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Abstract. We propose a method for solving a Hermitian positive definite linear system Ax = b, where A is
an explicit sparse matrix (real or complex). A sparse approximate right inverse M is computed and replaced by
M̃ = (M + MH)/2, which is used as a left-right preconditioner in a modified version of the preconditioned conjugate
gradient (PCG) method. M is formed column by column and can therefore be computed in parallel. PCG requires
only matrix-vector multiplications with A and M̃ (not solving a linear system with the preconditioner), and so too
can be carried out in parallel. We compare it with incomplete Cholesky factorization (the gold standard for PCG)
and with MATLAB’s backslash operator (sparse Cholesky) on matrices from various applications.
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1. Introduction. We consider a linear system Ax = b, where A ∈ Cn×n is an explicit, sparse,
Hermitian positive definite (HPD) matrix (real or complex), and x, b ∈ Cn are column vectors. Such
systems are common in many fields including computational fluid dynamics, power networks, eco-
nomics, material analysis, structural analysis, statistics, circuit simulation, computer vision, model
reduction, electromagnetics, acoustics, combinatorics, undirected graphs, and heat or mass trans-
fer. A reliable and efficient solution method is therefore crucial. Solving directly (for example with
sparse Cholesky factorization) may be computationally prohibitive. Iterative methods are then pre-
ferred, especially when they use the sparsity structure of the matrix [12, 30]. For HPD systems, the
conjugate gradient method (CG) [14] and preconditioned CG (PCG) are such methods.

In general, the rate of convergence of iterative methods for solving Ax = b depends on the
condition number of A and the clustering of its eigenvalues. Preconditioning requires a matrix
M ≈ A−1 such that AM ≈ I or MA ≈ I [3]. The transformed systems AMy = b, x = My or
MAx = Mb have the same solution as Ax = b but are typically better conditioned. One strategy to
approximate A−1 is choosing a sparse M to minimize the Frobenius norm of AM − I or MA− I [2].
As MATLAB uses column major storage for matrices, we focus on minimizing

(1) ‖AM − I‖2F ≡
n∑

j=1

‖Amj − ej‖22 ,

where mj and ej respectively denote column j of M and I.

If we have M̃ = CCH for some nonsingular C, then M̃ is HPD and we can precondition Ax = b
by solving the left-right preconditioned system

(2) CACHy = Cb, x = CHy.

The matrices C and CH are not needed for PCG, just products M̃v for given vectors v.
Incomplete Cholesky factorization, as implemented in MATLAB’s ichol, is a popular method

for computing a sparse triangular matrix L such that LLH ≈ A (and C = L−1 in (2)). In this
case, PCG requires triangular solves with L and LH each iteration. A typical choice for the sparsity
structure of L is that of the lower triangular part of A. The cost of each PCG iteration with LLH

preconditioner is then about twice that of CG. Choosing a denser L is usually undesirable unless
it substantially decreases the number of iterations. Choosing a sparser L will generally lead to
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Algorithm 1 Diagonal scaling of A

1: Define a diagonal matrix D with Dii = 1/
√
Aii

2: A← D∗tril(A)∗D (the strictly lower triangular part of A)
3: A← A+AH + I

more iterations, while not changing the asymptotic cost of each iteration. Therefore, we restrict our
discussion to the iChol factorization [12, 19, 20] with no fill-in, and its modified version (miChol).
While both versions omit elements of the exact L, miChol compensates the diagonal for the dropped
elements by ensuring Ae = LLHe, where e is an n-vector of all 1s.

An alternative to incomplete factorization is sparse approximate inverse preconditioning (AINV
in Benzi et al. [4] and SPAI in Grote and Huckle [13]). For sparse HPD systems we propose SSAI,
a symmetric sparse approximate inverse preconditioner. It is an inherently parallel SPAI algorithm
adapted from the left-preconditioner described for GMRES [25] in [26]. (Some other SPAI algorithms
described in [7] were implemented, but they were less efficient in preliminary tests.)

