
BIOINFORMATICS Vol. 00 no. 00 2015
Pages 1–6

Conservation analysis of genome-scale biochemical networks
Nick W. Henderson1, San Kim1, Ding Ma2, Michael A. Saunders2,∗,
Yuekai Sun1, Ronan M. T. Fleming3, and Ines Thiele3

1Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
2Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Luxembourg
DRAFT of Tuesday 19th January, 2016

Associate Editor: Dr Xxx Xxxxx

ABSTRACT
Motivation: Conservation analysis is a crucial preliminary step in the
analysis of biochemical networks. Emerging genome-scale models
of biochemical networks capture the multiscale nature of biological
systems and require specialized sparse-matrix algorithms.
Results: We propose methods for conservation analysis of
genome-scale biochemical networks based on rank-revealing sparse
matrix factorizations. We describe implementations powered by
SuiteSparseQR (a sparse QR factorization package) and LUSOL (a
sparse LU factorization and update package). We demonstrate the
performance of our implementations on genome-scale models from
the BiGG database and a considerably larger model (62000×76000).
Availability and Implementation: SuiteSparseQR is available from
Davis (SPQR, 2013). It is implemented in C++ with interfaces to
MATLAB, C, and C++. LUSOL is available from the Stanford Systems
Optimization Laboratory (LUSOL, 2013). There are separate versions
in Fortran 77 and Fortran 90, and a MATLAB interface.
Contact: Michael Saunders: saunders@stanford.edu

1 INTRODUCTION
The activity within a biochemical network naturally conserves
certain molecular subgroups. Each conserved subgroup contains
several molecular species, and the total mass of the species is
conserved as the species move around closed loops in the network.
The subgroups are called conserved moieties or simply moieties.
The canonical example is the adenine nucleotide moiety (ADP, ATP,
AMP). Other examples include NAD/NADH, CoA/Acetyl-CoA,
and phosphorylated/unphosphorylated protein. The total amount of
each moiety is determined by the initial conditions.

Correct determination of conservation relations is crucial to the
analysis of metabolic networks and is an area of active research
(e.g., Sauro and Ingalls, 2004; Vallabhajosyula et al., 2006; Terzer
et al., 2009; Schryer et al., 2011). Conservation analysis is a crucial
first step in the analysis of metabolic networks for evaluating drug
targets. Traditional drugs kill pathogens by disrupting metabolite
concentrations or reaction fluxes to an extent harmful to the
organism. Conservation laws limit the extent to which a drug
can affect the concentration of a metabolite. We refer to Bakker
et al., 1999, 2000 and Cornish-Bowden and Eisenthal, 2000;

∗To whom correspondence should be addressed.

Cornish-Bowden and Hofmeyr, 2002 for details about evaluating
drug targets. Conservation analysis is also a preliminary step in
analyzing the transient behavior of biochemical networks. Many
techniques for studying transient behavior, such as implicit time-
stepping methods, require the associated Jacobian to have full rank
(Reder, 1988). Conserved moieties create rank-deficiencies in the
stoichiometric and Jacobian matrices. The rank must be identified,
along with sets of independent rows and columns. Sometimes a
secondary benefit is a reduction in model size.

2 SYSTEM AND METHODS
The time-evolution of concentrations in a biochemical network is governed
by a system of ordinary differential equations:

d

dt
x(t) = Sv(t), (2.1)

where x(t) ∈ Rm is a vector of time-dependent concentrations, S ∈
Rm×n is the stoichiometric matrix (with rows and columns corresponding
to molecular species and chemical reactions), and v(t) ∈ Rn is a vector
of reaction fluxes. Certain quantities are typically conserved during time-
evolution of the network. These conservation relations are manifested as
linear dependencies among the rows of S. The purpose of conservation
analysis includes the following aims:

A1 Partition S into independent and dependent rows. For some
permutation Prow and with rank(S) = rank(Sind) ≡ r, we want
to express (2.1) as

d

dt
Prowx(t) = ProwSv(t) ≡

d

dt

(
xind(t)
xdep(t)

)
=

(
Sind
Sdep

)
v(t).

A2 Find a well-conditioned null-space matrix Z that spans the null space
of ST (thus STZ = 0). If z = Zw ∈ N (ST), the quantity zTx(t)
remains constant:

d

dt
zTx(t) = zT

d

dt
x(t) = zTSv(t) = 0.

A3 Compute a link matrixN that describes the relations among the species:
S = NSind.

