieved 5 significant digits in the objective function but with primal and dual
infeasibilities of 4e+2 and 1e+4. The first refinement reduced the latter to 2e+1 and 3e−12, and the second refinement achieved
4e−15 and 3e−12. This should have been acceptable, but a further 100 refinements were conducted (at negligible cost) before
the run was terminated with no final solution available.

On gen2 and gen4, the first floating-point solves were very efficient and accurate (41 and 82 seconds respectively). Three
refinements achieved primal and dual infeasibilities of order 1e−11 or less. A final rational factorization proved expensive and
accounted for 99% of the total times (6016 and 7132 seconds respectively), but confirmed optimality.

On l30, the first floating-point solve performed many iterations but achieved primal and dual infeasibilities of 4e−9 and
1e−10 with objective value−2.5e−11, which should have been acceptable. The first refinement reported numerical troubles after
2702 iterations. It continued to about 154000 iterations and computed an unbounded ray. Nearly 4000 refinements followed
(each doing no iterations) before numerical trouble was reported. One final solve performed 3000 iterations before increasing
the Markowitz threshold and terminating with no solution.

Details of this nature will change, but some of them hint at the need for higher precision in the floating-point solver to
facilitate SoPlex’s iterative refinement.

Looking ahead

The large-scale optimizer SNOPT5 is maintained as a Fortran 77 solver snopt723 suitable for step D of the DQQ procedure.
An accompanying Fortran 2003 version snopt9 has also been developed, for which Double and Quad libraries can be
built with only one line of source code changed. They are ideal for applying DQQ to future multiscale linear and nonlinear
optimization models, as long as step D can be terminated early enough when numerical difficulties arise. Quad enhancements
to the SoPlex floating-point solver also promise reliability and extreme accuracy for future challenging models.
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