The paper is organized as follows. Section 2 details the algorithm for computing our precon-
ditioner M̃ ≈ A−1 and solving Ax = b. Section 3 compares M̃ with iChol, miChol, and sparse
Cholesky (via MATLAB’s ‘\’ operator) on a wide variety of matrices from different applications
from the SuiteSparse Matrix Collection [9]. Section 4 discusses complexity and parallel implemen-
tation. Section 5 discusses results and future directions.

2. A PCG algorithm for HPD linear systems. For SSAI and comparisons with existing
methods, we start by diagonally scaling A using Algorithm 1. Each off-diagonal entry is scaled by the
square root of the product of the diagonal entries in its row and column. Thus, Aii = 1 and |Aij | . 1.
The symmetry and unit diagonal of the scaled A are not affected by round-off. Algorithm 1 takes
O(k) time, where k ≡ nnz(A) is the number of nonzeros in A. It could be parallelized (less trivially
than the rest of SSAI) but its cost is negligible. The system to be solved becomes DADy = Db,
x = Dy. From now on we assume Ax = b has been scaled in this way.

For each column of M , if we define the residual to be rj = ej −Amj , Algorithm 2 is essentially

coordinate descent on the function 1
2 ‖rj‖

2
2. The main differences between Algorithm 2 and the

method of [26] are application to PCG (not GMRES), simplification of the for loops, parameter
selection (lfil and itmax), and the fact that the symmetrization on line 16 is mandatory instead
of optional. Algorithm 2 computes the ith entry of mj with a maximum number of nonzeros per
column (nnz(mj) ≤ lfil). Note that on line 12 r[i] becomes zero; so the next i will be different.

We must choose itmax ≥ lfil for SSAI to work, but not so large that the preconditioner is too
expensive to compute. (In our experiments, we set itmax = 2*lfil.) We construct M column by
column (not row by row) because this leads to efficient memory access in MATLAB.

It is known that many entries of the inverse of a sparse HPD matrix are small in magnitude [10].
Lines 6–8 of Algorithm 2 tend to generate the larger values of mj . M itself has previously been used
with GMRES, but PCG requires a Hermitian preconditioner. If M is a good right preconditioner,
i.e., it minimizes (1) in some subspace, we know that MH minimizes

∥∥MHA− I
∥∥
F

in the same
subspace, and so is a good left preconditioner. Thus, the Hermitian matrix M̃ = (M +MH)/2
should be a good left-right preconditioner.

If M is PD, it follows that MH is PD and M̃ is HPD. However, M may not be PD. Grote and
Huckle [13] prove that if ‖rj‖2 ≡ ‖Amj − ej‖2 < ε and p denotes the maximum number of nonzeros
in any column of the residual, the eigenvalues of AM lie inside a disk of radius

√
pε, centered around

1. As p ≤ n, taking ε = 1/
√
n, changing line 5 of Algorithm 2 to “While ‖rj‖2 ≥ ε do”, and removing

lines 9–11, guarantees M will be PD [26], but would be expensive.
In practice, enforcing ‖rj‖2 ≡ ‖Amj − ej‖2 < ε would substantially increase computation time.

Fortunately, Algorithm 2 usually produces an HPD M̃ . In Algorithm 3 we use an alternative and
less expensive way of ensuring M̃ is HPD, and this has proved effective in the numerical tests.
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Algorithm 2 SSAI: left-right HPD preconditioner

1: M ← 0n×n

2: for j ← 1 to n do
3: m← 0n×1

4: r ← ej (n× 1)
5: for k ← 1 to itmax do
6: i = indmax(|r|) (index of maximum element-wise absolute value)
7: δ ← r[i]
8: m[i]← m[i] + δ
9: if nnz(m) ≥ lfil then

10: break;
11: end if
12: r ← r − δ∗ai
13: end for
14: mj ← m
15: end for
16: M̃ ← (M +MH)/2

If M̃ = CCH , it is natural to ask whether CACH ≈ I. The eigensystem of M̃ proves there
is a unique HPD C̃ such that M̃ = C̃2. Further, for a Hermitian A, AC̃2 = I ⇒ C̃AC̃ = I. By
continuity, we can expect that minimizing ‖AM̃ − I‖2F tends to minimize ‖C̃AC̃ − I‖2F .