A4 Compute a nonsingular reduced Jacobian for analyzing transient
behavior in bifurcation analysis, frequency analysis, metabolic control
analysis, etc. (Reder, 1988).

We focus on aims A1–A3. Note that most species in a biochemical network
are involved in just a few reactions, and most reactions involve just a few
species, so that most rows and columns of S are sparse. For efficiency we

c© Oxford University Press 2015. 1

Henderson et al.

must take advantage of the sparsity of S, while being conscious of a few
rather dense rows or columns. Also note that the nullspace and link matrices
are likely to be dense and therefore should not be obtained explicitly. Instead
we seek linear operator forms for Z and N that allow efficient computation
of matrix-vector products Zv, ZTw, Nx, NTy.

Further computational details about conservation analysis are given by
Sauro and Ingalls (2004); Vallabhajosyula et al. (2006); Schryer et al.
(2011). Our aim is to improve upon the numerical tools proposed there.

3 ALGORITHM AND IMPLEMENTATION
We discuss the main matrix factorizations in turn.

SVD For dense matrices S, the most reliable numerical method for
estimating r ≡ rank(S) and obtaining a nullspace matrix Z is the singular
value decomposition (SVD) (Golub and Van Loan, 2013). For S ∈Rm×n

(with m < n in our case) it has the form

S = UDV T ≡
(
U1 U2

)(D1

0

)(
V T
1

V T
2

)
= U1D1V

T
1 , (3.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and D ∈ Rm×n is
diagonal with nonnegative nonincreasing diagonals. The columns of U and
V are left and right singular vectors, and the diagonals of D are singular
values. All of U1, D1, V1 have r columns.

A1 Surprisingly, SVD does not suggest a permutation Prow to partition the
rows of S into Sind and Sdep.

A2 Since UTS = DV T and thus STU = V DT = V1
(
D1 0

)
, the

matrix Z ≡ U2 (columns of U associated with zero singular values)
satisfies STZ = 0 as required. This Z (having orthonormal columns)
is perfectly conditioned.

A3 Since A1 is not possible with SVD, nor is A3. If the rows of Sind were
known by other means and we had Sind = UDV T (of full rank) , the
link matrix would be N = SV D−1UT , as indicated by Sauro and
Ingalls, 2004, §4.5.1.

Although SVD is the most reliable factorization for determining r, Z, and
possibly N , the density of U and V makes SVD computationally expensive
for sparse S and thus unsuitable for conservation analysis of genome-scale
networks.

Householder QR QR factorization with column interchanges (Golub
and Van Loan, 2013) is almost as reliable as SVD for estimating rank and
obtaining a nullspace matrix Z. It has the form

SPcol = QR ≡
(
Q1 Q2

)(R1 R2

0 0

)
= Q1

(
R1 R2

)
, (3.2)

where Pcol ∈ Rn×n is a permutation, Q ∈ Rm×m has orthonormal
columns, R ∈ Rm×n is upper trapezoidal, and R1 ∈ Rr×r is upper
triangular with nonzero diagonals.

A1 As with SVD, these QR factors do not partition S into independent and
dependent rows.

A2 In the dense case, Q is formed as a product of Householder
transformations and Pcol is chosen dynamically to maximize the
absolute value of the next diagonal of R1 at each stage (Golub and
Van Loan, 2013). Since QTSPcol = R, the matrix Z = Q2 satisfies
ZTSPcol = 0 and hence STZ = 0 as required. With Q in product

form, we can treatZ as the matrix operatorZ = Q
(

0

I

)
. It is perfectly

conditioned as for SVD.

A3 Since A1 is not possible with QR, nor is A3.

For large sparse S, Davis has recently shown that sparse rank-revealing
Householder QR can often be computed efficiently (Davis, 2011). In his
SuiteSparseQR package (SPQR, 2013), Davis chooses Pcol in advance to
promote sparsity in the QR factors. As each diagonal of R is formed, if
it would be essentially zero, the corresponding column of R is effectively
permuted to the end and Pcol is revised with no impact on the sparsity of Q
and R. If rank(S) is well-defined (as it typically is for stoichiometric S),
SuiteSparseQR is likely to find it correctly as r = rank(R). With Q and
hence Z stored in sparse product form (and Z having perfect condition), this
promises to be a powerful new tool for conservation analysis, at least for
Aim A2.