For simplicity, the rest of the paper uses M in place of M̃ .
In Algorithm 3 the computed preconditioner M̃ (now M) is used in a version of PCG, modified

to include a matrix-vector multiplication instead of a linear system solve, since typically M ≈ A,
but in our case M ≈ A−1. This algorithm is mathematically equivalent to using CG for solving
system (2). In exact arithmetic, PCG is guaranteed to converge in at most n iterations. In practice
this number is usually much less than n with any reasonable preconditioner. We can therefore safely
choose itmax= n, knowing that our break condition will usually be the one to stop the loop. We
store our initial guess as x0 and use dx to compute the difference from the guess accrued by the
algorithm. If x0 is a very good guess, the small steps defining dx won’t be lost to round-off error.

A further safeguard is to detect indefiniteness or near-singularity in M (lines 18–20) and restart
PCG with an updated x0 and a more HPD M . The normalized inner product of r with M is
ρ̂ ≡ (rHMr)/ ‖r‖22. If ρ̂ is small or negative, M must be close to singular or indefinite. In this case,
we define tolM to be the minimal ρ̂ that we accept, and otherwise modify M in a linear fashion to
increase ρ̂. We then update x0 and restart PCG.

The original PCG has a solve with M instead of the matrix-vector product in line 16. The
product can be parallelized (another advantage of SSAI). Benzi et al. [4] introduce a sparse approx-
imate inverse of the Cholesky factor, again allowing a parallel product. However, their method does
not parallelize the computation of the preconditioner, and should not be expected to work when
Cholesky fails. (SSAI does not depend on Cholesky factorization.) Some known methods such as [26]
aim to compute an HPD preconditioner, but use it on the left or right with more general methods
such as GMRES, because the resulting matrix AM or MA is not guaranteed to be Hermitian. These
methods are far less efficient than PCG, which is tailored for HPD matrices and has fixed storage.

If A is not already scaled, diagonal scaling MD = diag(A)−1 is typically far more effective than
no preconditioner, but it is not “greedy enough” as MD is much cheaper to apply than A. Each
iteration costs roughly the same on large matrices, but we may neglect important information on the
off-diagonals, costing valuable iterations. SSAI is the best of both worlds: it retains the advantages
of a good sparse approximate HPD inverse, and allows the iterative solver to be PCG.
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Algorithm 3 Modified PCG Typical parameters: tolM = 10−2, δ = 10

1: r ← b−A∗x0, dx← 0n×1

2: p← z ←M ∗r
3: ρnew ← real(zH ∗r)
4: for j ← 1 to itmax do
5: q ← A∗p
6: β ← real(pH ∗q)
7: if β ≤ 0 then
8: break; (A is not PD)
9: end if

10: ρ← ρnew, α← ρ/β
11: dx← dx+ α∗p
12: r ← r − α∗q
13: if ‖r‖2 / ‖b‖2 < tol then
14: break
15: end if
16: z ←M ∗r
17: ρnew ← real(zH ∗r), ρ̂ = ρnew/ ‖r‖22
18: if ρ̂ < tolM then
19: Restart at line 1 with x0 ← x0 + dx, M ←M + (δ∗(tolM− ρ̂))∗I
20: end if
21: p← z + (ρnew/ρ)∗p
22: end for
23: x = x0 + dx

3. Numerical results. We compare the performance of SSAI (Algorithm 2) with the iChol
and miChol preconditioners and the intrinsic backslash (\) solver, using MATLAB on a serial PC.
For all methods, we apply Algorithm 1 to HPD matrices A to obtain a scaled matrix A with unit
diagonal. We then attempt to solve Ax = b, where b = Aw and wT = [1, 2, . . . , n]/n. The first
section uses matrices from the SuiteSparse collection, and the other sections contain scale-up tests
for problems submitted to SuiteSparse and also available in [23].

iChol and miChol are computed by the built-in function ichol(A) with opts.type = ’nofill’

and opts.michol = ’off’ and ’on’ respectively. We implement SSAI as in Algorithm 2 and use
it with PCG as in Algorithm 3. For iChol and miChol, a simpler form of PCG replaces the product
with M by two triangular solves (corresponding to the iChol factors). Backslash computes the
Cholesky factors of A if possible, and then two triangular solves. Otherwise, it tries MATLAB’s ldl
function (LDLH with possibly indefinite D) or sparse LU factorization. Note that decompositions
take far more time than triangular solves. If there are multiple right-hand sides, it is best to compute
the decomposition explicitly using Ã = decomposition(A,’chol’) and x = Ã\b for each b.

In Algorithm 2 we use itmax = 2 ∗ lfil and lfil = ceil(nnz(A)/n), giving nnz(M) <
nnz(A) + n and hence nnz(M) ≈ nnz(A). These values were chosen to be roughly consistent with
iChol, and for the same reason of not substantially affecting the run-time of each PCG iteration. It
is possible that different values would give better results, including selecting lfil on a column by
column basis, but here we focus on the method itself and not optimizing on the edges.

In Algorithm 3 we use tol = 10−8, tolM = 10−2, δ = 10. All final residual norms ‖b−Ax‖2 were
verified to be below tol. The residual for backslash was always much closer to machine precision.

In the tables of results, miChol is omitted because when it worked, the number of iterations was
very similar to that of iChol, but it was less robust, frequently encountering a non-positive pivot
even when iChol worked seamlessly. iChol and ‘\’ are also omitted if they failed. T1 and T2 are the
times (in seconds) for Algorithms 2 and 3. For ‘\’, only total time is reported as T2.

The MATLAB code for Algorithms 2 and 3 is available from [24].
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Table 1: Results with unmodified M

Field Matrix n nnz Method Itns T1 T2

Acoustics aft01 8,205 125,567 iChol 87 1.15e−3 1.56e−1
\ - - 1.15e−2
SSAI 228 2.08e+0 2.30e−1

qa8fm 66,127 1,660,579 iChol 6 1.20e−2 1.33e−1
\ - - 1.71e+0
SSAI 11 3.07e+1 1.14e−1

Circuit G2 circuit 150,102 726,674 iChol 486 5.77e−3 1.32e+1
Simulation \ - - 3.84e−1

SSAI 827 1.24e+1 1.09e+1
G3 circuit 1,585,478 7,660,826 iChol 564 9.44e−2 2.08e+2

\ - - 8.41e+0
SSAI 1132 8.79e+2 1.93e+2

Fluid shallow water 81,920 327,680 iChol 11 2.78e−3 1.60e−1
Dynamics \ - - 1.31e−1

SSAI 16 4.12e+0 1.45e−1
parabolic fem 525,825 3,674,625 iChol 696 3.61e−2 7.35e+1

\ - - 1.57e+0
SSAI 892 9.39e+1 7.10e+1

Computer bundle1 10,581 770,811 iChol 22 1.88e−1 1.07e−1
Graphics/ \ - - 1.33e−1
Vision SSAI 25 1.42e+1 8.89e−2

Andrews 60,000 760,154 iChol 43 1.85e−2 9.73e−1
\ - - 6.26e+0
SSAI 59 8.70e+0 9.84e−1

Economics finan512 74,752 596,992 iChol 8 5.72e−3 1.20e−1
\ - - 1.21e−1
SSAI 11 7.32e+0 1.33e−1

Electro- mhd1280 1,280 22,778 iChol 6 6.68e−4 9.63e−3
magnetics \ - - 1.51e−3

SSAI 12 4.13e−1 1.18e−2
mhd4800b 4,800 27,520 iChol 2 4.07e−4 2.25e−3

\ - - 1.72e−3
SSAI 12 3.67e−1 7.58e−3

2cubes sphere 101,492 1,647,264 iChol 9 3.00e−2 3.04e−1
\ - - 2.86e+0
SSAI 10 1.96e+1 2.54e−1

tmt sym 726,713 5,080,961 iChol 1043 4.87e−2 1.69e+2
\ - - 2.49e+0
SSAI 1976 1.59e+2 1.79e+2