Householder QR on ST Transposing S has little effect on SVD or
on rank estimation, but may greatly affect the sparsity of QR or LU factors.
The analogue of (3.2) is

STP = Q1

(
R1 R2

)
, (3.3)

where r = rank(S) = rank(R1). We define

Z ≡ P
(
−R−1

1 R2

I

)
, N ≡

(
I

RT
2 R
−T
1

)
.

A1 Transposing (3.3) gives PTS ≡
(
Sind

Sdep

)
=

(
RT

1

RT
2

)
QT

1 , so that PT

partitions S as required.

A2 From (3.3), Z satisfies STZ=0. A product p = Zv can be computed

by solving R1t = R2v by back-substitution and forming p =
(
−t

v

)
.

A3 From A1 we have Sdep = RT
2 Q

T
1 = RT

2 R
−T
1 Sind. The link matrixN

satisfies S = NSind as required. Products with N are similar to those
with Z.

Dense Householder QR on ST was advocated by Vallabhajosyula et al.
(2006) for moderate-sized networks. In that case, P can be chosen carefully
in (3.3) to maximize each diagonal of R1, and Z should be reasonably
well-conditioned. Note: there is no need for Gauss-Jordan reduction on R1!

For SuiteSparseQR on ST, Z might not be so well-conditioned because P
is chosen to promote sparsity, not to maximize diag(R1).

Sparse LU For cases where S contains some rather dense rows or
columns, we propose to use the Fortran package LUSOL (Gill et al., 1987,
2005) to compute triangular factors of the form

ProwSPcol = LDU ≡
(
L1

L2 I

)(
D1

0

)(
U1 U2

I

)
, (3.4)

where L ∈ Rm×m and U ∈ Rn×n are lower and upper triangular with
unit diagonals, D ∈Rm×n is diagonal, and L1, D1, U1 all have r rows
and columns. The permutations Prow, Pcol are chosen so that at each stage,
the next column of L and the next row of U are sparse (if possible) but the
next diagonal of D is not too small. LUSOL has three pivot strategies for
striking this balance between sparsity and stability. At each stage, the next
pivot element δ is chosen to be a nonzero Sij in the current (modified) S
such that row i and column j are reasonably sparse and δ is reasonably large
compared to certain other nonzeros:

• TPP (threshold partial pivoting) compares δ with nonzeros in its own
column;

• TRP (threshold rook pivoting) compares δ with nonzeros in its own
column and its own row;

• TCP (threshold complete pivoting) compares δ with all remaining
nonzeros.

For some stability tolerance τ > 1, the net effect is that in producing LDU
factors, TPP maintains |Lij | ≤ τ (only), while TRP and TCP also maintain
|Uij | ≤ τ .

2

Conservation analysis of genome-scale biochemical networks

In all cases, L tends to be well-conditioned if τ is rather close to 1 (say
1.5 or 1.1). For TRP and TCP, U also tends to be well-conditioned when
τ is close to 1, and the condition and rank of D then reflects the condition
and rank of S. The value τ = 1 would generally provide maximum rank-
revealing capability, but setting τ > 1 provides some flexibility to retain
sparsity.

Define

Z ≡ L−TPT
row

(
0

I

)
, N ≡

(
I

L2L
−1
1

)
. (3.5)

A1 Prow partitions the rows of S as required.

A2 In (3.4), the lastm− r rows of L−1ProwS are zero. Hence, Z satisfies
STZ = 0. Vectors of the form w = Zv and s = ZTt can be obtained
by solving well-conditioned triangular systems involving LT and L
respectively.

A3 The link matrixN satisfies S = NSind as required. A product y = Nx

can be obtained by solvingLw ≡ L
(
w1

w2

)
=

(
x

0

)
and setting y1 = x

and y2 = −w2.

If many vectors Zv, ZTt are needed and if Q from SuiteSparseQR is too
dense, LUSOL provides another important tool for conservation analysis. A
MATLAB interface to LUSOL is available (Henderson, 2013).

Since LUSOL’s rook pivoting stability test is less demanding than for
complete pivoting, TRP is likely to give sparser LU factors than TCP,
especially if S contains some large entries. TRP provides a practical
compromise between TPP and TCP when rank-estimation is required.
We note that TPP is sometimes much faster, and may be sufficiently
rank-revealing for typical stoichiometric S, especially if we scale S first.

Sparse LU on ST LDU factors of ST are already evident in (3.4) as
ST = UTDLT, but their properties depend on the pivot strategy and they
may be more sparse than the factors of S. For clarity we write the analogue
of (3.4) as

P1S
TP2 = LDU ≡

(
L1

L2 I

)(
D1

0

)(
U1 U2

I

)
(3.6)

and define

Z ≡ P2U
−1

(
0

I

)
, N ≡

(
I

UT
2 U
−T
1

)
. (3.7)

A1 PT
2 partitions the rows of S as required.

A2 The operator Z satisfies STZ = 0 and will be well-conditioned if we
use TRP or TCP.

A3 The link matrixN satisfies S = NSind as required. A product y = Nx

can be obtained by solving UTw ≡ UT
(
w1

w2

)
=

(
x

0

)
and setting

y1 = x and y2 = −w2.

4 MORE ABOUT LUSOL
4.1 Factor, Solve, Update
LUSOL is a set of procedures for computing and updating LU factors of a
general sparse matrix A ∈ Rm×n. The design allows A to be square or
rectangular and possibly rank-deficient. The main functions follow.

• Factor finds row and column permutation matrices Prow and Pcol and
factors L and U such that A = LU , where ProwLPT

row is lower
triangular with unit diagonals and bounded subdiagonals (this is “L”
in (3.4)), and ProwUPcol is upper triangular (this is “DU” in (3.4)).
The main steps are summarized in Algorithm 1.

Algorithm 1 Sparse LU factorization of A
for k = 1 to min(m,n) do

Choose a pivot δ ≡ Aij in a sparse row i and column j
subject to |Aij | being suitably large according to
one of the strategies TPP, TRP, TCP

Record row i and column j in Prow and Pcol respectively
l← A·j/δ, uT ← Ai·

L←
[
L l

]
, U ←

[
U
uT

]
, A← A− luT

end for
Note: If A contains p distinct columns of ±I , their single nonzeros are
chosen first. The top p rows of U are of the form

(
Ip Up

)
regardless of

any large nonzeros in Up.

• Solve various systems using the LU factors (compute x from given b):

Lx = b Ux = b Ax = b

LTx = b UTx = b ATx = b.

• Replace column Update the LU factors and permutations when a
column of A is replaced. This is the most common update required.

• Other updates Update the LU factors and permutations when a row
or column is added or deleted (thus changing the size of A), when a
row is replaced, or when a rank-one matrix vwT is added to A. These
updates are available in the Fortran version of LUSOL, but have not
been incorporated into the Matlab interface.

The original Factor procedures with TPP pivot strategy are described by
Gill et al., 1987. The rank-revealing TRP and TCP strategies are more
recent (Gill et al., 2005). The Bartels-Golub update for column-replacement
follows the sparse implementation of Reid, 1982 and involves a “forward
sweep” of eliminations. The other updates are implemented similarly (some
requiring a backward sweep).

Scaling In Algorithm 1, acceptable pivot elements δ will be chosen
sooner if A is previously scaled to ensure that the largest nonzeros in each
row and column are of order 1. (That is, A ← RAC, where R and
C are positive-definite diagonal scaling matrices.) The LU factors will be
more sparse and rank detection more reliable. We provide a Matlab routine
gmscale.m based on the geometric-mean scaling method of Fourer (1982).
A Fortran version is used in SNOPT (Gill et al., 2005).

4.2 Nullspace operations with lusolZ
Aim A2 involves a nullspace operator Z that can be obtained from (3.5)
or (3.7). In both cases, STZ = 0. Users may need products of the form
w = Zv and/or s = ZT t. These operations are implemented in some
MATLAB functions that we refer to as lusolZ. A given matrix S is scaled to
satisfyRAC = S, whereR andC are diagonal matrices of row and column
scales respectively. LUSOL is used to factorize either A or AT , depending
on a variable trans being 0 or 1 respectively. Users may write code of the
following form:

trans = 1; % trans = 0; might be more efficient
options = lusol();
options.pivot = ’TPP’;
options.Ltol1 = 2.0;
Z = lusolZ(S,trans,options);
w = lusolZv(Z,v); % w = Z*v
s = lusolZt(Z,t); % s = Z’*t

3

Henderson et al.

Fig. 1. Recon1: 2766× 3742 with 14300 nonzeros.

Fig. 2. Th MA: 15024× 17582 with 326035 nonzeros.

Fig. 3. GlcAerWT: 62212× 76664 with 913967 nonzeros.

5 NUMERICAL RESULTS
5.1 Factor
We compare sparse QR and LU factors of both S and ST on three genome-
scale models: Recon1, the largest of 9 similar models in the BiGG database
(Schellenberger et al., 2010), Th MA, an ME model from Lerman et al.
(2012), and GlcAerWT, a larger ME model from Thiele et al. (2012). Table 1
lists the model names and dimensions. Figures 1–3 are cspy plots of the
three stoichiometric matrices S.