Geomechanics Bump 2911 2,911,419 127,729,899 SSAI 784 4.97e+3 6.14e+2
Materials crystm03 24,696 583,770 iChol 2 5.09e−3 1.90e−2

\ - - 2.21e−1
SSAI 11 8.80e+0 4.14e−2

Optimization torsion1 40,000 197,608 iChol - - 1.81e+0
\ 651 8.69e+1 2.53e+1
SSAI - - 1.24e+1

gridgena 48,962 512,084 iChol 9353 8.20e+2 2.62e+3
\ 3147 1.02e+3 9.55e+2
SSAI 18 1.52e−3 1.35e−1

Power 1138 bus 1,138 4,054 iChol - - 4.35e−2
Network \ 29 1.92e+0 1.14e−1

SSAI 713 3.63e−3 6.64e+0
ecology2 999,999 4,995,991 iChol - - 1.02e−1

\ 987 7.19e+0 4.99e+0
SSAI 141 2.11e−4 3.84e−2

Random wathen120 36,441 565,761 iChol - - 9.24e−4
\ 451 6.32e−2 8.76e−2
SSAI 1718 3.94e−2 4.67e+2

Statistics Chem97ZtZ 2,541 7,361 iChol - - 1.74e+0
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\ 3248 2.60e+2 2.04e+2
SSAI 10 3.88e−3 8.81e−2

Structural Kuu 7,102 340,200 iChol - - 6.19e−2
Mechanics \ 18 6.52e+0 1.03e−1

SSAI 1 2.07e−4 6.00e−4
boneS01 127,224 5,516,602 \ - - 1.10e−3

SSAI 15 7.02e−2 6.40e−3
boneS10 914,898 40,878,708 \ 72 4.60e−3 1.89e−1

SSAI - - 1.45e−2
bone010 986,703 47,851,783 SSAI 118 6.10e+0 2.07e−1
Flan 1565 1,564,794 114,165,372 iChol 1948 2.28e+0 1.78e+3

SSAI 1426 2.40e+3 8.12e+2
Thermal ted B unscaled 10,605 144,579 iChol 1 1.56e−3 3.04e−3

\ - - 5.37e−3
SSAI 8 1.99e+0 1.16e−2

thermomech TC 102,518 711,558 iChol 8 1.46e−2 2.46e−1
\ - - 2.75e−1
SSAI 12 8.77e+0 2.56e−1

thermal2 1,228,045 8,580,313 iChol 1817 1.47e−1 7.24e+2
\ - - 4.36e+0
SSAI 2418 4.36e+2 6.37e+2

3.1. Matrices from SuiteSparse. Table 1 gives results for matrices where M did not need to
be modified within PCG. It shows there are some large problems where SSAI is the only method that
works. There is a way to ensure that iChol succeeds with the ‘diagcomp’ option with parameter α,
which calculates iChol on A +α*diag(diag(A)). (For scaled A, this is equivalent to A +α*speye(n).)
However, there is no foolproof way for selecting α. On the matrices tested, α = 0.1 did not work but
α = 1 did. In the latter case, the PCG time T2 was substantially larger than with SSAI. MATLAB
advises that α = max(sum(abs(A))./diag(A)) - 2 guarantees A +α*diag(diag(A)) is diagonally
dominant—a sufficient condition for iChol to succeed, but a too conservative one. It led to α ≈ 10
and even more iterations. We recommend iChol be used only when it works with α = 0.

Table 1 also shows that the cost per iteration of PCG/SSAI is almost always less than that
of PCG/iChol. If the number of PCG iterations is lower or comparable for SSAI, which indeed
occurs frequently, it would be preferred even when the other methods work. Note that iChol and ‘\’
are intrinsic MATLAB functions coded in C and thus can be expected to outperform .m functions
such as Algorithms 2 and 3, or PCG with iChol. The disparity between run times of intrinsic
and .m functions in MATLAB can be 3 orders of magnitude [1, 17]. Thus, although T1 is often
significant for SSAI, if efficiently implemented it could outperform iChol on large systems (given
that nnz(M) < 2∗nnz(L)). Also, the T1 cost is less significant when there are multiple bs.

Table 2 contains the case where M had to be modified by Algorithm 3 (meaning ρ̂ = rHMr/ ‖r‖22
is small or negative). SSAI is the only method that succeeds on the three largest problems. For
smaller problems, it seems that other methods usually work better. The number of iterations
reported includes iterations before and after M was changed. The number of changes to M is labeled
R. Evidently with relatively few corrections to M , SSAI gives an effective HPD preconditioner.

For StocF-1465, the problem that took the most PCG iterations, we conduct a further study
in Table 3 to see if larger values of lfil and itmax give a better M . Monitoring nnz(M) shows
that the Algorithm 2 is terminating mostly because of itmax and not lfil. To avoid discrepancies
in run-time unrelated to the algorithm, we define a measure Obj = [nnz(A) + nnz(M)]∗Itns that
roughly represents the number of operations completed by PCG. We see that the number of iterations
is monotonically decreasing, and Obj has a general downward trend. We conclude that for some
applications, tweaking the parameters lfil and itmax can be advantageous.

3.2. Scale-up for Trefethen challenge matrices. Table 4 shows scale-up results for a chal-
lenge matrix [28, 29]. The original matrix has n = 20, 000 with increasing prime numbers on the
main diagonal and 1s wherever |i − j| = 2N for some non-negative integer N , and the challenge is
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Table 2
Results with modified M

Field Matrix n nnz Method Itns R T1 T2

Fluid bcsstk13 2,003 83,883 \ - - 2.08e−2
Dynamics SSAI 320 1 1.61e+0 1.48e−1

Pres Poisson 14,822 715,804 iChol 206 - 1.48e−2 1.19e+0
\ - - 8.43e−2
SSAI 202 2 1.21e+1 8.52e−1

cfd2 123,440 3,085,406 \ - - 1.80e+0
SSAI 1235 1 5.32e+1 2.90e+1

StocF-1465 1,465,137 21,005,389 SSAI 7983 1 9.29e+2 1.85e+3
Optimization cvxbqp1 50,000 349,968 \ - - 1.72e−1

SSAI 1642 1 4.96e+0 1.34e+1
Structural sts4098 4,098 72,356 \ - - 1.02e−2
Mechanics SSAI 110 1 1.21e+0 8.68e−2

bcsstk18 11,948 149,090 \ - - 2.69e−2
SSAI 441 1 2.40e+0 9.31e−1

hood 220,542 9,895,422 \ - - 8.44e−1
SSAI 567 1 1.88e+2 3.77e+1

Fault 639 638,802 27,245,944 SSAI 662 1 5.76e+2 1.10e+2
Queen 4147 4,147,110 316,548,962 SSAI 1508 1 1.21e+4 2.02e+3

Undirected pdb1HYS 36,417 4,344,765 iChol 276 - 1.26e−1 7.05e+0
Graph \ - - 9.77e−1

SSAI 512 2 7.75e+1 9.80e+0

Table 3
Results on StocF-1465 with varying lfil and itmax

lfil itmax nnz(M) nnz(M)+nnz(A) Itns R Obj
20 40 11,033,497 32,038,886 7691 1 1.03
30 60 13,342,987 34,348,376 6767 1 0.97
40 80 15,282,153 36,287,542 6072 1 0.92
50 100 16,981,205 37,986,594 5487 1 0.87
60 120 18,526,847 39,532,236 5263 1 0.87
70 140 19,950,933 40,956,322 5156 1 0.88
80 160 21,293,187 42,298,576 4660 2 0.82
90 180 22,566,173 43,571,562 4631 1 0.84

100 200 23,774,337 447,797,26 4315 1 0.81

to compute eT1 A
−1e1. SuiteSparse contains cases n = 2, 000 and 20,000. We generated two larger

matrices of the same form. They remind us that iterative methods are essential for systems that
have substantial fill-in in their Cholesky factors. For iChol and SSAI, T2 scales linearly with nnz

(with SSAI being twice as fast as iChol). On these problems, ‘\’ scales poorly because the bandwidth
grows linearly with n. It fails on even the moderately sized Trefethen 200000. The PCG iterations
remain roughly constant because the matrix becomes more diagonally dominant near the bottom
right corner, and the solution vector is also concentrated at the bottom. We checked all methods on
the original Trefethen problem by solving with b = e1. Their performance was similar. For each n we
recovered the first ten digits of the solution: 0.7250188326, 0.7250783462, 0.7250809785, 0.725081256
(found by all methods that worked). The n = 20, 000 value agrees with [28].