Table 2 shows the performance of SPQR, the sparse QR routine from
SuiteSparseQR (SPQR, 2013).

Tables 3 and 4 give results for LUSOL with Threshold Partial Pivoting and
Threshold Rook Pivoting respectively. Tables 5 and 6 give similar results for
LUSOL with S scaled beforehand.

Table 1. Dimensions of m× n stoichiometric matrices S.

model m n rank(S) nnz(S)
Recon1 2766 3742 2674 14300
Th MA 15024 17582 14983 326035
GlcAerWT 62212 76664 62182 913967

Table 2. SPQR nonzeros and factorization times (seconds) and SVD times
on S and ST. See (3.2)–(3.3).

model nnz(Q) nnz(R) SPQR SVD
Recon1 S 2750 21093 0.1 17.5
Th MA 844096 10595016 2.5 11hrs
GlcAerWT 1287 916600 0.2 ∞
Recon1 ST 107935 36929 0.1 17.2
Th MA 624640 605888 0.7 11hrs
GlcAerWT 3573696 4038988 2.7 ∞

Table 3. LUSOL nonzeros and factorization times on S and ST. See (3.4)–
(3.6). Threshold Partial Pivoting with τ = 2.0.

model TPP nnz(L) nnz(U) LUSOL
Recon1 S 721 13585 0.1
Th MA 7779 324483 0.2
GlcAerWT 533 913781 0.4
Recon1 ST 9304 7813 0.2
Th MA 81506 268938 2.7
GlcAerWT 337433 703619 126.7

Table 4. LUSOL nonzeros and factorization times on S and ST. See (3.4)–
(3.6). Threshold Rook Pivoting with τ = 2.0.

model TRP nnz(L) nnz(U) LUSOL
Recon1 S 4280 16463 0.1
Th MA 30962 346122 4.1
GlcAerWT 635571 1810491 186.2
Recon1 ST 12832 7421 0.3
Th MA 501198 358601 37.8
GlcAerWT 1996892 709448 586.0

4

Conservation analysis of genome-scale biochemical networks

Table 5. LUSOL nonzeros and factorization times on scaled S and ST. See
(3.4)–(3.6). Threshold Partial Pivoting with τ = 2.0.

model TPP nnz(L) nnz(U) LUSOL
Recon1 S 712 13598 0.0
Th MA scaled 4043 327461 0.4
GlcAerWT 534 913883 0.5
Recon1 ST 9797 4612 0.2
Th MA scaled 130976 218256 1.1
GlcAerWT 820879 307625 36.9

Table 6. LUSOL nonzeros and factorization times on scaled S and ST. See
(3.4)–(3.6). Threshold Rook Pivoting with τ = 2.0.

model TRP nnz(L) nnz(U) LUSOL
Recon1 S 867 13604 0.0
Th MA scaled 41142 369394 7.2
GlcAerWT 333844 1431318 147.8
Recon1 ST 9897 4567 0.0
Th MA scaled 342958 64891 4.5
GlcAerWT 1181198 301319 122.0

5.2 Nullspace operations with lusolZ
We also compare the average errors, ‖STZv‖∞ and ‖ZTSv‖∞, and the
average times for computing Zv and ZTt (where t = Sv) using S = LU

or ST = LU on the genome-scale models in BiGG and on the larger model
from Thiele. In each case, 50 random vectors v were chosen with uniform
random vi ∈ (−0.5, 0.5). From the definition of Z and t, we expect the
errors to be small. A 2012 Apple MacBook Pro laptop (2.5 GHz Intel Core
i5) was used for the Matlab experiments, and times are measured in seconds.