3.3. Scale-up for finite-element linear elasticity matrices. Table 5 shows scale-up results
for a structural mechanics problem that results from discretizing a cube using quadratic hexahedral
finite elements. All elements are cubes, leading to a relatively well-conditioned A. We show results
for 4, 8, 16, 32 elements per direction. As in Table 4, ‘\’ fails, though later because the bandwidth
of A grows less rapidly with n compared to the Trefethen problems. Both iterative methods work
well. SSAI needs more PCG iterations but less PCG time. The PCG iterations roughly double as
the number of elements increases—a small price for 2X the resolution in all three directions.
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Table 4
Combinatorics problem scale-up

Matrix n nnz Method Itns T1 T2

Trefethen 2000 2,000 41,906 iChol 5 5.82e−4 4.95e−3
\ - - 2.15e−2
SSAI 4 4.04e−1 2.53e−3

Trefethen 20000 20,000 554,466 iChol 5 5.73e−3 3.12e−2
\ - - 5.76e+0
SSAI 3 5.27e+0 1.30e−2

Trefethen 200000 200,000 6,875,714 iChol 4 9.38e−2 3.13e−1
SSAI 3 7.79e+1 1.60e−1

Trefethen 2000000 2,000,000 81,805,698 iChol 3 1.71e+0 3.35e+0
SSAI 2 2.06e+3 1.49e+0

Table 5
Ordered grid structural mechanics scale-up

Matrix n nnz Method Itns T1 T2

FEM3D 2 1,029 71,445 iChol 11 4.03e−3 1.08e−2
\ - - 6.16e−3
SSAI 13 1.32e+0 8.64e−3

FEM3D 3 10,125 1,021,365 iChol 19 4.79e−2 1.31e−1
\ - - 1.23e+0
SSAI 25 2.00e+1 1.18e−1

FEM3D 4 89,373 10,525,557 iChol 35 5.00e−1 2.40e+0
\ - - 9.65e+1
SSAI 45 2.29e+2 2.09e+0

FEM3D 5 750,141 94,852,341 iChol 67 4.49e+0 4.18e+1
SSAI 81 2.42e+3 3.40e+1

3.4. Scale-up for finite-volume petroleum engineering matrices. Table 6 shows scale-up
results for SPE10, an important benchmark for testing solver methods in petroleum engineering [8].
Examples were constructed by Klockiewicz [15] using the methods in [18] for a petroleum reservoir
simulation. Here again, ‘\’ fails for the larger problems, while both iterative methods work well. As
with the preceding finite-element matrices, iChol needs fewer PCG iterations but more PCG time.
For this problem, nnz(M) ≈ 1.1nnz(A), almost reaching the relative bound for nnz(M).

3.5. Scale-up for finite-element ice-sheet matrices. Table 7 shows scale-up results for a
model of ice flow in Antarctica [5, 27]. SSAI is the only method that works on all cases, with ‘\’ failing
for the larger ones and iChol failing on all of them. For this problem, nnz(M) ≈ 0.3–0.4nnz(A),
leaving room for a denser M .

4. Parallelism and complexity. Parallelism requires examination of run-time dependence
on n, k, and number of processors p. We can assume that communication between processors is
negligible for p� n, but the verification of this assumption and the following idealized analysis is the
subject for another paper. For a nonsingular A, n ≤ k ≤ n2. All lines in the outer loop of Algorithm 2
are trivially parallelizable on up to n machines, because each column is computed separately. Line
16 could be parallelized with greater effort, but it is only an O(k) operation occurring once. Lines
6–12 are executed O(k) times, requiring O(k/n) arithmetic operations each time. Line 14 runs n
times with O(k/n) operations each time. The time to compute M is therefore T (A) ≡ O(k2/(np)).