Table 7. Average error (‖STZv‖∞) and computing time (Zv) of lusolZv
with scaled S and ST. Threshold Partial Pivoting with τ = 2.0.

model TPP error time
Recon1 S = LU 3.3e-16 0.0016
Th MA scaled 4.0e-16 0.0040
GlcAerWT 2.3e-17 0.0105
Recon1 ST = LU 5.4e-16 0.0020
Th MA scaled 3.5e-15 0.2247
GlcAerWT 4.3e-17 0.0460

Table 8. Average error (‖ZTSv‖∞) and computing time (ZTt) of lusolZt
with scaled S and ST. Threshold Partial Pivoting with τ = 2.0.

model TPP error time
Recon1 S = LU 1.4e-15 0.0014
Th MA scaled 1.8e-14 0.0039
GlcAerWT 3.5e-17 0.0133
Recon1 ST = LU 1.8e-15 0.0007
Th MA scaled 1.1e-13 0.0087
GlcAerWT 6.7e-17 0.0264

6 DISCUSSION
The Matlab software is available from lusolZ (2016).

FUNDING
This work was supported by the Office of Naval Research [award N00014-
11-1-0067] and by the National Institute of General Medical Sciences of
the National Institutes of Health [award U01GM102098]. The content is
solely the responsibility of the authors and does not necessarily represent
the official views of the funding agencies.

ACKNOWLEDGEMENTS
We thank Joshua Lerman at UC San Diego for providing the stoichiometric
matrix named Th MA here.

Conflicts of interest: None declared.

REFERENCES
Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. (1999).

What controls glycolysis in bloodstream form Trypanosoma brucei. J. Biol. Chem.,
274(21), 14551–14559.

Bakker, B. M., Westerhoff, H. V., Opperdoes, F. R., and Michels, P. A. M. (2000).
Metabolic control analysis of glycolysis in trypanosomes as an approach to improve
selectivity and effectiveness of drugs. Mol. Biochem. Parasitol., 106(1), 1–10.

Cornish-Bowden, A. and Eisenthal, R. (2000). Computer simulation as a tool for
studying metabolism and drug design. In Technological and Medical Implications
of Metabolic Control Analysis, pages 165–172. Springer.

Cornish-Bowden, A. and Hofmeyr, J.-H. (2002). The role of stoichiometric analysis in
studies of metabolism: an example. J. Theoret. Biol., 216(2), 179–191.

Davis, T. A. (2011). Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw., 38(1), 8:1–8:22.

Fourer, R. (1982). Solving staircase linear programs by the simplex method. 1:
Inversion. Math. Program., 23, 274–313.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1987). Maintaining LU
factors of a general sparse matrix. Linear Algebra Appl., 88, 239–270.

Gill, P. E., Murray, W., and Saunders, M. A. (2005). SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review, 47(1), 99–131. SIGEST article.

Golub, G. H. and Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins
University Press, 4 edition.

Henderson, N. W. (2013). Matlab interface to LUSOL. https://github.com/
nwh/lusol.

Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth,
J. D., Schrimpe-Rutledge, A. C., Smith, R. D., Adkins, J. N., Zengler, K., and
Palsson, B. O. (2012). In silico method for modelling metabolism and gene product
expression at genome scale. Nature Communications, 3(929), 10 pp.

LUSOL (2013). Sparse LU factorization package. http://stanford.edu/
group/SOL/software/lusol.

lusolZ (2016). lusolZ: Nullspace of sparse matrix via LUSOL. http://stanford.
edu/group/SOL/software/lusolZ.

Reder, C. (1988). Metabolic control theory: a structural approach. J. Theoret. Biol.,
135(2), 175–201.

Reid, J. K. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition
for linear programming bases. Math. Prog., 24(1), 55–69.

Sauro, H. M. and Ingalls, B. (2004). Conservation analysis in biochemical networks:
computational issues for software writers. Biophys. Chem., 109(1), 1–15.

Schellenberger, J., Park, J., Conrad, T. M., and Palsson, B. Ø. (2010). BiGG:
a biochemical genetic and genomic knowledgebase of large-scale metabolic
reconstructions. BMC Bioinform., 11(1), 213.

Schryer, D. W., Vendelin, M., and Peterson, P. (2011). Symbolic flux analysis for
genome-scale metabolic networks. BMC Systems Biology, 5(81), 13 pp.

SPQR (2013). Sparse QR factorization package. http://www.cise.ufl.edu/
research/sparse/SPQR/.

Terzer, M., Maynard, N. D., Covert, M. W., and Stelling, J. (2009). Genome-
scale metabolic networks. Wiley Interdisciplinary Reviews: Systems Biology and
Medicine, 1(3), 285–297.

5

Henderson et al.

Thiele, I., Fleming, R. M. T., Que, R., Bordbar, A., Diep, D., and Palsson, B. O. (2012).
Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its
application to the evolution of codon usage. PLOS ONE, 7(9), 18 pp.

Vallabhajosyula, R. R., Chickarmane, V., and Sauro, H. M. (2006). Conservation
analysis of large biochemical networks. Bioinform., 22(3), 346–353.

6