Algorithm 3 is dominated by matrix-vector products that require O(k) arithmetic operations.
In exact arithmetic, the loop runs at most n times and at least once. It must happen sequentially.
On parallel machines, matrix-vector products can be done row by row. Therefore, with p machines
they take O(k/p) time. The norm on line 13 is an O(n/p) operation because the contribution of each
processor must be summed. Therefore, the run-time for PCG on p machines is τ(A) ≡ O(kn/p).

When τ & T it could be advantageous to use larger lfil and itmax for computing M . This
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Table 6
Finite-Volume problem scale-up

Matrix n nnz Method Itns T1 T2

lin4E5 422,400 2,912,312 iChol 445 1.86e−2 6.11e+1
\ - - 8.02e+0
SSAI 662 7.48e+1 3.47e+1

lin1E6 1,122,000 7,779,996 iChol 1139 6.88e−2 6.87e+2
\ - - 8.46e+1
SSAI 1745 3.97e+2 2.40e+2

lin2E6 2,097,152 14,581,760 iChol 1795 1.35e−1 2.73e+3
SSAI 2719 1.38e+3 7.35e+2

lin4E6 4,096,000 28,518,400 iChol 2008 2.42e−1 6.57e+3
SSAI 2950 5.32e+3 1.55e+3

lin8E6 8,000,000 55,760,000 iChol 2960 5.53e−1 2.09e+4
SSAI 4191 2.05e+4 5.79e+3

lin1E7 16,003,008 111,640,032 iChol 2950 1.11e+0 4.48e+4
SSAI 4211 8.56e+4 1.18e+4

Table 7
Unordered grid structural mechanics scale-up

Matrix n nnz Method Itns R T1 T2

ant16 5 629,544 29,697,024 \ - - - 1.16e+1
SSAI 5033 1 6.92e+2 6.75e+2

ant16 10 1,154,164 57,537,984 \ - - - 9.95e+1
SSAI 8973 2 1.54e+3 2.22e+3

ant8 5 2,521,872 119,642,880 SSAI 6339 3 4.34e+3 3.64e+3
ant8 10 4,623,432 231,808,080 SSAI 12063 2 1.16e+4 1.54e+4

was true on StocF-1465 (which needed the most PCG iterations among the SuiteSparse matrices).
Such run-time information should be taken into account when we choose a method to solve a

system, or try to bound the size of the system being constructed. A comprehensive study such as
[16] is needed to verify how these theoretical results for parallel machines hold up in practice.

5. Discussion. The numerical results show that even on serial machines, SSAI is competitive
with iChol preconditioners and direct methods for large HPD linear systems whose Cholesky factors
are denser than A. Moreover, SSAI + PCG is the most robust of the four methods, and guarantees a
solution in a wider range of cases. For small systems, the overhead of computing the preconditioner is
considerable, although this is partly due to inefficient implementation compared to built-in functions.
The overhead for computing M is less significant when there are several right-hand sides or several
similar matrices, such that the preconditioner M can be reused. Although there is no ‘one size fits
all’ preconditioner, our results suggest that SSAI for HPD systems is suitable if some of the following
criteria are met: n or k is large, A arises from finite element schemes, factors of A would be too
dense, or parallelization is essential.

A future research direction is to develop a SSAI-type algorithm for more general matrices. For
example, for square or rectangular systems the normal equation AHAx = AHb may suggest an SSAI-
type preconditioner for LSQR and LSMR [22, 11]. Also, if we can form an HPD preconditioner for
an indefinite system, it could be used with MINRES [21, 6].

Acknowledgements. We thank Eric Darve, Bazyli Klockiewicz, and Leopold Cambier for con-
sultation and data regarding the SPE10 and Antarctica matrices. We also recognize the invaluable
resource that the SuiteSparse collection [9] represents.
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